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Abstract. The execution context in which pervasive systems or mobile
computing run changes continuously. Hence, applications for these sys-
tems should be adapted at run-time according to the current context.
In order to implement a context-aware dynamic reconfiguration service,
most approaches usually require to model at design-time both the list of
all possible configurations and the plans to switch among them. In this
paper we present an alternative approach for the automatic run-time gen-
eration of application configurations and the reconfiguration plans. The
generated configurations are optimal regarding different criteria, such as
functionality or resource consumption (e.g. battery or memory). This is
achieved by: (1) modelling architectural variability at design-time using
Common Variability Language (CVL), and (2) using a genetic algorithm
that finds at run-time nearly-optimal configurations using the informa-
tion provided by the variability model. We also specify a case study
and we use it to evaluate our approach, showing that it is efficient and
suitable for devices with scarce resources.

Keywords: Architectural Variability, CVL, Dynamic Reconfiguration, Genetic
Algorithm, Context, Pervasive Systems

1 Introduction

Mobile applications demand runtime reconfiguration services that make it pos-
sible to adapt their behaviour to the continuous contextual changes that occur
in their environment. One accepted approach to manage the runtime variabil-
ity of applications is the Dynamic Software Product Line (DSPL) approach.
DSPLs produce software capable of adapting to changes, by means of binding
the variation points at runtime [15]. This means that the variants of the DSPL
are generated at runtime.

Moreover, mobile applications run of lightweight devices with scarce resources
(e.g. battery, memory, CPU, etc.), so they have the necessity of optimizing
their functionality to the continuous resource variations, and also to the user
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needs. Ideally, such optimization should be managed autonomously by the ap-
plication, which should be self-adapted. In this sense, it is widely accepted by
the distributed systems community the use of the Autonomic Computing (AC)
paradigm [16] to endow distributed systems with self-management capacities.

Combining the ideas of DSPL with AC, the development of a software system
with self-adaptation capacities implies the following steps: (1) modelling as part
of the software architecture (SA) the variation points that the designer foresees
that may change at runtime; (2) the runtime environment needs to be monitored
to listen for contextual changes that may affect the variation points; (3) when a
contextual change occurs, the system must analyse how the change affects the
variation points, and if a reconfiguration is needed; (4) if so, a plan defined as
the set of changes that need to be performed in the current configuration over
the set of variation points must be generated, ideally at runtime, and finally (5)
the architectural variation points that are affected by the reconfiguration must
be modified according to the plan generated in the previous step.

For the first step, a language to model the system variability is needed. Vari-
ability is modeled at different abstraction levels, mostly using feature models
(FM) [10] at the requirements level and UML profiles or Architecture Descrip-
tion Languages (ADLs) [14, 2, 11] at the architectural level. In our approach,
we model variability at the architectural level using the Common Variability
Language [9](CVL). The reasons for choosing CVL are twofold. First, it is a
MOF-based variability language and this means that any MOF-based applica-
tion model can be easily extended with variability information using CVL; sec-
ond, it has been submitted to the OMG for its standardization and it is expected
to be accepted soon as the standard for modelling and resolving variability.

For the rest of steps, we follow the typical MAPE-K loop of the AC paradigm,
where “MAPE”’ stands for Monitoring-Analysis-Plan-Execution and ‘K’ stands
for Knowledge. Existing approaches [7, 12, 17, 19, 20, 10, 8] mainly consists on do-
ing at design time the analysis of the contextual changes and the generation of
the reconfiguration plans to meet the new environmental conditions. Then, the
set of valid configurations are pre-calculated, as well as the differences between
pairs of configurations and the conditions to adapt the system from one config-
uration to another one, loading them into the device as part of the knowledge
base. This is a shortcoming which limits the number of possible configurations
and avoid generating the optimal ones. The alternative of using models@runtime
approaches [21, 1] has also limitations in mobile environments since these ap-
proaches normally demand high computing resources. Thus, one of the contri-
butions of our approach is the generation of the application configurations and
the reconfiguration plans automatically at runtime.

Moreover, most DSPL approaches do not consider the optimization of the
used resources at runtime. However, when the availability of certain resources
decreases or increases significantly, the ideal situation would be to be able to
decide which architectural configuration provides the best functionality, while
not exceeding the available resources. Thus, fast algorithms to calculate the op-
timum configuration at runtime are desirable. Since this can be formulated as



an optimization problem, genetic algorithms (GAs) can be used to optimize the
selection of architectural variation points that will conform to the new configu-
ration. In this sense, a second contribution of our approach is the optimization
of the used resources using genetic algorithms.

Specifically, our approach defines a Context Monitoring Service (CMS) for
monitoring the environment and providing this information to a Dynamic Recon-
figuration Service (DRS), which covers the analysis of the monitored information
and the generation and execution of the reconfiguration plans. Both services are
designed to be integrated in a middleware for adaptive applications develop-
ment [18], although in this paper we focus on presenting the details of how the
DRS accomplishes the runtime reconfiguration of mobile applications. On the
one hand, our DRS has the SA with variability specified using CVL available at
runtime as part of the knowledge base, using it to perform reconfiguration. On
the other hand, when the availability of certain resources decreases or increases
significantly, the DRS has to decide which architectural configuration provides
the best functionality, while not exceeding the available resources. For this we
use a GA [13] which have already been used in static SPL – i.e. the optimization
is performed at design-time. Since our DRS is installed inside a mobile device,
we present some evaluation results showing that our approach is feasible and
efficient for being executed with the fairly limited resources of a mobile device,
resulting in good response times and nearly-optimal architectural configurations.

The rest of the paper is organized as follows. The motivation of our ap-
proach, the main contributions and the case study used throughout the paper
are presented in Section 2. Then, the approach is further described in Section 3.
Evaluation results are presented in Section 4, related work discussed in Section 5
and finally our conclusions and on-going work are described in Section 6.

2 Motivation and Approach Overview

In this section we show the motivation for our work discussing challenges that
have to be taken into account for specifying the DRS. The basics of CVL, an
overview of our approach and a case study are also presented.

2.1 Common Variability Language (CVL)

CVL is a domain-independent language for specifying and resolving variability
that allows the specification of variability over any model which has been defined
using a MOF-based metamodel. The approach proposed by CVL can be seen
in Figure 1. The base model of an application does not contain any information
about variability. Instead, the variability information is separately specified in a
variability model, according to the CVL metamodel. One of the main advantages
of CVL is that it is executable, meaning that it is possible to automatically
generate resolved models. To this end, resolution models are specified to decide
the choices in the variability models that are selected in order to automatically
generate a fully specified product (i.e. without variability). In CVL, a variability
model consists of three main parts:
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Fig. 1. CVL Approach

1. Variation points. Define the points of the base model that are variable
and can be modified during the CVL execution. For instance, some of the
variation points supported by CVL are the existence of elements of the base
model or the links among them, or the assignment of an attribute’s value.

2. Variability Specification Tree (VSpec tree). Tree structures whose ele-
ments represent choices bound to variation points. These choices are resolved
by a resolution model and propagated to variation points and the base model,
generating the resolved model without variability. As it is explained in Sec-
tion 2.4, VSpec trees show many commonalities with respect to FMs.

3. OCL Constraints. CVL supports the definition of OCL constraints among
elements of a VSpec tree, providing a highly flexible mechanism for delimiting
the bounds of variability, being able to discard invalid configurations.

2.2 Challenges

In order to achieve our goal of building a DRS that reacts to the runtime con-
textual changes by optimizing the configurations according to the availability
of certain resources (e.g. battery, memory, CPU), we have identified a list of
challenges that must be taken into account:

Challenge 1: Optimizing the architectural configuration. Mobile devices have
scarce resources, so the challenge is to generate optimal configurations at run-
time. We use an optimization algorithm that is able to find a nearly-optimal
configuration taking into account the resource usage of the valid architectural
configurations 1. Concretely, the algorithm optimizes an utility function that
quantify the architectural variation points according to a criterion specified by
the SA. This utility function typically refers to the general user satisfaction, al-
though our approach is independent of the chosen utility function. For instance,
the criterion can be the precision in the case of a component that is focused
on providing location information, or the quality in the case of a component for

1 An exact algorithm cannot be used because the problem to be solved is NP-hard
(non-deterministic polynomial-time hard)



video streaming. Because of its ability to fit well with optimization problems
based on variability, the concept of utility function has been applied before in
other proposals, such as MUSIC [20] and [19].

Challenge 2: Generating the reconfiguration plan at runtime. In our approach
this challenge is straightforwardly satisfied. Since a configuration is specified as
an array of bits (the output of the optimization algorithm), the reconfiguration
plan to go from the running configuration to a new optimized one can be gener-
ated at runtime just by applying an XOR operation between the arrays of bits
representing the source and target configurations (see Section 3).

Challenge 3: Executing the service in mobile environments. An important
challenge of any service executing on a mobile environment is to reduce to the
minimum the resources (time, memory, CPU, battery) consumed by the service
itself. In particular, for a reconfiguration service, the time is critical since, in
order to be useful, applications must be reconfigured without appreciating the
extra time employed for the reconfiguration process. Regarding this, in Section 4
we demonstrate that our DRS is fast enough to avoid harming the user response
time or the performance of the system.

2.3 Our Approach

All these challenges have been addressed in our approach, summarized in Fig-
ure 2. We propose a middleware in which the CMS and the DRS provide support
for deploying adaptive applications by covering the steps of the MAPE-K loop.

Knowledge. As shown in Figure 2, in our approach the knowledge is repre-
sented by (1) the variation points; (2) the VSpecs tree; (3) the OCL constraints;
(4) the software architecture; (5) the resource and utility information, and (6)
the reconfiguration policy. The SA specifies the variability model in CVL, con-
taining the variation points, the VSpecs tree and the OCL constraints, as well
as an estimation of the resource usage and the utility provided by the compo-
nents of the architecture. This information provides an optimization criterion
for run-time reconfiguration and, therefore, using it we can generate different
configurations at run-time which maximize the utility of the application without
exceeding the availability of a concrete resource, addressing the Challenge 1.

Monitor. The CMS provides the DRS with information about the evolution
of the availability of a certain resource, such as the battery level or the memory.
When a change is detected, the DRS is notified.

Analyse. When a Context Change event is received, the DRS analyses if
the change is significant enough to trigger the adaptation process –i.e. if the
reconfiguration criteria is satisfied. There can be several criteria for measuring
the significance of a context change. For instance, a change in the battery level
can be significant if it has changed more than a 5% since the last measurement, or
if it changes more than 10% per hour. Therefore, several reconfiguration policies
can be defined, and the policy applied is part of the Knowledge base.

Plan. In case the analyser decides that the application needs to be adapted,
the GA is executed in order to find a nearly-optimal configuration according to
the current context. Then, the differences between the current realization model



and the new one are calculated, generating a plan for switching between them
(Challenge 2 ). As it has been explained in Section 2.2, calculating the difference
between two configurations is quite straightforward since it is directly obtained
by performing an XOR operation between both configurations.

Execute. Finally, the plan is executed in order to adapt the running archi-
tecture of the application.
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Fig. 2. Approach Overview

2.4 Case Study

In the following sections we use a case study that consists of an application that
assists attendees of international congresses, keeping them up to date with the
latest news and providing several social facilities. The application provides the
following variable set of services:

1. Access to information about the events, stands and news about the congress.
2. Receive a video stream of keynotes or conferences in the mobile phone. The

quality of the received video is variable (high, medium, low).
3. Check-in in the stands/events to track your activity. The technology used is

variable and either NFC or Bluetooth may be used.



4. Access information about your friends: location, visited events and stands,
agenda. Location is obtained using GPS or WLAN, and the measuring rate
is variable (high, medium or low).

5. Exchange public messages or with your friends using a message board.
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Fig. 3. Case study (Base model and variability model)

This application can be adapted according to user preferences (e.g. high
quality of video is preferred), to the availability of the resources (e.g. WLAN
is used because GPS is not available) or to the amount of consumed resources
(e.g. use low quality of video because the mobile battery is low). In this paper
we focus on this last kind of reconfiguration.



Figure 3 shows an excerpt of the component-and-connector view of the soft-
ware architecture of our case study – i.e. components model the basic behaviour
of the application and communicate with each other using connectors. All the
connectors, except MessageBoardConn have been omitted from the figure for leg-
ibility reasons. The variability model is also shown in the Figure, including
both the variation points and the variability specifications tree. For instance,
using CVL we define optional components (ObjectExistence variation point), dif-
ferent variants for a component (ObjectSubstitution variation point), parametriz-
able components (SlotValueAssignment variation point) and optional links between
elements (LinkExistence variation point).

The main component of the architectural model is the CongressAssistant. On
the one hand, it communicates with the DataAggregator component for access-
ing information about events, stands, news or for receiving a video stream of a
conference. On the other hand, it communicates with the SocialManager compo-
nent in order to take advantage of the social facilities of the application. The
Location component is responsible for providing the location of the owner of the
mobile device for tracking his/her position, and can be realized either by the
Location GPS or the Location WLAN variants. The GPS variant measurements are
more precise but it is also much more expensive regarding battery consumption.
On the other hand, the Checkin component can also be realized by Checkin NFC

and Checkin Btooth components. As we can see in the figure, this is specified in
the architectural model by applying the ObjectSubstitution variation points to the
components and realizations. On the other hand, the components Location GPS

and Location WLAN have a configurable parameter, frequency, which defines the
measuring rate. To this end, the SlotValueAssignment variation point has been
applied to the parameters of the components.

The architectural elements with an ObjectExistence variation point can be re-
moved from the configuration. For instance, the Location component if the battery
level is low. Then, the links between the SocialManager and Location components,
which are not shown in detail in the figure, should be removed too. Our DRS
detects when a connector or a component is not necessary and removes it auto-
matically in order to ensure that the resulting configuration is always consistent.
We can see that a LinkExistence variation point has been associated to the links
which connect the SocialManager and the MessageBoard components because they
are removed in case the connector is deleted from the architectural model.

Each variations point has to be bound to a VSpec of the VSpec tree. We use
two different kinds of VSpecs: choices and variables. Choices, which are shown
in the figure as rectangles with rounded corners, are evaluated to true or false.
On the other hand, variables can be evaluated to values of different types. For
instance, if the VSpec NewsManager is decided false, the linked ObjectExistence

variation point is disabled and the NewsManager component is removed from
the architectural configuration. On the other hand, the value provided to the
variable frequency is propagated to the frequency attribute of the Location WLAN

and Location GPS components because they are bound to this variable through
SlotValueAssignment variation points. An Vspec can be bound to its parent by a



solid or a dotted line. In the first case, it means that in case the parent has been
decided true, a value has to be decided for that VSpec too. Then, a dotted line
means that if the parent has been evaluated false, it is not necessary to decide
a value for this VSpec. For instance, if the Location Vspec is decided false, it is
not necessary to decide a value for Loaction GPS or Location WLAN.

The information about resource usage and utility is provided as a table in
which each entry specifies the resource usage and the utility of different elements
of the architectural model (components, variants or parameters). This informa-
tion, together with the VSpec tree, are the input for the GA which is executed by
the DRS in order to find a configuration of the application that fits the current
context. In this case, the resource we are restricting is the battery usage. Some
of these values are shown in Table 1.

Table 1. Resource usage and utility information table

Element Battery Utility

Location GPS 60 35

Location WLAN 30 15

Location WLAN.frequency.High 15 9

Location WLAN.frequency.Medium 10 7

Location WLAN.frequency.Low 5 4

3 Dynamic Reconfiguration Service

As previously described, the DRS is responsible for adapting the applications
at runtime according to the current context, while the CMS provides the DRS
with context information. In this section we mainly focus on the plan stage of
the MAPE-K loop (Plan Generator), which is part of the DRS and uses the vari-
ability model, the context information and the utility and resources information.

As Brataas et al. show in [5], the reconfiguration time is divided in three
different tasks: (1) analyse the context data; (2) plan (decide) the new configu-
ration and (3) execute the plan in order to deploy the new configuration. They
prove that the cost of the first and third tasks can be considered fixed, while it
is critical to make the plan task as efficient as possible because it depends on the
number of configuration variants. Therefore, the challenge is finding the set of
choices for the VSpecs Tree (i.e. the resolution model) that defines the optimal
configuration (the one that provides the highest utility while not exceeding the
resources limitations) in a very efficient way. However, it is an NP-hard prob-
lem [22] and, therefore, it is impossible to use exact techniques to solve this
optimization problem for our purpose. Concretely, as shown in [13], exact tech-
niques can only be applied to small cases at the cost of a very high execution
time. Nevertheless, artificial intelligence algorithms can find nearly-optimal so-
lutions in an efficient and scalable way. In this paper, we use a genetic algorithm
based on the algorithm of Guo et al. [13], which focus on optimizing feature
models configurations, for optimizing the Vspecs Tree, since it has been proven
to be efficient and produces nearly-optimal results. Concretely, this algorithm



is able to generate configurations with about 90% of optimality, which means
that the utility of the solutions obtained using this algorithm is approximately
the 90% of the utility of the optimal configuration that would be obtained using
an exact algorithm. Although the algorithm by Guo et al. is not focused on a
DSPL approach, we show in this paper that their algorithm is applicable to the
DSPL domain. Furthermore, thanks to the great improvement in the processing
and memory capacities of smartphones, using artificial intelligence algorithms in
mobile devices is feasible and efficient, as it is proven in this paper.

Therefore, the plan generator of the DRS relies on a genetic algorithm to
decide which configuration should be deployed according to the current context.
In genetic algorithms, solutions are modelled as chromosomes. A chromosome
consist of a sequence of genes, where each gene is a boolean value. In our case,
VSpecs are mapped to genes in this way: (1) VSpec tree is traversed in a concrete
order, which can be either breadth-first or depth-first; (2) each choice VSpec is
modelled as a gen. In case the gen is evaluated as true, the VSpec is also decided
true and (3) each variable VSpec is modelled as a set of genes. Concretely, a gen
is added for each possible value of the VSpec. Only one of these genes can be
evaluated as true simultaneously. Then, the gen whose value is true provides the
value for the VSpec.

The steps taken during the execution of the algorithm are as follows:

1. Population initialization. A set of initial chromosomes (configurations)
is generated. They are generated randomly, and therefore it is necessary to
transform each one to get a valid solution from each randomly-generated one.
The transformation process performs the necessary additions and exclusions of
Vspecs from the randomly generated one, returning a chromosome which rep-
resents a valid configuration as a result which, in addition, does not exceed the
available resources.

2. Evolution through generations. Once an initial population of valid config-
urations has been generated, the next step is evolving the population through
generations in order to find better configurations, which provide a higher utility.
In each generation, two chromosomes randomly chosen from the population are
crossed. The resulting chromosome is transformed to get a a valid solution, and
the worst chromosome of the population is replaced with the new one. This pro-
cess is repeated until a stopping condition is reached. For instance, the evolution
can be stopped once a maximum number of generations is reached or when the
population has not evolved after a certain number of consecutive generations.
In our case, we use both conditions, stopping the evolution when the first one is
reached.

3. Return the best chromosome. The best chromosome, which represents the
configuration which provides the highest utility, is returned as the solution to
the optimization problem.

In the rest of this section, this approach is applied to our case study, as il-
lustrated by Figure 4. First, before the application is started, it is necessary to
deploy the initial configuration. An initial population of chromosomes that repre-
sent valid configurations and fit the resource constraints is generated. Our VSpec



Tree is mapped to a chromosome that contains 81 genes but, due to the lack of
space, we only show a reduced set (NewsManager, Location WLAN, Location GPS, Lo-

cation.frequency.High, Location.frequency.Medium, Location.frequency.Low in Figure 4).
Then, in every generation, two chromosomes are randomly selected for perform-
ing a crossover. A crossover between the two selected parents (...110100... and
...101010...) is performed taking genes randomly from both parents, and the re-
sulting offspring (...110010...) is mutated by changing the value of one of its
genes (...111010...). However, the offspring will probably be an invalid chromo-
some because it does not fit the constraints of the VSpec Tree. For instance,
in our example, the offspring has the Location GPS component selected (i.e. its
bit is 1), but no location frequency is specified. Therefore, it is necessary to ap-
ply a transformation to the offspring, which adds all the missing decisions. The
transformation mechanism adds them, and its output is a valid configuration
where, in this case, the Location.frequency VSpec is set to medium (...110010...).
Then, this new chromosome replaces the chromosome with lowest value of the
population, and this process is repeated until the stopping condition is reached.

…110100…
…101010…

…110010…

Parents Offspring

Crossover

…110000…

Mutation

Transformation

…110010…

New valid chromosome

VSpec Variation point Architectural Elements

NewsManager ObjectExistence NewsManager

Location.frequency SlotValueAssignment Location_GPS.frequency
Location_WLAN.frequency

Location_GPS ObjectSubstitution Location, Location_GPS

Location_WLAN ObjectSubstitution Location, Location_WLAN

{...NewsManager, Location_WLAN, Location_GPS, Location.frequency.High, 
Location.frequency.Medium, Location.frequency.Low…}

Fig. 4. Applying the genetic algorithm in the Dynamic Reconfiguration Service

4 Evaluation

In this section we evaluate the ability of the optimization algorithm to find
nearly-optimal configurations according to the available resources. Furthermore,
since the resources of mobile devices are very limited, it is very important to
verify the efficiency of the algorithm. Concretely, the time elapsed by the al-
gorithm during the optimization process has been measured. To this end, the
optimization algorithm has been applied to our case study using an ASUS Nexus
7 device running Android 4.2.1.

The VSpec tree defined for the variability specification of our case study
contain 2400 valid configurations that fulfill all the constraints. Figure 5 shows



Fig. 5. Case Study configurations distribution

how these configurations are distributed according to their resource usage. Con-
cretely, we can see that there is a peak in the distribution of configurations at
around 500 units of resource usage. Therefore, we can expect a significant de-
crease in the execution time of the algorithm as the available resources increase
and get closer to 500 units because it is increasingly easier to find a valid con-
figuration. On the other hand, once the peak is exceeded, the number of new
valid configurations decreases fast. Therefore, we can expect a nearly-constant
execution time despite the increase in the available resources.

All the experiments have been repeated 100 times and the mean value and
standard deviation (both for utility and time) has been calculated. The size
of the population is 30, while the maximum number of generations for each
repetition of the experiment is 20, stopping the algorithm if no better solutions
are found after 3 consecutive generations. These settings have been proven to
provide good results, although an exhaustive optimization of them, which will
be addressed in future work, has not been performed. For the evaluation of the
effectiveness of the algorithm we have compared the solutions obtained using
the genetic algorithm with the optimal solutions. In order to find the optimal
solutions we have generated a list of all the valid configurations, calculating then
the resource usage and the utility of each one of them. This step (obtaining the
optimal solutions) have been executed in a desktop computer since it is too
expensive to be run in a mobile device.

Results are shown in Figure 6 and summarized in Table 2. If we use the
concept of optimality presented in [13], which can be defined as the ratio between
the utility of the solution obtained using the genetic algorithm and the one
obtained using the exact method, the results show that the degree of optimality
of the solutions obtained is always over 87%. The optimality slightly decreases as
the available resources increase because there are much more valid configurations
whose utility is much lower than the optimal one. However, even in the worst
case the degree of optimality is very high, specially taking into account that the
optimization problem is NP-hard.

On the other hand, we have evaluated the time elapsed in the execution of
the algorithm. We distinguish between the initialization time, which is the time
needed to generate the initial population, and the analysis time, elapsed iterating



over the successive generations. The results for the initialization time are shown
in Table 2. As it is expected, when the restrictions are harder (less resources
are available) it is more difficult to obtain valid solutions. Therefore, the time
elapsed in the generation of the initial population is higher. In the worst case, the
initialization time is 334.584 ms. However, as the available resources are higher,
it becomes much easier to find valid solutions and the initialization time drops
significantly, falling below 100 ms when the available resources are higher than
380 units. Further optimizations can be introduced in the algorithm in order to
minimize the initialization time. For instance, those elements of the population
that remain valid can be reused along different executions of the optimization
algorithm. However, it has not been still evaluated and will be addressed in future
work. Regarding the analysis time, we can see that it is very low compared with
the initialization time. Although its value does not vary significantly with respect
to the available resources, we can see that it increases slightly as the number
of available resources increase. This behaviour can be explained because, when
there are less available resources, the algorithm usually stops before reaching 20
generations because no better solutions are found.

According to the results obtained, we consider that our approach is suitable
for providing support for dynamic reconfiguration on mobiles devices, generating
nearly-optimal configurations without introducing an excessive overhead.

Table 2. Evaluation Results Summary

Resource limit Obtained utility Optimality Initialization time (ms) Analysis time (ms)

205 425 (σ = 0) 100% 334.584 (σ = 55.207 ) 2.416 (σ = 0.995 )

255 474.62 (σ = 1.886) 99.92% 177.312 (σ = 29.056 ) 3.224 (σ = 2.697 )

300 524.59 (σ = 10.755) 96.79% 147.137 (σ = 22 ) 4.055 (σ = 2.169 )

350 580.9 (σ = 17.514) 94.61% 115.03 (σ = 17.483 ) 4.321 (σ = 2.419 )

400 614.52 (σ = 19.865) 92.13% 96.291 (σ = 11.877 ) 5.03 (σ = 2.195 )

450 641.635 (σ = 20.333) 89.49% 81.319 (σ = 8.577 ) 6.055 (σ = 3.738 )

500 665.075 (σ = 23.652) 90.24% 76.067 (σ = 7.128 ) 7.128 (σ = 4.577 )

550 680.445 (σ = 27.414) 87.91% 74.043 (σ = 6.316 ) 8.013 (σ = 5.52 )

600 692.66 (σ = 32.322) 87.68% 75.165 (σ = 9.921 ) 9.484 (σ = 6.762 )

655 691.904 (σ = 32.656) 87.03% 73.682 (σ = 6.091 ) 8.83 (σ = 6.381 )

5 Related Work

In this section we discuss those approaches comparable to the work presented in
this paper. On the one hand, our approach is driven by the MAPE-K loop on
which AC rely, providing the applications for mobile devices with the ability to
reconfigure their architecture in an autonomic and optimal way according to the
available resources. We can find several approaches in the literature which also
rely on the same principals. For instance, Gamez et al. [10] propose a reconfigu-
ration mechanism that switches among different architectural configurations at
run-time. The valid configurations are manually specified and represented using
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FMs, while the reconfiguration plans are automatically generated from the dif-
ferences among them. Therefore, both are specified at design-time, which leads
to the deployment of sub-optimal configurations at run-time.

There are also many work that do not exactly follow the principals of AC
but provide support for reconfiguration at the application level [7, 8], or also at
the middleware layer [12, 17, 19, 20]. However, they are not usually available for
evaluation or they are not runnable on mobile devices. MUSIC [20] is an OSGi-
based middleware for developing context-aware adaptive applications. It is a
component based and service oriented approach which mainly consists of two
different parts: the context and the adaptation middlewares. The adaptation
middleware is responsible for adapting the applications, deploying the configu-
ration that best fits the current context. The main difference between MUSIC
(as well as the other existing approaches) and our approach is that they require
having available at runtime all the valid configurations of an application, while in
our approach this configuration is generated on demand using the optimization
algorithm.

Other work use CVL to manage variability and provide reconfiguration sup-
port. For instance, Ayora et al. [1] propose a mechanism for managing variability
in business processes. At design time, variability is modelled using CVL. Then,
process variants are adapted following a models@runtime approach, which is
not suitable for devices with scarce resources. In [6], Cetina et al. also model
variability using CVL, applying it to smart-homes environments. Concretely, sev-
eral mechanisms for applying the necessary model transformations are evaluated.
However, as in the previous approach, it is not applicable to mobile devices.

Finally, we use an optimization algorithm to select a nearly-optimal configu-
ration that satisfies the resource constraints and maximizes a utility function. In
this sense, there are similar algorithms that allow the automatic generation of a
resolution model according to different criteria. However, they are applied to (1)
variability modelling techniques different than CVL VSpec trees, such as FMs,
and (2) to static SPLs. In [22], an FM is transformed into a Multi-dimensional
Multiple-choice Knapsack Problem that allows nearly-optimal FM configura-
tions in polynomial-time to be found. This is also the objective of [13], but using



genetic algorithms, being even faster than the previous one. On the other hand,
the proposal of Benavides et al. [3] always finds the optimal configuration using
Constraint Satisfaction Problems with exponential-time complexity, making it
unsuitable for runtime optimization.

The main difference with our approach is that all these algorithms have been
used in static SPLs, while we use it in DSPLs. In a static SPL a product con-
figuration is generated during the design time in order to deploy one particular
product from the family of products. This means that the algorithm is applied
only once at design time. We use the algorithm to implement a DSPL, mean-
ing that the optimization algorithm is used at runtime by the DRS in order to
adapt the product. The most similar approach to ours is the work presented
in [4], where an optimization algorithm is also used to improve user interface
adaptation at runtime. An important difference is that their work is specific to
a user interface architectural model, while our approach is more general because
it can be applied to the architectural model of any kind of applications They
use a different optimization algorithm although, as in our case, their approach
does not depend on a particular optimization algorithm and is designed to work
with other algorithms. Finally, the average adaptation time of our approach is
considerable lower than the one reported in [4].

6 Conclusions

In this paper we have presented a novel approach that provides support for
the dynamic reconfiguration of mobile applications, optimizing the system con-
figuration according to the available resources. In order to do that we model
the variability of the application architectural model using CVL. In this way,
we take advantage of available algorithms to optimize the variability resolution.
Concretely, the use of a GA has been proposed to obtain nearly-optimal con-
figurations at runtime using the VSpec tree, the context information and the
resource and utility information as input. In order to describe and evaluate our
approach we have applied it to a case study. A set of experiments have been
defined to evaluate the efficiency of the optimization algorithm applied to our
case study in order to verify that it is suitable for resource-constrained devices.
The results obtained show that it is efficient and can be used to provide dynamic
reconfiguration in mobile devices without introducing an excessive overhead.
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