
Architectural Reflection for Software Evolution

Stephen Rank

Department of Computing and Informatics,
University of Lincoln.
srank@lincoln.ac.uk

Abstract. Software evolution is expensive. Lehman identifies several
problems associated with it: Continuous adaptation, increasing complex-
ity, continuing growth, and declining quality. This paper proposes that a
reflective software engineering environment will address these problems
by employing languages and techniques from the software architecture
community.

Creating a software system will involve manipulating a collection of
views, including low-level code views and high-level architectural views
which will be tied together using reflection. This coupling will allow
the development environment to automatically identify inconsistencies
between the views, and support software engineers in managing archi-
tectures during evolution.

This paper proposes a research programme which will result in a software
engineering environment which addresses problems of software evolution
and the maintenance of consistency between architectural views of a
software system.

1 Introduction

Software evolution is expensive, with costs variously estimated as constituting
50–70% of the total lifecycle costs of software [1]. This paper proposes a soft-
ware engineering environment which will enable software engineers to produce
software that is easier and cheaper to evolve as its requirements change. The en-
vironment will use reflection to maintain a consistent set of views of a software
system at several levels of abstraction, up to and including the architectural
level.

The proposed environment will ensure that software engineers always have
up-to-date knowledge of the architecture and design of a software system, en-
abling them to make informed decisions during its evolution, and to avoid some
of the problems associated with degradation of structure during evolution. Archi-
tectural constraints, both within and across views, will be automatically mon-
itored, using design critics [15] to inform software engineers of inconsistencies
and potential problems with a software system.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/57141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Problems

There are several problems associated with the evolution of software. This paper
proposes a software engineering environment which is designed to address five
of these problems, selected from Lehman’s laws of software evolution [2]:

Continuous Adaptation “E-type systems1 must be continually adapted else
they become progressively less satisfactory”

Increasing Complexity “As an E-type system evolves its complexity increases
unless work is done to maintain or reduce it”

Continuing Growth “The functional content of E-type systems must be con-
tinually increased to maintain user satisfaction over their lifetime”

Declining Quality “The quality of E-type systems will appear to be declining
unless they are rigorously maintained and adapted to operational environ-
ment changes.”

This paper takes the position that loss of knowledge about architectural
structure is a cause of several of these problems: knowledge is dispersed through-
out the documentation, code, configuration management tools, build tools, and
often only maintained tacitly by developers. Section 3 identifies the architectural
principles used in this paper, and section 4 introduces reflection as used in this
work.

Because knowledge of and constraints upon software architecture are not
always made explicit by developers, these structures tend to degrade as software
evolves. As the structure is not known, there are extra comprehension costs
in maintenance. Worse, if the documentation is wrong/out of date, work can
proceed on incorrect assumptions about the current and desired structure and
content of the software system.

This paper proposes that a software engineering environment which makes
use of reflection can be used to:

– Automatically maintain the consistency of our documentation with respect
to the various different “views” of a system;

– Make the architecture of a system visible and manipulable at run-time;

– Allow intervention at a higher level than the source;

– Manage and maintain safety properties and other desirable features;

– Allow automatic analysis of architectural properties of software systems.

A programme of research, leading to a software system which can support
the above activities is proposed in section 5, and further work is identified in
section 6.

1 Software systems that are Embedded in a real-world environment, as contrasted
to P-type software which solves approximations of real-world problems with well-
defined input, such as weather forecasting, and S-type software, which is formally
and completely specified as a function from its input to its output.



3 Software Architecture

Software architecture is the study of the structure of software systems, including
inter-component relationships [3, 4]. One of the first definitions of architecture,
still widely-used, is “Software Architecture = {Elements, Form, Rationale}” [5].
Interactions are considered first-class entities [6]. Architectural description lan-
guages model both components and connectors.

There are many important structures in a software system. Kruchten sug-
gested a “4+1” view model, in which four structural views are bound together
with a fifth “scenarios” view [7]:

Logical The object-oriented decomposition, commonly modelled using class di-
agrams.

Process Models “non-functional” requirements (eg, performance, availability).
Often modelled using collaboration or interaction diagrams.

Development Modular decomposition, modelled with component diagrams.
Physical The mapping of the software to the hardware; usually modelled with

deployment diagrams.
Scenarios The “+1” view; a set of scenarios used to motivate the development

and assist in the verification of the system.

Documentation of architecture is a key issue: “The essence of the activity is
writing down—and keeping current—the results of architectural decisions” [8].
Maintaining a correct and up-to-date architectural model assists with the prob-
lems identified in Lehman’s laws of Continuing Growth and Declining Quality
(described in section 2). Additionally, knowledge and control of the architecture
of a software system is required to support the multi-level feedback nature of
evolutionary processes.

4 Reflection, Architecture, and Evolution

Software reflection has been used in many ways to support software evolution [9–
12]. This work has usually focused on enabling evolution to take place on a
particular system at a design level, rather than on using reflection to ensure
consistency between multiple levels of view. It is possible to use reflective oper-
ations to map simple architectural changes down to the implementation [9, 13],
allowing modifications to the system to be carried out a relatively high level.

Information obtained by reflection tends to be limited to structural and low-
level behavioural information. There is a lot of architectural information gener-
ated by software engineers during the production and modification of a system.
Kruchten’s views [7] can be considered to be bound together by reflection:

Logical Available as a result of reflection or introspection on source code (or
intermediate representations such as Java bytecode), as it most closely cor-
responds to the source of the system.

Process Partially available from reflection and static analysis of code, but often
only made explicit in requirements or specification documents.



Development Partially available from reflection or even SCM data.
Physical Partially related to the process view, and available in some cases from

deployment descriptors.
Scenarios Not available from the code (except in very specialised cases).

Reflection can be used to bind these views together, ensuring the correspon-
dences between them are maintained, and allowing changes made in one view to
be automatically reflected in the others.

Reflective modelling of the architecture of software systems can support run-
time software evolution. We can support multiple views in ways that make them
consistent.

In order to accomplish the goal of knowing the architecture of a system at
run-time, the following are required [14]:

Monitoring The ability to to see the architecture at run-time
Interpretation Making sense of the data from monitoring, looking for ‘prob-

lems’ (in any sense of the word)
Resolution Fixing problems: manually, semi-automatically, or automatically.

Determining where problems are and what to do about them.
Adaptation The ability to make changes to the architecture of the system.

5 Proposal

This section proposes a software development environment which, using reflec-
tion, automatically maintains consistency between a collection of views of a
software system. A programme of research and development leading to such an
environment is proposed, and potential benefits are discussed.

5.1 A New Kind of Development Environment

It is proposed that a software development and analysis environment will be cre-
ated. This environment will use reflection to support architectural (and other)
approaches to software evolution. Reflection will be used to ensure that different
views of the system are synchronised (and to enable highlighting of incompati-
bilities between these views).

Figure 1 shows the “Lingua Franca” approach: one single representation, with
several views (a code view, a use-case view, an architectural view, etc) available
by applying different ‘lenses’ to the central representation of the system. By
creating appropriate ‘lenses’, other kinds of views can be created, such as a
configuration management or deployment views.

Figure 2 shows the converse case: a specialist language for each view. Boxes
in the diagram represent views, while arrows indicate that two views have a
correspondence relationship. In this case, there is a specialist language for each
kind of view, and correspondences between views are maintained pairwise.

The most obvious problem with the specialist language approach is the pro-
liferation of languages, and the problem of maintaining consistency between the



System Description

Design view
Architectural view

Physical viewCode view

Design lens Architectural lens

Physical lensCode lens

Fig. 1. Lingua Franca Approach

Interaction View

Use Case ViewClass View

Deployment View

Code View

Fig. 2. Specialist Language Approach

views. With the ‘lingua franca’ approach, these problems are avoided. The most
serious problem here is to create a suitable representation that is rich enough to
record all information necessary for each potential view.

There are several potential approaches to building such an environment, in-
cluding the following:

– Adapt current IDE technology (eg, Emacs, Eclipse). These are mainly code-
level tools, with higher-level modelling considered as an extra facility.

– Adapt current design tools (such as ArgoUML). There is some level of trace-
ability between the design (usually in a language such as UML) and the
code, and support for multiple views (such as UML’s different diagrams).
ArgoUML also includes design critics [15], which go some way towards the
analyses that are proposed here.

– Adapt current architectural tools (such as the Software Architect’s Assis-
tant). These have an architectural focus, with (currently) few code-level fea-
tures.

– Start from scratch. This approach leads to an exact match of the system to
our requirements, but is slow and inefficient in terms of development effort.

Modelling the architecture explicitly, with proper traceability from higher
level constructs to the code will support evolution. Software will be constructed



using the appropriate techniques for each kind of entity, and the development en-
vironment will manage traceability and identify inconsistencies between different
artefacts. The environment will enable software engineers to:

Manage change better because we can interconnections and dependencies
are visible;

Discover inconsistencies within and between views automatically in some
cases;

Know that our views are correct as they will be automatically extracted
from the actual system.

This will reduce costs because: ‘comprehension’ tasks will produce correct infor-
mation by definition; some kinds of ‘unsafe’ changes will be warned against or
disallowed; high-level reuse will be supported by high-level knowledge; structure
will be made explicit and thus degrading changes will become more obvious.

In order to develop a suitable development environment, the following steps
are proposed:

– Develop reflective modelling of each view of a system;

– Allow a software engineer to change each view and have the actual system
automatically updated;

– Check and enforce consistency within views;

– Check and enforce consistency between views;

– Support automatic architectural analysis within views;

– Support automatic architectural analysis across views;

– Allow the modelling of patterns and architectural styles in each view;

– Allow the modelling of patterns and styles across views.

To support dynamic replacement of components (eg, upgrading a compo-
nent), it is necessary to support the transfer of state between the old and the
new version. This is possible in a semi-automatic fashion [16]. Enforcing consis-
tency requires the use of a suitable logic for describing constraints and evaluating
models against them. Support for automatic modelling of patterns and the en-
forcement of consistency across views will require extensions to this logic to
provide suitable mechanism for describing patterns in terms of the architectural
features they demand.

6 Further Work

There are several potential problems with the kind of development environment
proposed in this paper. In this section, some of them are identified and discussed,
and potential means of addressing them are identified.

A system which dynamically supports software evolution must itself be ca-
pable of evolving. If it is to remain useful, it must be capable of supported
features not considered at the time of its first development [17]. In this example,



it may become necessary to develop additional views, or to allow new kinds of
constraints between views.

Some, especially in the extreme programming and agile methods communi-
ties, take the view that documentation (such as the architectural views proposed
here) are superfluous and should be disposed of (for example: “There’s this big
assumption that diagrams, use cases and the like must be kept in synch with
the code, and if they aren’t they become completely useless. XP says to write
them if you need them and then throw them away.”2). This is (at least partly)
due to the perceived effort involved with maintaining multiple views of the same
system, the costs associated with inconsistencies, and the perception that the
documentation is of little use anyway. Removing some sources of inconsistency
will lessen the desire to discard documentation. Extreme programmers often
take the view that the code and test cases together form the documentation,
and resist any attempts to create other types of documentation (seen as “the
tradeoff to get less functionality and more paper” [18]). On the other hand, there
is much research and industrial effort expended in program comprehension and
other reverse engineering tasks. This effort would be mitigated by the automatic
generation and maintenance of the views proposed in this paper.

In order to carry this work forward, it is essential that a rigorous evalua-
tion technique is devised, and objectively applied to the software and methods
developed.

7 Conclusions

Software evolution is a hard problem, which is expensive to tackle. In this pa-
per, a programme of research leading to a software engineering environment has
been proposed. This environment will tackle some of the problems of software
evolution identified by Lehman [2]. Using software reflection, multiple consistent
views of the same system will be maintained, and problems will be identified (in
some cases automatically). Reflection provides a means to maintain architectural
models which are timely, correct, useful, and consistent.

The main problems to be tackled immediately are the creation of a suit-
able representation for software systems, definition of the properties which will
be analysed, and creation of the mechanisms for ensuring consistency between
multiple views.

References

1. Nosek, J.T., Palvia, P.: Software maintenance management: Changes in the last
decade. Journal of Software Maintenance: Research and Practice 2(3) (1990) 157–
174

2. Lehman, M.M., Ramil, J.F., Wernick, P.D., Perry, D.E., Turski, W.M.: Metrics and
laws of software evolution—The nineties view. In El Eman, K., Madhavji, N.H.,

2 http://c2.com/cgi/wiki?CritiqueOfUseCases



eds.: Elements of Software Process Assessment and Improvement, Albuquerque,
New Mexico, IEEE CS Press (1997) 20–32

3. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice Hall (1996)

4. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. S.E.I.
Series in Software Engineering. Addison-Wesley (1998)

5. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes 17(4) (1992) 40–52

6. Shaw, M.: Procedure calls are the assembly language of software interconnection:
Connectors deserve first class status. Technical Report CMU/SEI-94-TR-2, Soft-
ware Engineering Institute, Carnegie Mellon University (1993) Presented at the
Workshop of Software Design, 1994. Published in the proceedings: LNCS 1994.

7. Kruchten, P.: Architectural blueprints—The “4+1” view model of software archi-
tecture. IEEE Software 12(6) (1995) 42–50

8. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R.: Documenting
Software Architectures: Views and Beyond. Addison Wesley (2002)

9. Cazzola, W., Savigni, A., Sosio, A., Tisato, F.: Architectural reflection: Bridging
the gap between a running system and its specification. In: Proceedings of the Sec-
ond Euromicro Conference on Software Maintenance and Reengineering, Florence,
Italy (1998)

10. Masuhara, H., Yonezawa, A.: A reflective approach to support software evolution.
In: Proceedings of International Workshop on the Principles of Software Evolution.
(1998) 135–139

11. Dowling, J., Cahill, V.: Dynamic software evolution and the k-component model.
In: Proceedings of the OOPSLA 2001 Workshop on Software Evolution. (2001)

12. Cazzola, W., Pini, S., Ancona, M.: Evolving pointcut definition to get software evo-
lution. In: Proceedings of RAM-SE’04, the ECOOP’2004 Workshop on Reflection,
AOP and Meta-Data for Software Evolution, Oslo, Norway (2004) 83–88

13. Rank, S.: A Reflective Architecture to Support Dynamic Software Evolution. PhD
thesis, University of Durham (2002)

14. Garlan, D., Schmerl, B.: Using architectural models at runtime: Research chal-
lenges. In: Proceedings of the European Workshop on Software Architectures, St
Andrews (2004)

15. Robbins, J.E., Redmiles, D.F.: Software architecture critics in the Argo design
environment. Knowledge-Based Systems 5(1) (1998) 47–60

16. Vandewoude, Y., Berbers, Y.: Component state mapping for runtime evolution.
In: Proceedings of the 2005 International Conference on Programming Languages
and Compilers, Las Vegas, Nevada, USA (2005) 230–236

17. Bennett, K., Rajlich, V.: Software maintenance and evolution. In: The Future of
Software Engineering, ACM Press (2000) 75–87

18. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
(2000)


