
Acme vs PDDL: support for dynamic
reconfiguration of software architectures

Jean-Eudes Méhus, Thais Batista & Jérémy Buisson
jean-eudes.mehus@st-cyr.terre-net.defense.gouv.fr

thais@dimap.ufrn.br
jeremy.buisson@st-cyr.terre-net.defense.gouv.fr

mailto:jean-eudes.mehus@st-cyr.terre-net.defense.gouv.fr
mailto:thais@dimap.ufrn.br
mailto:jeremy.buisson@st-cyr.terre-net.defense.gouv.fr


Dynamic reconfiguration

app.

reconf.

old newm
od

ify

when ?

how ?

what ?

goal ?

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 2 / 18



Dynamic reconfiguration

app.

reconf.

old newm
od

ify

when ?

how ?

what ?

goal ?

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 2 / 18



Summary of contributions and directions

Experiments with IA action planning
Improvements with respect to the state-of-the-art :
- Account for constraints, styles & types
- Verification of invariants
- Systematic evaluation of International Planning Competition (IPC)

planners

Towards improved reconfiguration language

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 3 / 18



ACME, Armani & Plastik

ACME [Garlan et al.(2010)]
Architecture description language
Components, connectors & attachments
Focused on the structure of the software architecture
Aimed as an interchange language

Armani [Monroe(2001)]
Constraints over the architecture
Based on first-order predicate logic

Plastik [Batista et al.(2005)]
Reconfigurations for ACME architectures
Triggering on Armani conditions
Primitive operations

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 4 / 18



PDDL & Action planning

Action planning
Automatically find a sequence of actions that brings a
system from an initial state to a goal state

Planning Domain Definition Language
[Ghallab et al.(1998)]

Based on first-order logic
Designed for the International Planning Competition (IPC)

Domain definition

Problem definition

Planning task
Predicates
Actions

Objects
Initial & goal states

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 5 / 18



PDDL & Dynamic reconf. – state-of-the-art

[Arshad and Heimbigner(2005), Arshad et al.(2007)]
A PDDL domain for reconfiguration

[André et al.(2010)]
PDDL as a pivot language
Planners may generate optimal reconf.

[Ingstrup and Hansen(2009), Hansen and Ingstrup(2010)]
Planning for OSGi deployment
Using Alloy to plan & verify, but not using the same
specifications as with PDDL

[El Maghraoui et al.(2006)]
Planning Tivoli deployment

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 6 / 18



PDDL & Dynamic reconf. – sum. of state-of-the-art

PDDL is a relevant option
State-of-the-art planners provide good results
Several PDDL domains for reconfiguration

But...
Poor type support
No constraint, no style support
One PDDL domain per ADL / component model
Are we sure that the PDDL domains are correct ?
Only few planners tested

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 7 / 18



PDDL domain for reconfiguration

PDDL types : what kinds of objects do we reify ?
Predicates : how do we represent an architecture ?
Actions : what operations do we define ?

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 8 / 18



Types

Kinds of (reified) elements
Type Instance

System ×
Component × ×
Connector × ×

Port × ×
Role × ×

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 9 / 18



Predicates

Bindings & containment relations
Component – port, connector – role
System – component, system – connector
Instance – type

Existence
Because the PDDL world is closed

Design choices
Negative predicates vs negation+quantification

E.g., unbound port, unbound role
Each component has its own unique type

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 10 / 18



Actions

Example : attach a port p of a component c and a
role r of a connector co

Preconditions :
- c exists ; co exists
- c has port p ; co has role r
- p on c is not bound ; r on co is not bound
Positive effects :
- p on c is bound to r on co
Negative effects :
- p on c is not bound
- r on co is not bound

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 11 / 18



Invariants & constraints

We can check statically that the actions preserve
some invariants
Example : one port is bound to at most one role

Check each action
E.g., the attach action binds only unbound ports

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 12 / 18



Invariants & constraints

Some invariants cannot be checked statically
Example : the client-server style

Either we design a specific domain for the reconfiguration of
client-server applications

Or the domain is general, but the constraint is not statically
enforced
- Planning time verification : PDDL state trajectory constraints
- Temporal modal operators : constraints over what happens during

reconfiguration

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 13 / 18



Some experimental results

Why systematic tests of IPC planners ?
International Planning Competition (IPC) promotes
fastest planning time for '100-actions plans
No IPC planner implements the whole PDDL

Summary of experiments
IPC planners 55
Successful (simplified problem) 17
Shortest plan 14
With derived predicates 1
With constraints 0

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 14 / 18



Lessons learned

Reconfiguration
Architectural constraints can be enforced
How do we specify what we expect to be true during
reconfiguration ?
How do we reconfigure architectural constraints ?

Planning
PDDL seems expressive enough
- Some temporal operators shall be missing
- Semantics of PDDL ?
No state-of-the-art off-the-shelf planner implements the
needed PDDL fragments
The planning community focuses on other issues

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 15 / 18



Future directions

Towards next reconfiguration language
Reconfiguration « style »
Operations to reconfigure types & constraints

Further inspection of existing planners
More precise characterization of implemented PDDL
features
Compilation strategies of advanced PDDL features to core
PDDL
Impact on planning time

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 16 / 18



Acme vs PDDL: support for dynamic
reconfiguration of software architectures

Merci de votre attention !
Avez-vous des question ?



Françoise André, Erwan Daubert, Grégory Nain,
Brice Morin, and Olivier Barais.
F4Plan : an approach to build efficient adaptation
plans.
In 7th International ICST Conference on
Mobile and Ubiquitous Systems, Sydney,
Australia, December 2010.
Naveed Arshad and Dennis Heimbigner.
A comparison of planning based models for
component reconfiguration.
Technical Report CU-CS-995-05, University of
Colorado, Boulder, Colorado, USA, 2005.
Naveed Arshad, Dennis Heimbigner, and Alexander
Wolf.
Deployment and dynamic reconfiguration planning
for distributed software systems.
Software Quality Journal, 15(3) :265–281,
September 2007.
doi : 10.1007/s11219-007-9019-2.

Thais Batista, Ackbar Joolia, and Geoff Coulson.
Managing dynamic reconfiguration in
component-based systems.
In Software Architecture, volume 3527 of
LNCS, pages 439–480, Pisa, Italy, June 2005.
doi : 10.1007/11494713_1.

Kaoutar El Maghraoui, Alok Medhranjani, Tamar
Ailam, Michael Kalantar, and Alexander
Konstantinou.
Model driven provisioning : bridging the gap
between declarative object models and procedural
provisioning tools.
In Middleware, volume 4290 of Lecture Notes
in Computer Science, pages 404–423,
Melbourne, Australia, November 2006.
doi : 10.1007/11925071_21.

David Garlan, Robert Monroe, and David Wile.
Acme : an architecture description interchange
language.
In CASCON First Decade High Impact
Papers, pages 159–173, 2010.
doi : 10.1145/1925805.1925814.

Malik Ghallab, Adele Howe, Craig Knoblock, Drew
McDermott, Ashwin Ram, Manuela Veloso, Daniel
Weld, and David Wilkins.
PDDL – the planning domain definition language.
Technical Report CVC TR-98-003/DCS TR-1165,
Yale Center for Computational Vision and Control,
October 1998.
Klaus Marius Hansen and Mads Ingstrup.
Modeling and analyzing architectural change with
Alloy.
In Symposium on Applied Computing, pages
2257–2264, Sierre, Switzerland, March 2010.
doi : 10.1145/1774088.1774560.

Mads Ingstrup and Klaus Marius Hansen.
Modeling architectural change : architectural
scripting and its applications to reconfiguration.
In European Conference on Software
Architecture, pages 337–340, Cambridge, UK,
September 2009.
doi : 10.1109/WICSA.2009.5290670.

Robert Monroe.
Capturing software architecture design expertise
with Armani.
Technical Report CMU-CS-98-163, Carnegie
Mellon University School of Computer Science,
January 2001.

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 18 / 18


