Acme vs PDDL: support for dynamic reconfiguration of software architectures

Jean-Eudes Méhus, Thais Batista & Jérémy Buisson

jean-eudes.mehus@st-cyr.terre-net.defense.gouv.fr thais@dimap.ufrn.br jeremy.buisson@st-cyr.terre-net.defense.gouv.fr

Dynamic reconfiguration

Dynamic reconfiguration

Summary of contributions and directions

Experiments with IA action planning

- Improvements with respect to the state-of-the-art :
 - Account for constraints, styles & types
 - Verification of invariants
 - Systematic evaluation of International Planning Competition (IPC) planners
- Towards improved reconfiguration language

ACME, Armani & Plastik

■ ACME [Garlan et al.(2010)]

- Architecture description language
- Components, connectors & attachments
- Focused on the structure of the software architecture
- Aimed as an interchange language
- Armani [Monroe(2001)]
 - Constraints over the architecture
 - Based on first-order predicate logic
- Plastik [Batista et al.(2005)]
 - Reconfigurations for ACME architectures
 - Triggering on Armani conditions
 - Primitive operations

PDDL & Action planning

Action planning

- Automatically find a sequence of actions that brings a system from an initial state to a goal state
- Planning Domain Definition Language [Ghallab et al.(1998)]
 - Based on first-order logic
 - Designed for the International Planning Competition (IPC)

CAL 2012 Acme vs PDDL: support for dyn. reconf. for soft. architectures

PDDL & Dynamic reconf. – state-of-the-art

- [Arshad and Heimbigner(2005), Arshad et al.(2007)]
 - A PDDL domain for reconfiguration
- [André et al.(2010)]
 - PDDL as a pivot language
 - Planners may generate optimal reconf.
- [Ingstrup and Hansen(2009), Hansen and Ingstrup(2010)]
 - Planning for OSGi deployment
 - Using Alloy to plan & verify, but not using the same specifications as with PDDL
- [El Maghraoui et al.(2006)]
 - Planning Tivoli deployment

PDDL & Dynamic reconf. - sum. of state-of-the-art

PDDL is a relevant option

- State-of-the-art planners provide good results
- Several PDDL domains for reconfiguration

∎ But...

- Poor type support
- No constraint, no style support
- One PDDL domain per ADL / component model
- Are we sure that the PDDL domains are correct?
- Only few planners tested

PDDL domain for reconfiguration

- PDDL types : what kinds of objects do we reify?
- **Predicates :** how do we represent an architecture?
- Actions : what operations do we define?

Types

■ Kinds of (reified) elements

	Туре	Instance
System		×
Component	×	×
Connector	×	×
Port	×	Х
Role	Х	Х

Predicates

Bindings & containment relations

- Component port, connector role
- System component, system connector
- Instance type
- Existence
 - Because the PDDL world is closed

Design choices

- Negative predicates vs negation+quantification
 - E.g., unbound port, unbound role
- Each component has its own unique type

18

Actions

- Example : attach a port p of a component c and a role r of a connector co
 - Preconditions :
 - c exists; co exists
 - c has port p; co has role r
 - p on c is not bound; r on co is not bound
 - Positive effects :
 - p on c is bound to r on co
 - Negative effects :
 - p on c is not bound
 - r on co is not bound

Invariants & constraints

- We can check statically that the actions preserve some invariants
- Example : one port is bound to at most one role
 - Check each action
 - E.g., the attach action binds only unbound ports

Invariants & constraints

- Some invariants cannot be checked statically
- Example : the client-server style
 - Either we design a specific domain for the reconfiguration of client-server applications
 - Or the domain is general, but the constraint is not statically enforced
 - Planning time verification : PDDL state trajectory constraints
 - Temporal modal operators : constraints over what happens during reconfiguration

Some experimental results

Why systematic tests of IPC planners?

- International Planning Competition (IPC) promotes fastest planning time for ~100-actions plans
- No IPC planner implements the whole PDDL

Summary of experiments		
IPC planners	55	
Successful (simplified problem)		
Shortest plan		
With derived predicates		
With constraints	0	

Lessons learned

Reconfiguration

- Architectural constraints can be enforced
- How do we specify what we expect to be true during reconfiguration ?
- How do we reconfigure architectural constraints?
- Planning
 - PDDL seems expressive enough
 - Some temporal operators shall be missing
 - Semantics of PDDL?
 - No state-of-the-art off-the-shelf planner implements the needed PDDL fragments
 - The planning community focuses on other issues

Future directions

- Towards next reconfiguration language
 - Reconfiguration « style »
 - Operations to reconfigure types & constraints
- Further inspection of existing planners
 - More precise characterization of implemented PDDL features
 - Compilation strategies of advanced PDDL features to core PDDL
 - Impact on planning time

Acme vs PDDL: support for dynamic reconfiguration of software architectures

Merci de votre attention ! Avez-vous des question ?

Françoise André, Erwan Daubert, Grégory Nain, Brice Morin, and Olivier Barais. F4Plan : an approach to build efficient adaptation plans.

In **7th International ICST Conference on Mobile and Ubiquitous Systems**, Sydney, Australia, December 2010.

Naveed Arshad and Dennis Heimbigner. A comparison of planning based models for component reconfiguration. Technical Report CU-CS-995-05, University of Colorado, Boulder, Colorado, USA, 2005.

Naveed Arshad, Dennis Heimbigner, and Alexander
CAL 2012 Wolf
Acme vs PDDL: support for dyn. reconf. for soft. architectures
18 / 18