
Modeling Adaptation with Klaim∗

Edmond Gjondrekaj, Michele Loreti, Rosario Pugliese
Università degli Studi di Firenze

edmondi_gj@yahoo.it, {michele.loreti,rosario.pugliese}@unifi.it

Francesco Tiezzi
IMT Advanced Studies Lucca
francesco.tiezzi@imtlucca.it

ABSTRACT
In recent years, it has been argued that systems and appli-
cations, in order to deal with their increasing complexity,
should be able to adapt their behavior according to new re-
quirements or environment conditions. In this paper, we
present an investigation aiming at studying how coordina-
tion languages and formal methods can contribute to a bet-
ter understanding, implementation and use of the mecha-
nisms and techniques for adaptation currently proposed in
the literature. Our study relies on the formal coordina-
tion language Klaim as a common framework for modeling
some well-known adaptation techniques: the IBM MAPE-K
loop, the Accord component-based framework for architec-
tural adaptation, and the aspect- and context-oriented pro-
gramming paradigms. We illustrate our approach through a
simple example concerning a data repository equipped with
an automated cache mechanism.

Categories and Subject Descriptors
C.1.3 [Other Architecture Styles]: Adaptable architec-
tures; F.3.1 [Theory of computation]: Specifying and
Verifying and Reasoning about Programs

Keywords
Autonomic computing, adaptive systems, aspect- and
context-oriented programming, coordination languages

1. INTRODUCTION
The increasing scale complexity, heterogeneity and dy-

namism of networks, systems and applications have made
computational and information infrastructure brittle, un-
manageable and insecure. This has called for the investi-
gation of an alternate paradigm for designing systems and

∗This work is based on an earlier work: SAC ’12 Pro-
ceedings of the 2012 ACM Symposium on Applied Com-
puting, Copyright 2012 ACM 978-1-4503-0857-1/12/03.
http://doi.acm.org/10.1145/2245276.2232019.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2012 ACM 978-1-4503-0857-1/12/03 ...$10.00.

applications. One popular vision is that of autonomic com-
puting [28, 39]: computer and software systems can manage
themselves in accordance with high-level guidance from hu-
mans by relying on strategies inspired by biological systems.

Autonomic computing encloses the whole spectrum of ac-
tivities that a system should perform in order to be dynam-
ically and autonomously adaptive. Therefore, an autonomic
system should monitor its state and its components, as well
as the execution context, and identify relevant changes that
may affect the achievement of its goals or the fulfillment of
its requirements. The system should then plan reconfigura-
tions in order to meet the new functional or non-functional
requirements, execute them, and monitor that its goals are
being achieved once again, possibly without any interrup-
tion. All these stages make use of a common knowledge that
guides the monitoring activities and that may be enriched
by the experience earned during execution. The whole body
of activities mentioned above has been named MAPE-K loop
(Monitoring, Analyzing, Planning, and Executing, through
the use of Knowledge) by IBM [25].

The key concept of the autonomic computing paradigm
is adaptation, namely “the capability of a system to change
its behavior according to new requirements or environment
conditions” [24]. We are interested in the techniques, primi-
tives and mechanisms currently used to achieve the desired
adaptation. Indeed, an application can change its behavior
in many ways. For example, with a simple if (condition)
statement, an application can choose to change its overall
behavior, or part of it. Clearly, this is not a good way to
implement adaptation. Authors in [10] argue that it should
depend on the semantics we give to condition whether the
statement can even be considered as an adaptation point
or just as an application branch. Anyhow, this adaptation
technique is certainly not scalable, nor is it robust or easy to
maintain or even comprehend in a complex software system.
Much more elaborated techniques are required in real world
applications. In the literature, two main approaches have
been proposed for implementing adaptation in a software
system: architectural-level and language-level.

The architectural-level approach [38] relies on the run-
time structural modification of the software architecture of
the system. Typically, this approach is applicable whenever
the system is composed of many components, possibly inter-
acting through connectors, composing thus a network which
may also be hierarchical and distributed. This is the case,
for example, of such component-based programming systems
as CORBA Component Model [37] and Common Compo-
nent Architecture [5]. Adaptation can then be achieved by

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IMT Institutional Repository

https://core.ac.uk/display/12097331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

modifying the way components interact and also by adding
or removing components and/or connectors or by replacing
them with others. For example, a component may be re-
placed at run-time by another one that provides a similar
basic functionality but with an additional support for a new
emerging requirement of a subnet of the system.

The language-level approach extends standard program-
ming languages with primitives and mechanisms that en-
able to dynamically change the behavior of (part of) a sys-
tem. In [19] the authors review the adaptation capabili-
ties of traditional programming languages and paradigms.
For example, considering object-oriented languages, as to-
day’s most used ones for software programming, their anal-
ysis shows that class inheritance and method overriding of-
fer some degree of adaptiveness although these mechanisms
are not usually dynamic (a notable exception is [8], which
presents a Java-like core language using dynamic object
composition and ‘horizontal’ method overriding through del-
egation). New programming techniques, however, have cap-
tured more attention in the years. Until lately, the main-
stream techniques have focused on Aspect-Oriented Pro-
gramming (AOP), to enforce the separation of concerns,
and on Dynamic AOP [21], to support run-time adapta-
tion. More recently, a new promising technique has been
specifically proposed for supporting dynamic software adap-
tation: context-oriented programming (COP) [23]. COP
uses ad hoc explicit language-level abstractions to express
context-dependent behavioral variations and their run-time
activation.

In this paper, we show how Klaim [12], a tuple-space-
based coordination language, can be used to model adaptive
systems. Coordination languages based on tuple spaces have
the advantage of providing an accurate model of systems
using a small set of primitives and in a clear and accessible
way. We have chosen Klaim as representative of the broad
class of coordination languages (see, e.g., [11] for a survey)
because it is a formal language coming with software tools
supporting both verification and programming. It is also
well suited for mobile and distributed applications, charac-
teristics that are today well-consolidated and dominant in
the software market.

Specifically, we briefly describe the IBM’s MAPE-K loop
as well as some relevant techniques using architectural- or
language-level approaches to adaptation, such as Accord,
AOP and COP, showing also how they can be easily mod-
eled in Klaim (see Figure 1). For better understanding the
mentioned techniques, we use a common, simple example
scenario (drawn from [21]), concerning an automated cache
system. In this scenario, a Repository, containing useful
data, can be queried by an application using the provided
functionality request(). The system may enter the perfor-
mance mode, where a monitor checks that the Repository’s
response time is below a certain threshold TH . If this thresh-
old is exceeded, a caching system is introduced in the Repos-
itory, to reduce the current, possibly large, database access
times. If the response time for the cache misses falls under
another threshold TL, the cache is disabled to avoid unnec-
essary overhead.

We use Klaim to model each implementation of the au-
tomated cache example following the discussed techniques.
This way, we get models of different implementations in
a common language, which favors comparisons among the
modeled techniques. On the basis of this modeling activity,

MAPE-K AOP COP

KLAIM

Accord

Figure 1: Modeling adaptation techniques in Klaim

we can argue that tuple-based higher-order communication
enables a straightforward implementation of dynamic adap-
tation mechanisms.

Our work paves the way to a twofold application of the
know-how in the field of coordination languages and formal
methods in the context of adaptive systems. On the one
hand, Klaim formal tools and techniques can be used to
support the verification of modeled adaptive systems. In-
deed, Klaim’s strong mathematical foundations enable the
use of a range of software assisted verification methods, from
theorem proving and model checking to simulation and prob-
abilistic analysis (see, e.g., [14, 13]). On the other hand,
Klaim comes with a run-time framework, named Klava [7],
that permits using Klaim actions within Java code and,
thus, can be used to natively implement adaptive systems.

The rest of the paper is organized as follows. Section 2
provides a brief overview of Klaim. Sections 3 and 4 present
a brief description of the IBM’s MAPE-K loop and some
architectural-level adaptation techniques and show how they
can be rendered in Klaim, respectively. Section 5 presents
the AOP and COP paradigms used for adaptation and auto-
nomic computing and give a flavour of their Klaim models.
Section 6 shows how the different implementations of the
automated cache example are modeled in Klaim. Section 7
presents comparisons with more strictly related work, while
Section 8 concludes with some directions for future work.

2. KLAIM
In this section, we summarize the key features of the for-

mal language Klaim. It has been specifically designed to
provide programmers with primitives for handling physical
distribution, scoping and mobility of processes. Although
Klaim is based on process algebras, it makes use of Linda-
like asynchronous communication and models distribution
via multiple shared tuple spaces.

Linda [17] is a coordination paradigm rather than a lan-
guage, since it only provides a set of coordination primitives.
It relies on the so-called generative communication paradigm,
which decouples the communicating processes both in space
and time. Communication is achieved by sharing a com-
mon tuple space, where processes insert, read and with-
draw tuples. The data retrieving mechanism uses associa-
tive pattern-matching to find the required data in the tuple
space.

Klaim enriches Linda primitives with explicit information
about the locality where processes and tuples are allocated.
Klaim syntax1 is shown in Table 1 and Figure 2 is a simple

1We use a version of Klaim enriched with high-level fea-
tures, such as assignments and standard control flow con-
structs (i.e., sequence, if-then-else, and while loop), that

Table 1: Klaim syntax

(Nets) N ::= s ::ρ C
∣∣ N1 ‖ N2

∣∣ (νs)N

(Components) C ::= P
∣∣ 〈t〉 ∣∣ C1 |C2

(Processes) P ::= a
∣∣ X

∣∣ A(p1, . . . , pn)∣∣ P1 ;P2

∣∣ P1 |P2

∣∣ P1 + P2∣∣ if (e) then {P1} else {P2}∣∣ while (e) {P}

(Actions) a ::= in(T)@`
∣∣ read(T)@`∣∣ inp(T)@`

∣∣ readp(T)@`∣∣ out(t)@`
∣∣ eval(P)@`∣∣ newloc(s)
∣∣ x = e

(Tuples) t ::= e
∣∣ `

∣∣ P
∣∣ t1, t2

(Templates) T ::= e
∣∣ `

∣∣ P∣∣ !x
∣∣ ! l

∣∣ !X
∣∣ T1, T2

illustration of it.
Nets N are finite plain collections of nodes composed by

means of the parallel operator N1 ‖ N2. It is possible to
restrict the scope of a name s by using the operator (νs)N :
in a net of the form N1 ‖ (νs)N2, the effect of the operator
is to make s invisible from within N1.

Nodes s ::ρ C have a unique locality name s (i.e. their
network address) and an allocation environment ρ, and host
a set of components C. The allocation environment provides
a name resolution mechanism by mapping locality variables l
(i.e., aliases for addresses), occurring in the processes hosted
in the corresponding node, into localities s. The distin-
guished locality variable self is used by processes to refer
to the address of their current hosting node. Components C
are finite plain collections of processes P and evaluated tu-
ples 〈t〉, composed by means of the parallel operator C1 |C2.

Processes P are the Klaim active computational units,
which can be executed concurrently either at the same local-
ity or at different localities. They are built up from basic ac-
tions a, process variables X, and process calls A(p1, . . . , pn),
by means of sequential composition P1;P2, parallel compo-
sition P1 |P2, non-deterministic choice P1 + P2, conditional
choice if (e) then {P1} else {P2}, iteration while (e) {P},
and (possibly recursive) process definition A(f1, . . . , fm) ,
P , where A denotes a process identifier, while fi and pj
denote formal and actual parameters, respectively. No-
tably, e ranges over expressions, which contain basic values

simplify the modeling task. Although these features were
not included in the original presentation of Klaim [12], they
can be easily rendered with it (by resorting, e.g., to choice,
fresh names and recursion in the usual way). The consid-
ered language is also equipped with the non-blocking ver-
sions of the retrieval actions, i.e. inp and readp. All the
constructs mentioned above are directly supported by the
Klava framework and other related tools (such as, e.g., X-
Klaim [6] and SAM [34]).

Node

P1 P2 P3

Tuple Space

in(...)@self
read(...)@self out(...)@self

<t1> <t2>

out(...)@l

eval(...)@self

in(...)@l
read(...)@l Processes

eval(...)@l

<t3>

Figure 2: Graphical description of a Klaim node and
its components

(booleans, integers, strings2, floats, etc.) and value vari-
ables x, and are formed by using the standard operators on
basic values and the non-blocking retrieval actions inp and
readp (explained below). In the rest of this section, we will
use the notation ` to range over locality names s and locality
variables l.

During their execution, processes perform some basic ac-
tions. Actions in(T)@` and read(T)@` are retrieval actions
and permit to withdraw/read data tuples from the tuple
space hosted at the (possibly remote) locality `: if a match-
ing tuple is found, one is non-deterministically chosen, oth-
erwise the process is blocked. They exploit templates as
patterns to select tuples in shared tuple spaces. Templates
are sequences of actual and formal fields, where the latter
are written !x, ! l or !X and are used to bind variables to
values, locality names or processes, respectively. Actions
inp(T)@` and readp(T)@` are non-blocking versions of the
retrieval actions: namely, during their execution processes
are never blocked. Indeed, if a matching tuple is found, inp
and readp act similarly to in and read, and additionally
return the value true; otherwise, they return the value false
and the executing process does not block. inp(T)@` and
readp(T)@` can be used where either a boolean expression
or an action is expected (in the latter case, the returned
value is simply ignored). Action out(t)@` adds the tuple
resulting from the evaluation of t to the tuple space of the
target node identified by `, while action eval(P)@` sends
the process P for execution to the (possibly remote) node
identified by `. Both out and eval are non-blocking actions.
Finally, action newloc creates new network nodes, while ac-
tion x = e assigns the value of e to x. Differently from all
the other actions, these latter two actions are not indexed
with an address because they always act locally.

3. AUTONOMIC COMPUTING IN KLAIM
In this section, we present in more detail the architectural

blueprint for autonomic computing proposed by IBM and
its modeling in Klaim.

2As usual, strings are enclosed within double quotes.

Autonomic Element

MR Com Sensor Effector

<S, sensor_name, sensed_values >
<E, effector_name, parameters >

Figure 3: An autonomic element in Klaim

3.1 An autonomic element
According to the IBM’s view, an autonomic element is

composed of the managed resource, which is the actual func-
tional (maybe computational, storage, etc.) unit of the sys-
tem, and the touchpoint, which “wraps” the resource by pro-
viding a manageability interface to the autonomic manager
and other mechanisms implementing the interface’s opera-
tions. The manageability interface is composed of a sensor
and an effector. The sensor exposes information about the
current state of a managed resource and may raise an event
to capture the attention of the autonomic manager. The
effector, instead, enables the manager to change the state
of the managed resource, as well as allows the managed re-
source to make requests to its manager.

In Klaim, we can model an autonomic element through a
node (see Figure 3) as follows:

• the managed resource is rendered in Klaim by distin-
guishing between the computational part, i.e. process
MR, which interacts only with the node’s tuple space,
and the communication part, i.e. process Com, which
can interact with other nodes; this distinction is not
strictly necessary but it may help the overall system
management;

• the Sensor process measures relevant parameters in
the tuple space and raises events (represented by tu-
ples) caught by the autonomic manager;

• the Effector process implements, on the element, the
adaptation commands received from the manager.

Some tuples in the tuple space (the S-tagged tuples) carry
the sensor’s measurements (or the events), others (the E-
tagged tuples) describe the installed effectors.

3.2 The MAPE-K loop
The autonomic manager controls the autonomic element

through the manageability interface by implementing the
MAPE-K loop. In Klaim, the manager is implemented by a
node (see Figure 4). The monitoring phase (i.e. the Monitor
process) reads the measurements from the sensors and upon
recognizing a symptomatic situation it sends the relevant
information to the analyze phase. To this aim, the Monitor
writes “symptom” tuples in the tuple space, which trigger
the execution of the Analyze process. The symptom is an-
alyzed and, if needed, an adaptation should be performed.
An “adaptation request” tuple is produced, specifying what

MAPE-K

Monitor Analyze

Sensor
measurements

Symptoms Adaptation
Request

ExecutePlan

Knowledge

Effector
commands

Figure 4: The MAPE-K manager in Klaim

should be adapted, and triggering the execution of the Plan
process. When the manager decides how should the adap-
tation be performed, it executes the adaptation on the au-
tonomic element through its effectors. So, the Plan process
performs an eval to launch the appropriate Execution pro-
cess which carries out the planned adaptation.

Each of these steps is coordinated by the information
stored in the knowledge, represented in Klaim by a sub-
set of the tuple space. For example, the range of values of
a particular measurement considered to be symptomatic is
such an information. The analysis phase is the only one that
can actually modify the knowledge (notice the bidirectional
arrow between the Analyze process and the Knowledge).
Indeed, this phase is aimed at a wider temporal view of the
system, e.g. it may look at the history to see if a symp-
tom occurs too often and thus undertake more drastic (or
expensive) adaptations on the system in order to avoid it.

4. MODELING ARCHITECTURAL-LEV-
EL ADAPTATION

The architectural-level approach relies on dynamic addi-
tion/removal/replacement of components and connectors to
achieve the desired adaptations. Klaim makes use of gener-
ative communication as in Linda, which is asynchronous,
anonymous, public and unaddressed: the communicating
processes are completely decoupled from each other. This
means that in a set of communicating processes, each pro-
cess can be replaced (or added or removed) without affecting
other processes, as long as this operation maintains the syn-
tax and semantics of the tuples used in the communication.
Such property is very advantageous, since it implies that
adaptations can be applied to single processes, while any
other process is relieved from the duty of taking into ac-
count any adaptation external to it, thus better supporting
modularity and scalability.

To fully take advantage of this property we could use pro-
cesses to model each component/connector and model the
whole system as a node. However, Klaim provides better
support to model distributed and complex systems when a
net with multiple nodes is used to represent the system. This
approach can be pursued to provide separation of concerns
in the system model, scopes, localities, addressed communi-
cation, etc., which is essential for distributed and pervasive

systems. In this case, since each node has an explicit lo-
cality, we do not have an unaddressed communication and
we should take care when adaptation substitutes or deletes
entire nodes. Therefore, if, for example, a node A interacts
with B, and an adaptation replaces B with C, node A should
be notified that it should send messages to C and not to B
any longer. Anyway, typically, workarounds to this issue can
be easily found (e.g. by using a process in B to forward to
C messages coming from A).

In Klaim there are no primitives or clean methods for
stopping a process, or asynchronously interrupting its exe-
cution when an adaptation has to be performed, and this
can be an issue when modelling adaptation at architectural-
level. It is still worth noticing that the same problem arises
in many other formalisms and languages for concurrent pro-
gramming (see, e.g., [27] for a discussion on methods to stop
Java threads). Some workarounds can be engineered but
with some probable issue of effectiveness. A simple way to
deal with this drawback is to insert into each Klaim pro-
cess some “interruption points”, where the process checks
whether it should continue with the execution of the normal
behavior (indicated by the presence of the tuple 〈pid, “live”〉
in the local tuple space, where pid is the process identifier)
or, otherwise, should stop:

if (readp(pid, “live”)@self) then { Pnormal }
else { out(pid, “dead”)@self }

Before terminating its execution, the process signals this
event to its manager by producing the tuple 〈pid, “dead”〉.
However, these points must be included by the programmer
at design time, which means that we loose some degree of
transparency and, since this mechanism is static, it weakens
the adaptation capabilities.

Other, more complex, techniques (e.g. designing paramet-
ric interactions that can be used to cut out some elements
from the system) require typically greater effort. It is eas-
ier, when using these techniques, to model the system as a
Klaim net (and components as nodes), because we can have
a finer-grained control on process execution.

4.1 Accord
Using the above mentioned techniques, we can model, e.g.,

Accord [33]. Accord is an architectural framework for adap-
tation and autonomicity that enables the development of
autonomic elements and the formulation of autonomic appli-
cations as the dynamic composition of autonomic elements.
The Accord Autonomic Element (AAE), depicted in Fig-
ure 5, is partly inspired by the IBM’s proposal. It contains
the computational element, which is the functional resource,
and an element manager, which is delegated to manage exe-
cution of the computational element by monitoring the state
of the element and interacting with other element managers
for accomplishing adaptation. Besides, the AAE contains
a functional port, which describes the functionalities offered
and used by the element, a control port, which exports sen-
sors and effectors3 to external managers and controls access
to them, and an operational port, which is used for the man-
agement of execution rules.

Rules are expressed as if “condition” holds then “action”
is executed. They can be of two types: behavior rules and

3In [33] the term “actuator” is used instead, but here we use
the term “effector”, in accordance with IBM’s terminology.

Computational
Element

Element
Manager

Functional Port

Operational Port

Control Port

Autonomic
Element

Figure 5: The Accord autonomic element

interaction rules. The former ones control the internal func-
tional behaviors of the current autonomic element, whereas
the latter ones control the interaction between the element
and the other elements and can modify such interaction ac-
cordingly to the verified conditions. Rules execution and
management are under the responsibility of the element
manager.

Accord implements a sophisticated rule execution mecha-
nism to detect and avoid conflicts, as well as many other fea-
tures and concepts. These will not be considered here, since
they don’t fall within the scope of this work. Indeed, our aim
is to show that Klaim is expressive enough to conveniently
model frameworks for architectural adaptation. Therefore,
we treat Accord as a conceptual framework (similarly to the
IBM’s MAPE-K loop) and will not go into the details of
Accord’s implementations and their Klaim models.

In Klaim, we would model the AAE similarly to what we
did with the IBM’s autonomic element. In Figure 6, we can
see a process CE for the computational behavior, which in-
teracts only with the node’s tuple space, and a process Com
for inter-element communication. The element manager as
well is a process EM that interacts with other elements. The
functional port is modeled by a set of F -tagged tuples de-
scribing the provided functionalities (for each function, its
name, inputs, and outputs are reported). Considering the
control port, we use a process Sensor to model each sensor
and the sensed data (measurements) are rendered as a set
of S-tagged tuples. The Effector processes may be active,
waiting for commands (these are tuples as well), or simply
reside in the tuple space, where the manager can get them
from and then execute them. The E-tagged tuples can be
used for each effector to describe its parameters or the com-
mands it can take. For each rule we have an R-tagged tuple
containing two processes. The condition checker process CC
runs when the rule is executed by the element manager and
checks if the condition of the rule is true. If this is the case,
it executes the action applier process, AA, which applies the
rule actions.

As we mentioned at the beginning of this section, the dy-
namic composition of autonomic elements is the key design
choice to implement the autonomic behavior. A unit called
composition manager (CM) is responsible for propagating
new interaction rules into related autonomic elements, in
order to adapt the structure of the system. Adaptations
consist in the addition/removal/replacement of elements, as
well as in individual interaction rule adaptation, thus adapt-
ing the communication configuration of the system. An ex-
isting element can be replaced by another element as long
as the functional ports of the two elements are compatible.

Accord
Autonomic

Element

CE

EM

Com

<F, function_name, inputs, outputs >

Sensor Effector

<S, sensor_name, sensed_values >
<E, effector_name, parameters >
<R, rule_name, CC: condition checker, AA: action applier >

AA

CC

Figure 6: The Accord element in Klaim

The new element is initiated by the element manager and
the old element is notified by the element manager to transit
to a stand-by state. The rule set is transferred from the old
element to the new one and the interaction rules of related
elements are updated, thus establishing the interactions be-
tween the new element and those related elements. Addition
and deletion of an element is achieved in a similar fashion.

4.1.1 Accord in Klaim
In Klaim, the composition manager (CM) is a node that

directly interacts with any other node (AAE) by sending
interaction rules to their tuple spaces (or removing them).
By means of such operations, it dynamically revises and
reshapes the net structure, thus adjusting the overall system
behavior.

In Figure 7, some of the operations performed during the
replacement of an autonomic element are depicted. We can
see that the composition manager injects the process Rpl in
the new element. This process copies the set of rules from
the old element to the new one and stops the old element.
The CM also updates the interaction rules of other AAEs
that concern the element-to-replace.

4.1.2 The automated cache in Accord
In the example of the automated cache described in the In-

troduction, the repository can be implemented as an Accord
element that includes the command request() in its func-
tional port. When the performance mode is entered, the
composition manager inserts a monitor element that checks
the response time of the repository, by acting as a forwarder
of the request commands and results. If the threshold TH
is exceeded, the manager of the monitor element asks the
CM to replace the monitor element with a cache element.
The cache captures request commands and, if the requested
data is available locally, it immediately responds to the re-
quest, otherwise, it sends the request to the repository, also
measuring its response time. If the response time falls under
TL, the cache element’s manager asks the CM to replace the
cache element with a monitor element.

New
AAE

CE

EM

Com

<R2, rule_name, CC2, AA2 >
<R1, rule_name, CC1, AA1 >

...

Accord Composition Manager

Old
AAE

CE

EM

Com

...

Rpl

Related AAERules

<Ri, rule_name, CC i, AA i >

Adaptations

...

<R2, rule_name, CC2, AA2 >
<R1, rule_name, CC1, AA1 >

...

Figure 7: A Klaim representation of the ‘replace’
adaptation in Accord

5. MODELING LANGUAGE-LEVEL AD-
APTATION

As mentioned in the Introduction, two main language-
level adaptation techniques have emerged from recent liter-
ature: (dynamic) aspect-oriented programming and context-
oriented programming. We now show how they both can be
modeled in Klaim.

It is worth noticing that our aim here is to propose a
convenient way of expressing the adaptation mechanisms of
the considered languages via a tuple-based formalism, rather
than providing an encoding from each language in its com-
pleteness into Klaim. Indeed, to deal with all the func-
tionalities of the considered programming languages, such
encodings, on the one hand, would turn out to be too com-
plex and not useful and, on the other hand, would fail on
helping the reader to understand and compare the various
adaptation approaches.

5.1 Aspect-Oriented Programming
Aspect-oriented programming (AOP) entails breaking

down program logic into distinct parts called concerns,
namely cohesive areas of functionality. Some of these con-
cerns defy traditional forms of encapsulation abstractions
(procedures, classes, functions, etc.) and are called crosscut-
ting concerns since they “cut across” multiple abstractions
in a program.

The AOP paradigm mandates for defining the code of the
crosscutting concerns separately from the rest of the appli-
cation. Without going into too much details, the following
are the main concepts at the basis of AOP:

• A join point is a point in a running program where ad-
ditional behavior, from different crosscutting concerns,
can be usefully joined. They are typically implicit in
the language (e.g. method calls, field read or write
accesses, exception handlers).

• A pointcut groups a set of join points according to some

of their characteristics (e.g. a pointcut may group all
calls of a given method within a given class).

• An advice specifies the code to run at a join point.
For example, when the join point is a method call, the
advice can wrap the called method.

• An aspect defines the combination between a pointcut
and an advice. The process of applying aspects to a
program, and thus producing a program or a program
execution modified by the aspects, is called weaving.

Adaptation can be seen as a crosscutting concern, since it
does not fall within the normal behavior of the applica-
tion and different adaptations may apply at the same (join)
point, depending on the decisions of the adaptation man-
ager. We can identify an adaptation with an aspect. Indeed,
this specifies the advice to execute and the pointcut where
to execute it.

In an autonomic computing environment, we know that
we need to perform dynamic adaptations. Dynamic AOP
enables to dynamically weave/unweave an aspect into a run-
ning application (i.e. the weaving process is performed at
runtime without need for recompilation or rebooting). This
can be used to program autonomic systems, as shown below
in the AOP implementation of the automated cache.

5.1.1 AOP in Klaim
In Klaim, we can model join points by mandating the ap-

plication to check, at a given point, if there is any externally
defined advice to be performed. Advices are represented
by processes that the autonomic manager provides at the
aspect weaving. The pointcut is specified by what the pro-
gram checks for in each join point. Notably, the application
only specifies the pointcuts (i.e. the adaptation “hooks”),
whereas the advices are defined elsewhere and known only
to the autonomic manager. Aspects instead are identified by
the autonomic manager which can dynamically weave them
on the application.

For example, the following fragment models an application
that can be adapted each time process A calls B:

A ,
. . .
if (readp(“pointcut”, “A”, “B”, !Xadvice)@self) then {

eval(Xadvice)@self
} else { B }
. . .

Above, the autonomic manager can provide an ad-
vice Padvice for the pointcut by inserting a tuple
〈“pointcut”, “A”, “B”, Padvice〉 in the tuple space local to
process A. When no such tuple is available, the default be-
haviour B is executed.

We refer the interested reader to [42] for an extension of
Klaim with primitives and mechanisms for natively dealing
with aspects.

5.1.2 JBoss implementation of the automated cache
We implement our reference scenario by using JBoss4, a

Java EE-based application server that, among other fea-
tures, provides support for aspect-oriented programming
and dynamic AOP [26].

4JBoss. http://www.jboss.org

The pointcut for the request method of the Repository is
defined as follows:

AdviceBinding reques tPo intcut =
new AdviceBinding (

“execut ion (
public St r ing Repository−>r eque s t (int))” ,

null) ;

The object of type AdviceBinding5 will permit binding the
specified pointcut expression to the corresponding advices.
This pointcut intercepts all executions of the request method
provided by any object of the Repository class.

The Performance aspect is then defined as follows:

Aspec tDe f in i t i on performanceAspectDef =
new Aspec tDe f in i t i on (“Performance” ,

Scope .PER INSTANCE,
new GenericAspectFactory (Performance . c l a s s ,

null)) ;

The definition of an aspect requires to specify its name (e.g.
Performance), scope (stating, e.g., that an instance of the
aspect will be created for each advised object) and an aspect
factory6 (which creates instances of a given aspect class, e.g.
Performance.class, defining the advices). The definition of
the performance aspect is then completed by the creation
of a factory for the monitor advice (which corresponds to a
method defined in the Performance class) and its combination
with the pointcut:

AdviceFactory monitorFactory =
new AdviceFactory (performanceAspectDef ,

“monitor”) ;
r eques tPo intcut . addInterceptorFactory (

monitorFactory) ;

This advice will be invoked around the joinpoint execution
(different types of advice invocation must be explicitly de-
clared).

The Cache aspect is defined in a similar way:

Aspec tDe f in i t i on cacheAspectDef =
new Aspec tDe f in i t i on (“Cache” ,

Scope .PER INSTANCE,
new GenericAspectFactory (Cache . c l a s s ,

null)) ;
AdviceFactory checkCacheFactory =

new AdviceFactory (cacheAspectDef ,
“checkCache”) ;

r eques tPo intcut . addInterceptorFactory (
checkCacheFactory) ;

Finally, the performance aspect and the corresponding
binding are registered at the AspectManager:

AspectManager . i n s t ance () .
addAspectDef in i t ion (performanceAspectDef) ;

AspectManager . i n s t ance () .
addAdviceBinding (r eques tPo intcut) ;

Now, when at some point during the execution the request

method of a Repository object is called, the call is intercepted
and the monitor advice will execute instead:

5The second parameter of the AdviceBinding constructor is
a control flow string that we do not use in this example.
6The second parameter of the GenericAspectFactory con-
structor is an XML element that allows to pass extra con-
figurations to the aspect class. We do not need such config-
urations in our example.

public Object monitor (@Arg int req) {
long t0=System . cur rentT imeMi l l i s () ;
Object r e s = CurrentInvocat ion . proceed () ;
long t1=System . cur rentT imeMi l l i s () ;
AutonomicManager autonomicManager =

AutonomicManager . i n s t ance () ;
i f (! autonomicManager . i sCaching ())

autonomicManager . responseTime (t1−t0) ;
return r e s ;

}

The CurrentInvocation.proceed() statement calls the inter-
cepted method. So, the monitor measures the execu-
tion time of the request and calls the autonomic manager
AutonomicManager to decide what to do. In the autonomic
manager we will have:

public void reponseTime (long dt) {
AspectManager aspectManager =

AspectManager . i n s t ance () ;
i f (dt>T H && ! caching) {

aspectManager . removeAspectDef in i t ion (
performanceAspectDef) ;

aspectManager . addAspectDef in i t ion (
cacheAspectDef) ;

caching=true ;
}
i f (dt<T L && caching) {

aspectManager . removeAspectDef in i t ion (
cacheAspectDef) ;

aspectManager . addAspectDef in i t ion (
performanceAspectDef) ;

caching=fa l se ;
}

}

If needed, i.e. when the threshold T H is exceeded, the man-
ager dynamically weaves the cache aspect, whereas, if the
system was already caching and the response time is below
T L, the aspect is unwoven. The cache aspect intercepts
the calls to the request method, and checks and updates the
cache:

public Object checkCache (@Arg int req) {
Object r e s=cache . get (req) ;
i f (r e s==null) {

long t0=System . cur rentT imeMi l l i s () ;
r e s = CurrentInvocat ion . proceed () ;
long t1=System . cur rentT imeMi l l i s () ;
cache . put (req , r e s) ;
AutonomicManager autonomicManager =

AutonomicManager . i n s t ance () ;
autonomicManager . responseTime (t1−t0) ;

}
return r e s ;

}

In case of a cache miss, the intercepted method is called,
the result is taken from the repository database and then
put into the cache. Moreover, the response time is measured
and the autonomic manager is notified.

5.2 Context-Oriented Programming
Context-oriented programming enables the expression of

behavioral variations that depend on the context. Context is
treated explicitly and the application can dynamically adapt
its behavior in response to context changes. The essential
linguistic features supporting the COP paradigm are:

• behavioral variations: consist of (possibly partial) def-
initions of behaviors (expressed, e.g., as procedures,
functions or methods in the underlying programming

model) that can substitute or modify a portion of the
basic behavior of the application;

• layers: are first-class entities that group related
context-dependent behavioral variations;

• dynamic activation: the application can decide to ac-
tivate or deactivate layers dynamically at runtime ac-
cording to the current context;

• scoping : specific constructs can be used to explicitly
control the scope within which layers are activated.

Depending on the current execution context, specific lay-
ers may be activated and composed at runtime. So, when the
application uses the affected functionality, the appropriate
variations belonging to the active layers will be executed. In
this way, the application’s behavior dynamically adapts it-
self to the current context. Notably, COP does not provide
any specific support to model context information, which
typically refers to application domain data represented by
standard constructs of the underlying programming model.

More layers can be active at a given moment, which may
also provide different variations for the same functionality;
the mechanism for choosing the variation to execute may
depend on the implementation. In this case, variations can
also be composed, e.g. a variation from a given layer can call
the corresponding variation on the enclosing layer.

When COP is used to implement adaptation in an auto-
nomic computing setting, an autonomic manager can be ex-
ploited to recognize a change of context, which then causes
the activation of those layers specifically designed to cope
with the emerged situation.

5.2.1 COP in Klaim
In Klaim, layers can be rendered as a set of tuples, each

containing the name of the layer, the name of the function-
ality to be adapted and a process corresponding to the vari-
ation. Thus, when the application requires a certain func-
tionality, it simply takes from the tuple space the process
corresponding to the variation of the required functionality
for the currently active layer, and executes it.

To present in more details how the main features of COP
can be expressed in Klaim, in the rest of this section we refer
to the COP language ContextJ [3]. ContextJ is a context-
oriented extension of the Java language, where layers are
defined within classes and classes thereby carry their own
context-specific variations. An example of layers definition
in ContextJ is7:

public class someClass{
layer l1{
public static void m1(){. . .} //variation of m1 in l1
public static void m2(){. . .} //variation of m2 in l1
. . .
}

layer l2{
public static void m1(){. . .} //variation of m1 in l2
. . .
}
. . .
}

7For the sake of simplicity, to focus on layers definition and
activation while avoiding to deal with objects, we consider
here only static void methods without parameters.

The above definition can be rendered in Klaim as the fol-
lowing set of tuples:

〈“l1”, “m1”, Pm1 l1〉 〈“l1”, “m2”, Pm2 l1〉

〈“l2”, “m1”, Pm1 l2〉 . . .

where Pmi lj represents the code of the variation of method
mi within layer lj.

To control scoped layer activation, ContextJ provides a
with block statement, that can be used as in the following
snippet:

with (l1){
m1();
. . .
}

Such a method call within a with block can be rendered in
Klaim as a process that retrieves a variation process (using
the pattern-matching mechanism of Klaim) and executes it:

read(“l1”, “m1”, !Xm1 l1)@self ;
eval(Xm1 l1)@self ;
in(“l1”, “m1”, “done”)@self ;
. . .

Notably, to enable sequential compositions, we assume that
each variation process for the method m within the layer
l signals its termination by adding a tuple of the form
〈“l”, “m”, “done”〉 to the tuple space of the hosting node.

In ContextJ, to implement the dynamic layer combina-
tion [18], which consists of the activation of multiple layers,
with blocks are simply nested. In this case, if more than
one active layer provides a variation for a method, these
variations are combined according to the LIFO order: the
most recently activated layer is considered first. A variation
can also make use of the variations of enclosing layers to
accomplish its functionalities. This is achieved through the
proceed() method.

To deal with layer combination in Klaim we should keep
track of the layer activation order. We can maintain the
LIFO order of layers activation using a queue rendered as a
set of tuples:

〈“active layers”, “l1”, “l2”〉 〈“active layers”, “l2”, “l3”〉

. . . 〈“active layers”, “lx”, “default”〉

where a tuple 〈“active layers”, “li”, “lj”〉 indicates that, if
li is the layer corresponding to the variation currently con-
sidered, then lj is the next layer in the LIFO order.

Statement with can in this case be used to add a layer to
the LIFO queue. For example, the following ContextJ code

with (l1){
with (l2){

. . .
}

}

can be rendered in Klaim as follows:

out(“active layers”, “l1”, “default”)@self ;
out(“active layers”, “l2”, “l1”)@self ;
. . .
in(“active layers”, “l2”, “l1”)@self ;
in(“active layers”, “l1”, “default”)@self

When a variation, e.g. from layer l2, performs a proceed(), it
executes the variation on layer l1. In Klaim we have:

read(“active layers”, “l2”, !x)@self ;
read(x, “m1”, !Xm1 x)@self ;
eval(Xm1 x)@self ;
in(x, “m1”, “done”)@self ;
. . .

Notably this variation does not directly refer to the enclosing
layer (i.e., l1), since in general it might not know statically
which layer is activated before l2 (see below for dynamic
layer activation). Therefore, this technique works for any
number of active layers and any proceed() from any layer.

In order to implement autonomic computing in ContextJ,
the activation of layers is not specified at compile-time,
rather an expression returning the active layer is used as
argument of the with block, e.g.

with (AutonomicManager.instance().getActiveLayer()){
m1();
. . .

}

This is rendered in Klaim as follows: a process play-
ing the role of the manager maintains up-to-date a tuple
〈“active layer”, l〉 containing the name of the active layer,
while the Klaim term modeling the with block is

read(“active layer”, !x)@self ;
read(x, “m1”, !Xm1)@self ;
eval(Xm1)@self ;
in(x, “m1”, “done”)@self ;
. . .

To represent layers, rather than using tuples we can alter-
natively use nodes, and thus locality names. The applica-
tion reads from its tuple space the locality where to get the
variations from. The value of such locality is updated by
the autonomic manager, which, by doing so, activates and
deactivates layers:

read(“active layer”, !l)@self ;
read(“m1”, !X m1)@l;
eval(X m1)@self ;
in(“m1”, “done”)@self ;
. . .

5.2.2 ContextJ implementation of the automated
cache

We conclude the section by considering again the auto-
mated cache example and show a possible implementation
using ContextJ. We declare two layers: Performance and
Caching:

layer Performance{
public Object r eques t (int req) {

long t0=System . cur rentT imeMi l l i s () ;
Object r e s=proceed (req) ;
long t1=System . cur rentT imeMi l l i s () ;
AutonomicManager autonomicManager =

AutonomicManager . i n s t ance () ;
autonomicManager . responseTime (t1−t0) ;
return r e s ;

}
}

layer Caching{
public Object r eques t (int req) {

Object r e s=cache . get (req) ;
i f (r e s==null) {

long t0=System . cur rentT imeMi l l i s () ;
r e s=proceed (req) ;
long t1=System . cur rentT imeMi l l i s () ;
cache . put (req , r e s) ;
AutonomicManager autonomicManager =

AutonomicManager . i n s t ance () ;
autonomicManager . responseTime (t1−t0) ;

}
return r e s ;

}
}

In the autonomic manager, we will have:

public void reponseTime (long dt) {
i f (dt>T H && act iveLayer !=Caching)

ac t iveLayer=Caching ;
i f (dt<T L && act iveLayer==Caching)

ac t iveLayer=Performance ;
}

Initially, the autonomic manager activates the Performance

layer. Calls to the request methods are performed in the
standard “COP way”:

with (AutonomicManager . i n s t ance () .
getAct iveLayer ()) {
r e po s i t o r y . r eque s t (r) ;

}

6. MODELING IMPLEMENTATIONS OF
THE AUTOMATED CACHE

In this section, we model in Klaim the Accord, AOP-
JBoss and COP-ContextJ implementations of the auto-
mated cache scenario presented in Sections 4 and 5.

Accord
As we have seen in Section 4, the repository, the monitor
and the cache are Accord elements that can be added/re-
moved at runtime. A new element will be added by the
composition manager upon entering the performance mode.
The Performance node will have in its functional port the
description for the functionalities request and monitor, as
depicted in Figure 8. The composition manager updates
interaction rules of other AAEs to perform requests to the
Performance node instead of the Repository node. The request

function of the Performance node will act as a forwarder to
the Repository, and the Performance’s element manager will
execute the monitor functionality to measure Repository’s re-
sponse time (notice the sensor tuples in the Repository’s tu-
ple space).

When the response time exceeds the defined threshold,
the Performance’s element manager will ask the composition
manager to replace it with the Cache element, as we saw in
Figure 7 for element replacement. The new scenario will be
as what is depicted in Figure 9.

Now, the requests are sent to the Cache node where the
bound functionality calls the checkCache function. This func-
tion checks the local availability of the required element: if it
is found, the result is sent back to the caller; otherwise, the
request is forwarded to the Repository, and the element man-
ager will execute the monitor function to check the response
time. The result retrieved from the Repository is then stored
locally and sent to the caller. If the response time falls under
the low threshold, the Cache element manager will request

the composition manager to be replaced by the Performance

element.
Notably, the three elements repository, monitor and cache,

have compatible functional ports, all implementing the
request command.

AOP-JBoss
We now model the AOP implementation of the automated
cache example. The following two advices express the per-
formance and cache behaviors:

Pperf ,
read (“Repos i tory” ,“ r eque s t” , !Xrep)@ s e l f ;
t0=SystemTime () ;
eval (Xrep)@ s e l f ;
in (“ r eque s t r e s u l t ” , ! r e s)@ s e l f ;
t1=SystemTime () ;
out (“time” , t1−t0)@ s e l f ;
out (“adviced” ,“ r eque s t r e s u l t ” , r e s)@ s e l f

Pcache ,
in (“ r eque s t input” , ! req)@ s e l f ;
i f (not readp (req , ! r e s)@cache) then {

read (“Repos i tory” ,“ r eque s t” , !Xrep)@ s e l f ;
t0=SystemTime () ;
eval (Xrep)@ s e l f ;
in (“ r eque s t r e s u l t ” , ! r e s)@ s e l f ;
t1=SystemTime () ;
out (“time” , t1−t0)@ s e l f

}
out (“adviced” ,“ r eque s t r e s u l t ” , r e s)@ s e l f

A process using the repository will execute:

i f (readp (“po intcut” ,“Repos i tory” ,
“ r eque s t” , !Xadvice)@ s e l f) then {

eval (Xadvice)@ s e l f ;
in (“adviced” ,“ r eque s t r e s u l t ” , ! r e s)@ s e l f ; . . .

} else {
read (“Repos i tory” ,“ r eque s t” , !Xrep)@ s e l f ;
eval (Xrep)@ s e l f ;
in (“ r eque s t r e s u l t ” , ! r e s)@ s e l f ; . . .

}

To weave the performance aspect, the autonomic manager
provides the corresponding advice as follows:

out (“po intcut” ,“Repos i tory” ,“ r eques t” ,Pperf)@ s e l f

The manager will now monitor the response time and
weave or unweave the cache aspect by replacing the tuple
representing the relative pointcut, according to the reposi-
tory’s response time:

in (“time” , ! time)@ s e l f ;
i f (time>T H and not caching) then {

caching=true ;
in (“po intcut” ,“Repos i tory” ,

“ r eque s t” , !X)@ s e l f ;
out (“po intcut” ,“Repos i tory” ,

“ r eque s t” ,Pcache)@ s e l f
} else {

i f (time<T L and caching) then {
caching=fa l se ;
in (“po intcut” ,“Repos i tory” ,

“ r eque s t” , !X)@ s e l f ;
out (“po intcut” ,“Repos i tory” ,

“ r eque s t” ,Pperf)@ s e l f
}

}

Performance

CE

EM

Com

<R2, rule_name, CC2, AA2 >
<R1, rule_name, CC1, AA1 >

...

Accord Composition Manager

Related AAE

Rules

<Ri, rule_name, CC i, AA i >

Adaptations

 ...

Repository

<Ri, rule_name, CC i, AA i >

Rules

<F1, request, int, Object >

request

Rules

<S, response_time, values >

request

request

<F2, monitor, void, double >

CE

EM

Com Sensor

<F1, request, int, Object >

Figure 8: Klaim representation of the Accord implementation of the automated cache (performance mode)

COP-ContextJ
In the Klaim model of the COP implementation, the tuple
space of the repository node contains the following tuples
representing the two variations of the request method, be-
longing to the layers Performance and Caching, and the de-
fault implementation of the method:

〈“Performance” ,“ r eques t” ,Pperf 〉

〈“Caching” ,“ r eque s t” ,Pcache〉

〈“Defau l t” ,“ r eque s t” ,Pdefault 〉

The processes corresponding to the two variations are similar
to the AOP advices previously presented. For example, the
variation of the Performance layer is as follows:

Pperf ,
read (“Defau l t” ,“ r eque s t” , !X)@ s e l f ;
t0=SystemTime () ;
eval (X)@ s e l f ;
in (“Defau l t” ,“ r eque s t” ,“done” , ! r e s u l t)@ s e l f ;
t1=SystemTime () ;
out (“time” , t1−t0)@ s e l f ;
out (“Performance” ,“ r eques t” ,“done” , r e s u l t)@ s e l f

Each time another process needs to retrieve information
from the repository, it uses the following instructions:

. . .
read (“ a c t i v e l a y e r ” , ! l a y e r)@ s e l f ;
read (layer , “ r eque s t” , !X)@ s e l f ;
eval (X)@ s e l f ;
in (layer , “ r eque s t” ,“done” , ! r e s u l t)@ s e l f ;
. . .

where the tuple 〈“ active layer ”, l〉 is managed by the auto-
nomic manager according to the response time:

in (“time” , ! time)@ s e l f ;
i f (time>T H and not caching) then {

caching=true ;

in (“ a c t i v e l a y e r ” , ! l a y e r)@ s e l f ;
out (“ a c t i v e l a y e r ” ,“Caching”)@ s e l f

} else {
i f (time<T L and caching) then {

caching=fa l se ;
in (“ a c t i v e l a y e r ” , ! l a y e r)@ s e l f ;
out (“ a c t i v e l a y e r ” ,“Performance”)@ s e l f

}
}

It is worth noticing that, when we pass from the AOP and
COP implementations to their models, we take off all the
syntactical and language-related features and what we get
is the conceptual mechanism implementing the adaptations.
As we can see, the two models are very similar, showing that
it is the language-related features that make the substantial
difference between the two implementations.

7. RELATED WORK
This work starts from [21] and [40, 19], where the au-

thors put forward Dynamic AOP and COP, respectively, as
new linguistic techniques that better fit the needs of au-
tonomic computing. Furthermore, several recent works on
the COP paradigm have been proposed, primarily present-
ing implementations that try to best meet the self-adapting
requirements. In [20] and [36], COP implementations for
mobile applications (for iPhone) are shown. [35] applies
the COP paradigm to architectural-level adaptation tech-
niques and shows how Context-Oriented Component-based
Applications (COCA) are well suited for developing self-
adaptive context-oriented software. The COCA middleware
is a framework for designing the architecture of adaptive
applications according to a proposed design pattern. In our
paper, we take a wider view at autonomicity and adaptivity
based on approaches commonly found in the literature, and
use the coordination language Klaim to model a reference
scenario according to the styles put forward by the different

Repository

Performance

Com

EM

CE

<R2, rule_name, CC2, AA2 >
...

Accord Composition Manager

Related AAE

<Ri, rule_name, CC i, AA i >

Adaptations

...

<Ri, rule_name, CC i, AA i >

<F1, request, int, Object >

Rules

<S, response_time, values >

request

request

<F2, monitor, void, double >

CE

EM

Com Sensor

<F1, request, int, Object >

Cache

<R1, rule_name, CC 2, AA 2 >

Rules

<F1, request, int, Object >

<S, response_time, values >

CE

EM

ComRpl

<F3, checkCache, int, Object >

request

request

...
<Cache_i, req_i, res_i>

<F2, monitor, void, double >

Rules

Figure 9: Klaim representation of the Accord implementation of the automated cache (caching mode)

approaches.
As representative of the architectural-level approach to

adaptation, we have considered Accord. However, other
frameworks for architectural adaptation are surveyed in
[22], such as the dynamic configuration support of CONIC
[30] and the Rainbow framework [16]. Anyway, at concep-
tual level, for most of them adaptation means addition/re-
moval/replacement of components and connectors. Hence,
the underlying adaptation mechanisms can be modelled in
Klaim by following the approach described in Section 4.

Several works have been proposed that use formal meth-
ods to model autonomic computing techniques. For ex-
ample, [9] presents an approach to develop an autonomic
service-oriented architecture. However, this and other ex-
amples (e.g., [32, 15]) focus on the use of formal methods
for specific target applications. Our work, instead, aims at
modeling general techniques commonly used to achieve au-
tonomicity rather than specific autonomic systems.

Other coordination languages have been considered for
implementing autonomic features. For example, [1] proposes
the language ASSIST. This language is very specific for grid
computing. On the contrary, Klaim is suitable for modeling
and programming any distributed system. Moreover, being
based on formal methods, Klaim enables several verifica-
tions techniques. As another example, [4] uses the Gamma

formalism, a computing model inspired by the chemical re-
action metaphor, to develop a higher-order coordination
language for specifying autonomic systems. Similarly, [2]
presents a biochemical calculus expressive enough to rep-
resent adaptive systems, together with a formal framework
for property checking. [41] also present a framework of self-
organizing coordination with notions of context-dependency,
inspired by pervasive ecosystems. The ecosystem is virtually
represented by a network of Live Semantic Annotations and
ruled by a set of ecolaws, based on semantic chemistry. Dif-
ferently from the above mentioned works, we consider more
systematically the various approaches found in the litera-
ture, showing how Klaim can be used to model them.

8. CONCLUDING REMARKS
In the coordination community many languages and for-

mal tools have been proposed to support development and
analysis of concurrent and distributed systems. One of these
language is Klaim, a successful tuple-space-based coordina-
tion language coming with verification tools and techniques
and with a full-fledged implementation [6].

In this paper, we have modelled some commonly used
adaptation techniques with Klaim. Our work shows that
adaptive behaviors can be easily rendered in a coordination

language with tuple-based, higher-order communication and
that these features enable a straightforward implementation
of dynamic adaptation. This is a first step towards a com-
prehensive study of the relationship between coordination
languages and adaptation approaches.

As a future work, we plan to consider further approaches
to adaptation (like the rule-based one, see e.g. [31], or the
policy-based one, see e.g. [29]) and, at the same time, to pro-
vide a formal proof of relative expressiveness of the primi-
tives suggested by the considered approaches. In particular,
we intend to assess our approach by studying the relative ex-
pressive power of (plain) Klaim w.r.t. some of its extensions
equipped with different adaptation primitives. This study
aims at demonstrating that, although these primitives pro-
vide full support to a more painless and trouble-free develop-
ment of autonomic applications, they do not add expressive
power to Klaim, therefore its linguistic constructs are al-
ready enough powerful for modeling adaptive behaviors. Fi-
nally, we also intend to consider other ‘traditional’ languages
(e.g., Java) and extend them with tuple-based higher-order
communication in order to enable the implementation of dy-
namic adaptations.

Acknowledgments
This work has been partially sponsored by the EU project
ASCENS (257414).

9. REFERENCES
[1] M. Aldinucci, M. Danelutto, and M. Vanneschi.

Autonomic QoS in ASSIST Grid-Aware Components.
In PDP, pages 221–230. IEEE, 2006.

[2] O. Andrei and H. Kirchner. A Higher-Order Graph
Calculus for Autonomic Computing. In Graph Theory,
Computational Intelligence and Thought, pages 15–26.
Springer, 2009.

[3] M. Appeltauer, R. Hirschfeld, M. Haupt, and
H. Masuhara. Contextj: Context-oriented
programming with java. Computer Software,
28(1):272–292, 2011.

[4] J.-P. Banâtre, Y. Radenac, and P. Fradet. Chemical
Specification of Autonomic Systems. In IASSE, pages
72–79. ISCA, 2004.

[5] Bernholdt, D. E., et al. A Component Architecture for
High-Performance Scientific Computing. Int. J. High
Perform. Comput. Appl., 20(2):163–202, 2006.

[6] L. Bettini, R. De Nicola, G. L. Ferrari, and
R. Pugliese. Interactive Mobile Agents in X-Klaim. In
WETICE, pages 110–117. IEEE, 1998.

[7] L. Bettini, R. De Nicola, and R. Pugliese. Klava: a
Java Package for Distributed and Mobile Applications.
Software - Practice and Experience, 32:1365–1394,
2002.

[8] L. Bettini and B. Venneri. Object reuse and behavior
adaptation in java-like languages. In PPPJ, pages
111–120. ACM, 2011.

[9] M. A. C. Bhakti and A. Azween. Formal modeling of
an autonomic service oriented architecture. In CSIT,
volume 5, pages 23–29. IACSIT Press, 2011.

[10] R. Bruni, A. Corradini, F. Gadducci, A. Lluch
Lafuente, and A. Vandin. A conceptual framework for
adaptation. In FASE, volume 7212 of LNCS, pages
240–254. Springer, 2012.

[11] P. Ciancarini and T. Kielmann. Coordination models
and languages for parallel programming. In PARCO,
pages 3–17. Imperial College Press, 1999.

[12] R. De Nicola, G. Ferrari, and R. Pugliese. Klaim: a
Kernel Language for Agents Interaction and Mobility.
IEEE Transactions on Software Engineering,
24(5):315–330, 1998.

[13] R. De Nicola, J. P. Katoen, D. Latella, M. Loreti, and
M. Massink. Model checking mobile stochastic logic.
Theor. Comput. Sci., 382(1):42–70, 2007.

[14] R. De Nicola and M. Loreti. A modal logic for mobile
agents. ACM Trans. Comput. Log., 5(1):79–128, 2004.

[15] X. Dong, S. Hariri, L. Xue, H. Chen, M. Zhang,
S. Pavuluri, and S. Rao. Autonomia: an autonomic
computing environment. In IPCCC, pages 61–68.
IEEE, 2003.

[16] D. Garlan, S. Cheng, A. Huang, B. Schmerl, and
P. Steenkiste. Rainbow: Architecture-based
self-adaptation with reusable infrastructure. IEEE
Computer, 37(10):46–54, 2004.

[17] D. Gelernter. Generative communication in Linda.
ACM Trans. Program. Lang. Syst., 7:80–112, 1985.

[18] C. Ghezzi, M. Pradella, and G. Salvaneschi.
Programming Language Support to Context-Aware
Adaptation—A Case-Study with Erlang. In SEAMS,
pages 59–68. ACM, 2010.

[19] C. Ghezzi, M. Pradella, and G. Salvaneschi. An
Evaluation of the Adaptation Capabilities in
Programming Languages. In SEAMS, pages 50–59.
ACM, 2011.

[20] S. González, N. Cardozo, K. Mens, A. Cádiz, J.-C.
Libbrecht, and J. Goffaux. Subjective-C: bringing
context to mobile platform programming. In SLE,
volume 6563 of LNCS, pages 246–265. Springer, 2011.

[21] P. Greenwood and L. Blair. Using Dynamic
Aspect-Oriented Programming to Implement an
Autonomic System. In DAW, RIACS Technical
Report 04.01, pages 76–88, 2004.

[22] Hadaytullah. A short survey on self-architecting
software systems. Technical report, Tampere
University of Technology, Finland. Available at
http://www.cs.tut.fi/~hadaytul/Download/1_

Hadaytullah_Survey3.pdf.

[23] R. Hirschfeld, P. Costanza, and O. Nierstrasz.
Context-oriented programming. Journal of Object
Technology, 7(3):125–151, 2008.

[24] M. Hölzl, A. Rauschmayer, and M. Wirsing. Software
engineering for ensembles. In Software-Intensive
Systems and New Computing Paradigms, pages 45–63.
Springer, 2008.

[25] IBM. An architectural blueprint for autonomic
computing. Technical report, June 2005. Third edition.

[26] N. Janssens, E. Truyen, F. Sanen, and W. Joosen.
Adding dynamic reconfiguration support to JBoss
AOP. In MAI, pages 1–8. ACM, 2007.

[27] Java 2 Platform Standard Edition 5.0 guide. Why are
thread.stop, thread.suspend, thread.resume and
runtime.runfinalizersonexit deprecated? Technical
report, Oracle, 2010.

[28] J. O. Kephart and D. M. Chess. The Vision of
Autonomic Computing. IEEE Computer, 36:41–50,

2003.

[29] N. Khakpour, S. Jalili, C. Talcott, M. Sirjani, and
M. Mousavi. Formal modeling of evolving self-adaptive
systems. Science of Computer Programming, 78(1):3 –
26, 2012.

[30] J. Kramer and J. Magee. Dynamic configuration for
distributed systems. IEEE Trans. Software Eng.,
11(4):424–436, 1985.

[31] I. Lanese, A. Bucchiarone, and F. Montesi. A
framework for rule-based dynamic adaptation. In
TGC, volume 6084 of LNCS, pages 284–300. Springer,
2010.

[32] Z. Li and M. Parashar. Rudder: An agent-based
infrastructure for autonomic composition of grid
applications. Multiagent and Grid Systems,
1(3):183–195, 2005.

[33] H. Liu and M. Parshar. Accord: A programming
framework for autonomic applications. IEEE Trans.
on Systems, Man and Cybernetics - PartC:
Applications and Reviews, 36(3):341–353, 2006.

[34] M. Loreti. SAM: Stochastic Analyser for Mobility,
2010. Available at http://rap.dsi.unifi.it/SAM/.

[35] B. Magableh and S. Barrett. Adaptive Context
Oriented Component-Based Application Middleware
(COCA-Middleware). In UIC, volume 6905 of LNCS,
pages 137–151. Springer, 2011.

[36] B. Magableh and S. Barrett. Objective-cop: Objective
context oriented programming. In ICICS, pages 45–49,
2011.

[37] OMG. CORBA Component Model Specification
Version 4.0. Technical report, April 2006.

[38] P. Oreizy et al. An Architecture-Based Approach to
Self-Adaptive Software. IEEE Intelligent Systems,
14:54–62, 1999.

[39] M. Parashar and S. Hariri. Autonomic Computing:
An Overview. In UPP, volume 3566 of LNCS, pages
257–269. Springer, 2005.

[40] G. Salvaneschi, C. Ghezzi, and M. Pradella.
Context-oriented programming: A programming
paradigm for autonomic systems. CoRR,
abs/1105.0069, 2011.

[41] M. Viroli, D. Pianini, S. Montagna, and G. Stevenson.
Pervasive Ecosystems: a Coordination Model Based
on Semantic Chemistry. In SAC, pages 295–302.
ACM, 2012.

[42] F. Yang, T. Aotani, H. Masuhara, F. Nielson, and
H. R. Nielson. Combining Static Analysis and
Runtime Checking in Security Aspects for Distributed
Tuple Spaces. In COORDINATION, volume 6721 of
LNCS, pages 202–218. Springer, 2011.

