
Ontology-based Modelling of Architectural Styles

Claus Pahla, Simon Gieseckeb, Wilhelm Hasselbringc

aDublin City University, School of Computing, Dublin 9, Ireland
bBTC Business Technology Consulting AG, Kurfüstendamm 33, D-10719 Berlin,

Germany
cUniversity of Kiel, Software Engineering Group, D-24118 Kiel, Germany

Abstract

The conceptual modelling of software architectures is of central importance
for the quality of a software system. A rich modelling language is required to
integrate the different aspects of architecture modelling, such as architectural
styles, structural and behavioural modelling, into a coherent framework. Ar-
chitectural styles are often neglected in software architectures. We propose
an ontological approach for architectural style modelling based on descrip-
tion logic as an abstract, meta-level modelling instrument. We introduce a
framework for style definition and style combination. The application of the
ontological framework in the form of an integration into existing architectural
description notations is illustrated.

Key words: Software architecture modelling; architecture ontology;
architectural style; description logics.

1. Introduction

Architecture descriptions are used as conceptual models in the software
development process, capturing central structural and behavioural properties
of a system at design stage [8]. The architecture of a software system is a
crucial factor for the quality of a system implementation. The architecture
influences a broad variety of properties such as the maintainability, depend-
ability or the performance of a system [11]. While architecture description

Email addresses: cpahl@computing.dcu.ie (Claus Pahl),
Simon.Giesecke@btc-ag.com (Simon Giesecke), wha@informatik.uni-kiel.de
(Wilhelm Hasselbring)

Preprint submitted to Elsevier May 26, 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11310032?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


languages (ADLs) exist [23], these are not always suitable to support rich
conceptual modelling of architectures [13]. Only a few, such as ACME [11],
support the abstraction of architectures into styles or patterns. If formally
defined, these can be used to reason about architectures and their properties
[1].

We present an architectural style ontology, which serves as a modelling
language for formally defined architectural styles and patterns. We address
a number of aspects that go beyond ADLs such as ACME in terms of style
description

• a rich and easily extensible semantic style modelling language,

• operators to combine, compare, and derive architectural styles,

• a composition technique that incorporate behavioural composition.

The result is an independent style language that can be applied to extend
existing ADLs to include style support. For all three aspects, an ontology-
based approach to represent architectural knowledge – here in terms of a
description logic, which is an underlying logic of ontology languages – is
a highly suitable formal framework [3]. Ontologies provide modelling and
reasoning support for information structured in terms of taxonomies and
described in terms of abstract properties.

The modelling of basic structural connectivity of architectures is cur-
rently adequately supported [22, 2, 23, 8, 11] and shall therefore not be the
primary concern in this ontological framework. We use ontologies as a con-
ceptual modelling approach with reasoning support to represent architectural
styles in terms of style hierarchy construction and the formulation of archi-
tecture concepts and their relationships. Our architectural style ontology
focuses primarily on abstractions of structural aspects of components and
connectors in the form of styles. The terminological level of the ontology
provides vocabulary and a type language for architectural styles. Instances
of this type language are concrete architecture specifications.

The determination of an architectural style, based on a given set of quality
requirements, should ideally be the first step in software design [12]. We use
a description logic to define an ontology for the description and development
of architectural styles that consists of

• an ontology to define architectural styles through a type constraint
language,

2



• an operator calculus to relate and combine architectural styles.

Our aim is to present a conceptual, ontology-based modelling meta-level
framework for software architectures, that allows the integration of style as-
pects into existing architectural description languages (ADLs) without an
explicit notion of architectural styles. We extend our previous work in this
area [27] through an extension of the core ontology by more elaborate de-
velopment and composition operators (in particular including behaviour in
this context to the previous focus on structural aspects) and by provding an
extensive application in the ACME context that illustrates its benefits.

We introduce the necessary ontology and description logic foundations in
Section 2. We then present an ontology-based modelling approach for archi-
tectural styles in Section 3. Relating these styles is the focus of Section 4.
We define an advanced composition approach in Section 5. The application
of the architectural style language is illustrated in Section 6. We discuss
style-based architectural modelling in terms of applications beyond ACME,
quality-driven development, and advanced behavioural specification in Sec-
tion 7, before reviewing related work in Section 8 and ending with some
conclusions in Section 9.

2. Ontologies and Description Logic

Before presenting the architectural style ontology, we introduce the core
elements of the description logic language ALC, which is an extension of
the basic attributive language AL [3]. ALC has been selected since it is the
most simple language that provides a set of combinators and logical operators
that suffices for the style ontology. Ontologies formalise knowledge about a
domain (intensional knowledge) and its instances (extensional knowledge).
A description logic, such as ALC, consists of three types of basic notational
elements.

• Concepts are the central entities. Concepts are classes of objects with
the same properties. Concepts represent sets of objects.

• Roles are relations between concepts. Roles allow us to define a concept
in terms of other concepts.

• Individuals are named objects.

3



Individuals can be thought of as constants, concepts as unary predicates,
and roles as binary predicates. We can define our language through Tarski-
style model semantics based on an interpretation I that maps concepts and
roles to corresponding sets and relations, and individuals to set elements [19].
Properties are specified as concept descriptions:

• Basic concept descriptions are formed according to the following rules:
A denotes an atomic concept, and if C and D are any (atomic or
composite) concepts, then so are ¬C (negation), C uD (conjunction),
C tD (disjunction), and C → D (implication).

• Value restriction and existential quantification, based on roles, are con-
cept descriptions that extend the set of basic concept descriptions. A
value restriction ∀R.C restricts the value of role R to elements that
satisfy concept C. An existential quantification ∃R.C requires the ex-
istence of a role value.

• Quantified roles can be composed, e.g. ∀R1.∀R2.C is a concept descrip-
tion since ∀R2.C is one.

These combinators can be defined using their classical set-theoretic interpre-
tations. Given a universe of values S, we define the model-based semantics
of concept descriptions as follows1:

>I = S
⊥I = ∅
(¬A)I = S\AI

(C uD)I = CI ∩DI

(∀R.C)I = {a ∈ S | ∀b ∈ S.(a, b) ∈ RI → b ∈ CI}
(∃R.C)I = {a ∈ S | ∃b ∈ S.(a, b) ∈ RI ∧ b ∈ CI}

An individual x defined by C(x) is interpreted by xI ∈ S with xI ∈ CI . Struc-
tural subsumption is a relationship defined by subset inclusions for concepts
and roles.

• A subsumption C1 v C2 between two concepts C1 and C2 is defined
through set inclusion for the interpretations CI

1 ⊆ CI
2 .

1Combinators u and → can be defined based on t and ¬ as usual.

4



• A subsumption R1 v R2 between two roles R1 and R2 holds, if RI
1 ⊆ RI

2.

Structural subsumption (subclass) is weaker than logical subsumption (im-
plication), see [3]. Subsumption can be further characterised by axioms such
as the following for concepts C1 and C2: C1 u C2 v C1 or C2 → C1 implies
C2 v C1. The expression C1 ≡ C2 represents equality.

The concept descriptions can be mapped to a predicate logic, which clar-
ifies the reasoning capabilities of the approach. A concept C can be thought
of as a unary predicate C(x) for a variable x and roles R as binary predicates
R(x, y), i.e. concept descriptions like ∃R.C are mapped to ∃y.R(x, y)∧C(x).

3. Modelling Architectural Styles

3.1. The Basic Architectural Style Ontology

The ALC language shall now be used to define an architectural style on-
tology, thus providing a type and constraint language for ADLs. The central
concepts in this ontology are configuration, component, connector, role, and
port types – all of which are derived from a general concept called an architec-
tural type that captures all architectural notions. These are the elementary
architectural types. The architectural types configuration, component and
connector are at the core of style definitions [33]. Ports and roles are used
in a range of ADLs such as ACME, Darwin, Wright or AADL. Components
encapsulate computation and connectors represent communication between
the components. Components can communicate through ports. Connec-
tors connect to other components through connectors via their ports, where
each port plays a specific role in the context of a connector. Configurations
are compositions of components and connectors with their ports and roles.
Often, a provided and a required port interface is distinguished to add a di-
rection to connectors, which can be clarified in terms of roles. Ports enhance
component descriptions and roles enhance connector descriptions.

This vocabulary consisting of five elements needs to be constrained in the
ontology in order to ensure the desired semantics:

ArchType v Configuration t Component t Connector tRole t Port
and
Configuration ≡ ∃hasPart.(Component t Connector tRole t Port)
Component ≡ ArchType u ∃hasInterface.Port
Connector ≡ ArchType u ∃hasEndpoint.Role

5



The roles hasPart, hasEndpoint and hasInterface are part of the basic
vocabulary. The hasPart role will be defined formally later on. The other
two represent structural links from connectors to roles and from components
to their ports; they ensure that roles and ports are associated to the core
architectural types. This vocabulary of types can be extended to add further
elements using the same mechanisms based on subsumption and concept
descriptions.

3.2. Defining Architectural Styles

Defining architectural styles is actually done by extending the basic vo-
cabulary of elementary architectural types. The subsumption relationship
serves to introduce specific types that form an architectural style.

3.2.1. The Pipe-and-Filter Architectural Style.

The specification of architectural styles shall be illustrated using the pipe-
and-filter style. We start with an extension of the hierarchy of elementary
architectural types in order to introduce style-specific components and ports:

PipeF ilterComponent v Component
P ipeF ilterConnector v Connector
P ipeF ilterPort v Port

These new elements shall be further detailed and restricted to express their
connector semantics. Three types of pipe-filter components, DataSource,
DataSink and Filter, shall be distinguished. Their respective connectivity
through input and output ports is defined as follows:

DataSource ≡ ≤ 1 hasPort u ∃hasPort.Output
DataSink ≡ ≤ 1 hasPort u ∃hasPort.Input
F ilter ≡ = 2 hasPort u ∃hasPort.Input u ∃hasPort.Output

DataSource, DataSink, and Filter are defined as components of a pipe-and-
filter architectural style. We assume Input and Output to be defined as ports.
Each of these components is characterised through the number and types of
component ports using so-called predicate restrictions on a numerical domain
(for instance, ≤ n and = n are used to express hasPort.(n|n ≤ 1) for a non-
negative integer n) and the usual concept descriptions (such as hasPort).
In addition to these more structural conditions that define the connections
between the component types, a number of classification constraints shall
be formulated that further refine the initial enumeration of pipe-and-filter
components by describing how subtype classification is applied.

6



• Disjointness requires the individual components to be truly different:

DataSouce uDataSink u Filter ≡ ⊥

• Completeness requires pipe-and-filter components to be made up of
only the three specified types:

PipeF ilterComponent ≡ DataSource tDataSink t Filter

Similarly, we can define disjointness Input u Output ≡ ⊥ and completeness
PipeF ilterPort ≡ Input tOutput for ports.

3.2.2. The Hub-and-Spoke Architectural Style.

In addition to the well-known pipe-and-filter style [1, 11], we introduce
another architectural style, the hub-and-spoke style. This style abstracts a
system that manages a composition from a single location, the hub, which is
normally the participant initiating the composition. The composition con-
troller (the hub) is usually remotely accessed by the participants (the spokes).
This is the most popular and usually default distribution configuration for
service compositions. We would specify:

Hub v Component and Spoke v Component

with suitable completeness and disjointness constraints. The expressions

Hub ≡ ∃hasPort.Input and Spoke ≡ ∃hasPort.Output

explain that hubs receive incoming requests from spokes. Further constraints
could limit the number of hubs to one:

HubSpokeConfiguration ≡ = 1 hasPart.Hub

with HubSpokeConfiguration v Configuration, whereas spokes can be in-
stantiated in any number. A standard connector, called Hub-Spoke, with
Hub-Spoke v Connector connects hubs and spokes.

7



3.3. Architectural Styles and Architecture Modelling

So far, we have addressed specifications of architectural properties at the
architectural type level. These specifications are constraints that apply to
concrete architecture descriptions formulated using the defined architectural
types. The question is how these type-level specifications are applied to act
as architectural styles. An instantiation of these type-level properties, i.e. an
architecture, could be described by instantiating the elementary types only,
fully ignoring any style-specific constraints. Thus, a specification of archi-
tectural properties is not what we would commonly see as an architectural
style. The configuration type matches what an architectural style needs to
express. It defines a specific vocabulary of components and other elements
and their constraints. Therefore, we define an architectural style to be a
subtype (subsumption) of the configuration type.

PipeF ilterStyle v Configuration
P ipeF ilterStyle ≡ ∃hasPart.(PipeF ilterComponentt

PipeF ilterConnector t Role t Port)

This is, together with related concept descriptions, a style definition. What
clearly identifies a style is the configuration subtype that acts as a root of the
style definition. An architecture description conforming to an architectural
style is a subtype of the defined style configuration, e.g. PipeF ilterStyle. All
elements linked to the style (or its subtypes) directly or transitively through
hasPart and the other predefined roles can be used to describe an architec-
ture. Generally, styles are defined through existential quantification. This
is consistent with the aim of supporting the composition and hierarchies of
styles. Architectures can belong to several styles.

A distinguishing property of our approach is that the basic architecture
vocabulary with notions like component or connector is defined with the
same mechanism at the same layer as the architectural styles. The basic
architectural style ontology itself is consequently an architectural style, albeit
an abstract and unconstraining one – with the trivial equality as the required
subsumption.

The styles defined based on the ontology aim to provide a type language
for architecture definitions. Components in an architecture definition are
instances of the elements of an architectural style. The style constrains the
use of the architecture elements. This architecture layer – the instances layer
in terms of our ontology – shall not be addressed here. Instead we will

8



demonstrate how the framework is independent of specific ADLs in Section
6. It can be applied to general ADLs as a style sublanguage. It is not our
aim to define yet another ADL.

4. Relating Architectural Styles

Each architectural style is defined by a separate specification as an ex-
tension of the basic ontology of elementary architecture elements. In order
to reuse architectural styles as specification artefacts, these styles are often
related to each other, e.g. to be compared to each other or to be derived from
another [9]. Different styles can be related based on ontology relationships.
We give an overview of the central operators renaming, restriction, union,
intersection and refinement and define the semantics of this operator calcu-
lus. Instead of general ontology mappings, we introduce a notion of a style
specification and define style comparison and development operators on it.

4.1. Style Syntax and Semantics

Before defining the operators, the notions of architecture specification
and styles and their semantics need to be made more precise. We assume
a style to be a specification Style = 〈Σ,Φ〉 based on the elementary type
ontology with

• a signature Σ = 〈C,R〉 consisting of concepts C and roles R,

• concept descriptions φ ∈ Φ based on Σ.

Style is interpreted by a set of models M . The model notion [19] refers to
algebraic structures that satisfy all concept descriptions φ in Φ. The set M
contains algebraic structures m ∈M with

• sets of objects CI for each concept C,

• relations RI ⊆ CI
i × CI

j for all roles R : Ci → Cj

such that m satisfies the concept description. This satisfaction relation is
defined inductively over the connectors of the description logic ALC as usual
[19, 3].

The combination of two styles should be conflict-free, i.e. semantically,
no contradictions should occur. A consistency condition can be verified by
ensuring that the set-theoretic interpretations of two styles S1 and S2 are not

9



disjoint, SI
1∩SI

2 6= ∅, i.e. their combination is satisfiable and no contradictions
occur.

Note, that this calculus of operators is not strictly an algebra in terms
of styles – only in terms of specifications. A resulting specification can be
defined as a style by identifying a new root configuration.

4.2. Renaming

Style development might require syntactical elements to be renamed. A
renaming operator can be defined elementwise for a given signature Σ. By
providing mappings for the elements that need to be modified, a new signa-
ture Σ′ is defined:

Σ′ = Σ [n1 7→ n′1, . . . , nm 7→ n′m]

for all names of concepts or roles ni(i = 1, . . . ,m) of Σ that need to be
modified.

4.3. Restriction

While often architectural styles are used as-is in combinations and rela-
tionships, it is sometimes desirable to focus on specific parts, before for in-
stance refining an architectural style. Restriction is an operator that allows
architectural style combinations to be customised and undesired elements
(and their properties) to be removed. A restriction, i.e. a projection, can be
expressed using the restriction operator 〈Σ,Φ〉|Σ′ for a specification, defined
by

〈Σ,Φ〉|Σ′
def
= 〈Σ∩Σ′, {φ ∈ Φ | rls(φ) ∈ rls(Σ∩Σ′)∧ cpts(φ) ∈ cpts(Σ∩Σ′)}〉

with the usual definition of role and concept projections rls(Σ) = R and
cpts(Σ) = C on a signature Σ = 〈C,R〉. Restriction preserves consistency as
constraints are, if necessary, removed.

4.4. Intersection and Union

Adding elements of one style to another (or removing specific style prop-
erties from a style) is often required. Union and intersection deal with
these situations, respectively. Two architectural styles S1 = 〈Σ1,Φ1〉 and
S2 = 〈Σ2,Φ2〉 shall be assumed.

10



• The intersection of S1 and S2, expressed by S1 ∩ S2, is defined by

S1 ∗ S2
def
= 〈Σ1 ∩ Σ2, (Φ1 ∪ Φ2)|Σ1∩Σ2〉

Intersection is semantically defined based on an intersection of style
interpretations, achieved through projection onto common signature
elements.

• The union of S1 and S2, expressed by S1 ∪ S2, is defined by

S1 + S2
def
= 〈Σ1 ∪ Σ2,Φ1 ∪ Φ2〉

Union is semantically defined based on a union of style interpretations.

In the case of fully different architectural styles, their intersection results in
the elementary architecture types and their properties. Both operations can
result in consistency conflicts.

4.5. Refinement

Consistency is a generic requirement that should apply to all combinations
of architecture ontologies. A typical situation is the derivation of a new
architectural styles from an existing one [5]. The refinement operator that
we are going to introduce is a consistent derivation. Refinement can be linked
to the subsumption relation and semantically constrained by an inclusion of
interpretations, i.e. the models that interpret a style. Refinement carries the
connotation of preserving existing properties, for instance the satisfiability of
the original style specification. In this terminology, the pipe-and-filter style
is actually a refinement of the basic architectural type vocabulary. As the
original types are not further constrained, the extension is consistent.

An explicit consistency-preserving refinement operator shall be intro-
duced to provide a constructive subsumption variant that allows

• new subconcepts and new subrelationships to be added,

• new constraints to be added if these apply consistently to the new
elements.

Assume a style S = 〈Σ,Φ〉. For any specification 〈Σ′,Φ′〉 with Σ ∩ Σ′ = ∅,
we define a refinement of S by 〈Σ′,Φ′〉 through

S ⊕ 〈Σ′,Φ′〉 def
= 〈Σ + Σ′,Φ + Φ′〉

11



The precondition Σ∩Σ′ = ∅ implies ΦuΦ′ = ⊥, i.e. consistency is preserved.
In this situation, existing properties of S = 〈Σ,Φ〉 would be inherited by
S ⊕ 〈Σ′,Φ′〉. Existing relationships can in principle be refined as long as
consistency is maintained – which might require manual proof in specific
situations that go beyond the operator-based application.

4.6. Architectural Style Development

The main aim of these operators is to support the development of ar-
chitectural styles. We imagine a catalogue of styles, for example similar to
those developed for design patterns, that is used by the software architect to
describe architectures.

• The operator calculus allows individual styles from the catalogue to be
compared. For instance, two styles can be united to test if the set of
concepts they describe overlap. The consistency condition is used for
this test.

• An existing style can be adapted. Refinement allows to add further el-
ements and constraints, making the style more specific. Styles can also
be made more general by removing constructs and properties through
restriction.

The hub-and-spoke style, which might be included in the catalogue, shall
be extended using the refinement operator. The idea is to add a broker
component, which spokes would initially contact and which would assign a
hub to them.

BrokeredHubSpokeStyle ≡ HubSpokeStyle⊕ 〈Σ,Φ〉
where the signature Σ is defined by

〈 { BrokerComponent, BrokerSpokeConnector, BrokerHubConnector,
HubRegistrationRole, SpokeAllocationRole } , { } 〉

and the properties Φ are defined by

BrokerComponent ≡ HubSpokeComponent u ∃hasInterface.Port
BrokerSpokeConnector ≡ HubSpokeConnector u

∃hasEndpoint.SpokeAllocationRole
BrokerHubConnector ≡ HubSpokeConnector u

∃hasEndpoint.HubRegistrationRole

12



We would automatically get BrokeredHubSpokeStyle v HubSpokeStyle as
a consequence of the application of the refinement.

5. Composite Elements in Architectural Styles

An explicit support for composition is an important element of conceptual
modelling languages. Composition is also central for software architectures.
As an extension, we introduce three types of composite elements for archi-
tectural style specifications.

5.1. Architectural Composition Principles

Subsumption is usually the central relationship in ontology languages,
which allows concept taxonomies to be defined in terms of subtype or spe-
cialisation relationships. In the wider context of conceptual modelling, com-
position is another fundamental relationship that focuses on the part-whole
relationship between concepts or objects. In ontology languages, subsump-
tion is well understood and well supported. Composition is less often used
in ontological modelling languages [3].

The notion of composition is applied in the context of software architec-
tures in two different ways:

• Structural composition. Structural hierarchies of some architectural
elements define an important aspect of architectures. Structural com-
position can be applied to components and configurations.

• Sequential composition. Dynamic elements can be composed to repre-
sent sequential behaviour. Connectors are usually seen as dynamically
oriented architectural elements.

• Behavioural composition. Extending the idea of sequential composition,
a number of behavioural composition operators including choice and
iteration are introduced to describe interaction behaviour.

We use the symbol “B” to express the composition relationship. Com-
position is syntactically used in the same way as subsumption “v” to relate
concept descriptions.

• Component and configuration hierarchies shall consist of unordered sub-
components, expressed using the component composition operator “B”.
An example is Configuration B Port, meaning that a Configuration

13



consists of Ports as parts. This is actually a reformulation of the pre-
viously used hasPart relationship. In order to provide this with an
adequate semantics, components and configurations are interpreted by
unordered multisets.

• Connectors can be sequences or complex behaviours that consist of or-
dered process elements, again expressed using the composition opera-
tor “B”. An example is Connector B Transformation, meaning that
Connector is actually a composite process, which contains for instance
a Transformation element. We see composite connector implemen-
tations as being interpreted as ordered tuples providing a notion of
sequence. For more complex behavioural compositions, graphs serve as
models to interpret this behaviour.

Composition shall only be applied to components, configurations and con-
nectors. The other architectural elements, i.e. ports and roles, are atomic.
Although internal structuring of ports can be imagined by providing op-
erations, hierarchies, as we intend to build them through the composition
construct, are not necessary for ports.

5.2. Basic Architectural Composition

The composition construct is based on the operator “B”. We introduce
two basic syntactic forms, before looking at behavioural composition as an
extension of sequential composition in the next subsection:

• The structural composition between concepts C andD is defined through
C B {D}, i.e. C is structurally composed of D if type(C) = type(D) =
Component ∨ Configuration.

• The sequential composition between concepts C andD is defined through
C B [D], i.e. C is sequentially composed of D if type(C) = type(D) =
Connector.

Note, that the composition operators are specific to the respective architec-
ture element. We can allow the composition type delimiters, i.e. {. . .} and
[. . .], to be omitted if the type of the part-element D is clear from the context.

This basic format that distinguishes between the two composition types
shall be complemented by a variant that allows several parts to be associated
to an element in one expression.

14



• The structural composition C B {D1, . . . , Dn} is defined by C B
{D1} u . . . u C B {Dn}. The parts Di, i = (1, .., n) are not assumed to
be ordered.

• The sequential composition C B [D1, . . . , Dn] is defined by C B [D1]u
. . . u C B [Dn]. The parts Di with i = (1, .., n) are assumed to be
ordered with D1 ≤ . . . ≤ Di ≤ . . . ≤ Dn prescribing an execution
ordering ≤ on the Di.

The intended semantics of the two composition operators shall now be
formalised. So far, models m ∈ M are algebraic structures consisting of
sets of objects CI for each concept C in the style signature and relations
RI ⊆ CI × CI for roles R. We now consider objects to be composite:

• Structurally composite concepts C B {D1, . . . , Dn} are interpreted as
multisets CI = {{DI1

1 , . . . , D
Ik

1 , . . . , D
I1

n , . . . , D
Il

n }}. We allow multiple
occurrences for each concept Di, (i = 1, .., n) that is a part of concept
C. With c ∈ CI we denote set membership.

• Sequentially composite concepts C B [D1, . . . , Dn] are interpreted as
tuples CI = [DI

1, . . . , D
I
n]. Tuples are ordered collections of sequenced

elements. In addition to membership, we assume index-based access
to these tuples in the form CI(i) = DI

i , (i = 1, .., n), selecting the i-th
element in the tuple.

This means that while subsumption as a relationship is defined through sub-
set inclusion, composition relationships are defined through membership in
collections (multisets for structural composition and tuples for behavioural
composition).

5.3. Behavioural Composition

The introduction of behavioural specification depends in our approach
on the composition operator applied to connectors. This operator allows us
to refine a connector and specify detailed behaviour. While a basic from of
behaviour in the form of sequencing has been defined above, we now introduce
a more comprehensive approach that requires a more complex semantic model
(graphs).

Connectors were originally defined as atomic concepts, explained in terms
or their endpoints: Connector ≡ ∃hasEndpoint.Role where Role refers to
a component. We now define a connector C through a behavioural specifi-
cation: C B [B] where B is a behavioural expression consisting of

15



• a basic connector C or

• a unary operator ’ !’ applied to a behavioural expression !B, expressing
iteration, or

• a binary operator ’+’ applied to two behavioural expressions B1 +B2,
expressing non-deterministic choice, or

• a binary operator ’;’ applied to two behavioural expressions B1 ; B2,
expressing the previously introduced sequencing.

In line with the basic forms of composition:

• the iteration C B [!B] is defined by C B [B, . . . , B]

• the choice C B [B1 +B2] is defined by C B [B1] t C B [B2]

• the sequence C B [B1 ; B2] is defined as above in Section 5.2

We extend the semantics by interpreting behaviourally composite connectors
through graphs (N,E) where connectors are represented by edges e ∈ E and
nodes n ∈ N represent connection points for sequence, choice and iteration.
The three operators are defined through simple graphs: ({n1, n2}, {(n1, n2)})
for a sequence, ({n}, {(n, n)}) for an iteration, and for choice we define
({n1, n2, n3, n4}, {(n1, n2), (n2, n4), (n1, n3), (n3, n4)}).

5.4. Modelling with Architectural Composition

The composition relationship replaces the previous hasPart predicate. As
hasPart was only informally defined, this formalisation through B provides
a more sound and rigorous definition of the style ontology. These definitions
prescribe properties of the respective elements to provide enhanced built-
in support in the architecture ontology for architecture-specific modelling
tasks. The formal definition allows to check for instance the consistency of
compositions in terms of the types of the constituent parts.

We can now replace the previous definition of Configuration in the based
style ontology

Configuration ≡ ∃hasPart.(Component t Connector tRole t Port)

by the equivalent, formally defined

Configuration B {Component, Connector, Role, Port}

16



Similar to previous definitions, disjointness or completeness properties are
not entailed.

Structural compositions allow multiple occurrences of instances of each
component element. This can, however, be restricted using the predicate
restrictions as discussed earlier. Predicate restrictions can be combined with
composition. For instance,

SimpleStyle B ≤ 5 {Component}

would limit the number of component types in a simple style to 5 – other
types are not constrained.

Behavioural composition can express simple interaction protocols that
connects implement:

InteractProcess B [LogIn; !(Activity1 + Activity2);LogOut]

which describes an interaction process along a connector between two com-
ponents consisting of a login and iteratively selecting one of two possible
activities, before logging out.

6. Integration with Architecture Description Languages

Our objective is not to define yet another ADL. Instead, we aim to define
a versatile architectural style language that can be combined with existing
ADLs for a variety of reasons:

• to semantically define an existing style language and to allow reasoning
about style refinement, style instantiation and composition within this
semantic framework,

• to provide an ADL-independent style language that can be added to
ADLs that do not have an explicit notion of styles,

We have summarised some possible application scenarios in Fig. 1. We dis-
cuss the architectural description language ACME in this section to illustrate
the benefits. We look at ACME (and ACME Studio as its supporting de-
velopment environment) in more detail to demonstrate the applicability of
our formal framework in this important scenario. We use the architectural
style ontology to formally define the ACME style language. Later on, in
the discussion section, we also look at UML and at service ontologies like
WSMO.

17



ACME

styles

architectures

processes

UML/OCL

classes

constraints

Architectural Style
Ontology

Architecture
Profile

UML
Metamodel

extends

defines

generate
development

semantics
and

reasoning

WSMO

interface

capabilities

extends

Figure 1: Application of the Architectural Style Ontology to ACME, UML and WSMO.

6.1. ACME and Architectural Styles

ACME is an ADL that supports the component and connector view on
architectures [11]. For that purpose, a basic set of architecture elements is
introduced. These include the same five terms that we have defined as the
core vocabulary of our style ontology. ACME provides specific support to de-
fine architectural styles. The basic architecture elements such as component
or connector are supported by a type language that introduces these a basic
types. A style, called a family in ACME, is then a collection of constrained
type definitions. Invariants can be expressed using a constraint language
based on properties. Properties in ACME are name-value pairs. ACME does
not provide native support for the interpretation these properties and invari-
ants. Our style ontology provides a formal reasoning framework through its
underlying description logic.

Our architectural style ontology can provide a standard semantics for
ACME styles. Due to the syntactic equality of the elementary types in the
style vocabulary, a mapping from ACME into our ontological framework
can easily be defined. The intended semantics of ACME types matches the
formal semantics we have introduced here. This has the following benefits
for ACME:

• The ACME type language is formally defined through the architectural
style ontology.

• A framework for the analysis and reasoning about styles and their prop-

18



erties is introduced.

• The operator calculus enriches the mechanisms to develop architectural
styles effectively and consistently for ACME and its support environ-
ment.

The architectural styles can be defined using an ontology editing tool such as
Protégé. The styles can be exported into ADML, the Architecture Descrip-
tion Markup Language, which a standard XML-based mark-up language for
describing software and system architectures that can be imported by ACME
Studio. Both tools are open platforms and allow the integration of plugins.

6.2. Ontological Definition of ACME Architectural Style Elements

An architectural style (family) in ACME consists of component type defi-
nitions containing ports and related properties and connector type definitions
containing roles and related properties plus invariants. A system in ACME
is an architecture specification, which instantiates a family.

ACME families can be directly defined in terms of our architectural style
ontology. The basic vocabulary elements that we have introduced in the
ontology – configuration, component, connector, port, role – are motivated
by ACME and directly reflect the intended ACME semantics. Thus, ACME
elements can be formally defined in terms of their architectural style ontology
(ASO) counterparts:

configurationACME ::= configurationASO

componentACME ::= componentASO

connectorACME ::= connectorASO

partACME ::= partASO

roleACME ::= roleASO

ACME Studio imports a style ontology as an architectural type using ADML
as the interchange format.

6.3. Ontological Style-based ACME Architecture Specification

The following ACME specification describes an integration architecture
for application services AS in a heterogeneous environment, which process
data from different sources (data source providers DS) and which require
the data consumed by them to be mediated by a separate, central media-
tion engine ME. The mediator ME is an intermediary between application

19



services as data consumers and data servers as data providers whose aim is
the integration of data formats. The specification consists of components,
connectors and attachments. The attachments associate component ports
with the respective connectors and the roles they play.

System IntegrationArchitecture : HubSpokeStyle = {
Component AS : Spoke = {

Ports {In,Out} };
Component ME : Hub = {

Ports {AS-In,AS-Out,DS-In,DS-Out} };
Component DS : Spoke = {

Ports {In,Out} };

Connector AS-ME : Hub-Spoke = {
Roles {requestIntegr,provideIntegr} };

Connector ME-DS : Hub-Spoke = {
Roles {requestData,provideData} };

Attachments = {
AS.Out to AS-ME.requestIntegr; ME.AS-In to AS-ME.requestIntegr;
ME.AS-Out to AS-ME.provideIntegr; AS.In to AS-ME.provideIntegr;
ME.DS-Out to ME-DS.requestData; DS.In to ME-DS.requestData;
DS.Out to ME-DS.provideData; ME.DS-In to ME-DS.provideData }

}

This specification instantiates the HubSpokeStyle defined earlier on in
Section 3.2.2. The mediator engine ME is defined as the central hub and the
application services and the data servers are the spokes that all communicate
with the mediation hub. As a consequence of applying the style, for instance
the uniqueness property of the mediator (there can only be one in an archi-
tecture implementation) is automatically inherited through instantiation.

Hub-and-spoke architectures are often implemented in the form of ser-
vices. As part of our development environment, we have implemented a
transformation tool that converts ACME architectures into Web service im-
plementations by creating WSDL service descriptions and executable WS-
BPEL service processes.

It should be noted that an architecture is often not uniquely associated
to a particular style, such as the association of the IntegrationArchitecture

20



system above to the hub-and-spoke style. For instance, we can also iden-
tify the pipe-and-filter style in the architecture. Data server DS, mediation
engine ME and application service AS can act as source, filter and sink,
respectively. While we feel the hub-and spoke structure is the primary archi-
tectural characteristic of the integration architecture, other characteristics
such as pipe-and-filter aspects could be modelled by refining the hub-and-
spoke style. We will illustrate this principle in Section 6.5 below.

6.4. Ontological Reasoning for ACME Architectural Styles

As ACME does not provide any native support for its property and in-
variant sublanguages, the primary practical benefit of the formal definition of
ACME styles in Section 6.2 is that reasoning about properties is now defined
and enabled within the language.

In general, architectures inherit properties from the style specifications
they are derived from:

• Structural aspects such as disjointness and completeness properties can
be inherited and do not need to be specified explicitly.

• Logical properties described in styles can be verified in order for benefits
to be guaranteed. The uniqueness of the hub is an example.

An ACME invariant

Forall r : Role | Type(r, Provider)

that constrains a connector role to be of a particular type, Provider, is
defined by its equivalent description logic formula in the architectural style
ontology

Role ≡ ∀Type . Provider

that uses a Type property to associate a Provider concept. The role variable
r is implicit in the ontology formulation.

While this only formalises the definition of ACME invariants and enables
automated reasoning, more advanced forms of reasoning are also possible if
our style ontology is extended. The consistency of data processing can be
verified, if connectors for instance provide data type information for source
and provider. This can be used to verify the correctness of connections in
terms of data that is provided and required. The notion of connectors and
ports would need to be extended to capture data aspects in a type concept

21



– predefined data property roles in the ontology would serve this purpose.
Protégé plugins such as JessTab and SWRLTab allow rules to be defined and
executed in the respective languages (Jess, SWRL) that implement the style
constraints.

The potential of reasoning could even be extended, if, as discussed later
in Section 7.2, process-like behavioural connector specifications is possible.
Then, reasoning about connector behaviour in a modal logic style would be
possible [28, 26].

6.5. ACME Architectural Style Development

We have used the hub-and-spoke style to provide a type language for the
specification of the integration architecture system above. This architecture
specification itself describes architectural properties common to a large num-
ber of systems, in this case mediator architectures [32]. This would merit a
representation of the integration architecture as a separate architectural style.
We develop this style by refining the hub-and-spoke style.

IntegrationArchitectureStyle ≡ HubSpokeStyle⊕ (Σ,Φ)

where signature Σ and semantic properties in Φ have to be determined by
the software architect. This exercise shall illustrate the benefit of formally
supported architectural style development using our calculus for an ADL
such as ACME.

Overall, the hub-and-spoke style shall be refined into an integration ar-
chitecture style (using the refinement operator) as follows:

• Renaming of some of the hub-and-spoke elements to reflect the specific
context of information integration: the hub is replaced by the mediation
engine and the application servers are spokes.

• Addition of two new components, both of which are spokes and there-
fore do not violate the uniqueness constraint for the hub that is inher-
ited using the refinement operator:

– DS as a spoke, which represent the data servers already used in
the ACME architecture specification in Section 6.3,

– IE as a spoke, which is the Integration Engine that separates the
actual execution of the integration from the coordination of the
mediation in ME – this component is an extension of the previous
ACME specification.

22



• Addition of new connectors and connectivity (the latter in the form
of attachments), in particular to connect the newly added components
using the connectors ME-DS and ME-IE, whereby the integration en-
gine IE should be an extension of the hub functionality, here expressed
using a uniqueness property on the connector between ME and IE.

• Addition of new (invariant) disjointness and completeness properties.

In the first step, renaming would be carried out using

Σ′ = Σ [Hub 7→ME,Spoke 7→ AS]

The extension element (Σ′,Φ) for the refinement operator, after renaming
hub and spoke, would comprise the signature Σ′:

{ Components = {DS, IE},
Connectors = {ME-DS,ME-IE} }

and the concept descriptions Φ:

{ instances(ME − IE) ≤ 1
AS tME tDS t IE = IntegrationArchitecture,
AS uME uDS u IE = ∅ }

We assume here a built-in operator instances to formulate the uniqueness
property for the ME-IE connector. Consistency is here preserved and we
would get IntegrationArchitectureStyle v HubSpokeStyle.

Using the refinement operator ⊕, the properties of the original hub-and-
spoke style are preserved in the extension. The result of the extension – here
expressed as a family in terms of the ACME notation – is the following:

Family IntegrationArchitectureStyle = {
Component Type AS = {

Ports {In,Out} };
Component ME = {

Ports {AS-In,AS-Out,DS-In,DS-Out,IE-In,IE-Out} };
Component DS = {

Ports {In,Out} };
Component Type IE = {

Ports {ME-In,ME-Out} };

23



Connector AS-ME = {
Roles {requestInt,provideInt} };

Connector ME-DS = {
Roles {requestData,provideData} };

Connector Type ME-IE = {
Roles {requestTrans,provideTrans};
Invariant {instances(ME-IE) ≤ 1} };

Invariant {
AS t ME t DS t IE = IntegrationArchitecture
AS u ME u DS u IE = ∅ }

}

Clearly, this formulation resembles the earlier ACME architecture spec-
ification as a system, only at the style level with further constructs and
semantical constraints added.

We also demonstrate now how the composition relationship B can be
used in this context. In order to detail the architectural style even further,
one of the components, the integration engine IE can be presented as a
composed component consisting of a connector generator CG, which handles
the communication with the mediation engine, and an execution engine XE:

IE B {CG,XE}

The new components CG and XE would be defined as follows

Component Type CG = {
Ports {ME-In,ME-Out,XE-In,XE-Out} };

Component Type XE = {
Ports {In,Out} };

Connector Type ME-CG = {
Roles {requestTrans,provideTrans};
Invariant {instances(ME-DS) ≤ 1} };

Connector Type CG-XE = {
Roles {requestExec,provideExec};
Invariant {instances(CG-XE) ≤ 1} }

24



6.6. Summary

In this section, we have applied our style ontology to ACME to demon-
strate the benefits such as

• giving formal semantics to previously only informally defined style lan-
guages,

• using enhanced reasoning capabilities arising from the formal ontology
framework, and

• developing a rich style catalog for architecture modelling.

ACME acts here as prototypical example of an ADL. Based on a review of
ACME families (the ACME term for styles), we have formalised ACME’s
family sublanguage using our style ontology. Then, we demonstrated the
application of the ontology-based style language in ACME. We illustrated
the benefits of formally defined property and invariant sublanguages for
(ontology-based) reasoning. Finally, we showed how a range of predefined
styles can be developed using the style combinators we introduced. Be-
havioural composition will be addressed in the next section in the context of
UML as the application language.

7. Discussion – Language Extensions and Applicability

The architectural style framework we introduced consists of a core onto-
logical style description language, a style development operator calculus and
a composition technique. The central property an evaluation needs to estab-
lish about our framework is its suitability to enhance existing ADLs in terms
of the benefits outlined in Section 6.6. We have demonstrated the suitability
of the style description and development language by applying it to ACME
as a formally defined style sublanguage in the previous section.

In this section, we discuss some other important aspects of our style lan-
guage – namely extensions in terms of explicit quality links and advanced
behavioural composition – in more detail. ACME is only one possible appli-
cation language. We will briefly look at UML and WSMO as other, non-ADL
application languages of our approach in the context of these extensions.

25



7.1. Quality-Driven Architecture

The use of styles in architecture design implies certain properties of soft-
ware systems, as these styles are abstractions of successfully implemented sys-
tems that are usually easy to understand, to manage, or to maintain [13, 14].
Non-functional quality aspects ranging from availability, performance, and
maintainability guarantees to costs are equally important functional aspects
of components and need to be captured explicitly to clearly state the quality
requirements. The reliability of a system, the availability of services, and
the individual component and overall system performance are often crucial.
Links between the styles of architectures and quality properties of these sys-
tems have been observed [29, 10].

A catalogue of architectural styles or patterns [6], consisting of styles such
as pipe-and-filter and hub-and-spoke, may be utilised by software architects
to build architectures that exhibit some desired quality properties. Each of
the styles in the catalogue is associated with certain quality characteristics,
that would be exhibited during the deployment and execution of system
compositions. The ISO 9126 standard for software product quality to support
the evaluation of software can serve as a starting point here that defines
quality attributes and metrics [17, 16].

We illustrate this using an architectural style. Some of the advantages of
the hub-and-spoke architectural style in terms of quality aspects are [6]:

• Composition is easily maintainable, as composition logic is all contained
at a single participant, the central hub.

• Low deployment overhead as only the hub manages the composition.

• Composition can include externally controlled participants. Web ser-
vice technologies, for instance, would enable the reuse of existing service
components.

The main disadvantages of this architectural style are:

• A single point of failure at the hub provides poor reliability and avail-
ability.

• A communication bottleneck at the hub results in restricted scalability.
SOAP messages have considerable overhead for message deserialisation
and serialisation.

26



• The high number of messages between hub and spokes is sub-optimal.

The style ontology can be extended by a quality ontology to capture a vocab-
ulary of quality attributes and corresponding metrics using quality-specific
properties.

HubSpokeStyle ≡ ∃hasAdvQual.(Maintainable t LowOverhead tReusable) u
∃hasDisadvQual.(¬Reliable t ¬Scalable t ¬Performant)

Further formalised descriptions such as the association of metrics, for instance
in the format Performant ≡ ∃hasMetric.ResponseT ime, are possible.

WSMO [20] is, like OWL-S [30], an ontology-based approach to describing
services. In the traditional understanding, these two are not ADLs [23]. Their
aim is to provide a vocabulary that allows the description on functional and
non-functional attributes of services and their operations in terms of pre-
and postconditions or quality attributes. Nonetheless, looking at service
ontologies helps us to understand how quality attributes can be integrated
into an architectural style-driven ADL. Services and their operations are
the concepts in WSMO (or OWL-S). Functionality information and quality
attributes in WSMO are categorised into interface (syntax) and capability
(semantics, quality) attributes and are described in terms of properties in
the ontology. Capability descriptions are similar to our proposal for quality
description above

7.2. Advanced Behavioural Composition and Application to UML

UML is often used to describe software architectures [4]. Class diagrams
define components and connections between components through classes and
associations. Additional constraints can be added using the Object Con-
straint Language OCL.

Architectural styles can be mapped to MOF meta-level models, i.e. ar-
chitectural style definitions correspond to the M2 level. The elementary
architectural types map directly to classes and their associations in UML.
Description logic can be translated to MOF easily, thanks to the Ontology
Definition Metamodel (ODM) [25], which defines a number of MOF-based
metamodels for a range of modelling languages including description logics
and UML and a number of transformations between them. This reference
framework can be used to translate a given architectural style into a MOF-
compliant metamodel. The difficulty here is only that this MOF metamodel
is not necessarily UML-metamodel compliant. This means that compliance

27



can only be achieved by adapting the standard transformation to define a
suitable UML profile. The problem is similar to the need to clearly identify
a style and to guarantee its correct application. The profile needs to provide
UML-compliant model elements that must only be used in a style-conformant
way.

UML activity diagrams provide a modelling framework to which our be-
havioural composition can be applied. Sequence, iteration and choice can be
represented diagrammatically to express interaction processes between com-
ponents. However, while modelling behavioural composition as introduced
here is often sufficient as our application to ACME demonstrates, full process
specifications with interaction and data flow elements, however, cannot be
expressed in the notational format introduced here. Ontological support for
the process combinators exists in description logics [3]. While this aspect of
composition cannot be investigated here in detail due to the complexity of
a comprehensive process composition solution in ontology languages [26], it
is important to discuss the benefits and also the potential of ontologies and
description logics to provide adequate language support for architectural be-
haviour modelling.

Connectors can be processes that consist of ordered process elements, ex-
pressed using process composition operators such as sequence “;”, iteration
“!”, and choice “+”. An example is to define connector C as B1;B2, mean-
ing that connector C is actually a process sequence of connectors B1 and B2.
While this example can be expressed using our current composition notation
C B [B1, B2], data flow elements such as parameters are currently not intro-
duced. A different semantic model from the set-theoretic interpretation we
have used so far would allow the required semantical support for complex
process expressions.

An adequate solution to this problem lies in a different interpretation
of behaviour in architectural style definitions. If we consider connectors as
behavioural elements in terms of the architecture – components also exhibit
behaviour, but are considered here as black boxes – then these connectors can
and need to be defined differently in the ontology language. Some proposals
exist to interpret computational elements through accessibility relations [3].
This would mean

• to introduce a special form of roles for connectors that model acces-
sibility relations between static constructs with some notion of state
[26],

28



• to provide a rich role expression sublanguage for this new role type
consisting of operators such as sequence, iteration or choice together
with names to represent data [3].

These behavioural roles would complement the existing roles, which are more
descriptional and static in nature. The benefit of this interpretation of be-
haviour is compatibility of behaviour reasoning with subsumption reasoning,
as for instance refinement of behaviour can be expressed through role sub-
sumption.

8. Related Work

Formalising architectural styles is the first step of understanding their
properties and the resulting impact on architectures and software systems.
A seminal paper in this context is [1]. A formal framework based on the
model-theoretic specification language Z is given. Abowd et al. introduce
the detailed formal specification of architectural styles, e.g. for the pipe-and-
filter style. This work has started the integration of semantics into archi-
tectural descriptions. The description logic we have used here provides the
same expressive power to formulate structural architectural properties (we
discuss the behavioural properties addressed by Abowd et al. below). The
reason for choosing an ontological approach in our case are pragmatic. An
ontological framework for this approach is a highly suitable candidate since
extension through subsumption is a natural choice to develop a catalogue of
styles. The existence of meta-level frameworks such as the Ontology Defini-
tion Metamodel ODM with its predefined transformations makes ontologies
and their dynamic logic foundations suitable as an interoperable notation
that can be integrated with existing ADLs. ODM with its predefined trans-
formations can be used to integrate our style ontology into other modelling
languages defined within ODM (such as UML).

Architectural styles have been integrated in some ADLs, such as ACME.
Styles can also be considered in managing architectural evolution. In [24],
a graph grammar approach is used to capture architectural evolution. The
suitability of ontological frameworks here would need to be investigated fur-
ther. The operator algebra for style development we introduced, however,
provides a starting point to control change. Operators such as restriction,
union, etc. can be used to define elementary changes, on which more complex
changes can be described through operator composition.

29



Around the notion of an architectural style, similar abstractions have
emerged. In [18], a notion of an architectural scenario is used to aid analyses
in the design of architectures. Direct and indirect scenarios are used to view
software systems as information processing software artefacts or to view these
artefacts as subjects in a change and evolution process, respectively. The dy-
namic nature of software architectures is emphasised in contrast to the more
static view of architectural styles and their application. A similar argumen-
tation is followed by [15]. Associating a system to a single architectural style
is often not sufficient. The notion of a mode, similar to a scenario, is intro-
duced. Modes can be changed through structural and evolution constraints,
which aims to support the self-organisation of service-based systems. The
benefit is here a higher degree of automation.

9. Conclusions

In addition to structural and behavioural properties of software architec-
tures, meta-level constructs such as architectural styles, scenarios, or modes
have recently received much interest in the software architecture community.
Architectural styles have emerged as architecture abstractions that influence
the quality of architectures and their implementations. Architectural styles
are often also linked to platforms; middleware platforms often support only
specific styles by constraining interaction to synchronous or asynchronous
communication or by enforcing a client-server type of architecture. In this
context, architectural styles help to determine essential aspects of software
systems.

Our approach ties in with current attempts to utilise Semantic Web and
ontology technology for software engineering – most prominently within the
Ontology Driven Architecture initiative by the W3C. We use ontologies as
a mechanism describe and formally defined architectural styles. In terms of
model-driven approaches, ontology-based architectural styles can be viewed
as abstracted architecture models, which complements previous work [21, 31].
The core of the contribution, however, is a foundational framework that
carries the specification approach further into a comprehensive development
calculus for styles.

Using an ontological, description logic-based setting for software archi-
tecture has a number of benefits, such as a concise and precise notation with
formal semantics [1], an extensible type language based on subsumption,
composition and constraints [3], and a style combination algebra based on

30



ontology technologies. The tractability of reasoning is a central issue for de-
scription logics. The logic ALC that we have used for this architectural style
ontology is decidable [3], i.e. provides the basis for termination and reliable
tool support.

In this paper, we have carried past work, such as [27], further to in-
corporate composition into the development framework. We also added a
discussion of quality considerations in the context of architectural styles. A
significant extension is also the application of the architectural style ontology
presented here to architecture specification and modelling approaches. Our
discussion of ACME, which is a recognised and widely used ADL, demon-
strates that the style ontology can provide a number of essential benefits,
which in the ACME case comprise a formal semantics with the reasoning
support that is entailed, but also brings an important dimension to ACME
architecture modelling. The development of styles themselves based on a for-
malised operator calculus enhances reuse through abstraction. Behavioural
composition adds behaviour, which is often neglected in architectural de-
scription.

Overall, ontology mechanisms provide a suitable conceptual modelling
support, using a classical ontology approach. The notation is adequate, as
the examples have demonstrated, to model architectural styles. An ontol-
ogy approach is also suitable as it provides two intrinsic benefits over other
conceptual modelling approaches based on the subsumption relationship:

• firstly, easy extensibility and configurability of the style ontology based
on the operator calculus and the subsumption and composition rela-
tions,

• secondly, modelling of meta-level style ontology vocabulary and style-
specific terms within one modelling layer.

While the notation is suited to formulate and relate architectural styles
focusing on structural aspects, the introduction of composite element has
demonstrated the lack of advanced process modelling capabilities in the no-
tation introduced here. Concepts are not meant to model the details of data
and control flow behaviour; using concepts to express structured processes
is therefore not an adequate solution. While an integration with service
or process ontologies is desirable, the seamless integration requires further
investigations.

31



References

[1] G. Abowd, R. Allen, and D. Garlan. Formalizing style to understand
descriptions of software architecture. ACM Transactions on Software
Engineering and Methodology, 4(4):319–364, October 1995.

[2] R. Allen and D. Garlan. A Formal Basis for Architectural Connection.
ACM Transactions on Software Engineering and Methodology, 6(3):213–
249, 1997.

[3] F. Baader, D. McGuiness, D. Nardi, and P.P. Schneider, editors. The
Description Logic Handbook. Cambridge University Press, 2003.

[4] F. Bachmann, L. Bass, P. Clements, D. Garlan, J. Ivers, J. Little, R.
Nord and J. Stafford. Documenting Software Architecture: Document-
ing Behavior. Technical Report CMU/SEI-2002-TN-001. SEI, Carnegie
Mellon University. 2002.

[5] L. Baresi, R. Heckel, S. Thöne, and D. Varro. Style-based refinement
of dynamic software architectures. In Proc. 4th Working IEEE/IFIP
Conference on Software Architecture WICSA4, pages 155–164. IEEE,
2004.

[6] R. Barrett, L. M. Patcas, J. Murphy, and C. Pahl. Model Driven Dis-
tribution Pattern Design for Dynamic Web Service Compositions. In
International Conference on Web Engineering ICWE’06. Palo Alto, US.
ACM Press, 2006.

[7] V. Basili, G. Caldiera, and D. Rombach. The Goal/Question/Metric
approach. In Encyclopedia of Software Engineering, Volume I, pages
528–532. Wiley, 1994.

[8] L. Bass, P. Clements, and R. Kazman. Software Architecture in Prac-
tice (2nd Edition). SEI Series in Software Engineering. Addison-Wesley,
2003.

[9] C. Canal, E. Pimentel, and J.M. Troya. Compatibility and inheritance in
software architectures. Science of Computer Programming, 41:105–138,
2001.

32



[10] V. Cortellessa, A. Di Marco, and P. Inverardi. Software performance
model-driven architecture. In SAC ’06: Proceedings of the 2006 ACM
symposium on Applied computing, pages 1218–1223. ACM Press, 2006.

[11] D. Garlan and B. Schmerl. Architecture-driven modelling and analysis.
In Tony Cant, editor, Proceedings of the 11th Australian Workshop on
Safety Related Programmable Systems (SCS’06), volume 69 of Confer-
ences in Research and Practice in Information Technology, 2006.

[12] S. Giesecke. A Method for Integrating Enterprise Information Systems
based on Middleware Styles. In International Conference on Enterprise
Information Systems (ICEIS’06), Doctoral Symposium, pages 24–37. IN-
STICC Press, 2006.

[13] S. Giesecke, W. Hasselbring and M. Riebisch. Classifying Architectural
Constraints as a basis for Software Quality Assessment. Advanced En-
gineering Informatics. 21(2):169-179. 2007.

[14] S. Giesecke, J. Bornhold, and W. Hasselbring. Middleware-induced Ar-
chitectural Style Modelling for Architecture Exploration. In Proc. Work-
ing IEEE/IFIP Conference on Software Architecture, IEEE Computer
Society Press. 2007.

[15] D. Hirsch, J. Kramer, J. Magee and S. Uchitel. Modes for Software Ar-
chitectures. Third European Workshop on Software Architecture EWSA
2006, Spinger-Verlag, LNCS Series, 2006.

[16] ISO/IEC. Software engineering – Product quality – Part 1: Quality
model, June 2001. Published standard.

[17] H.-W. Jung, S.-G. Kim, and C.-S. Chung. Measuring software product
quality: A survey of ISO/IEC 9126. IEEE Software, 21(5):88–92, 2004.

[18] R. Kazman, S.J. Carriere, and S.G. Woods. Toward a Discipline of
Scenario-based Architectural Evolution. Annals of Software Engineer-
ing, 9(1-4):5–33, 2000.

[19] D. Kozen and J. Tiuryn. Logics of programs. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, Vol. B, pages 789–840.
Elsevier, 1990.

33



[20] R. Lara, M. Stollberg, A. Polleres, C. Feier, C. Bussler, and D. Fensel.
Web Service Modeling Ontology. Applied Ontology, 1(1):77–106, 2005.

[21] C. Pahl. A conceptual architecture for semantic web services devel-
opment and deployment. Intl. Journal of Web and Grid Services,
1(3/4):287–304. 2005.

[22] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying Distributed
Software Architectures. In W. Schäfer and P. Botella, editors, Proc. 5th
European Software Engineering Conf. (ESEC 95), volume 989, pages
137–153. Springer-Verlag, Berlin, Sitges, Spain, 1995.

[23] N. Medvidovic and R.N. Taylor. A Classification and Comparison frame-
work for Software Architecture Description Languages. In Proceedings
European Conference on Software Engineering / International Sympo-
sium on Foundations of Software Engineering ESEC/FSE’97, pages 60–
76. Springer-Verlag, 1997.

[24] D.L. Metayer. Describing software architecture styles using graph gram-
mars. IEEE Transactions on Software Engineering. 24(7): 521553. 1998.

[25] Object Management Group. Ontology Definition Metamodel - Submis-
sion (OMG Document: ad/2006-05-01). OMG, 2006.

[26] C. Pahl. An Ontology for Software Component Matching. International
Journal on Software Tools for Technology Transfer (STTT), Special Edi-
tion on Foundations of Software Engineering, 9(2):169–178, 2007.

[27] C. Pahl, S. Giesecke and W. Hasselbring. An Ontology-Based Approach
for Modelling Architectural Styles. First European Conference on Soft-
ware Architecture ECSA 2007. Springer, Lecture Notes in Computer
Science 4758, pages 60-75. 2007.

[28] K. Schild. A Correspondence Theory for Terminological Logics: Prelim-
inary Report. In Proc. 12th Int. Joint Conference on Artificial Intelli-
gence, Sydney, Australia. 1991.

[29] B. Spitznagel and D. Garlan. Architecture-based performance analy-
sis. In Proceedings of the 1998 Conference on Software Engineering and
Knowledge Engineering (SEKE’98), June 1998.

34



[30] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan. Automated
Discovery, Interaction and Composition of Semantic Web Services. Jour-
nal of Web Semantics, 1(1):27–46, 2003.

[31] C. Pahl. Layered Ontological Modelling for Web Service-oriented Model-
Driven Architecture”. European Conference on Model-Driven Architec-
ture ECMDA2005. Springer LNCS 3748, pages 88–102. 2005.

[32] G. Wiederhold. Mediators in the architecture of future information sys-
tems. IEEE Computer, 25:38-49, 1992.

[33] R.N. Taylor, N. Medvidovic, and E.M. Dashofy. Software Architecture:
Foundations, Theory, and Practice. Wiley, 2009.

35


