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Summary of contributions and directions

m Experiments with IA action planning

o Improvements with respect to the state-of-the-art :
- Account for constraints, styles & types
- Verification of invariants

- Systematic evaluation of International Planning Competition (IPC)
planners

m Towards improved reconfiguration language
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ACME, Armani & Plastik

m ACME [Garlan et al.(2010)]

¢ Architecture description language

o Components, connectors & attachments

o Focused on the structure of the software architecture
e Aimed as an interchange language

m Armani [Monroe(2001)]

o Constraints over the architecture
« Based on first-order predicate logic

m Plastik [Batista et al.(2005)]

o Reconfigurations for ACME architectures
e Triggering on Armani conditions
o Primitive operations
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PDDL & Action planning

m Action planning
o Automatically find a sequence of actions that brings a
system from an initial state to a goal state

m Planning Domain Definition Language
[Ghallab et al.(1998)]
o Based on first-order logic
o Designed for the International Planning Competition (IPC)

Domain definition

Predicates

Actions > Planning task
Problem definition

bjects
Initial & goal states
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PDDL & Dynamic reconf. — state-of-the-art

m [Arshad and Heimbigner(2005), Arshad et al.(2007)]
« A PDDL domain for reconfiguration

m [André et al.(2010)]

o PDDL as a pivot language
o Planners may generate optimal reconf.

m [Ingstrup and Hansen(2009), Hansen and Ingstrup(2010)]

o Planning for OSGi deployment
o Using Alloy to plan & verify, but not using the same
specifications as with PDDL

m [El Maghraoui et al.(2006)]

e Planning Tivoli deployment
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PDDL & Dynamic reconf. — sum. of state-of-the-art

m PDDL is a relevant option
m State-of-the-art planners provide good results
m Several PDDL domains for reconfiguration

m But...

Poor type support

No constraint, no style support

One PDDL domain per ADL / component model
Are we sure that the PDDL domains are correct ?
Only few planners tested
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CAL 2012

PDDL domain for reconfiguration

what kinds of objects do we reify ?
how do we represent an architecture?
what operations do we define?
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m Kinds of (reified) elements

Types

Type Instance
System X
Component X X
Connector X X
Port X X
Role X X
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Predicates

m Bindings & containment relations
o Component — port, connector — role
o System — component, system — connector
e Instance — type
m Existence
o Because the PDDL world is closed

Design choices

m Negative predicates vs negation+quantification
e E.g., unbound port, unbound role

m Each component has its own unique type
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Actions

m Example : attach a port p of a component ¢ and a
role r of a connector co

c exists; co exists
c has port p; co has role r
p on c is not bound; r on co is not bound

- pon cisboundtoronco

p on c is not bound
- r on co is not bound
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Invariants & constraints

m We can check statically that the actions preserve
some invariants
m Example : one port is bound to at most one role

o Check each action
e E.g., the attach action binds only unbound ports
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Invariants & constraints

m Some invariants cannot be checked statically
m Example : the client-server style

o Either we design a specific domain for the reconfiguration of
client-server applications

e Or the domain is general, but the constraint is not statically
enforced

- Planning time verification : PDDL state trajectory constraints
- Temporal modal operators : constraints over what happens during
reconfiguration
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Some experimental results

Why systematic tests of IPC planners?

m International Planning Competition (IPC) promotes
fastest planning time for ~100-actions plans

m No IPC planner implements the whole PDDL

m Summary of experiments

IPC planners 55
Successful (simplified problem) | 17
Shortest plan 14
With derived predicates 1
With constraints 0
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Lessons learned

m Reconfiguration
« Architectural constraints can be enforced
e How do we specify what we expect to be true during

reconfiguration ?
e How do we reconfigure architectural constraints?

m Planning
e PDDL seems expressive enough
- Some temporal operators shall be missing
- Semantics of PDDL?

¢ No state-of-the-art off-the-shelf planner implements the

needed PDDL fragments
e The planning community focuses on other issues
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Future directions

m Towards next reconfiguration language

o Reconfiguration « style »

. Operations to reconfigure types & constraints
m Further inspection of existing planners

o More precise characterization of implemented PDDL
features

o Compilation strategies of advanced PDDL features to core
PDDL

e Impact on planning time
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Acme vs PDDL: support for dynamic
reconfiguration of software architectures

Merci de votre attention !
Avez-vous des question ?
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