8,390 research outputs found

    Bi-Criteria and Approximation Algorithms for Restricted Matchings

    Full text link
    In this work we study approximation algorithms for the \textit{Bounded Color Matching} problem (a.k.a. Restricted Matching problem) which is defined as follows: given a graph in which each edge ee has a color cec_e and a profit pe∈Q+p_e \in \mathbb{Q}^+, we want to compute a maximum (cardinality or profit) matching in which no more than wj∈Z+w_j \in \mathbb{Z}^+ edges of color cjc_j are present. This kind of problems, beside the theoretical interest on its own right, emerges in multi-fiber optical networking systems, where we interpret each unique wavelength that can travel through the fiber as a color class and we would like to establish communication between pairs of systems. We study approximation and bi-criteria algorithms for this problem which are based on linear programming techniques and, in particular, on polyhedral characterizations of the natural linear formulation of the problem. In our setting, we allow violations of the bounds wjw_j and we model our problem as a bi-criteria problem: we have two objectives to optimize namely (a) to maximize the profit (maximum matching) while (b) minimizing the violation of the color bounds. We prove how we can "beat" the integrality gap of the natural linear programming formulation of the problem by allowing only a slight violation of the color bounds. In particular, our main result is \textit{constant} approximation bounds for both criteria of the corresponding bi-criteria optimization problem

    Computing Bounds on Network Capacity Regions as a Polytope Reconstruction Problem

    Get PDF
    We define a notion of network capacity region of networks that generalizes the notion of network capacity defined by Cannons et al. and prove its notable properties such as closedness, boundedness and convexity when the finite field is fixed. We show that the network routing capacity region is a computable rational polytope and provide exact algorithms and approximation heuristics for computing the region. We define the semi-network linear coding capacity region, with respect to a fixed finite field, that inner bounds the corresponding network linear coding capacity region, show that it is a computable rational polytope, and provide exact algorithms and approximation heuristics. We show connections between computing these regions and a polytope reconstruction problem and some combinatorial optimization problems, such as the minimum cost directed Steiner tree problem. We provide an example to illustrate our results. The algorithms are not necessarily polynomial-time.Comment: Appeared in the 2011 IEEE International Symposium on Information Theory, 5 pages, 1 figur

    Towards More Practical Linear Programming-based Techniques for Algorithmic Mechanism Design

    Get PDF
    R. Lavy and C. Swamy (FOCS 2005, J. ACM 2011) introduced a general method for obtaining truthful-in-expectation mechanisms from linear programming based approximation algorithms. Due to the use of the Ellipsoid method, a direct implementation of the method is unlikely to be efficient in practice. We propose to use the much simpler and usually faster multiplicative weights update method instead. The simplification comes at the cost of slightly weaker approximation and truthfulness guarantees

    A hybrid constraint programming and semidefinite programming approach for the stable set problem

    Full text link
    This work presents a hybrid approach to solve the maximum stable set problem, using constraint and semidefinite programming. The approach consists of two steps: subproblem generation and subproblem solution. First we rank the variable domain values, based on the solution of a semidefinite relaxation. Using this ranking, we generate the most promising subproblems first, by exploring a search tree using a limited discrepancy strategy. Then the subproblems are being solved using a constraint programming solver. To strengthen the semidefinite relaxation, we propose to infer additional constraints from the discrepancy structure. Computational results show that the semidefinite relaxation is very informative, since solutions of good quality are found in the first subproblems, or optimality is proven immediately.Comment: 14 page

    Algorithms as Mechanisms: The Price of Anarchy of Relax-and-Round

    Full text link
    Many algorithms that are originally designed without explicitly considering incentive properties are later combined with simple pricing rules and used as mechanisms. The resulting mechanisms are often natural and simple to understand. But how good are these algorithms as mechanisms? Truthful reporting of valuations is typically not a dominant strategy (certainly not with a pay-your-bid, first-price rule, but it is likely not a good strategy even with a critical value, or second-price style rule either). Our goal is to show that a wide class of approximation algorithms yields this way mechanisms with low Price of Anarchy. The seminal result of Lucier and Borodin [SODA 2010] shows that combining a greedy algorithm that is an α\alpha-approximation algorithm with a pay-your-bid payment rule yields a mechanism whose Price of Anarchy is O(α)O(\alpha). In this paper we significantly extend the class of algorithms for which such a result is available by showing that this close connection between approximation ratio on the one hand and Price of Anarchy on the other also holds for the design principle of relaxation and rounding provided that the relaxation is smooth and the rounding is oblivious. We demonstrate the far-reaching consequences of our result by showing its implications for sparse packing integer programs, such as multi-unit auctions and generalized matching, for the maximum traveling salesman problem, for combinatorial auctions, and for single source unsplittable flow problems. In all these problems our approach leads to novel simple, near-optimal mechanisms whose Price of Anarchy either matches or beats the performance guarantees of known mechanisms.Comment: Extended abstract appeared in Proc. of 16th ACM Conference on Economics and Computation (EC'15

    An optimal bifactor approximation algorithm for the metric uncapacitated facility location problem

    Full text link
    We obtain a 1.5-approximation algorithm for the metric uncapacitated facility location problem (UFL), which improves on the previously best known 1.52-approximation algorithm by Mahdian, Ye and Zhang. Note, that the approximability lower bound by Guha and Khuller is 1.463. An algorithm is a {\em (λf\lambda_f,λc\lambda_c)-approximation algorithm} if the solution it produces has total cost at most λf⋅F∗+λc⋅C∗\lambda_f \cdot F^* + \lambda_c \cdot C^*, where F∗F^* and C∗C^* are the facility and the connection cost of an optimal solution. Our new algorithm, which is a modification of the (1+2/e)(1+2/e)-approximation algorithm of Chudak and Shmoys, is a (1.6774,1.3738)-approximation algorithm for the UFL problem and is the first one that touches the approximability limit curve (γf,1+2e−γf)(\gamma_f, 1+2e^{-\gamma_f}) established by Jain, Mahdian and Saberi. As a consequence, we obtain the first optimal approximation algorithm for instances dominated by connection costs. When combined with a (1.11,1.7764)-approximation algorithm proposed by Jain et al., and later analyzed by Mahdian et al., we obtain the overall approximation guarantee of 1.5 for the metric UFL problem. We also describe how to use our algorithm to improve the approximation ratio for the 3-level version of UFL.Comment: A journal versio

    Approximation Algorithms for Covering/Packing Integer Programs

    Get PDF
    Given matrices A and B and vectors a, b, c and d, all with non-negative entries, we consider the problem of computing min {c.x: x in Z^n_+, Ax > a, Bx < b, x < d}. We give a bicriteria-approximation algorithm that, given epsilon in (0, 1], finds a solution of cost O(ln(m)/epsilon^2) times optimal, meeting the covering constraints (Ax > a) and multiplicity constraints (x < d), and satisfying Bx < (1 + epsilon)b + beta, where beta is the vector of row sums beta_i = sum_j B_ij. Here m denotes the number of rows of A. This gives an O(ln m)-approximation algorithm for CIP -- minimum-cost covering integer programs with multiplicity constraints, i.e., the special case when there are no packing constraints Bx < b. The previous best approximation ratio has been O(ln(max_j sum_i A_ij)) since 1982. CIP contains the set cover problem as a special case, so O(ln m)-approximation is the best possible unless P=NP.Comment: Preliminary version appeared in IEEE Symposium on Foundations of Computer Science (2001). To appear in Journal of Computer and System Science

    Prepare for the Expected Worst: Algorithms for Reconfigurable Resources Under Uncertainty

    Get PDF
    In this paper we study how to optimally balance cheap inflexible resources with more expensive, reconfigurable resources despite uncertainty in the input problem. Specifically, we introduce the MinEMax model to study "build versus rent" problems. In our model different scenarios appear independently. Before knowing which scenarios appear, we may build rigid resources that cannot be changed for different scenarios. Once we know which scenarios appear, we are allowed to rent reconfigurable but expensive resources to use across scenarios. Although computing the objective in our model might seem to require enumerating exponentially-many possibilities, we show it is well estimated by a surrogate objective which is representable by a polynomial-size LP. In this surrogate objective we pay for each scenario only to the extent that it exceeds a certain threshold. Using this objective we design algorithms that approximately-optimally balance inflexible and reconfigurable resources for several NP-hard covering problems. For example, we study variants of minimum spanning and Steiner trees, minimum cuts, and facility location. Up to constants, our approximation guarantees match those of previously-studied algorithms for demand-robust and stochastic two-stage models. Lastly, we demonstrate that our problem is sufficiently general to smoothly interpolate between previous demand-robust and stochastic two-stage problems
    • …
    corecore