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Summary of contributions and directions

Experiments with IA action planning
Improvements with respect to the state-of-the-art :
- Account for constraints, styles & types
- Verification of invariants
- Systematic evaluation of International Planning Competition (IPC)

planners

Towards improved reconfiguration language
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ACME, Armani & Plastik

ACME [Garlan et al.(2010)]
Architecture description language
Components, connectors & attachments
Focused on the structure of the software architecture
Aimed as an interchange language

Armani [Monroe(2001)]
Constraints over the architecture
Based on first-order predicate logic

Plastik [Batista et al.(2005)]
Reconfigurations for ACME architectures
Triggering on Armani conditions
Primitive operations
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PDDL & Action planning

Action planning
Automatically find a sequence of actions that brings a
system from an initial state to a goal state

Planning Domain Definition Language
[Ghallab et al.(1998)]

Based on first-order logic
Designed for the International Planning Competition (IPC)

Domain definition

Problem definition

Planning task
Predicates
Actions

Objects
Initial & goal states
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PDDL & Dynamic reconf. – state-of-the-art

[Arshad and Heimbigner(2005), Arshad et al.(2007)]
A PDDL domain for reconfiguration

[André et al.(2010)]
PDDL as a pivot language
Planners may generate optimal reconf.

[Ingstrup and Hansen(2009), Hansen and Ingstrup(2010)]
Planning for OSGi deployment
Using Alloy to plan & verify, but not using the same
specifications as with PDDL

[El Maghraoui et al.(2006)]
Planning Tivoli deployment
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PDDL & Dynamic reconf. – sum. of state-of-the-art

PDDL is a relevant option
State-of-the-art planners provide good results
Several PDDL domains for reconfiguration

But...
Poor type support
No constraint, no style support
One PDDL domain per ADL / component model
Are we sure that the PDDL domains are correct ?
Only few planners tested
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PDDL domain for reconfiguration

PDDL types : what kinds of objects do we reify ?
Predicates : how do we represent an architecture ?
Actions : what operations do we define ?
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Types

Kinds of (reified) elements
Type Instance

System ×
Component × ×
Connector × ×

Port × ×
Role × ×
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Predicates

Bindings & containment relations
Component – port, connector – role
System – component, system – connector
Instance – type

Existence
Because the PDDL world is closed

Design choices
Negative predicates vs negation+quantification

E.g., unbound port, unbound role
Each component has its own unique type
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Actions

Example : attach a port p of a component c and a
role r of a connector co

Preconditions :
- c exists ; co exists
- c has port p ; co has role r
- p on c is not bound ; r on co is not bound
Positive effects :
- p on c is bound to r on co
Negative effects :
- p on c is not bound
- r on co is not bound

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures 11 / 18



Invariants & constraints

We can check statically that the actions preserve
some invariants
Example : one port is bound to at most one role

Check each action
E.g., the attach action binds only unbound ports
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Invariants & constraints

Some invariants cannot be checked statically
Example : the client-server style

Either we design a specific domain for the reconfiguration of
client-server applications

Or the domain is general, but the constraint is not statically
enforced
- Planning time verification : PDDL state trajectory constraints
- Temporal modal operators : constraints over what happens during

reconfiguration
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Some experimental results

Why systematic tests of IPC planners ?
International Planning Competition (IPC) promotes
fastest planning time for '100-actions plans
No IPC planner implements the whole PDDL

Summary of experiments
IPC planners 55
Successful (simplified problem) 17
Shortest plan 14
With derived predicates 1
With constraints 0
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Lessons learned

Reconfiguration
Architectural constraints can be enforced
How do we specify what we expect to be true during
reconfiguration ?
How do we reconfigure architectural constraints ?

Planning
PDDL seems expressive enough
- Some temporal operators shall be missing
- Semantics of PDDL ?
No state-of-the-art off-the-shelf planner implements the
needed PDDL fragments
The planning community focuses on other issues
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Future directions

Towards next reconfiguration language
Reconfiguration « style »
Operations to reconfigure types & constraints

Further inspection of existing planners
More precise characterization of implemented PDDL
features
Compilation strategies of advanced PDDL features to core
PDDL
Impact on planning time
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Acme vs PDDL: support for dynamic
reconfiguration of software architectures

Merci de votre attention !
Avez-vous des question ?
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