4,334 research outputs found

    Approximation Algorithms for Covering/Packing Integer Programs

    Get PDF
    Given matrices A and B and vectors a, b, c and d, all with non-negative entries, we consider the problem of computing min {c.x: x in Z^n_+, Ax > a, Bx < b, x < d}. We give a bicriteria-approximation algorithm that, given epsilon in (0, 1], finds a solution of cost O(ln(m)/epsilon^2) times optimal, meeting the covering constraints (Ax > a) and multiplicity constraints (x < d), and satisfying Bx < (1 + epsilon)b + beta, where beta is the vector of row sums beta_i = sum_j B_ij. Here m denotes the number of rows of A. This gives an O(ln m)-approximation algorithm for CIP -- minimum-cost covering integer programs with multiplicity constraints, i.e., the special case when there are no packing constraints Bx < b. The previous best approximation ratio has been O(ln(max_j sum_i A_ij)) since 1982. CIP contains the set cover problem as a special case, so O(ln m)-approximation is the best possible unless P=NP.Comment: Preliminary version appeared in IEEE Symposium on Foundations of Computer Science (2001). To appear in Journal of Computer and System Science

    Approximability of Sparse Integer Programs

    Get PDF
    The main focus of this paper is a pair of new approximation algorithms for certain integer programs. First, for covering integer programs {min cx:Ax≥b,0≤x≤d} where A has at most k nonzeroes per row, we give a k-approximation algorithm. (We assume A,b,c,d are nonnegative.) For any k≥2 and ε>0, if P≠NP this ratio cannot be improved to k−1−ε, and under the unique games conjecture this ratio cannot be improved to k−ε. One key idea is to replace individual constraints by others that have better rounding properties but the same nonnegative integral solutions; another critical ingredient is knapsack-cover inequalities. Second, for packing integer programs {max cx:Ax≤b,0≤x≤d} where A has at most k nonzeroes per column, we give a (2k 2+2)-approximation algorithm. Our approach builds on the iterated LP relaxation framework. In addition, we obtain improved approximations for the second problem when k=2, and for both problems when every A ij is small compared to b i. Finally, we demonstrate a 17/16-inapproximability for covering integer programs with at most two nonzeroes per colum

    Approximability of Sparse Integer Programs

    Get PDF
    The main focus of this paper is a pair of new approximation algorithms for certain integer programs. First, for covering integer programs {min cx: Ax >= b, 0 <= x <= d} where A has at most k nonzeroes per row, we give a k-approximation algorithm. (We assume A, b, c, d are nonnegative.) For any k >= 2 and eps>0, if P != NP this ratio cannot be improved to k-1-eps, and under the unique games conjecture this ratio cannot be improved to k-eps. One key idea is to replace individual constraints by others that have better rounding properties but the same nonnegative integral solutions; another critical ingredient is knapsack-cover inequalities. Second, for packing integer programs {max cx: Ax <= b, 0 <= x <= d} where A has at most k nonzeroes per column, we give a (2k^2+2)-approximation algorithm. Our approach builds on the iterated LP relaxation framework. In addition, we obtain improved approximations for the second problem when k=2, and for both problems when every A_{ij} is small compared to b_i. Finally, we demonstrate a 17/16-inapproximability for covering integer programs with at most two nonzeroes per column.Comment: Version submitted to Algorithmica special issue on ESA 2009. Previous conference version: http://dx.doi.org/10.1007/978-3-642-04128-0_

    Linear Programming Tools and Approximation Algorithms for Combinatorial Optimization

    Get PDF
    We study techniques, approximation algorithms, structural properties and lower bounds related to applications of linear programs in combinatorial optimization. The following "Steiner tree problem" is central: given a graph with a distinguished subset of required vertices, and costs for each edge, find a minimum-cost subgraph that connects the required vertices. We also investigate the areas of network design, multicommodity flows, and packing/covering integer programs. All of these problems are NP-complete so it is natural to seek approximation algorithms with the best provable approximation ratio. Overall, we show some new techniques that enhance the already-substantial corpus of LP-based approximation methods, and we also look for limitations of these techniques. The first half of the thesis deals with linear programming relaxations for the Steiner tree problem. The crux of our work deals with hypergraphic relaxations obtained via the well-known full component decomposition of Steiner trees; explicitly, in this view the fundamental building blocks are not edges, but hyperedges containing two or more required vertices. We introduce a new hypergraphic LP based on partitions. We show the new LP has the same value as several previously-studied hypergraphic ones; when no Steiner nodes are adjacent, we show that the value of the well-known bidirected cut relaxation is also the same. A new partition uncrossing technique is used to demonstrate these equivalences, and to show that extreme points of the new LP are well-structured. We improve the best known integrality gap on these LPs in some special cases. We show that several approximation algorithms from the literature on Steiner trees can be re-interpreted through linear programs, in particular our hypergraphic relaxation yields a new view of the Robins-Zelikovsky 1.55-approximation algorithm for the Steiner tree problem. The second half of the thesis deals with a variety of fundamental problems in combinatorial optimization. We show how to apply the iterated LP relaxation framework to the problem of multicommodity integral flow in a tree, to get an approximation ratio that is asymptotically optimal in terms of the minimum capacity. Iterated relaxation gives an infeasible solution, so we need to finesse it back to feasibility without losing too much value. Iterated LP relaxation similarly gives an O(k^2)-approximation algorithm for packing integer programs with at most k occurrences of each variable; new LP rounding techniques give a k-approximation algorithm for covering integer programs with at most k variable per constraint. We study extreme points of the standard LP relaxation for the traveling salesperson problem and show that they can be much more complex than was previously known. The k-edge-connected spanning multi-subgraph problem has the same LP and we prove a lower bound and conjecture an upper bound on the approximability of variants of this problem. Finally, we show that for packing/covering integer programs with a bounded number of constraints, for any epsilon > 0, there is an LP with integrality gap at most 1 + epsilon

    Towards More Practical Linear Programming-based Techniques for Algorithmic Mechanism Design

    Get PDF
    R. Lavy and C. Swamy (FOCS 2005, J. ACM 2011) introduced a general method for obtaining truthful-in-expectation mechanisms from linear programming based approximation algorithms. Due to the use of the Ellipsoid method, a direct implementation of the method is unlikely to be efficient in practice. We propose to use the much simpler and usually faster multiplicative weights update method instead. The simplification comes at the cost of slightly weaker approximation and truthfulness guarantees
    • …
    corecore