3,139 research outputs found

    A New Approach for Quality Management in Pervasive Computing Environments

    Full text link
    This paper provides an extension of MDA called Context-aware Quality Model Driven Architecture (CQ-MDA) which can be used for quality control in pervasive computing environments. The proposed CQ-MDA approach based on ContextualArchRQMM (Contextual ARCHitecture Quality Requirement MetaModel), being an extension to the MDA, allows for considering quality and resources-awareness while conducting the design process. The contributions of this paper are a meta-model for architecture quality control of context-aware applications and a model driven approach to separate architecture concerns from context and quality concerns and to configure reconfigurable software architectures of distributed systems. To demonstrate the utility of our approach, we use a videoconference system.Comment: 10 pages, 10 Figures, Oral Presentation in ECSA 201

    Report from GI-Dagstuhl Seminar 16394: Software Performance Engineering in the DevOps World

    Get PDF
    This report documents the program and the outcomes of GI-Dagstuhl Seminar 16394 "Software Performance Engineering in the DevOps World". The seminar addressed the problem of performance-aware DevOps. Both, DevOps and performance engineering have been growing trends over the past one to two years, in no small part due to the rise in importance of identifying performance anomalies in the operations (Ops) of cloud and big data systems and feeding these back to the development (Dev). However, so far, the research community has treated software engineering, performance engineering, and cloud computing mostly as individual research areas. We aimed to identify cross-community collaboration, and to set the path for long-lasting collaborations towards performance-aware DevOps. The main goal of the seminar was to bring together young researchers (PhD students in a later stage of their PhD, as well as PostDocs or Junior Professors) in the areas of (i) software engineering, (ii) performance engineering, and (iii) cloud computing and big data to present their current research projects, to exchange experience and expertise, to discuss research challenges, and to develop ideas for future collaborations

    Architectural reflection for software evolution

    Get PDF
    Software evolution is expensive. Lehman identifies several problems associated with it: Continuous adaptation, increasing complexity, continuing growth, and declining quality. This paper proposes that a reflective software engineering environment will address these problems by employing languages and techniques from the software architecture community. Creating a software system will involve manipulating a collection of views, including low-level code views and high-level architectural views which will be tied together using reflection. This coupling will allow the development environment to automatically identify inconsistencies between the views, and support software engineers in managing architectures during evolution. This paper proposes a research programme which will result in a software engineering environment which addresses problems of software evolution and the maintenance of consistency between architectural views of a software system

    ACME vs PDDL: support for dynamic reconfiguration of software architectures

    Get PDF
    On the one hand, ACME is a language designed in the late 90s as an interchange format for software architectures. The need for recon guration at runtime has led to extend the language with speci c support in Plastik. On the other hand, PDDL is a predicative language for the description of planning problems. It has been designed in the AI community for the International Planning Competition of the ICAPS conferences. Several related works have already proposed to encode software architectures into PDDL. Existing planning algorithms can then be used in order to generate automatically a plan that updates an architecture to another one, i.e., the program of a recon guration. In this paper, we improve the encoding in PDDL. Noticeably we propose how to encode ADL types and constraints in the PDDL representation. That way, we can statically check our design and express PDDL constraints in order to ensure that the generated plan never goes through any bad or inconsistent architecture, not even temporarily.Comment: 6\`eme \'edition de la Conf\'erence Francophone sur les Architectures Logicielles (CAL 2012), Montpellier : France (2012

    Analysis of Software Binaries for Reengineering-Driven Product Line Architecture\^aAn Industrial Case Study

    Full text link
    This paper describes a method for the recovering of software architectures from a set of similar (but unrelated) software products in binary form. One intention is to drive refactoring into software product lines and combine architecture recovery with run time binary analysis and existing clustering methods. Using our runtime binary analysis, we create graphs that capture the dependencies between different software parts. These are clustered into smaller component graphs, that group software parts with high interactions into larger entities. The component graphs serve as a basis for further software product line work. In this paper, we concentrate on the analysis part of the method and the graph clustering. We apply the graph clustering method to a real application in the context of automation / robot configuration software tools.Comment: In Proceedings FMSPLE 2015, arXiv:1504.0301

    Modeling Adaptation with Klaim

    Get PDF
    In recent years, it has been argued that systems and applications, in order to deal with their increasing complexity, should be able to adapt their behavior according to new requirements or environment conditions. In this paper, we present an investigation aiming at studying how coordination languages and formal methods can contribute to a better understanding, implementation and use of the mechanisms and techniques for adaptation currently proposed in the literature. Our study relies on the formal coordination language Klaim as a common framework for modeling some well-known adaptation techniques: the IBM MAPE-K loop, the Accord component-based framework for architectural adaptation, and the aspect- and context-oriented programming paradigms. We illustrate our approach through a simple example concerning a data repository equipped with an automated cache mechanism

    Applying constraint solving to the management of distributed applications

    Get PDF
    Submitted to DOA08We present our approach for deploying and managing distributed component-based applications. A Desired State Description (DSD), written in a high-level declarative language, specifies requirements for a distributed application. Our infrastructure accepts a DSD as input, and from it automatically configures and deploys the distributed application. Subsequent violations of the original requirements are detected and, where possible, automatically rectified by reconfiguration and redeployment of the necessary application components. A constraint solving tool is used to plan deployments that meet the application requirements.Postprin

    A Taxonomy for a Constructive Approach to Software Evolution

    Get PDF
    In many software design and evaluation techniques, either the software evolution problem is not systematically elaborated, or only the impact of evolution is considered. Thus, most of the time software is changed by editing the components of the software system, i.e. breaking down the software system. The software engineering discipline provides many mechanisms that allow evolution without breaking down the system; however, the contexts where these mechanisms are applicable are not taken into account. Furthermore, the software design and evaluation techniques do not support identifying these contexts. In this paper, we provide a taxonomy of software evolution that can be used to identify the context of the evolution problem. The identified contexts are used to retrieve, from the software engineering discipline, the mechanisms, which can evolve the software software without breaking it down. To build such a taxonomy, we build a model for software evolution and use this model to identify the factors that effect the selection of software evolution\ud mechanisms. Our approach is based on solution sets, however; the contents of these sets may vary at different stages of the software life-cycle. To address this problem, we introduce perspectives; that are filters to select relevant elements from a solution set. We apply our taxonomy to a parser tool to show how it coped with problematic evolution problems

    A Review on Present State-of-the-Art of Self Adaptive Dynamic Software Architecture

    Get PDF
    Enterprises across the world are increasingly depending on software to drive their businesses. It is more so with distributing computing technologies in place that pave way for realization of seamless business integration. On the other hand those complex software systems are expected to adapt changes dynamically without causing administrative overhead. Moreover software systems should exhibit fault tolerance, location transparency, availability, scalability self-adaptive capabilities to fit into present enterprise business use cases. To cope with such expectations software systems are to be built with a dynamic and self-adaptive software architecture which drives home quality of services perfectly. The point made here is that software systems are facing unprecedented level of complexity and aware of self-adaptation. Therefore it is essential to have technical knowhow pertaining to self adaptive dynamic software architecture. Towards this end, we explore present state-of-the-art of this area in software engineering domain. It throws light into dynamic software architectures, distributed component technologies for realizing such architectures, besides dynamic software composition and metrics to evaluate the quality of dynamic adaptation

    Modeling adaptation with a tuple-based coordination language

    Get PDF
    In recent years, it has been argued that systems and applications, in order to deal with their increasing complexity, should be able to adapt their behavior according to new requirements or environment conditions. In this paper, we present a preliminary investigation aiming at studying how coordination languages and formal methods can contribute to a better understanding, implementation and usage of the mechanisms and techniques for adaptation currently proposed in the literature. Our study relies on the formal coordination language Klaim as a common framework for modeling some adaptation techniques, namely the MAPE-K loop, aspect- and context-oriented programming
    corecore