Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

iversity

The Open

Un

Open Research Online

The Open University's repository of research publications
and other research outputs

A component-based product line architecture for
workflow management systems

Journal ltem

How to cite:

Lazilha, Fabricio Ricardo; Barroca, Leonor; de Oliveira Junior, Edson Alves and de Souza Gimenes, Itana Maria (2004).
A component-based product line architecture for workflow management systems. CLEI Electronic Journal, 7(2 Pape)

For guidance on citations see FAQs!

(© 2009 CLEI
Version: Accepted Manuscript

Link(s) to article on publisher's website:
http://www.clei.cl/cleiej/paper.php?id=95

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online's data |policy on reuse of materials please consult the policies

page.

oro.open.ac.uk

https://core.ac.uk/display/2964?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://www.clei.cl/cleiej/paper.php?id=95
http://oro.open.ac.uk/policies.html

CLEI ELECTRONIC JOURNAL, VOL. 7, NO. 2, PAPER 5, DECEMBER 2004

A Component-based Product Linefor Workflow
M anagement Systems

Itana Maria de Souza Gimenes Fabricio Ricardo Lazilha
Universidade Estadual de Maringa Centro Universitério de Maringa
Departamento de Informética Departamento de Informética
Maringa, Brasil, 87020-900 Maringa, Brasil, 87050-390
itana@din.uem.br fabricio@cesumar.br
Edson Alvesde Oliveira Junior L eonor Barroca
Universidade Estadua de Maringa The Open University
Departamento de Informética Department of Computing
Maringd, Brasil, 87020-900 Milton Keynes, MK7 6AA, England
edson@din.uem.br |.barroca@open.ac.uk
Abstract

This paper presents a component-based product line for workflow management systems. The
process followed to design the product line was based on the Catalysis method. Extensons
were made to represent variability across the process. The domain of workflow management
systems has been shown to be appropriate to the application of the product line approach as
there are a standard architecture and models established by a regulatory board, the
Workflow Management Coalition. In addition, there is a demand for similar workflow
management systems but with some different features. The product line architecture was
evaluated with Rapide simulation tools. The evaluation was based on selected scenarios,
thus, avoiding implementation issues. The strategy that has been used to populate the
architecture and experiment with the product line is shown. In particular, the design of the
wor kflow execution manager component is described.

Keywords: Product line, Reuse, Software Architecture, Workflow Management Systems.
1. Introduction

A software product line [1] is a collection of systems that share a manageable set of features
amongst its main artefacts. These artefacts include a base architecture and a set of common
components that populate the architecture. The design of a product line must consider similarities and
variabilities among4t its products.

Product line is still a recent approach, which demands new architectures and components design
methods. These methods should provide mechanisms to capture and represent domain features and
variabilities. Existing methods include:

- Synthesis [2] - a wide approach to construct software systems representing system family
instances with similar descriptions.

- Family-Oriented Abstraction, Specification and Trandation (FAST) [3] - acommon feature
analysis of the domain which is important to: identify the context; describe the domain; provide
a set of key terms; identify common features and variabilities; quantify variability providing
variation parameters; and identify and register useful information during analysis.

- Product Line Software Engineering (PULSE) [4] - a method to construct and use product
lines. PULSE's general structure includes the following stages. development, technica
components, and support components.

- Feature-Oriented Domain Analysis (FODA) [5]: a method to support reusability on
architectura and functional levels.

CLEI ELECTRONIC JOURNAL, VOL. 7, NO. 2, PAPER 5, DECEMBER 2004

The product line approach is appropriate for domains where there is a demand for specific products
that can be modelled from a set of common features and well-defined variability points. In this paper,
we consider the domain of workflow technology [6]. This technology meets the current needs of
organisations as the reengineering of legacy processes and the modelling and automation of business
processes, supported by workflow systems, are means to improve the productivity and the quality of
processes and products. In addition, workflow systems allow rapid development and modif ication of
systems to comply with the transient and unexpected variations of the business environment.

Workflow systems are applications supported by WM S (Workflow Management Systems). These
systems support definition, management and execution of workflows. WfMS interpret process
definitions, interact with the users (the human agents), and, when necessary they invoke tools and
applications to execute parts of the workflow.

The WIMS domain is appropriate to the application of the product line approach due to both
organisations’ needs and the efforts of the Workflow Management Coalition (WfMC) [7]. This
regulatory board established a generic architecture and a reference model for WEMS that can be used
to customise products to market needs. Organisations need workflow products that have similar
features but with some different aspects. They want smple and adapted products avoiding the
complexity of the broad and general purpose ones. Examples are workflow products with either
traditional or web user interface, and products with different task scheduling agorithms.

This paper presents a component-based product line for WEMS and its design and development
process. Section 2 describes the product line design process. This includes extensions made to
represent variability throughout the process. Section 3 presents the strategy to populate the product
line architecture. In particular, the workflow execution manager component is presented. Section 4
describes related works. Finaly, section 5 presents the conclusions.

2. The Product Line Architecture Design Process

Most of the existing product line design methods are based on domain engineering. In genera, they
are strong in domain modelling, but less efficient to represent architectures and components. We
defend that Component-Based Development (CBD) methods can be used in the design of product
lines to bridge the gap between domain analysis and the architecture and component design and
implementation. General- purpose CBD methods are easy to understand and use. In addition, there are
commercial tools that may be used to support them. In this work, we use the Catalysis method [8] to
guide the WfMS product line architecture design process.

The product line design process proposed in this paper considers:

domain analysis based on the generic architecture and reference models for WfMS of the
WIMC [7];

design of the product line architecture and its components based on Catalysis [8]; and
evaluation of the architecture with Rapide [9] [10] language and tools.

Catalysis was used, asit isa general purpose CBD approach based on UML [11] and encompasses
important concepts such as the central role of software architecture, frameworks and patterns.

Product line approaches that also take CBD into account are Kobra [12] and GenVoca [13], but
they are, as yet, less disseminated than Catalysis.

The proposed product line design process is composed of the following phases. requirements
anaysis, system specification, architectural design and component internal design. The following
sections describe the application of this process to design a component-based product line for WEMS.

2.1 Requirements Analysis

The design of a product line for WfMSS starts from the domain model representing the objects and
actions of the domain. In this phase, it is dready possible to identify similar aspects and variation
points amongst product line members. According to the product line terminology we are proposing an

CLEI ELECTRONIC JOURNAL, VOL. 7, NO. 2, PAPER 5, DECEMBER 2004

architecture and components for a WfMS family of products. Each specific product tat can be
generated from this product line is a member of that family.

The reference model and generic architecture for WfMS of the WfMC were used to extract the
main st of features of the WfMS family. These models define, a a higher-level, the main
components and interfaces that a WfMS should have in order to allow interoperability of sub-products
from different suppliers. In addition, the WIMC defines important characteristics to alow specific
WIMS to be built according to an organisation’ s needs, such as workflow for software production or
workflow for financial administration. Figure 1 presents the generic architecture for WiMS of the
WIMC [7]. The WIMC models aso indicated the potential components of the product line
architecture and their interfaces. The Process Manager Pattern [14] was used, in our approach, to
exploit the WM S domain. This is an architectural pattern for definition of Process-Centred Software
Engineering Environment (PSEE) process managers developed from studies of existing envir onments
and from experiences obtained in the development of one of these environments [15].

Definition
Tool
Generates

May reference Process References
Definition

F> Interpreted by
|

Organization/
Role Model

Workflow
Control Data

il

|
Invokes

Administration
& Monitoriry/ >
Workflow
Relevant
k Interact via ‘Data
Worklist
N

(Supervisor)

Application(s)

Manipulates

Workflow

Work List App data

—>
Invakes Application(s)
. User Interface. »
[] system control Data
|:| External product/data
- Software component

Workflow Participant

Figure 1. Generic architecture for WIMS[7].

A domain model in Catalysis is composed of objects and actions at a high level of abstraction and
is independent of the software solution for the problem. This model is represented by UML use cases.
There are three main actors in the WfMS domain: the workflow architecture manager, who defines
reusable workflow architectures; the workflow manager (supervisor), who controls the instantiation,
resource alocation and task assignment for the workflow; and the workflow user, who executes
workflow tasks. The main use cases associated with these actors are represented in Figures 2, 3 and 4,
respectively. In addition, a sequence diagram was produced for each use case.

One of the main aspects of a product line development is to capture and represent variabilities
associated with the architecture and its components. In requirements analysis, the notation followed is
the use case variability of Jacobson et al. [16] that suggests the stereotype «extend» to represent
variation points in use cases. The extended use case that represents variations is annotated with a mark
(blob). Examples of this representation can be seen in Figures 2, 3 and 4.

CLEI ELECTRONIC JOURNAL, VOL. 7, NO. 2, PAPER 5, DECEMBER 2004

The use case Define Workflow Architecture represents the action of defining workflow
architectures by the workflow architecture manager. The workflow architectures defined are used by
the workflow manager to generate workflow instances. The Define Workflow Architecture use case,
shown in Figure 2, is marked as a variation point to represent the optiona feature Allow Dynamic
Changes. This optional feature allows dynamic updating of workflow architecture. Another example
appears in the use case Define Tool Type that specifies two extensions: Define Internal Tool Type or

Define External Tool Type.

DefineDecisionRules
O A O

<<include>> |
AllowDynamicChanges : ﬁDEﬁﬂEﬁﬂEf&CtTFpe
. | <<includess, -

a
<<extend>> "~ _

s el

=~ -

ks

Q B - <<includess
®__ _______________ e
A

WorkflowArchitectureManager DefineArc hitecture. DefineTaskType

(from BusinessActors)

~ . =<include=>

<<include== T
DefineTool Ty pe DefineRoleType
{ﬂ:extend:—} fﬂf h

b

<<pxtend>= -

O O

DefinelnternalToolType DefineExternalToal Type

Figure 2: Use case diagram for the Workflow Architecture Manager.

The use cases presented in Figure 3 represent the instantiation of workflow architectures,
definition of associated elements and, workflow monitoring and testing. The use case Test Defined
Workflow is marked as a variation point to represent the possibilities of applying prototyping,
statistics generation or simulation mechanisms. The use cases Allocate Resource and Allocate Tool

are aso marked to represent the alocation of either internal or externa tools.

CLEI ELECTRONIC JOURNAL, VOL. 7, NO. 2, PAPER 5, DECEMBER 2004

InstantiateTool .
., InstantiateArtefact Q
. [y

L == .
_ 3 include ». <<includes= :7? _
InstantiateRole . . . <<include»> -]

~. . g LT InstantiateTask

=<include== .. _ oy i .
T it : ke
\-‘H : : -‘H’ O

DefineProject

DefineActor
InstantiateMVorkflowArchitecture

DefineRole
ScheduleTask

\ <<includes>
Simulate® - WorkflowManager [F--------2
~ <<extend=>

(from Busigessfctors)

3 MonitorateWorkflow GenerateWorkflowlog
@ <<extend=> O
TestDefinedyWorkflow el
S AllocateResource Thell e B AllocateMaterial
<<E}{te”d>> ~=:<extend>:= q“‘f}{tend

Prototyping GenerateStatistics AllocateActor

AllocateTool
".Lh.\,
<<gutands= 77 v, <<extends s
AllocatelnternalTool AllocateExternalTool

Figure 3: Use case diagram for the Workflow Manager.

Figure 4 represents the actions related to the execution of workflow by the workflow user. He/she
can visualise, select, execute, cancel, stop, restart, finalise tasks and communicate with other users.
The latter is marked as avariation point to represent communication by teleconference, email or chat.

CLEI ELECTRONIC JOURNAL, VOL. 7, NO. 2, PAPER 5, DECEMBER 2004

O O

ExecuteTask CancelTask

sEemTask\\ /@

StopTask

FinalizeTask WorkflowlUser
(fr

om BusifessActors) O
RestarTask
YisualizeTask

CommunicateMithUsers

=F
=<<pytend=z - fu‘a ™
-::-::extend:—::

SO O

CommunicateViaTeleConference CommunicateVviaEMail CommunicatediaChat

ﬁ:c:extend::::

Figure4: Use case diagram for the Workflow User.
2.2 System Specification

This stage specifies the software solution identified from the domain model. The analysis of the
system’s actions leads to the identification of the types and related actions. Types, in Catalysis, are
specifications of the external view of an object’s behaviour; types are represented by a class diagram.
A sequence diagram was designed for each use case representing the interaction between objects. The
main artefact of this phase is the static type model.

The representation of variation pointsis carried through to the system specification phase. Figure 5
shows the static type model for WEMS. Morisio [17] extended UML with a variability stereotype,
indicated as a «V». This dereotype is related with the concepts of speciaization and aggregation. In
Figure 5, «V» is used to represent types that can vary according to the product features. For instance,
the stereotype «V» is used to represent a variable resource type, TypeResource, which can be
specialised to material, actor or tool types of resources. The tool type is also extended to represent
internal or external types of tool.

CLEI ELECTRONIC JOURNAL, VOL. 7, NO. 2, PAPER 5, DECEMBER 2004

'SINIM Jo} ppow 8dA1o1e1S :Gaunbiy

g

401

T

ABuoneddidyewaixg

D = |oo] jeula)
&._)V &._)V
] *mesed = TR) TR
&._)V IIIIIII .
NV Uy anpayay
[ENBIEWY
i LT T oy
U e
ug ey
\ U
ug Toug o
ug ajoy Ul u Jaejauy (UL ury qsel (ury UL meloas (U0
Ul uy v
CD_
dé
[eualepadi] |oo] [ewalxgadh] _aa._._mﬁ.@c_m =
&._)V &._)V K
aunosadadi] <] joogadi] ul
= i
A '
uy
Joyrgadh]
2 .- uopyadi]
UL uy
urg Whgadiy
ajogadil [y ul pejapgadi] (U] uTy| Aseladil [T U BINJIBUYIMOYO AR
uy UL U
ug Jaaldiau)
Ayuoneso|annosay la|npayagyse] ABAJEUIN I8 YDA A, ABAAO A0 A,

CLEI ELECTRONIC JOURNAL, VOL. 7, NO. 2, PAPER 5, DECEMBER 2004

2.3 Architectural Design

From the static type model severa refinements need to be made to reach the level of components.
Catdysis uses packages as a high-level decomposition unit. A package is an independent unit whose
relationships to the rest of the system can be well established. These packages can be derived from the
static type model and their relationships can be represented as import dependencies. The package
partitioning follows the vertical and horizontal dices approach of Catalysis. The vertica dices
represent the business level partitioning of the generic architecture according to the actions
undertaken by the main actors that interact with the WfMS.

Figure 6 shows the high-level vertical dice diagram, which follows a multi-layer architecture style.
The horizontal dices represent the partitioning of the architecture separating higher-level business
model packages from the infrastructure packages (e.g. middieware or system software). This
partitioning identifies service packages that are shared with higher-level packages. It also ams at
reducing the package importation across the layers. The elements of the WIMC generic architecture
are represented by the packages: WorkflowArchitectureMgr, ObjectMgr, TaskScheduler,
WorkflowExecutionMgr, ResourceAllocationMgr, Interpreter, ExternalApplicationMgr and
WorkflowMagr.

The next step in Catalysis is to refine the high-level vertical dice diagram down to the vertical
layer diagram that represents the final partitioning of the system. The vertical layer diagram maps the
packages of the high-level vertica dice diagram to the types associated with each package. Figure 7
presents the TaskScheduler package and its types. The whole diagram is not shown for lack of space.

\-"u;urkﬂlwﬂ\:'.chit.ectLureMgr <<imports>>) \F’;'DrLTﬂDwMgLr WorkflowE xecutionigr
(from Applicationlayer) fe------22- Tl (from ApplicationLayer) ffrom ApplicationLayer)
[~~~ &=importsss .

: Tl ,»’::<impnrts>>: ﬂimpﬂrisiiiz"’

: ,:"‘:“1 \L{ J."

i <impontsss o7 E i
==imporss: — P ' TazkScheduler) Interpreter

i i from ApplicationLayer) —‘E‘Elrn-p-uﬁ-s??-}* {fram ApplicationLayer)

ResourceAllocationhgr 0 { PP ¥ At)

1| (from ApplicationLayer) i T - T

! ! <<importsz .’ <<impm5>?’,x’ :

v g <<imports>> ' W e '

| Vi :
External&pplicationigr E Objecthdgr :
(from ApplicationLayer) ------------------ . - - 3from Systemlayer) !

Figure 6: High-level vertical slice diagram.

The TaskScheduler package is responsible for the control and management of tasks and actions to
be undertaken in the workflow, such as modifying an artefact using an external tool. Thus, some types
that appear in the static type diagram (Figure 5) are associated with this package as shown in Figure 7.
Variation points are associated with types Resource and Tool.

CLEI ELECTRONIC JOURNAL, VOL. 7, NO. 2, PAPER 5, DECEMBER 2004

Task Scheduler
0.*[1.7 1.
Task 1. * 9 *| Arefact ¥ Raole
1.7 *
<|>_| Acfion U gt 1.7 0.7
1= Schedule
+ Taal 1.7 1
s
haterial o
iy Resource
IV ¥
[nternalTaoal ExternalTool
o> P Actar
i
o+

Figure 7: Specification of the TaskScheduler package.
2.3.1 Component Architecture

The vertical layers diagram is the result of the identification and specification of components. The
components are represented by the generic packages encompassing their types and relationships. The
component architecture designed from the diagramin Figure 6 is shown in Figure 8.

Most of the packages were mapped to components. This is a result of our experience with the
domain. Several iterations of this system specification were carried out. Therefore, the specification
architectureis closer to the component architecture.

A description of the components and the variabilities associated with this architecture is as follows.

Graphicall nterfaceMgr: responsible for user interface management. One variation point is the user
interface being viaweb browser or conventional.

WorkflowArchitectureMgr: supports the definition and maintenance of workflow architectures.
This component makes the workflow definition more flexible as the workflow types are not static.
Variation points include the resource type, the tool type, and the process language supported.
Resource can be speciadised into actor, tool and materia types. Tool type can be either interna or
externd. Different process programming languages can be supported depending on the interpreter.

WorkflowMgr: responsible for the instantiation and management of projects that are associated
with aworkflow. A project includes an instantiation of aworkflow architecture. For each workflow
element in the architecture there is an object in the workflow instance. No variation points were
defined for this component as yet.

WorkflowExecutionMgr: responsible for the control and management of workflows. The main
variation point in this component is the possibility of executing different scheduling agorithms.

TaskScheduler: responsible for the scheduling of tasks. It alows the interaction between the users
and the tasks. Variation points include resources to be used: types of resources and tools to be used
(external or internal).

CLEI ELECTRONIC JOURNAL, VOL. 7, NO. 2, PAPER 5, DECEMBER 2004

‘[6T]1 SN 104 81n10811y2Re Jusuodwo) g8 inbi4

1By se] BIndaxg)

1Hpduogeinasxg)

i B UOIINDEE JAMOPIO A,

FENEILIENIT [

I8|NpayIsyse]

: 1Epymo o aBeuEpy|

;
Yotk BRI 1fpanosaygioajag)
e . -
P T .\\\
A M e e e
g By eEsEREme 20
L 5
L Al
n i
L .
i i B se weddiold

-
~
-
5

: Wiseanpayasg) - 1B IN0 SEHUOIED D]

e s -
||||||||||||| .

AR UDIEID| e IN0S ey

AB DDA

W

- 16y uoipeandidy|ewalxgaxoa|

...................... WO‘

1B uoneanddyeuisig

AR RINI2ENY MO AOAN

CLEI ELECTRONIC JOURNAL, VOL. 7, NO. 2, PAPER 5, DECEMBER 2004

Resour ceAllocationMgr: responsible for resource alocation (e.g. actors, tools and materia). In
addition to the resource type and tool type, variation points include resource allocation policies.

External ApplicationMgr: responsible for the management of external applications during the
workflow definition and task execution. Variation points include different mechanism to adapt
externa applications to the workflow.

ObjectMgr: responsible for the object management support. It maintains workflow data such as:
control data, information data and even awhole workflow. All other components of the architecture
use its services. This makes the architecture independent from the object management system.
Variation points include adapters for different databases.

Interpreter: responsible for the execution of a workflow script written in a process programming
language [7].

The following section shows the specification of invariants, preconditions and post-conditions for
the TaskScheduler component and the representation of the technical architecturein CORBA IDL.

2.3.2 Specification of Invariants, Precondtions and Post-Conditions

The use of invariants, preconditions and post-conditions are important in this phase. Either a
textual description language or a more formal language can be used. As Catalysis suggests, OCL
(Object Constraint Language) [20] is used as it alows the specification of well-defined constraints,
associated UML, from the beginning of the design process. Figure 9 presents the OCL specification
for the methods of the interface |ExecuteTaskMgt of the TaskScheduler component.

Cont ext | ExecuteTaskMyt :: selectTask(task : Task) : Task
pre : -- The task nust exist.
Task. al | nst ances- >i ncl udes(t ask)
post : -- The paraneter task is returned as the result of the operation

result = task

context | ExecuteTaskMyt :: executeTask(task : Task) : Bool ean
pre: -- The task nust be in state 4 (Ready)

task.status = 4
post: -- The task is in state 6 (Executing)

task.status = 6 and
result = true

context | ExecuteTaskMyt :: cancel Task(task : Task) : Bool ean
pre: -- The task nust be in state 6 (Executing)

task.status = 6
post: -- The task is in state 9 (Term nated)

task.status = 9 and
result = true

context | ExecuteTaskMyt :: interruptTask(task : Task) : Bool ean
pre: -- The task nust be in state 6 (Executing)

task.status = 6
post: -- The task is in state 5 (Suspended).

task.status = 5 and
result = true

context | ExecuteTaskMyt :: restartTask(task : Task) : Bool ean
pre: -- The task nust be in state 5 (Suspended)

task.status =5
post: -- The task is in state 6 (Executing)

task.status = 6 and
result = true;

context | ExecuteTaskMyt :: finalizeTask(task : Task) : Bool ean

CLEI ELECTRONIC JOURNAL, VOL. 7, NO. 2, PAPER 5, DECEMBER 2004

pre: -- The task nust be in state 8 (finalized).
task.status = 8
post: -- The task is in state 9 (term nated).

task.status = 9 and
result = true;

context | ExecuteTaskMgt :: visualizeTask(actor : Actor, role : Role)
Set (Task)
pre: -- The role nane nust be "WORKFLOW MANAGER' or "WORKFLOW USER".

rol e.rol eNane = "WORKFLOW MANAGER" or rol e. rol eName = "WORKFLOW USER"
post:

if role.roleNane = "WORKFLOW MANAGER' t hen
result = Task. alllnstances
el se
if role.roleNanme = "WORKFLOW USER" t hen
result = Task.alllnstances->collect(t: Task|t.Role.includes("WRKFLOW,

USER"))
endi f
endi f
context | ExecuteTaskMyt :: postponeTask(task : Task, newDate : String, actor
Actor) : Bool ean
pre: -- The task nust be in state 6 (Executing) and the new end date is

greater than the old end date

task.status = 6 and newDdate > task.endDat e
post: --

t ask. endDat e = newDat e and

result = true;

Figure 9: OCL specification of the TaskScheduler component.

2.3.3 Technica Architecture

According to Catalysis, the modelling of the logical architecture, as shown in Figure 8, is
followed by the design decisions regarding the implementation mechanisms to be used, for instance
the middleware. The result is a technical architecture as shown in Figure 10. In this case a CORBA
Object Request Broker (ORB) [21] was considered as the middleware.

The components of the architecture have well defined interfaces in the CORBA Interface
Definition Language (IDL). These IDL interfaces can be generated from tools such as Rational Rose
[22]. The representation of the component interface in IDL alows for the individual implementation
of the components in any language, operating system or network. The requested component replies or
not according to communication constraints defined in the component architecture.

CLEI ELECTRONIC JOURNAL, VOL. 7, NO. 2, PAPER 5, DECEMBER 2004

Graphical
Interface
Manager
A
Workflow Architecture Workflow Manager Workflow Execution Manager
Manager
; Instartiation of an architecture and .
Workflowda;_czr;gecture types managemen of the defined processes for an Execution of the wvork flowe for an
efinition architecture. user.
F 3 I
Rsource Allocation Task Scheduler Interpreter
Manager
. N Translate the process
Allocation and management S;Eim;hz)ﬁfcoﬂzgk?d definitions during the tasks
of the resources. = . execution.
4 Fy I
¥ ¥ ¥ ¥ Y Y
ORB
A Fy
Y ¥
. External Application
Object Manager Manager

Management of external

applications during the

processes execution.

Figure 10: The WfM S product line architecture in CORBA.

Figure 11 presents the CORBA IDL for the TaskScheduler component generated by Rational
Rose.

#i f ndef __TASKSCHEDULER DEFI NED
#defi ne __TASKSCHEDULER DEFI NED

#i nclude "Interpreter.idl”

#i ncl ude "Wor kfl owArchitectureMgr.idl"
#i ncl ude "ResourceAl |l ocationMgr.idl"
#i ncl ude "Wor kf | owExecuti onMgr.idl"

#i ncl ude "External ApplicationMr.idl"

modul e TaskShedul er {
i nterface | Schedul eTaskivgt {
bool ean request Connection (String userNane, String passWrd);
bool ean schedul eTask (Task task, Actor actor, Role role, Wrkflow
wor kf | ow) ;

b

i nterface | ExecuteTaskMyt {
Task sel ect Task (Task task);
bool ean executeTask (Task task);
bool ean cancel Task (Task task);
bool ean i nterrupt Task (Task task);
bool ean restart Task (Task task);
bool ean finalizeTask (Task task);
Task[] visualizeTask (Actor actor, Role role);
bool ean postponeTask (Task task, String newDate, Actor actor);
b
b

#endi f

Figure11: CORBA IDL for the TaskScheduler component.

CLEI ELECTRONIC JOURNAL, VOL. 7, NO. 2, PAPER 5, DECEMBER 2004

The communication between components is carried out by the ORB. The requested component
answer or not according to the restrictions applied to the requested communication based on the
architectural style.

2.4 Architecture Evaluation

Bosch [23] identified four ways of evauating product line architectures. scenarios,
simulation, mathematicall models and evaluation based on past experiences. In this section we
described the process of defining the proposed architecture. This process is based on Catayss,
Cataysis, however, does not support simulation. Thus, in order to evaluate the proposed architecture
without delving into implementation details, we opted for an Architecture Definition Language
(ADL). Thislanguage is focused on the representation of high-level structures abstracting away from
implementation details. The Rapide ADL [10] was chosen to specify the proposed architecture, asit is
a generad purpose ADL for the modelling of component interfaces and their externaly visible
behaviour. In addition, there is a support environment that alows the definition of the architecture and
its simulation. Figure 12 presents the Rapide code for the TaskScheduler component used to smulate
the architecture.

TYPE TASK_SCHEDULER i s | NTERFACE
action
in Schedul e_Task();
out Insert_Task();
in Insert_Task_ COK();
out Schedul e_Task_OK();
in Execute_Task1();
out Sel ect _Task();
in Select_Task_CK();
out Execute_Script();
in Execute_Script_OK();
out Execute_Taskl OK();

BEHAVI OR
action ani mati on_l am (nane: string);

BEG N
start => ani mati on_| an{" TASK_SCHEDULER") ; ;
Schedul e_Task() => Insert_Task();;
Insert_Task _OK() => Schedul e_Task_OK();;
Execut e_Task1() => Sel ect Task();;
Sel ect _Task_OK() => Execute_Script();;
Execute_Scri pt_OK() => Execute_Taskl OK();;

END,

Figure 12: Rapide code for the TaskScheduler component [24].

The simulation was carried aut based on the selection of relevant scenarios for WFMS. Sequence
diagrams were drawn to represent the interaction of each specific scenario using components in the
place of abjects. The architecture was executed according to the scenarios to simulate the behaviour
of the system. Each scenario represented the view of each WfMS user: workflow architecture
manager, workflow manager (supervisor), and workflow user. Once an erroneous message was
observed, the sequence diagram was adjusted to correct the components communication and the
overall simulation was repeated.

Figure 13 presents a snapshot of the smulation in which the TaskScheduler sends the
message Select_Task to the Object Manager component.

CLEI ELECTRONIC JOURNAL, VOL. 7, NO. 2, PAPER 5, DECEMBER 2004

= Raptor 3.3.16 M =l
File Simulation Options

SEEr =

Workilow External
Architecture Application

|—_> Mgr Mgr
— Workflow
Mgr
l—— Resource

Allocation
Mgr

—

Graphic
Interface
Mgr

Object
Myr

Worktlow

L | Execution
Mgr .-I

L Interpreter
Task
gcheduler =l

Figure 13: Snapshot of architecture simulation.

The analysis of the dynamic behaviour of the components of the proposed architecture alowed the
evaluation of both the communication between components and the general features of the system
avoiding implementation issues. This analysis permits the debugging d communication based on
scenarios from the use cases. However, it was not sufficient to demonstrate that the architecture is
correct. The complete evaluation needs more precise techniques for architecture evaluation [25].
Criteria need to be established to alow derivation of statistical data from the simulation.

3. Component Internal Design

The strategy followed to populate the product line has been to develop each component also
based on the Catalysis method. The design of the components has been easier because there was a
legacy implementation of a software engineering environment, the EXPSEE [15], which has many
similar classes to those of the new components.

In the following subsections we present the mechanisms used to implement the product line
and the design of the WorkflowExecutionMgr component.

3.1 Mechanisms used to Implement the Product Line

In order to experiment with the product line an implementation of it has been carried out. The
mechanisms used to implement the product line were chosen based on open source tools so that the
product line can be broadly used. The mechanisms chosen are as follows [26]:

Programming Language: Java, as it is part of a technology that has many resources to be
used in both scientific and commercia applications [27].

GUI: the Swing (Java 2) toolkit [27] and the JHotDraw framework [28]. Swing has a broad
set of graphical elements and it is continuoudly updated. JHotDraw has a very smple API that
alows easy implementation of Java applications.

Communication services. CORBA JacORB [29], is an ORB (Object Request Broker)
implemented in Java that has many functionalities not identified in similar products.
Database Management System: MySQL [30] together with the ObJectBridge framework
[31]. MySQL provides services for the manipulation of persistent data. ObJectBridege was
written in Java and allows the mapping of Java Objects to MySQL based on XML (Extensible
Markup Language).

CLEI ELECTRONIC JOURNAL, VOL. 7, NO. 2, PAPER 5, DECEMBER 2004

3.2 Design of the Wor kflowExecutionM gr Component

The WorkflowExecutionMgr was designed by Halmeman [32]. The development of this
component affected the overall architecture as presented in Figure 14. As a result, the main focus of
the TaskScheduler component is the scheduling of the tasks to be executed by the
WorkflowExecutionMgr.

ExternalApplicationiigr Wikl ovwArchite cturehdgr
R o A — e

keExternal - ICreatefrchitect
pRicagonhigt - | urebigt
S

. | N B
' H - IS electfrchite ctur IProgram Taskhig
___ ehigt
e
— T -. O omeeen
'
hdgt

Wia el cvubd gr

6 I 1 an &g & defl ouuhd gt

I i
' e |
E "% Interpreter % TakScheduler .
|Exz cuteScripthigt |Schedule T askhd gt

Figure 14: Component architecture for WfMS revised [32].

The WorkflowExecutionMgr focuses on the management of the execution of the tasks from a
previously instantiated workflow. The workflow user requests the task execution to the
WorkflowExecutionMgr through the WorkflowMgr. As a result the WorkflowExecutionMgr verifies
if the precondition is satisfied. If they are satisfied it changes the task state and instantiates the time
preconditions and transition managers. When the task is finalised its state is changed to satisfy the
postcondition.

Two types of tasks were considered: automatic and manual. The state transitions are the same
for both task types. The difference is in the invocation of tasks by the users. The manua tasks are
activated by human intervention whereas the automatic tasks are activated by the
WorkflowExecutionMgr.

The requirement specification for the WorkflowExecutionMgr component produced both the
business and use case models. The system specification phase produced the details of the software
solution. Figure 15 presents the component model for the WorkflowExecutionMgr component. The
TimeMgr, PreConditionMgr and TaskTransitionMgr classes control the execution time, preconditions
and state transitions respectively. The main variation point identified in the WorkflowExecutionMgr
component is the possibility of executing different scheduling algorithms. In this case two variations
are possible: Seria Scheduling or PriorityControl Scheduling. The WorkflowExecutionMgr component
interface was specified in OCL.

CLEI ELECTRONIC JOURNAL, VOL. 7, NO. 2, PAPER 5, DECEMBER 2004

O
|[ExecuteTaskhot
Actaor
0.*
Bt /
WorkflowExecutionhigr o Task
1.0 Worldlow
a.*
LA
SerialScheduling Timerkgr
0.*
PreConditionhgr
EE AT .
FriortyControlScheduling 0.
TaskTransitionhigr

Figure 15: WorkflowExecutionM gr component [32].

In order to automatically decide which agorithm to implement for the component in the
experiment carried out, an XML script containing parameters necessary for the variability
instantiation was specified. An example of the script for the WorkflowExecutionMgr is shown in
Figure 16. This figure describes the XML structure to represent the variability correspondent to the
scheduling agorithm used for the component. The tags <vari abilityDescriptor> and
</variabilityDescriptor> represent the beginning and end of a variability. The tags
<variability.class> <variability.name> and <variability.value> represent the
component name (WorkflowExecutionMgr) to which the variability is associated, the variability
identification (SchedulingAlgorithm) and variability decision respectively. In this case a SERIAL
schedule was chosen.

<l-Variability for Workfl owexecutionMgr -->

<vari abilityDescriptor>
<variability.class>Workfl| owExecuti onMgr</variability.class>
<vari ability. name>Schedul i ngAl gorithnx/variability. name>
<variability.val ue>SERI AL</variability.val ue>
</variabilityDescriptor>

Figure 16: An example of an XML script for the WorkflowExecutionMgr [32].

In addition to the WorkflowExecutionMgr, the TaskScheduler component had aready been
developed [33] athough not following the product line approach; it had only to be refactored.

4. Related Works

There is not an established and systematic relationship between the techniques for reuse,
domain engineering, product line, software architecture and frameworks [34]. They are basically seen
as complementary techniques. Well-known methods for domain anaysis [5] are used for the
identification of concepts and functionalities required for a family of products in order to represent
them as a generic model. This model is the main infrastructure to support reuse. These methods use
the concept of features to represent the common functionalities and variabilities of a domain. The
product line approach is directly related to frameworks. Our approach evolves from previous work
both on frameworks and components. Gimenes et al. [18] proposed techniques for defining

CLEI ELECTRONIC JOURNAL, VOL. 7, NO. 2, PAPER 5, DECEMBER 2004

frameworks within the WfMS domain that offer guidelines for the architecture design presented in
this work. These techniques involve the concept of model framework from Catalysis as a base to
generate components.

The application of a product line approach to the workflow management system domain, as presented
in this paper, is novel. As far as we know there are no previous works that take a similar approach in
this domain of gpplication. The product line approach itself presents extensions to previous works.
We introduce the use of the Catalysis method [8] to encompass the explicit use of component-based
concepts as well s UML based representation to the product line approach. These ideas are adso
applied in Kobra [12], which has been developed amost in paralel with our work. Kobra is a
component-based evolution of Pulse [4].

GenVoca [13] is a mature method based on the concepts of virtua machine, component layers
(representing an implementation of the virtual machine) and an architecture-reallm (as a set of
components). We diverge from GenVoca in that one of the guidelines of our approach isto stay closer
to current well-known UML-based software development methods, instead of generating an overall
new method, support tools and formalisms. We envision product line concepts incorporated in current
successful tool suitesin the future [22].

5. Summary

This paper presented the process followed to define a component-based product line for WEMS.
Extensions made to represent variability across the process were presented. These extensions were
based on Jacobson [16] and Morisio [17].

We argue that CBD can be used in the design of product lines to bridge the gap between domain
analysis and the architecture and component design and implementation. Genera-purpose CBD
methods are easy to understand and use. In addition, there are commercia tools that may be used to
support them. In this work we have used Catalysis [8] to design the product line component
architecture. The domain analysis was carried out based on the generic architecture and reference
models for Workflow Management System (WfMS) of the Workflow Management Coalition
(WFfMC) [7]. The evauation of the architecture was carried out by its specification in the Rapide ADL
and simulation within the Rapide environment. This allowed the evauation of the architecture based
on selected scenarios avoiding implementation details. However, further investigation is needed to
extract statistical data from the smulation.

Members of the WfMS family can be generated from the proposed product line by providing their
specific requirements. These requirements are used to select and instantiate the variabilities of the
component architecture. The complete construction of the product line is a large project. Currently
we are populating the architecture by either developing novel components or adapting previously
developed components [15]. We are aso working on formalising the product generation process.

References

[1] P. Clements, L. Northrop. Software Product Line: Practices and Patterns Addison Wesley
Longman, 2001.

[2] Software Productivity Consortium. Reuse-Driven Software Processes Guidebook. SPC-92019-
CMC verson 02.00.03, Nov. 1993.

[3] D. M. Wess, T. R. L. Chi. Software Product-Line Engineering: A Family-Based Software
Development Approach. Addison-Wesley, 1999.

[4 J Bayer, O. Flege, P. Knauber, R. Lagua, D. Muthig, K. Schmid, T. Widen, J. DeBaud. PuLSE:
A Methodology to Develop Software Product Lines, in 1999 Proc. Symposium on Software
Reusability - SSR99 Conference, May 1999.

CLEI ELECTRONIC JOURNAL, VOL. 7, NO. 2, PAPER 5, DECEMBER 2004

[5]

[6]

[7]
[8]
(9

[10]
[11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]

[19]

[20]
[21]

[22]
[23]

[24]

[25]
[26]

[27]

K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson. FeatureOriented Domain Analysis
(FODA) Feasibility Sudy, (CMU/SEI-90-TR-21, ADA 235785), Pittsburgh, PA: SEI CMU,
1990.

D. Georgakopoulos, M. F. Hornick, A. P. Sheth. An Overview of Workflow Management: From
Process Modeling to Workflow Automation Infrastructure. ACM Distributed and Paralléel

Database, No. 3, p. 119-153, 1995.

Workflow Management Coalition. Workflow Reference Model. Document number TC00-1003,
January, 1995.

D. F. D’ Souza, A. C. Wills. Objects, Components and Frameworks with UML — The Catalysis
Approach. Addison Wedey Publishing Company, 1999.

D. C. Luckham, J. J. Kenney, L M. Augustin, J. Vera, D. Bryan, W. Mann. Specification and
Analysis of System Architecture Using Rapide, |IEEE Trans. on Software Engineering, Specia
Issue on Software Architecture, vol 21, No. 4, pp. 336-355, 1995.

Computer Science Lab. DRAFT Guide to Rapide 1.0 — Language Reference Manuals, Rapide
Design Team — Program Analysis and Verification Group. Stanford University, 1997.

J. Rumbaugh, |. Jacobson, G. Booch. The Unified Modeling Language Reference Manual,
Addison-Wedey Pub. Company, 1999.

C. Atkinson, J. Bayer, O. Laitenberger, J. Zettel. Component-Based Product Line Devel opment:

The Kobra Approach, in 2000 Proc. 1st International Software Product Line Conference. 2000,
pp. 289-309.

Batory, D. Product Line Architectures. Erfurt, Germany. Smaltalk and Java in Industrie and
Ausbildung. 1998.

[. M. S. Gimenes, G. Weiss, E. H. M. Huzita. Um Padréo para Definicdo de um Gerenciador
de Processos de Software, in 1999 Proc. II Workshop Ibero Americano de Engenharia de
Requisitos Y Ambientes de Software, San José, Costa Rica, |deas 1999 Memorias, 1999, pp.
30-46.

I. M. S. Gimenes, E. H. M. Huzita, Stenmacher, |. F., Takano, E. T. EXPSEE — An
Experimental Process Centred Software Engineering Environment, Technical Report,
UEM/CTC/DIN, Feb. 2002.

I. Jacobson, M. Griss, P. Jonsson. Software Reuse — Architecture Process and Organization for
Business Success, New York: Addison-Wedey, 1997.

M. Morisio, G. H. Travassos, M. Stark. Extending UML to Support Domain Analysis, in 2000
Proc. |EEE International Conference on Automated Software Engineering, pp. 321-324.

I. M. S. Gimenes, L. Barroca. Enterprise Frameworks for Workflow Management Systens.
Software Practice & Experience. N0.32, 2002, pp.755-769.

[. M. S. Gimenes, E. A. Oliveira Junior, F. R. Lazilha, L. M. Barroca. A Product Line
Architecture for Workflow Management Systems with Component-based Devel opment, in 2003
Proc. The IEEE Conference on Information Reuse and Integration, pp. 112-119.

Object Management Group — OMG Document: UML 2.0 OCL 2nd Revised Submission —
http://www.omg.org/cgi-bin/doc?ptc/2003-10-14 - 2005.

Object Management Group. Catalog of OMG CORBAO/IIOPO Specifications. Available:

http://www.omg.org/technol ogy/documents/corba _spec catalog.htm - 2005

Rational Software— http://www-306.ibm.com/software/rational/ - 2005.

J. Bosch. Design & Use Of Software Architectures. Adopting and Evolving a Product-Line
Approach, Addison-Wed ey, 2000.

F. R. Lazilha, I. M. S. Gimenes, E. A. Oliveira Junior. Uma Arquitetura de Linha de Produto
para Sstemas de Gerenciamento de Workflow de Acordo com a Abordagem de
Desenvolvimento Baseado em Componentes, in 2003 Proc. 3* Jornadas |bero-Americanas de
Engenharia de Software e Engenharia de Conhecimento, Nov. 2003).

P. Clements, R. Kazman, M. Klein, Evaluating Software Architectures. Methods and Case
Sudies, Addison-Wedey Pub. Company, 2002.

E. A. Oliveira Junior, I. M. S. Gimenes. Especificagdo de um Sstema Gerenciador de
Workflow de Acordo com a Abordagem de Desenvolvimento Baseado em Componentes,
Revista Eletronica de Iniciacdo Cientificada SBC (REIC), Porto Alegre-RS, Set. 2003.

Java Technology - http://www.java.sun.com - 2005.

CLEI ELECTRONIC JOURNAL, VOL. 7, NO. 2, PAPER 5, DECEMBER 2004

[28]
[29]
[30]
[31]
[32]

[33]

[34]

JHotDraw - http://www.jhotdraw.org - 2005.

JacORB - http://www.jacorb.org - 2005.

MySQL - http://dev.mysgl.com - 2005.

The Apache DB Project: ObJectRelational Bridge - http://db.apache.org/ojb - 2005.

R. J Hameman, I. M. S. Gimenes. Projeto do Componente Gerenciador de Execucgéo de
Workflow Segundo a Abordagem de Linha de Produto de Software Dissertagcdo de Mestrado,
Universidade Federa do Parand, Curitiba-PR, julho de 2003.

[. M. S. Gimenes, S. A. Tanaka, J. P. M. Oliveira. An Object Oriented Framework for Task
Scheduling, in 2000 Proc. TOOLS Europe, vol 1, pp. 383-3%4.

J. Poulin. Software Architectures, Product Lines, and DSSAs: Choosen the Appropriate Level of
Abstraction, in Proc. 1997 WISRS.

