206 research outputs found

    A Systematic Review of Approximability Results for Traveling Salesman Problems leveraging the TSP-T3CO Definition Scheme

    Full text link
    The traveling salesman (or salesperson) problem, short TSP, is a problem of strong interest to many researchers from mathematics, economics, and computer science. Manifold TSP variants occur in nearly every scientific field and application domain: engineering, physics, biology, life sciences, and manufacturing just to name a few. Several thousand papers are published on theoretical research or application-oriented results each year. This paper provides the first systematic survey on the best currently known approximability and inapproximability results for well-known TSP variants such as the "standard" TSP, Path TSP, Bottleneck TSP, Maximum Scatter TSP, Generalized TSP, Clustered TSP, Traveling Purchaser Problem, Profitable Tour Problem, Quota TSP, Prize-Collecting TSP, Orienteering Problem, Time-dependent TSP, TSP with Time Windows, and the Orienteering Problem with Time Windows. The foundation of our survey is the definition scheme T3CO, which we propose as a uniform, easy-to-use and extensible means for the formal and precise definition of TSP variants. Applying T3CO to formally define the variant studied by a paper reveals subtle differences within the same named variant and also brings out the differences between the variants more clearly. We achieve the first comprehensive, concise, and compact representation of approximability results by using T3CO definitions. This makes it easier to understand the approximability landscape and the assumptions under which certain results hold. Open gaps become more evident and results can be compared more easily

    Autonomous golf ball picking robot design and development

    Get PDF
    The golf ball picking task is a daily that requires human intensive labor. This document presents the hardware developing process of an autonomous golf ball picking robot which aims to efficiently perform this task. It has a maintenance capacity of a 25,000 m2 practice field. Compared to a similar device in the market this robot has twice the maximum speed and three times more container capacity.QREN GOLFmINHO nº1583, FCt - Fundação Ciência e Tecnologia

    On the optimization of green multimodal transportation: A case study of the West German canal system

    Get PDF
    In this study, we address a biobjective multimodal routing problem that consists of selecting transportation modes and their respective quantities, optimizing transshipment locations, and allocating port orders. In the objective functions, we minimize total transportation costs and use the EcoTransit methodology to minimize total greenhouse gas emissions. The optimization model selects the transportation mode and transshipment port where quantities are transshipped from one mode to another. We compare inland waterway transportation and trucks encountering infrastructure failures that require rerouting or modal shifting in a real-life case study on the supply of goods for the chemical industry in the West German canal system. We propose a population-based heuristic to solve large instances in a reasonable computation time. A sensitivity analysis of demand, of varying lock times, and of infrastructure failure scenarios was conducted. We show that compared with inland waterway transportation, multimodal transportation reduces costs by 23% because of longer lock times. Our analysis shows that the use of inland waterway transportation only during infrastructure failures imposes nearly 28% higher costs per day depending on the failure location compared to that of the case of no failures. We also show that the use of a multimodal transportation system helps to reduce this cost increase in lock failure scenarios

    Optimal paths in multi-stage stochastic decision networks

    Get PDF
    This paper deals with the search of optimal paths in a multi-stage stochastic decision network as a first application of the deterministic approximation approach proposed by Tadei et al. (2019). In the network, the involved utilities are stage-dependent and contain random oscillations with an unknown probability distribution. The problem is modeled as a sequential choice of nodes in a graph layered into stages, in order to find the optimal path value in a recursive fashion. It is also shown that an optimal path solution can be derived by using a Nested Multinomial Logit model, which represents the choice probability at the different stages. The accuracy and efficiency of the proposed method are experimentally proved on a large set of randomly generated instances. Moreover, insights on the calibration of a critical parameter of the deterministic approximation are also provided

    Mathematical formulations and optimization algorithms for solving rich vehicle routing problems.

    Get PDF
    Objectives and methods of study: The main objective of this work is to analyze and solve three different rich selective Vehicle Routing Problems (VRPs). The first problem is a bi-objective variant of the well-known Traveling Purchaser Problem (TPP) in which the purchased products are delivered to customers. This variant aims to find a route for which the total cost (transportation plus purchasing costs) and the sum of the customers’s waiting time are simultaneously minimized. A mixed integer bi-objective programming formulation of the problem is presented and tested with CPLEX 12.6 within an ǫ-constraint framework which fails to find non-dominated solutions for instances containing more than 10 nodes. Therefore, a heuristic based on relinked local search and Variable Neighborhood Search (VNS) is proposed to approximate the Pareto front for large instances. The proposed heuristic was tested over a large set of artificial instances of the problem. Computational results over small-sized instances show that the heuristic is competitive with the ǫ-constraint method. Also, computational tests over large-sized instances were carried out in order to study how the characteristics of the instances impact the algorithm performance. The second problem consists of planning a selective delivery schedule of multiple products. The problem is modeled as a multi-product split delivery capacitated team orienteering problem with incomplete services, and soft time windows. The problem is modeled through a mixed integer linear programming formulation and approximated by means of a multi-start Adaptive Large Neighborhood Search (ALNS) metaheuristic. Computational results show that the multi-start metaheuristic reaches better results than its classical implementation in which a single solution is build and then improved. Finally, an Orienteering Problem (OP) with mandatory visits and conflicts, is formulated through five mixed integer linear programming models. The main difference among them lies in the way they handle the subtour elimination constraints. The models were tested over a large set of instances of the problem. Computational experiments reveal that the model which subtour elimination constraints are based on a single-commodity flow formulation allows CPLEX 12.6 to obtain the optimal solution for more instances than the other formulations within a given computation time limit. Contributions: The main contributions of this thesis are: • The introduction of the bi-objective TPP with deliveries since few bi-objective versions of the TPP have been studied in the literature. Furthermore, to the best of our knowledge, there is only one more work that takes into account deliveries in a TPP. • The design and implementation of a hybrid heuristic based on relinked local search and VNS to solve the bi-objective TPP with deliveries. Additionally, we provide guidelines for the application of the heuristic when different characteristics of the instances are observed. • The design and implementation of a multi-start adaptive large neighborhood search to solve a selective delivery schedule problem. • The experimental comparison among different formulations for an OP with mandatory nodes and conflicts

    Designing Overlapping Networks for Publish-Subscribe Systems

    Get PDF
    From the publish-subscribe systems of the early days of the Internet to the recent emergence of Web 3.0 and IoT (Internet of Things), new problems arise in the design of networks centered at producers and consumers of constantly evolving information. In a typical problem, each terminal is a source or sink of information and builds a physical network in the form of a tree or an overlay network in the form of a star rooted at itself. Every pair of pub-sub terminals that need to be coordinated (e.g. the source and sink of an important piece of control information) define an edge in a bipartite demand graph; the solution must ensure that the corresponding networks rooted at the endpoints of each demand edge overlap at some node. This simple overlap constraint, and the requirement that each network is a tree or a star, leads to a variety of new questions on the design of overlapping networks. In this paper, for the general demand case of the problem, we show that a natural LP formulation has a non-constant integrality gap; on the positive side, we present a logarithmic approximation for the general demand case. When the demand graph is complete, however, we design approximation algorithms with small constant performance ratios, irrespective of whether the pub networks and sub networks are required to be trees or stars

    Approximating Connected Facility Location Problems via Random Facility Sampling and Core Detouring

    Get PDF
    We present a simple randomized algorithmic framework for connected facility location problems. The basic idea is as follows: We run a black-box approximation algorithm for the unconnected facility location problem, randomly sample the clients, and open the facilities serving sampled clients in the approximate solution. Via a novel analytical tool, which we term core detouring, we show that this approach significantly improves over the previously best known approximation ratios for several NP-hard network design problems. For example, we reduce the approximation ratio for the connected facility location problem from 8.55 to 4.00, and for the single-sink rent-or-buy problem from 3.55 to 2.92. We show that our connected facility location algorithms can be derandomized at the expense of a slightly worse approximation ratio. The versatility of our framework is demonstrated by devising improved approximation algorithms also for other related problems

    ANT COLONY ALGORITHM APPLIED TO AUTOMATIC SPEECH RECOGNITION GRAPH DECODING

    Get PDF
    International audienceIn this article we propose an original approach that allows the decoding of Automatic Speech Recognition Graphs by using a constructive algorithm based on ant colonies. In classical approaches, when a graph is decoded with higher order language models; the algorithm must expand the graph in order to develop each new observed n-gram. This extension process increases the computation time and memory consumption. We propose to use an ant colony algorithm in order to explore ASR graphs with a new language model, without the necessity of expanding it. We first present results based on the TED English corpus where 2-grams graph are decoded with a 4-grams language model. Then, we show that our approach performs better than a conventional Viterbi algorithm when computing time is constrained and allows a highly threaded decoding process with a single graph and a strict control of computation time and memory consumption

    Approximating connected facility location problems via Random facility sampling and core detouring

    Get PDF
    We present a simple randomized algorithmic framework for connected facility location problems. The basic idea is as follows: We run a black-box approximation algorithm for the unconnected facility location problem, randomly sample the clients, and open the facilities serving sampled clients in the approximate solution. Via a novel analytical tool, which we term core detouring, we show that this approach significantly improves over the previously best known approximation ratios for several NP-hard network design problems. For example, we reduce the approximation ratio for the connected facility location problem from 8.55 to 4.00 and for the single-sink rent-or-buy problem from 3.55 to 2.92. We show that our connected facility location algorithms can be derandomized at the expense of a slightly worse approximation ratio. The versatility of our framework is demonstrated by devising improved approximation algorithms also for other related problems
    • …
    corecore