43,465 research outputs found

    Ontology-based modelling of architectural styles

    Get PDF
    The conceptual modelling of software architectures is of central importance for the quality of a software system. A rich modelling language is required to integrate the different aspects of architecture modelling, such as architectural styles, structural and behavioural modelling, into a coherent framework. Architectural styles are often neglected in software architectures. We propose an ontological approach for architectural style modelling based on description logic as an abstract, meta-level modelling instrument. We introduce a framework for style definition and style combination. The application of the ontological framework in the form of an integration into existing architectural description notations is illustrated

    Designing the interface between research, learning and teaching.

    Full text link
    Abstract: This paper’s central argument is that teaching and research need to be reshaped so that they connect in a productive way. This will require actions at a whole range of levels, from the individual teacher to the national system and include the international communities of design scholars. To do this, we need to start at the level of the individual teacher and course team. This paper cites some examples of strategies that focus on what students do as learners and how teachers teach and design courses to enhance research-led teaching. The paper commences with an examination of the departmental context of (art and) design education. This is followed by an exploration of what is understood by research-led teaching and a further discussion of the dimensions of research-led teaching. It questions whether these dimensions are evident, and if so to what degree in design departments, programmes and courses. The discussion examines the features of research-led departments and asks if a department is not research-led in its approach to teaching, why it should consider changing strategies

    Traceability for Model Driven, Software Product Line Engineering

    Get PDF
    Traceability is an important challenge for software organizations. This is true for traditional software development and even more so in new approaches that introduce more variety of artefacts such as Model Driven development or Software Product Lines. In this paper we look at some aspect of the interaction of Traceability, Model Driven development and Software Product Line

    Run-time Support to Manage Architectural Variability Speci ed with CVL

    Get PDF
    The execution context in which pervasive systems or mobile computing run changes continuously. Hence, applications for these systems should be adapted at run-time according to the current context. In order to implement a context-aware dynamic reconfiguration service, most approaches usually require to model at design-time both the list of all possible configurations and the plans to switch among them. In this paper we present an alternative approach for the automatic run-time generation of application configurations and the reconfiguration plans. The generated configurations are optimal regarding di erent criteria, such as functionality or resource consumption (e.g. battery or memory). This is achieved by: (1) modelling architectural variability at design-time using Common Variability Language (CVL), and (2) using a genetic algorithm that finds at run-time nearly-optimal configurations using the information provided by the variability model. We also specify a case study and we use it to evaluate our approach, showing that it is efficient and suitable for devices with scarce resources.Campus de Excelencia Internacional Andalucia Tech y proyectos de investigaciĂłn TIN2008-01942, P09-TIC-5231 and INTER-TRUST FP7-317731

    Product line architecture recovery with outlier filtering in software families: the Apo-Games case study

    Get PDF
    Software product line (SPL) approach has been widely adopted to achieve systematic reuse in families of software products. Despite its benefits, developing an SPL from scratch requires high up-front investment. Because of that, organizations commonly create product variants with opportunistic reuse approaches (e.g., copy-and-paste or clone-and-own). However, maintenance and evolution of a large number of product variants is a challenging task. In this context, a family of products developed opportunistically is a good starting point to adopt SPLs, known as extractive approach for SPL adoption. One of the initial phases of the extractive approach is the recovery and definition of a product line architecture (PLA) based on existing software variants, to support variant derivation and also to allow the customization according to customers’ needs. The problem of defining a PLA from existing system variants is that some variants can become highly unrelated to their predecessors, known as outlier variants. The inclusion of outlier variants in the PLA recovery leads to additional effort and noise in the common structure and complicates architectural decisions. In this work, we present an automatic approach to identify and filter outlier variants during the recovery and definition of PLAs. Our approach identifies the minimum subset of cross-product architectural information for an effective PLA recovery. To evaluate our approach, we focus on real-world variants of the Apo-Games family. We recover a PLA taking as input 34 Apo-Game variants developed by using opportunistic reuse. The results provided evidence that our automatic approach is able to identify and filter outlier variants, allowing to eliminate exclusive packages and classes without removing the whole variant. We consider that the recovered PLA can help domain experts to take informed decisions to support SPL adoption.This research was partially funded by INES 2.0; CNPq grants 465614/2014-0 and 408356/2018-9; and FAPESB grants JCB0060/2016 and BOL2443/201

    A framework for developing engineering design ontologies within the aerospace industry

    Get PDF
    This paper presents a framework for developing engineering design ontologies within the aerospace industry. The aim of this approach is to strengthen the modularity and reuse of engineering design ontologies to support knowledge management initiatives within the aerospace industry. Successful development and effective utilisation of engineering ontologies strongly depends on the method/framework used to develop them. Ensuring modularity in ontology design is essential for engineering design activities due to the complexity of knowledge that is required to be brought together to support the product design decision-making process. The proposed approach adopts best practices from previous ontology development methods, but focuses on encouraging modular architectural ontology design. The framework is comprised of three phases namely: (1) Ontology design and development; (2) Ontology validation and (3) Implementation of ontology structure. A qualitative research methodology is employed which is composed of four phases. The first phase defines the capture of knowledge required for the framework development, followed by the ontology framework development, iterative refinement of engineering ontologies and ontology validation through case studies and experts’ opinion. The ontology-based framework is applied in the combustor and casing aerospace engineering domain. The modular ontologies developed as a result of applying the framework and are used in a case study to restructure and improve the accessibility of information on a product design information-sharing platform. Additionally, domain experts within the aerospace industry validated the strengths, benefits and limitations of the framework. Due to the modular nature of the developed ontologies, they were also employed to support other project initiatives within the case study company such as role-based computing (RBC), IT modernisation activity and knowledge management implementation across the sponsoring organisation. The major benefit of this approach is in the reduction of man-hours required for maintaining engineering design ontologies. Furthermore, this approach strengthens reuse of ontology knowledge and encourages modularity in the design and development of engineering ontologies

    A Survey of "The Sala degli Stucchi, an ornate baroque hall"

    Get PDF
    The "Sala degli stucchi" is a heavely decorated baroque hall, as the Italian name itself suggests, in the Royal Palace in Turin. The present work describes a survey of this historic object. This work is a part of a wider project on the study of Architectural Patrimony carried out for the La Soprintendenza per il Patrimonio storico, artistico ed etnoantropologico per il Piemonte. It is a chance to test the modern survey techniques of photogrammetry and LIDAR. This article focuses on the integrated use of digital photogrammetry and LIDAR in a demanding environment, in order to take best advantages of both techniques. Different survey products were obtained, ranging from 3D and photogrammetric models to orthophotos. The adopted techniques, the problems and difficulties that arose during the survey process are shown in the paper. The obtained and stored results were also used to make a complete 3D model of the whole hal
    • 

    corecore