Acme vs PDDL: support for dynamic
reconfiguration of software architectures

Jean-Eudes Méhus, Thais Batista & Jérémy Buisson
jean-eudes.mehus@st-cyr.terre-net.defense.gouv.fr
thais@dimap.ufrn.br
jeremy.buisson@st-cyr.terre-net.defense.gouv.fr



mailto:jean-eudes.mehus@st-cyr.terre-net.defense.gouv.fr
mailto:thais@dimap.ufrn.br
mailto:jeremy.buisson@st-cyr.terre-net.defense.gouv.fr

Dynamic reconfiguration

reconf. -

app. ———— —— M NNV : ,

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 2 /18



Dynamic reconfiguration

reconf.

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 2 /18



Summary of contributions and directions

m Experiments with IA action planning

o Improvements with respect to the state-of-the-art :
- Account for constraints, styles & types
- Verification of invariants

- Systematic evaluation of International Planning Competition (IPC)
planners

m Towards improved reconfiguration language

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 3/18



ACME, Armani & Plastik

m ACME [Garlan et al.(2010)]

¢ Architecture description language

o Components, connectors & attachments

o Focused on the structure of the software architecture
e Aimed as an interchange language

m Armani [Monroe(2001)]

o Constraints over the architecture
« Based on first-order predicate logic

m Plastik [Batista et al.(2005)]

o Reconfigurations for ACME architectures
e Triggering on Armani conditions
o Primitive operations

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 4 /18



PDDL & Action planning

m Action planning
o Automatically find a sequence of actions that brings a
system from an initial state to a goal state

m Planning Domain Definition Language
[Ghallab et al.(1998)]
o Based on first-order logic
o Designed for the International Planning Competition (IPC)

Domain definition

Predicates

Actions > Planning task
Problem definition

bjects
Initial & goal states

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 5/ 18



PDDL & Dynamic reconf. — state-of-the-art

m [Arshad and Heimbigner(2005), Arshad et al.(2007)]
« A PDDL domain for reconfiguration

m [André et al.(2010)]

o PDDL as a pivot language
o Planners may generate optimal reconf.

m [Ingstrup and Hansen(2009), Hansen and Ingstrup(2010)]

o Planning for OSGi deployment
o Using Alloy to plan & verify, but not using the same
specifications as with PDDL

m [El Maghraoui et al.(2006)]

e Planning Tivoli deployment

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 6 /18



PDDL & Dynamic reconf. — sum. of state-of-the-art

m PDDL is a relevant option
m State-of-the-art planners provide good results
m Several PDDL domains for reconfiguration

m But...

Poor type support

No constraint, no style support

One PDDL domain per ADL / component model
Are we sure that the PDDL domains are correct ?
Only few planners tested

L]

]

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 7/ 18



CAL 2012

PDDL domain for reconfiguration

what kinds of objects do we reify ?
how do we represent an architecture?
what operations do we define?

Acme vs PDDL: support for dyn. reconf. for soft. architectures 8 /18



m Kinds of (reified) elements

Types

Type Instance
System X
Component X X
Connector X X
Port X X
Role X X

CAL 2012

Acme vs PDDL: support for dyn. reconf. for soft. architectures

9/18



Predicates

m Bindings & containment relations
o Component — port, connector — role
o System — component, system — connector
e Instance — type
m Existence
o Because the PDDL world is closed

Design choices

m Negative predicates vs negation+quantification
e E.g., unbound port, unbound role

m Each component has its own unique type

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 10 / 18



Actions

m Example : attach a port p of a component ¢ and a
role r of a connector co

c exists; co exists
c has port p; co has role r
p on c is not bound; r on co is not bound

- pon cisboundtoronco

p on c is not bound
- r on co is not bound

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 11 /18



Invariants & constraints

m We can check statically that the actions preserve
some invariants
m Example : one port is bound to at most one role

o Check each action
e E.g., the attach action binds only unbound ports

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 12 / 18



Invariants & constraints

m Some invariants cannot be checked statically
m Example : the client-server style

o Either we design a specific domain for the reconfiguration of
client-server applications

e Or the domain is general, but the constraint is not statically
enforced

- Planning time verification : PDDL state trajectory constraints
- Temporal modal operators : constraints over what happens during
reconfiguration

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 13 /18



Some experimental results

Why systematic tests of IPC planners?

m International Planning Competition (IPC) promotes
fastest planning time for ~100-actions plans

m No IPC planner implements the whole PDDL

m Summary of experiments

IPC planners 55
Successful (simplified problem) | 17
Shortest plan 14
With derived predicates 1
With constraints 0

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 14 / 18



Lessons learned

m Reconfiguration
« Architectural constraints can be enforced
e How do we specify what we expect to be true during

reconfiguration ?
e How do we reconfigure architectural constraints?

m Planning
e PDDL seems expressive enough
- Some temporal operators shall be missing
- Semantics of PDDL?

¢ No state-of-the-art off-the-shelf planner implements the

needed PDDL fragments
e The planning community focuses on other issues

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 15 / 18



Future directions

m Towards next reconfiguration language

o Reconfiguration « style »

. Operations to reconfigure types & constraints
m Further inspection of existing planners

o More precise characterization of implemented PDDL
features

o Compilation strategies of advanced PDDL features to core
PDDL

e Impact on planning time

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 16 / 18



Acme vs PDDL: support for dynamic
reconfiguration of software architectures

Merci de votre attention !
Avez-vous des question ?




[

B

CAL 2012

Francoise André, Erwan Daubert, Grégory Nain,
Brice Morin, and Olivier Barais.
FAPlan : an approach to build efficient adaptation
plans.
In

, Sydney,
Australia, December 2010.

Naveed Arshad and Dennis Heimbigner.

A comparison of planning based models for
component reconfiguration.

Technical Report CU-CS-995-05, University of
Colorado, Boulder, Colorado, USA, 2005.

Naveed Arshad, Dennis Heimbigner, and Alexander
Wolf,

Acme vs PDDL: support for dyn. reconf. for soft. architectures
- 1 1 - r" . "

18 /18



