
Open Research Online
The Open University’s repository of research publications
and other research outputs

Using problem descriptions to represent variabilities for
context-aware applications
Conference or Workshop Item

How to cite:

Salifu, Mohammed; Nuseibeh, Bashar; Rapanotti, Lucia and Tun, Thein Than (2007). Using problem descriptions
to represent variabilities for context-aware applications. In: Proceedings of 1st International workshop on Variability
Modeling of Software-intensive Systems (VaMoS 2007), 16-18 Jan 2007, Limerick, Ireland, pp. 149–156.

For guidance on citations see FAQs.

c© Not known

Version: Not Set

Link(s) to article on publisher’s website:
http://www.vamos-workshop.net/2007/files/VaMoS 2007 Proceedings.pdf

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

https://core.ac.uk/display/81931?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://www.vamos-workshop.net/2007/files/VaMoS_2007_Proceedings.pdf
http://oro.open.ac.uk/policies.html


Using Problem Descriptions to Represent Variability  

For Context-Aware Applications 
 

 

 

 

 

Abstract 
This paper investigates the potential use of problem 

descriptions to represent and analyse variability in 

context-aware software products. By context-aware, 

we refer to recognition of changes in properties of 

external domains, which are recognised as affecting 

the behaviour of products. There are many reasons for 

changes in the operating environment, from fluctuating 

resources upon which the product relies, to different 

operating locations or the presence of objects. There is 

an increasing expectation for software intensive-

devices to be context-aware which, in turn, adds 

further variability to problem description and analysis. 

However, we argue in this paper that the capture of 

contextual variability on current variability 

representations and analyses has yet to be explored. 

We illustrate the representation of this type of 

variability in a pilot study, and conclude with lessons 

learnt and an agenda for further work. 

 

Keywords 
Contextual variability; context-awareness; problem 

variants; solution variants; product-families 

 

1. Introduction 
There is an increasing expectation for software-

intensive devices to be context-aware, and many 

consumer devices such as mobile phones, which are 

developed as product families, are expected to follow 

this trend. By context-aware, we mean that products are 

expected to change their behaviour in response to 

changes in their operating environments due to changes 

in properties of domains that are external to them but 

still affect their behaviour. Reasons for changes in 

context vary from fluctuating resources upon which a 

product relies (e.g., reduced bandwidth for a mobile 

phone) to different operating locations (e.g., a mobile 

user travelling long distance) or the presence of other 

objects (e.g., Bluetooth-enabled phones) [7]. Changes 

may also be caused by users’ preferences; for example, 

users of a mobile phone may require a particular set of 

features to be available to them while at work and a 

different set while at home. Mobility is therefore 

central to our notion of context. This context-induced 

variability is expected to increase the complexity and 

scale of traditional variability analysis and 

management, the impact of which has remained 

unexamined [23].   

The primary objective of our research is to develop 

an approach to identify, represent, analyse and reason 

about common and variant sub-problems; and to link 

such representations to architectural variability types. It 

is aimed at problem descriptions of product-families 

operating in varying context environments. Therefore, 

the emphasis is on contextual variability in the problem 

space rather than solution space.  

Other issues relevant to context-awareness are (1) 

the monitoring of operating context, (2) the detection 

of changes in context and (3) the switching of operation 

from one variant to another.  Variation in context may 

well induce variations in each of these issues.  

 The remainder of the paper is structured as follows: 

we begin with a brief overview of related work (section 

2), followed by a brief description of problem frames 

(section 3), which we use as an approach to represent 

identify problem descriptions. We then describe our 

proposed approach to represent problem variability 

(section 4), and provide a detailed illustration of the 

feasibility and applicability of problem diagrams to 

describe and reason about problem variations (sections 

4.1-4.3). We conclude (section 5) with a discussion of 

lessons learnt and further work.  

 

2. Related Work 
This section briefly discusses current representation 

of variation points and dependency relations between 

variants. This will be followed by a discussion of 

related approaches to context-awareness. 

 

2.1 Variability points and dependencies  
Variations in requirements are generally regarded as 

variations in the intention of a stakeholder in terms of 

the intended use of an end product [5]. This type of 

variability has often been modelled and analysed using 

feature diagrams [34], which capture user-visible 

functionalities. However, Liaskos et el [23] have 

observed that variability in requirements may be 

exacerbated by contextual variability which they refer 

to as background (or unintentional) variability. They 

Mohammed Salifu  Bashar Nuseibeh  Lucia Rapanotti  Thein Than Tun 

The Open University, Milton Keynes, UK 

{M.Salifu, B.Nuseibeh, L.Rapanotti, T.T.Tun}@open.ac.uk 

 



argue that feature diagrams do not take contextual 

variability into consideration and are therefore 

unsuitable for representing and reasoning about 

variability of systems where contextual changes are 

common place. Therefore, they have proposed a goal-

oriented approach which takes into account both 

intentional and unintentional variability in its 

representation.  

In an earlier paper [32], we discussed in detail the 

work of Bachmann and Bass [3] on sources of 

variability types, and that of Jaring and Bosch [17] on 

relational dependencies which we argued are consistent 

with earlier observations by Buhne et el [6]. However, 

we also looked at other representation using use cases 

[6].  We concluded that what these approaches have in 

common is that, none of them explicitly consider the 

properties of the operating contexts and their 

constituent domains. For instance, the work of Buhne 

et el on using use cases to communicate variability to 

consumers is effective in showing user visible 

functional dependencies. It is, however, weak at 

capturing other contextual information such as 

differences in technology. To the best of our 

knowledge, Liaskos et el’s work is the only attempt at 

understanding the impact of contextual variability on 

variant requirement derivation. However, their 

approach assumes a ‘greenfield’ development and does 

explicitly considered the issue of variability in adaptive 

elements [4]. By adaptive elements, we mean 

techniques for context monitoring, context change 

detection and variant switching.  These elements are 

discussed further in sections 4.2 and 4.3.  

 

2.2 Context-Awareness & Adaptive product 

families 
Since our work deals with product-family and 

context-awareness, we are interested in adaptive 

approaches that address variability in context and 

adaptation mechanisms. 

Current approaches to context-awareness are largely 

focused on the use of middleware to support varying 

contexts [25] such as the One.World approach by [14] 

and the Odyssey approach by [26] which are aimed at 

supporting heterogeneity and hiding variations in 

context from application software.  However, Abowd 

 [1] has noted that a middleware-based approach to 

context-awareness is insufficient, as some contextual 

changes are only visible in the application level or 

requires the interpretation of human user. Also, 

context-aware middleware tends to focus on specific 

application domains such as hiding variations in 

platform infrastructure or location details in distributed 

computing [25]. An example is the work of Apel et el 

[2] which  is aimed at supporting platform 

heterogeneity in a multi-device varying context 

environment. However, developing such middleware 

requires good knowledge of the domain, something not 

always available.  

Current application level approaches to context-

awareness also tend to focus on specific problem issues 

such as self-healing or self-reconfiguring [10] and 

platform resource fluctuations or differences in the cost 

of computing resources [31].   Those that are more 

general, such as the work of  Oreizy et el [29], tend to 

be vague in discussing issues such as monitoring and 

switching at a very high abstract level, lacking details 

on what the underlying requirements are. Therefore, the 

discussion of possible variability in monitoring or 

switching is absent. In the case of Oreizy et el,  an 

attempt is made to define context-aware infrastructure 

by a prescribed set of rules with which applications 

operating in such an environment must comply. But 

this still does not give sufficient detail as to what the 

underlying requirements are. 

All these approaches are largely solution space 

oriented to context-aware application development. 

However, Zhang et el [37] has argued for a 

requirements approach to adaptive software 

development, and that the semantics of adaptation is 

made explicit in requirements. This they noted enables 

the evaluation of adaptive systems not only in terms of 

the requirements of problem variants in different 

context but also in terms of how adaptation is achieved. 

This position is consistent with Hayes et el [15] arguing 

for deriving specification of embedded systems from 

that of its environment. In this case, the specifications 

are first expressed in terms of the domains of the 

physical world after which they are derived in terms of 

the solution machine’s interface to the world. 

Related work that has tried to deal with both 

context-awareness and product-families is based on 

software architecture configuration techniques [2, 12, 

13, 19]. Each of these is briefly discussed later in this 

section. The configuration of an architecture refers to 

its set of components, their interconnections and the 

constraints defining the behaviour of this architecture 

[35]. The replacement of such a configuration with a 

new (or different) one after it has been released or 

during the operation of the applications based on it, is 

referred to as reconfiguration [21, 28].   

The work of Gomaa and Hussein [12, 13] is based 

on the use of architectural styles or patterns, such as the 

client server architectural style, to construct what they 

refer to as a reconfiguration pattern (based on the style 

of the generic architecture). A reconfiguration pattern 

is used to guide the process of automatically deriving 



one product-line member from a different one. This can 

be argued to be a generalised form of parameterisation 

[30], as all instances of this product-family must 

conform to the style and different members are 

instantiated by changing the values of parameters. 

The work of Kim et el. [19] is similar to that of 

Gomaa and Hussein. The key difference is that Kim et 

el. provide an architectural description language for 

describing architectures and modifications to be 

applied to them during reconfiguration. The example in 

[19] adopts a pipe-and-filter architectural style and 

could therefore be argued to be a specialised case of 

the work of Gomaa and Hussein with the addition of a 

means to describe the architecture and its 

modifications. 

The work of Apel and Bohm [2] is based on the use 

of a layered architectural style to design a 

reconfigurable middleware for a context-aware 

environment. In this work, context-aware environment 

refers to an operating environment with network 

bandwidth fluctuations, connection interruptions, 

device mobility and resource-constrained devices. The 

services provided by this architecture are operating 

system-based and largely limited to the network 

infrastructure. In designing the reconfigurable 

middleware architecture, Apel et el have adopted the 

product-line paradigm and produced a generic 

architecture from which specific architectures tailored 

to different environments are produced as and when the 

context requires, during runtime.  

Again, to the best of our knowledge, it is only the 

last three approaches that have considered both 

product-family and adaptability and in the case of Apel 

et el context-awareness too. However, these attempts 

are all solution space oriented and implicitly consider 

the underlying requirements that lead to the use of their 

approaches.  

 

3. Problem Frames for Representing 

Variability 
The Problem Frames approach (PF) to requirements 

engineering provides a conceptual basis for analyzing 

software problems in context [16]. In this approach, 

problems comprise three descriptions: (i) a description 

of the given properties of the world in which the 

problem resides (domain knowledge), (ii) a description 

of the required properties of the world (requirement), 

and (iii) a description of what the machine, or the 

computer implementing the software, must do to affect 

the required properties (specification). Unlike other 

requirements engineering approaches such as Use 

Cases [8] and Goals [36], PF is particularly suitable for 

analyzing context-awareness because it emphasizes the 

need for understanding the physical context of software 

problems.  

We now introduce and discuss briefly some of 

problem frames notation and concepts relevant to our 

discussion. This is done with the aid of a simple 

problem diagram in Figure 1.  

 

 

 

 
 

 

 

 

 

 

 

b: LM!{Personal Details}, a: ID!{commands} 
e: RH!{Reader Record} 
d: LD!{New Reader Record} 
c: LM!{Personal Details} 
 

Figure 1: A Simple Problem Diagram. 
 

In Figure 1, the rectangles with no stripes (Library 

Database, Input Device and Library Member) 

represent physical domains of the problem world 

whose properties are relevant to the problem. The 

dashed oval represents the requirement, and the 

rectangle with a double stripe is the machine domain 

whose specification is required. Thick lines between 

the domains present sets of shared properties of the 

domains involved and are referred to as shared 

phenomena. For example, the shared phenomenon e 

indicates that details of reader records are shared 

between the two domains Registration Handler (RH) 

and Library Database (LD). The prefix RH! suggests 

that RH can manipulate the reader records, whilst LD 

can  only observe them. The dashed line between the 

requirement and Library Member (LM) denotes that 

the requirement references the property of LM, and the 

dashed line with an arrow head between the 

requirement and LD denotes that the requirement 

constrains the property of LD. It means that when the 

library member provides personal details, a new reader 

record is expected to be added to the database. 

A problem frame is a known class (pattern) of 

problem with a well understood structure and concern. 

The problem diagram in Figure 1 represents an instance 

of a basic type of problem known as the Workpieces 

frame [16]. The main concern of this frame is as 

follows: 

 

e 

 
d 

 

c 

b 

Registration 

 Handler 

 

a 

 

Input Device 

Register 

new reader 

 

Library 

Database 

 

Library Member 



“A tool is needed to allow a user to create and edit a 

certain class of computer-processable text or graphic 

objects, or similar structures, so that they can be 

subsequently copied, printed, analysed or used in other 

ways. The problem is to build a machine that can act as 

this tool.” 

 

In Figure 1, the domain Library Database is the 

“computer-processable” object, and Registration 

Handler is the “tool needed” to allow Library Member 

using Input Device to “create” a member record.  

Although most software problems, when 

decomposed, are expected to fit the basic frames, 

Jackson acknowledges that there could be problems 

that have extra concerns.  

A problem variant frame represents a new problem 

class (pattern) that closely matches a known problem 

frame such as the workpieces frame but differs because 

of the presence of a problem domain or control pattern 

not found in the existing problem frame [16]. One of 

such variants is called a “connection variant”. A 

connection variant introduces a domain into the basic 

frame diagram. For example, Figure 2 shows a problem 

diagram that is similar to the one in Figure 1, with an 

additional connection domain Librarian between Input 

Device and Library Member. The new diagram 

signifies the fact that, rather than library member, it is 

the librarian who interacts with machine through the 

input device. Since this problem diagram shares the 

main concern of the problem diagram in Figure 1, we 

regard this new problem diagram as a variant of the 

original problem diagram in Figure 1.  

 

 

 

 

 

 

 

 

 

 

b: L!{Membership Details}, a: ID!{ commands } 
e: RH!{Reader Record}   
d: LD!{New Reader Record} 
c: LM!{Personal Details} 
f:  LM!{Membership Form} 
 

Figure 2: A Variant Problem Diagram. 
In this paper, we use the notion of variant frames to 

capture contextual variability in context-aware 

applications. 

 

 4. Outline of Our Approach 

Given a requirement R, our approach begins with the 

identification and representation of a problem diagram 

aiming to fit a known problem frame or a variant of a 

basic frame. In some cases, R may need to be 

decomposed into sub-requirements in order to fit 

known problem frames. Using available knowledge 

about the problem context, we identify a set of 

variables (V1, V2 … Vm) representing possible sources 

of contextual variations. Assuming a non-varying 

context, we construct problem diagram for the 

requirement. The resulting problem diagram is context-

unaware. 

We next vary each of the contextual variables one at 

a time accessing its impact on the context-unaware 

problem diagram. Where a variation in contextual 

variable causes requirement R not to be satisfied, we 

derive a variant problem diagram for this context 

situation ensuring that R is satisfied. Note that in some 

cases, it may be necessary to arrange the contextual 

variables in sequence as they may be some dependency 

relations between them requiring simultaneous 

consideration of two or more variables.  This case is 

not considered in this paper but is being explored. 

      Following the derivation of problem variants for 

variations in context, we carry out variants analysis and 

address context-awareness concerns such as the 

detection of changes in varying context. This involves 

the identification of domains and phenomena to be 

monitored in the problem world in order to do so. This 

may introduce new physical domains inducing new 

sub-problems into the problem analysis. For instance, 

problem diagrams to monitor and report changes in 

physical domains or to update designed lexical 

domains storing contextual information. 

We next consider the composition of problem 

variants to enable the context-aware product operate in 

all contexts. Other concerns such as switching, 

interference, consistency, etc can also be addressed. 

These concerns are only briefly discussed.  

 
 

4.1 A pilot study  
This study is intended to illustrate the use of 

problem descriptions for capturing contextual 

variability in problem variant diagrams. This is done 

with regards to software applications for context-

awareness.  

      Software is required to control the transmission of 

pictures from an external digital camera (Concord 

EyeQ [9]) into a mobile phone’s storage (Nokia 9500 

[27])  under the control of the phone user. This is to be 

 

 

f 
b 

 

Librarian 

e 

 
d 

 

c 

Registration 

 Handler 

 

a 

Register 

new reader 

 

Library 

Database 

 

Library Member 

 

Input Device 



done using Bluetooth wireless technology at two 

different locations. In the first case, the transmission is 

to be done without encryption while in the second case 

it should be done using the Secure Socket 

Layer/Transport Layer Security protocol (SSL/TLS) 

[18]. These are for secure and non-secure locations 

respectively. Further details are: 

 

1. The phone makes a request for a picture which 

must be transmitted, received, and saved on its 

internal storage. 

2. The camera prompts a user when transmission starts 

and when it stops. 

3. All transmissions must be secured. This means that, 

all picture transmissions in a non-secure location 

must be encrypted. However, encryption is not 

necessary in a secure location. The software must 

adapt its behaviour (i.e. carry out encryption or not) 

without explicit user involvement. 

       

   Considering the pilot study along the three 

descriptions of problem frames concepts, the following 

observations are made: 

1. The underlying requirement (R) is a secure 

transfer of pictures from a digital camera to the 

mobile phone’s storage.  

2. The need to secure or not, represents one source of 

a contextual variable in W. 

 

The overall requirement (R) fits a problem frame 

known as Command Behaviour frame. Therefore, there 

is no need for decomposing R into sub-requirements. 

Also, assuming a secure location the problem diagram 

for this is as given in Figure 3. This represents our 

basic problem diagram and assumes a non-varying 

context (i.e. all operating locations are secured). 

Hence, no phenomena relevant to the detection of 

changes in context are identified and represented. 

Using the basic problem diagram in Figure 3 and 

withdrawing the assumption of a secure location, we 

realise that the requirement will not be satisfied using 

this problem diagram in non-secure locations. 

Therefore, we now derive a variant problem diagram 

for non-secure locations. To achieve this, we apply a 

Connection variant as it is suitable for connecting a 

problem domain to a machine domain where there is a 

need for intermediate processing.  This introduces a 

domain into the problem diagram to carry out the 

required encryption/decryption. Figure 4 gives the 

resulting variant problem diagram.  

 

 

 

 

 

 

 

 

 

 

 

 

 

s:PIS!{receivespicture, savespicture}                
a:C1!{RequestTransmission, 
 TerminatesTransmission}     
b: EDC!{BeginsTransmission, EndsTransimission} 
p:PIS!{receivespicture, savespicture}  
c: PU!{StartTransmission, StopTranmission}  
k:PU!{ConfirmsStartedTransmission, 
 ConfirmsCompletedTranmission}   
 

Figure 3: A basic problem diagram for secure 
location. 

 

 

 

 

 

 
 

 

 

 

 

 

 

  

Figure 4: A variant problem diagram for non-
secure location. 
 
 

 

 

 

 

 

 

Figure 5: A partial problem diagram of Figure 4 
showing further details of the SSL/TLS domain. 

 

Even though the SSL/TLS domain is shown to be a 

single domain in the problem diagram in Figure 4, a 

critical look will show otherwise. This is shown in 

Figure 5. 

      p 

Non-Secure Environment 

 

b 

aa 

 

c

k 

c 

Phone User 

 

SSL/TLS External 

Digital Camera 

R 
s

1

 

Phone  

Internal storage 

 Controller 2 

Non-Secure Environment 

 

a-secure a a 

 

 

Phone 

SSL/TLS 

 

Camera 

SSL/TLS 

 

b 

a      a 

 

       

c
s k 

c 

Phone User 

 

Secure 

Environment 

 

p 

External 

Digital 

Camera 

R 
Phone  

Internal 

storage 

 Controller 1 



The introduction of the SSL/TLS domain has 

resulted in an addition of the shared phenomenon ‘a-

secure’, which is defined as follows: 

 
a-secure: PS!{secRequestTransmission, 

secTerminatesTransmission} 

 

It is worth noting that SSL/TLS represents a solution to 

the sub-problem of encryption/decryption which we do 

not need to solve as the solution is given. If this was 

not the case, then a sub-problem would have to be 

introduced to carry out the securing of the transmission 

channel. Problem frames treats solution machines to 

sub-problems as given domains when used in other 

problem diagrams. 

The use of problem frames or variant frames in this 

way contributes to knowledge reuse in the problem 

space as they represent recurring problem classes. In 

addition to that however, our introduction of a non-

varying context problem diagram from which problem 

variants are derived for different context situations 

represents further reuse. This allows us to reuse the 

analysis done on the original problem in Figure 3 on 

the one in Figure 4. It also enables reuse in different 

contexts of the same product. However, non-varying 

context problem diagrams and their related variants 

may well be composed and used in different products 

operating in the same application domain. This is not 

illustrated in this paper but is being explored. 

 

4.2 Problem Variants Analysis 
    The approach taken in the variant derivation is based 

on the application of the standard principle of 

separation of concerns [11]. That is, the concerns of 

each of the sub-problems were considered independent 

of that of managing the varying operating context. For 

instance, the sub-problem shown in Figure 3 is suitable 

for an operating environment where encryption is not 

required. The designed machine assumes this fact and 

will always operate under it. Alternatively, the sub-

problem diagram shown in Figure 4 assumes an 

operating environment where encryption is required 

and will always operate under this assumption. We 

therefore consider these two sub-problems as being 

context-unaware as they assume fixed contexts of 

operations and therefore do not explicitly carry out 

checks on the operating environment in order to adjust 

their behaviour. This approach has enabled us to 

consider the problems of monitoring, change detection, 

and managing varying contexts outside the original 

sub-problem variants. This has been observed by 

McKinley et el [24] to contribute positively to the 

development of adaptive software and reuse, both of 

which are essential  to context-awareness. 

 We now take a closer look at each of the problem 

variants and attempt to address some of the context-

awareness concerns such as monitoring and change 

detection. Consider a situation in which the transfer of 

a picture started in a secure location and continues into 

a non-secure one. There will be a need for suspension 

of transmission to switch from a non-secure channel to 

a secure one after which transmission must be resumed 

at the point for which it was suspended. This is a 

significant problem, and raises concerns such as 

initialization and interference [16].  

One possible approach to compose the two sub-

problems is through the use of composition frames 

proposed by Laney et el [22]. This effectively inserts a 

controller between the problem world domains and the 

sub-machines. All interactions between the sub-

machines and the problem world domains are 

intercepted by the controller and the constraints defined 

by the composition requirements determine permissible 

patterns of interactions. In this case, the composition 

rules are dynamically determined by the environmental 

properties (secure or non-secure). We define the 

composition requirement as follows: 

 

RC: In a non-secure location make sure that picture 

transmission is handled by Controller2. In a secure 

location make sure that picture transmission is 

handled by Controller1. 

  

 
Figure 6: A Composition Problem Diagram. 

 

Figure 6 gives a possible problem diagram for such 

a composition, referred to as a composition problem 

diagram. The diagram suggests that the Context 

 

 

 

 

Context 

Controller Controller1 

Controller2 

RC 

cda 

Context 

Sensor 

cdc: CS! {SecureEnv, NonSecureEnv} 
cda: CC! {Initialize(InitState), Start, 
 Suspend, Enquire(CurrentState)} 
cdb: CC! {Initialize(InitState), Start, 
 Suspend, Enquire(CurrentState)} 
cra: C2! {Running, Stopped} 
crb: C1! {Running, Stopped} 

cdb 

cdc 

cra 

crb 

cdc 



Controller (CC) can monitor the environmental 

property and switch between Controller1 and 

Controller2 accordingly to meet RC. In the diagram, 

CC can enquire current states of Controller1 and 

Controller2, and initialise Controller1 and Controller2 

to required states, as well as start and suspend 

executing of Controller1 and Controller2. These 

operations allow CC to switch between secure and non-

secure transmission in response to environmental 

properties dynamically. 

 
 

4.3 Discussion 
Using the problem frames approach allows us to 

separate composition concerns from the basic problem 

in each problem variant. We therefore argue that 

problem frames facilitate separation of concerns by 

allowing different sections or sub-problems of a bigger 

problem to be considered individually. They allow for 

different levels of abstractions of domains and their 

phenomena in variant problem representations. This, 

we suggest is useful for the representation of context-

aware applications as illustrated in the pilot study. 

       An alternative approach to that of ours would be to 

consider the problem of context-awareness in the 

original problem variants diagrams. That is, Figure s 3 

and 4 each address the issue of context-awareness as 

part of the problem. The problem with this alternative 

approach in our view is that it (1) tries to address many 

concerns simultaneously and (2) does not scale as each 

subsequent addition or derivation of a variant will have 

to be based on the immediate preceding one (to 

maximise reuse). These could create difficulties for 

analysts working on later variants. 

 

5. Conclusions & Further Work 
The focus of this paper has been on the 

representation and analysis of contextual variability 

due to its importance for context-awareness.   We have 

illustrated, using a pilot study, the use of problem 

descriptions for capturing contextual variability in 

problem variant diagrams. This is done using Jackson’s 

notion of variant frames.  

      Despite the apparent suitability of problem 

descriptions for representing contextual variability, 

Jackson’s notion of problem variants is restrictive. The 

current definition requires either the addition of a 

domain or changes in the control pattern of an existing 

problem diagram. For instance, the digital camera in 

our pilot study could easily be replaced with a printer 

or a projector and a mobile phone could be required to 

interact with all these in different contexts. In such a 

case, the replacement of an existing domain with a 

different domain which in turn will vary the existing 

phenomena will be required. Therefore, we are seeking 

to extend the definition of problem variant to take such 

situations into account. Raising the abstraction level of 

domains is one possible line of investigation. For 

instance, raising the abstraction level of the digital 

camera in the pilot study to a “Bluetooth device” will 

allow for more variants to be derived. Replacing the 

camera with a “Bluetooth printer” may result in a 

Control variant frame. 

So far we have considered only one source of 

contextual variability. Where many sources of 

contextual variability are present with crosscutting 

concerns, it may be necessary to use other techniques 

to capture such variability sources and their 

dependencies. This will then be used to inform the 

variant problem derivation and formulation 

composition requirements. This is currently being 

investigated. 

We have not considered the detail specification of 

each sub-problem machine and that of the context 

controller in this paper. This is not necessary in 

illustrating the fundamentals of our approach. 

However, in deriving the detail specification of each 

machine, especially in the case of the context controller 

machine, it may be necessary to introduce some form 

of formality in deriving a specification. To this end, we 

are currently exploring the possible use of event 

calculus [20, 33] for its suitability in doing so. 

   

Acknowledgements 
We thank the EPSRC for their financial support. We 

also thank our colleagues Andreas Classen, Armstrong 

Nhlabatsi, Yijun Yu, Robin Laney and Michael 

Jackson for many useful discussions and feedback on 

earlier drafts of this paper. 

 

References 
1. Abowd, G.D., "Software engineering issues for 

ubiquitous computing", in ICSE '99, 1999, Los Angeles 

CA, IEEE CNF. 

2. Apel, S. and K. Böhm, "Towards the development of 

ubiquitous middleware product lines", in Software 

Engineering and Middleware: 4th International 

Workshop, SEM 2004, 2005, Linz, Austria. 

3. Bachmann, F. and L. Bass, "Managing variability in 

software architectures", in SSR'01, 2001, Toronto, 

Ontario, Canada, ACM Press. 

4. Berry, D.M., B.H.C. Cheng, and J. Zhang, "The four 

levels of requirements engineering for and in dynamic 

adaptive systems", in REFSQ'05, 2005, Porto, Portugal. 

5. Bosch, J., "Design & use of software architectures - 

adopting and evolving a product-line approach", 2000, 

Great Britain, Addison-Wesley, 1-354. 



6. Bühne, S., G. Halmans, and K. Pohl, "Modelling 

dependencies between variation points in use case 

diagrams", in Proceedings of the 9th International 

Workshop on Requirements Engineering Foundation for 

Software Quality (REFSQ), 2003, Klagenfurt, Austria. 

7. Chen, G. and D. Kotz, "A survey of context-aware 

mobile computing research", in Technical Report 

TR2000-381, 2000, Dartmouth Computer Science. 

8. Cockburn, A., "Writing effective use cases", 1st ed, 

2001, Longman, Upper Saddle River, NJ, Addison-

Wesley, 1- 304. 

9. Geeks.com, C., "Concord eyeq go wireless 2mp 

bluetooth digital camera", 2006, 

http://www.geeks.com/details.asp?invtid=EYEQ&cat=C

AM. p. 1-2. 

10. Georgiadis, I., J. Magee, and J. Kramer, "Self-organising 

software architectures for distributed systems", in ACM 

SIGSOFT Workshop on Self-Healing Systems (WOSS 

‘02), 2002, Charleston, South Carolina, ACM. 

11. Ghezzi, C., M. Jazayeri, and D. Mandrioli, 

"Fundamentals of software engineering", Second ed, 

2003, Upper Sadle River, New Jersey, Prentice Hall. 

12. Gomaa, H. and M. Hussein, "Dynamic software 

reconfiguration in software product families", Lecture 

Notes in Computer Science, 2004, 3014/2004, p. 435 - 

444. 

13. Gomaa, H. and M. Hussein, "Software reconfiguration 

patterns for dynamic evolution of software 

architectures", in Proceedings of the Fourth Working 

IEEE/IFIP Conference on Software Architecture 

(WICSA’04), 2004, IEEE CNF. 

14. Grimm, R., et el., "System support for pervasive 

applications", ACM Transactions on Computer 

Systems., 2004, 22(4), p. 421–486. 

15. Hayes, I.J., M.A. Jackson, and C.B. Jones, "Determining 

the specification of a control system from that of its 

environment", Lecture Notes in Computer Science 

2805- Proceedings of FME2003, 2003, p. 154-169. 

16. Jackson, M., "Problme frames: Analyzing and 

structuring software development problems", 1st ed, 

2001b, New York, Oxford, Addison-Wesley, 390. 

17. Jaring, M. and J. Bosch, "A taxonomy and hierarchy of 

variability dependencies in software product family 

engineering", in Proc. of the 28th Annual International 

Computer Software and Applications Conference 

(COMPSAC'04), 2004, IEEE CNF. 

18. Kegel, D., "Ssl / tls", in Accessed on October 11th 2006, 

2001, http://www.kegel.com/ssl/. 

19. Kim, M., J. Jeong, and S. Park, "From product lines to 

self-managed systems: An architecture-based runtime 

reconfiguration framework", in Workshop on the Design 

and Evolution of Autonomic Application Software 

(DEAS 2005, 2005, ACM Press. 

20. Kowalski, R. and M. Sergot, "A logic-based calculus of 

events", New Generation Computing, 1986, 4, p. 67–94. 

21. Kramer, J. and J. Magee, "The evolving philosophers 

problem: Dynamic change management", IEEE 

Transactions on Software Engineering, 1990, 16(11). 

22. Laney, R., et el., "Composing requirements using 

problem frames", in Proceedings of the 12th 

International Requirements Engineering Conference 

(RE'04), 2004, Kyoto Japan., IEEE Computer Society 

Press. 

23. Liaskos, S., et el., "On goal-based variability acquisition 

and analysis", in 14th IEEE International Requirements 

Engineering Conference (RE'06), 2006, Minneapolis/St. 

Paul, Minnesota, USA,, IEEE CNF. 

24. Mckinley, P.K., et el., "Composing adaptive software", 

IEEE Computer, 2004, 37(7), p. 56-64. 

25. McKinley, P.K., et el., "Composing adaptive software", 

Computer, 2004, p. 56-64. 

26. Noble, B.D., M. Price, and M. Satyanarayanan, "A 

programming interface for application-aware adaptation 

in mobile computing", in February 1995, 1995, School 

of Computer Science, Carnegie Mellon University. p. 1-

14. 

27. Nokia, F., "Enterprise: Developing end-to-end systems", 

2006, Nokia Forum, Online. p. 1-54. 

28. Oreizy, P., et el., "An architecture-based approach to 

self-adaptive software", Intelligent Systems and Their 

Applications, IEEE [see also IEEE Intelligent Systems, 

1999, 14(3). 

29. Oreizy, P., N. Medvidovic, and R.N. Taylor, 

"Architecture-based runtime software evolution", in 

Software Engineering, 1998. Proceedings of the 1998 

(20th) International Conference on Software 

Engineering, 1998. 

30. Perry, D.E., "Generic architecture descriptions for 

product lines", in Lecture Notes in Computer Science, 

1998, Springer Berlin / Heidelberg. 

31. Poladian, V., et el., "Dynamic configuration of resource-

aware services", in Proceedings of the 26th International 

Conference on Software Engineering ICSE '04, 2004, 

IEEE Computer Society. 

32. Salifu, M., B. Nuseibeh, and L. Rapanotti, "Towards 

context-aware product-family architectures", in First 

International Workshop on Software Product 

Management, 2006, Minneapolis, Minosota, US. 

33. Shanahan, M., "The event calculus explained." Springer 

Lecture Notes in Artificial ntelligence, 1999, 1600, p. 

409–430. 

34. Sochos, P., "Feature models to the architecture", in 

Proceedings of the First International Software Product 

Lines Young Researchers Workshop(SPLYR). 2004. 

35. van der Hoek, A., "Configurable software architecture in 

support of configuration management and software 

deployment", in INTERNATIONAL CONFERENCE 

ON SOFTWARE ENGINEERING, 1999. 

36. Van Lamsweerde, A., "Goal-oriented requirements 

engineering: A guided tour", in Requirements 

Engineering, 2001. Proceedings. Fifth IEEE 

International Symposium, 2002. 

37. Zhang, J. and B.H.C. Cheng, "Using temporal logic to 

specify adaptive program semantics", Architecting 

Dependable Systems-Journal of Systems and Software 

(JSS), 2006, 79(10), p. 1361-1369. 

 


