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Abstract and we assume that the cost of installing the high-bandwidth

We present a simple randomized algorithmic framework fpks in the core is larger than the (per unit) routing coshir
connected facility location problems. The basic idea is B eéndnodesto the core. N
follows: We run a black-box approximation algorithm for e can model the scenario above amanected facility
the unconnected facility location problem, randomly sangpcation problem(CFL). We are given an undirected graph
the clients, and open the facilities serving sampled diémt G = (V,E) with edge coste : E — Q" a set of facilities
the approximate solution. Via a novel analytical tool, whic# <V, asetofclient®) CV, and a parametéd > 1. Every
we termcore detouringwe show that this approach signiffacility i € 7 has an opening co$ti) € Q* and every client
icantly improves over the previously best known approxi-€ 2 has a demand(j) € Q*. The goal is to determine a
mation ratios for several NP-hard network design problen§siPsef C ¥ of the facilities to be opened, assign each client
For example, we reduce the approximation ratio for the coh€ 2 to some open facilityi(j) € F and to build a Steiner
nected facility location problem from85 to 400 and for the treeT connecting the open facilities such as to minimize the
single-sink rent-or-buy problem from3b to 292. We show total cost
oo coreredicl eton doonbme mbe ) 3 1) gt - 3 010

e ec jeD
ratio. The versatility of our framework is demonstrated by ] ) )
devising improved approximation algorithms also for othéfhere£(v,w) is the shortest path distance between vertices

related problems. vw e V in G (with respect toc). We refer to the first,
second and last termin (1.1) as thygening costSteiner cost
1 Introduction andconnection costrespectively. Subsequently, we assume

We consider network design problems that combine facilitthat every cI_|entJ. € D has a unit dem_and(J) =1. This
sumption is without loss of generality as we may replace

location and connectivity problems. These problems have %y several copies of co-located unit-demand clients. The

wide range of applications and have recently received cdp S . .
siderable attention both in the theoretical computer menalgorlthms presented in this paper can easily be adapted in

literature (see, e.g., [9, 12, 17, 26]) and in the operatiens ordertorunin pqunomlal time even if the original d_ema.nds
. are not polynomially bounded in the numbreof vertices;
search literature (see, e.g., [19, 23]).

As an example (see also [1, 26]), consider the robIéNrT? refer the reader to [12] for additional details.
P ' ' P The special case wherg =V and all opening costs

of installing a telecommunication network infrastructure ; : .
) . . : are zero is known as thsingle-sink rent-or-buy problem
The network consists of a central high-bandwiddne with : .
- : : S . (SROB). There are various natural extensionsG¥fL that
unlimited capacity on the links and individual connectio

from endnodego nodes in the core. Among the potentig fffer with respect to the underlying faC|I|j[y location and
co%e connectivity problem. For example, in tbennected

core nodes, we need to select a subset that we connect W—'*acility location problem(k-CFL) we can open at most

2?:: :;Zir aggctr? igrrgl;tg dtgi(t)r;fgg c\rlghmae:?&i;?a?%?‘eé?f'ﬂl cilities. We may alternatively consider the variant of
' L where the open facilities are connected by a traveling

salesman tour. We call the latter problem tber-connected
facility location problem(tour-CFL).
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lems mentioned above. From a high level point of view, oup;piem
framework works as follows:

1. Compute an approximate solution for the (unconnectedjFL 4.00° 8.55 Swamy and Kumar [25, 26]
facility location problem. 4.23
SROB 292 3.55° Gupta etal. [11, 12]

This paper  Previous best

2. Randomly sample the clients and open the facilitie

. . . . . 3.28 4 van Zuylen and
serving sampled cllehts in the approxmate solutlon.. | Williamson [27]
3. Compute an approxmat_g §olut|on for .the cpnnectmty CFL 6.85¢ 1555¢ Swamy and Kumar [25, 26]
problem on the open facilities and assign clients to the 6.98
open facilities. )
tour-CFL  4.12* 5.83° Ravi and Salman [22]
We remark that in Steps 1 and 3, we can use any approxi- (special case only)

mation algorithm for the (unconnected) facility locatiarda
core connectivity problem as a black box—this allows us to L ) ) ) )
use the current best approximation algorithms for the rtespgable 1. Improved apprOX|_rnat|or_1 ratios obtamed_ in this
tive subproblems. paper; expected approximation ratios are marked with a star
Our framework yields a 90-approximation algorithm
for CFL, which improves over the current best primal-
dual 855-approximation algorithm by Swamy and Kumar
[25, 26]. In the special case GRORB our algorithm pro- obtain a 1066-approximation algorithm fo€FL, based on
vides a 292-approximation, hence improving on the currenbunding an exponential size LP. The current best algorithm
best 355-approximation algorithm by Gupta et al. [10, 11for CFL is a primal-dual &5-approximation algorithm by
We show that our algorithms foBROB and CFL can be Swamy and Kumar [25, 26]. Better results are known for
derandomized using the method of conditional expectatidBROB Gupta et al. [9] give a.®1-approximation algorithm.
(see, e.g., [20]) and an idea that van Zuylen and WilliamsB8wamy and Kumar [25, 26] describe a primal-duedt
[27] used to derandomize th@ROBalgorithm of Gupta et approximation algorithm for the same problem. Gupta, Ku-
al. [10, 11]; thereby the approximation ratios degrade ontyar, and Roughgarden [12] propose a simple random sam-
slightly. We eventually demonstrate the versatility of oyling algorithm which gives a.35-approximation. Gupta,
framework by applying it to the problenmisCFL andtour- Srinivasan and Tardos [14] show that this algorithm can be
CFL, for which we improve the current best known approxierandomized to obtain aZ+approximation algorithm. In a
imation ratios. The results presented in this paper are suscent work, van Zuylen and Williamson [27] present a de-
marized in Table 1. randomization of the random sampling algorithm that yields
A key ingredient in our analysis is that we use a noval4-approximation.
core detouring schem® bound the expected connection Swamy and Kumar [25, 26] give a Bb-approximation
cost of random sampling algorithms. The basic idea is atgorithm fork-CFL, which is also the current best. Ravi and
construct (ideally) a sub-optimal connection scheme andSalman [22] consider the special casetafir-CFL, where
bound its cost in terms of the optimum cost. In this schemg,=V and all opening costs are zero, and give .835
we reassign the clients to open facilities by detouringrtheipproximation for it.
connection paths through the core in the optimum solution. Most of the existing random sampling algorithms for
This construction is set up such that the reassignment@nected facility location problems are analyzed by means
perfectly symmetric, which allows us to bound the expectedl strict cost sharegsee, e.g., [10, 12] and in particular
cost of the detoured paths. As a by-product of our analygise exposition in [11]), a concept originating from game-
we obtain a polynomial-time approximation scheme (PTA8)eoretic cost sharing. Basically, these cost shares & us
for the above problems jfD|/M is a constant. This mightto relate the expected connection cost of the computed solu-
be of independent interest. tion to the cost of the core in the optimum solution. This
concept has been used successfully to obtain simple and
1.2 Previous and Related Work.The network design good approximation algorithms for network design prob-
problems considered here are NP-hard [8] and APMms, such asSROB [11, 12] andMROB [3, 7, 10], the
complete [2, 4, 21], as they contain the Steiner tree problemalti-commodity counterpart oBROB However, its use
or the metric traveling salesman problem as a special cdaded to prove better bounds for more general connected fa-
Researchers have therefore concentrated on obtaining gabity location problems. In fact, in [12], Gupta et al. leav
approximation algorithms for them. open the question whether a randomized sampling approach
CFL andSROBhave recently received considerable atan be used to improve the primal-dual approximation al-
tention in the computer science literature. Gupta et al. [@prithm of Swamy and Kumar [25, 26]. In this paper, we
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answer this question affirmatively.

1.3 Organization of Paper. In Section 2, we study core
connection games, which form the basis of our core detour-
ing scheme. We present the polynomial-time approximation
scheme for constard/M in Section 3. Our random facil-
ity sampling framework fo€CFL andSROBand its analysis
are given in Section 4. The extensions of this framework
to other connected facility location problems are outliired
Section 5. Finally, we give some conclusions in Section 6.

2 Core Connection Games
In this section, we study some random games that we call

core connection gamedhese games form the basis of OLffigure 1: Core connection game instance. Marked client

core deto_uring scheme i_ntroduged in Section 4 nodes are drawn in bold. The flow pfn the routing scheme
Consider the following setting. We are given a 9ét is indicated by the bold path

of core nodeghat are connected by an undirected cy€le

which we call thecore. Every core nodé € A/ has exactly

oneclient node je D assigned to it, i.e |A[| = |D|. We

usep(j) € A to refer to the core node gfe D. Each client € € 4. By symmetry reason€z[f(e)] < 1 for all edges
nodej € D has two oppositely directed edggsi) and(i,j) €€ Hout

to its respective core node= p(j); see Figure 1. Let4, It remains to bound the expected flow on the edges of the
be the set of all edges that are directed from client nodes¥sle. Again exploiting the symmetry of the routing scheme,
core nodes andi, the set of all oppositely directed edgesdt is sufficient to consider an arbitrary edge C. Let X be
Define # = Hy U Hour. Let G = (V,E) be the resulting the number of edges of the cycle crossed by the flow-path of
graph andv: £ — Q* a non-negative weight function or@ given client nodg. Clearly,

the edges ofj. We slightly abuse notation here by using

C C ‘E to refer to the set of undirected edges in the cycle. By Z f(e) = Z Xj.

w(.S) we denote the total weight of all edgesdrC . e 1D

We now consider the following randoaycle-core con- gy symmetry, we can conclude tHatf ()] = E[Xj]. Letus
nection gameWe mark one client node uniformly atrandorg| 3 core node= p( j) by-sampledf j is sampled. We now
and every other client node independently with probabilipgerye thak; > kif and only ifi and the firsk nodes ofC to

p < (0,1). Now, every client nodg € 9 sends one unit of the |eft and right of are not by-sampled. As a consequence
(unsplittable) flow to the closest marked client node (wéth r

spect to the distances inducedy. We bound the cost of Pr(Xj > k) < (1— p)**1,
the total flow sent in this game in the following theorem.

where the strict inequality is due to the fact that at leagt on
THEOREM2.1. The cost X of the flow in the cycle-cor€ore node is by-sampled by assumption. We conclude that
connection game satisfi&X] < w(H) +w(C)/(2p). 1-p 1
<

E[f(e)] = E[Xj] = k;Pr(xj > k) < TS

Proof. We bound the cost of the following sub-optimal flow
routing scheme: Every cliente 9 sends its flow unit to
a closest marked client, with respect to unit edge weigHtg€ theorem follows.
(breaking ties uniformly at random); see Figure 1. The
symmetry properties of this routing scheme make it easierv\t/i;%i
bound its expected cost. Léte) be the flow on edgee E
and letY denote the total cost of this flow (with respect t
the original weights). Clearlg[X] < E[Y].
By linearity of expectation, the cost of this flow is

We can modify the cycle-core connection game in a way
ch is better suited for our purposes. Suppose the core is
8iven by an (undirected) Steiner tr&e on the core nodes
In A instead of a cycle. The tre@ may contain some
other non-core nodes. As before, every client npdeD
is assigned to exactly one core nqag). Letu—(i) be the
_ ) ) set of client nodes assigned to a core niod&\. However, a
Elvl= eezﬂE[f(e)] w(e) +e€zCE[f(e)] w(e). core nodd € A’ might now have more than one client node
assigned to it, i.e., we hajyg1(i)| > 1 for everyi € A(.
Note thatf(e) < 1 holds deterministically for every edgeThe rest of the construction remains the same as before. We
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define aree-core connection ganamalogously to the cycle- 2. Output a minimum cost solutidifr, T, ) obtained.

core connection game. In Step 1(a), we use, for example, the algorithm by Dreyfus

COROLLARY 2.1. The cost X of the flow in the tree-cor@nd Wagner [6]. Note that the algorithm outputs a feasible

connection game satisfi&&X] < w(#) +w(T)/p. solution, since & < k, and runs in polynomial time.
- It is sufficient to show that there is a proper choice of

Proof. We transform the Steiner treB into a cycleC using F Which satisfies the claim. Let us constricias follows:

the following standard arguments: We replace every edgélially, setF := {i*}, wherei* is an arbitrary facility in

of the tree by two oppositely directed edges and compfite Then, while there exists a facilifye F* with £(i,F) >

a Eulerian tour on the resulting graph. Starting from &T")/m. addi to F. Note that this way, we ensure that the

arbitrary core node i\, we traverse this tour and shortcufollowing two properties hold for the final sét

all nodes that do not belong #g or have been visited before. 1 Fqr any two facilities, i’ € F, ¢(i,i’) > ¢(T*)/m.

Let the resulting cycle on the core nod@§ be ¢’. By N ; . S

triangle inequalityw(¢’) < 2w(T). 2. For eygry faC|I|t¥| € F*, there is a facilityi’ in F such
We now replace every core nodén ¢’ by a path of that((i, ") < c(T*)/m.

|n~L(i)| copies ofi and assign every client nogen p—(i) We first show thatF| < 2m. To see this, double the

to a unique random copy, i.e., compute a random matchigges ofT*, compute an Eulerian tolg* on the resulting

between the client nodes and the copies. The weights of gigph, and shortcut the vertices notfn The cost of the

edges in this replacement path are set to zero. Denoteréwulting tour orF is at leastF|-¢(T*)/m due to Property

cycle obtained in this way by". We finally add the two 1. Moreover, the cost of the Eulerian touci&*) < 2c(T*).

oppositely directed edges between every client npded Thus,|F|-c(T*)/m< 2¢(T*), which implies thatF | < 2m.

its unique copy inC. LetY be the cost of the flow in the We next bound the cos¥ of the solution APX =

cycle-core connection game. It is not difficult to see th@t T o) for our particular choice of-. Clearly, ¢(T) <

X <Y holds deterministically. The claim now follows fromg(T*), sinceF C F* and we compute an optimum Steiner

Theorem 2.1 and the fact thatC) = w(C') < 2w(T). treeT overF. Therefore,

3 Polynomial-time  Approximation Schemes for Z= Z: f (i) +Mc(T) + Z (j,o(i))

Constant|D|/M < I
In this section, we present polynomial-time approximation < Z F(i) +Me(T™) + Z ¢(,07(0) + Z to™(i);F)
schemes (PTAS) for the connected facility location protdem = ‘GD* JeD .
considered in this paper |fD|/M is upper bounded by a O*+S*+C*+|Q)|-ﬂ :Z*+@- Mc(T™)
constant. These PTAS will help to improve our analysis for — m M m
the general case; but might also be of independent interest. _ - +0(1)- S < (1+ %) 7%

Recall that/(v,w) denotes the shortest path distance m
between verticegandw in the graphs = (V, E) with respect
to c. We also define(v,W) = minyew ¢(v,w) for a given
subsetV C V. Letc(S) = Yecsc(e) denote the total cost of
all edges in a subs&C E.

For the second inequality, we exploit the fact that
£(0*(j),F) <c(T*)/mby Property 2. Since we can choose
m arbitrarily large, the claim follows.

) COROLLARY 3.1. If |D|/M = O(1), there is a PTAS for
THEOREM3.1. If |D|/M = O(1), there is a PTAS fok- cfL.

CFL.
Using essentially the same arguments as above, it is

Proof. Let OPT= (F*,T*,0*) be an optimal solution fok- not hard to obtain a PTAS fotour-CFL under the same
CFL. We usez*, O*, S* andC* to refer to its total, opening, assumptions. We state the following theorem without proof.
Steiner, and connection cost, respectively i§ a constant, _ .
we can trivially compute an optimum solution in polynomiiH 'iOREM 3.2. If |D|/M = O(1), there is a PTAS fotour-
time. Letm> 1 be an arbitrary integral constant and assu é: '

4 Connected Facility Location

k > 2m. Consider the following algorithm:
1. For all possible choices & C ¥ with |[F| < 2mdo: Due to the results obtained in the previous section, we can
) ) assume thaM/|D| < € for a sufficiently small constant
(@) Compute an optimal Steiner tréeoverF. € > 0. We also assume without loss of generality tinat 1.
(b) Assign every client € D to its closest facility Fora given assignmentof clients to facilities, we letr(i)
o(j)inF. denote the set of clients assigned to facility
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4.1 Random Facility Sampling. Let o € (0,1] be a con- Additionally, the expected cost of adding the shortest path
stant parameter which will be fixed later. Our algorithiftom each clientj € D to the corresponding open facility
randCFL for CFL works as follows: ou(j) € Fyis at most

1. Compute gq-approximate solutior = (Fy,oy) for a 1 0 F) — a 1 c
the (unconnected) facility location instance induced by _EZ@ M D] (J.Fu) = M D) =Y
the input instance. ) .
2. Choose a client* € D uniformly at random and markAItogether we obtain
it. Mark every other clienf independently with proba- Pst a 1 . a 1
bility a/M. LetD be the set of marked clients. ES <M VS* T Pst M + |D| C+ M + |D| Cu
3. Open facilityi € Fy if there is at least one marked < pst(S*+ (0 +€)C*) + (a +€)Cy.
clientin oal(i). Let F be the (non-empty) set of open
facilities. 4.2 Core Detouring Scheme We next introduce our new

4. Compute ds-approximate Steiner tree @ Augment core detouring schemt bound the expected connection
this tree by adding the shortest path between evé&gst ofAPX. Note that since the clients are assigned to their
j € D and the corresponding open facility(j) € F. closest open facility iffr, it suffices to bound the total cost of

Extract a treeT spanningF from the resulting multi- connecting every client< 2 to someopen facility inF. To
graph. this aim, we use the tree-core connection game introduced in

Section 2.
We let the tree-coref in the game be the tre€* in
the optimum solution and set(e) = c(e) for every edge

In Step 4 we might alternatively construct a Steiner tr&en the tree. The client nodes simply correspond to the

directly on the open facilities iff; however, this would lead ¢i€nts inD. We define the mapping as the assignment

to a worse approximation factor. crf of OPT. qu every clleqt nodg € D, the weight c_)f the
We use the following notation. An optimal solution iglirected €dgej, (j)) € 7 is defined as the connection cost

denoted byOPT= (F*,T*,6*). We usez*, O, S* and ‘(1:0°(])); the weight of the directed eddg(j), ]) € Hou

C* to refer to its total, opening, Steiner, and connecti¢® (0" (i),]) +-£(i,0u(j)). The sampling probability is

cost, respectively. Similarly, we usg, O, SandC to Settop=a/M. , , _
refer to the respective costs @gfPX. We let Oy and The key-insight now is the following: Fix an outcome

Cu be the opening and connection cost, respectively, Qfsthe random sampling. For every flow-path from a client

the approximate solutioty = (Fy,oy) for the unconnected node j € D to a marked client’ € D in G, there i_sl a
instance computed in Step 1. corresponding path betwegrand the open facilityoy(j’)
in the original graph; moreover, the costs of these paths

LEMMA 4.1. The opening cost GAPX satisfies O< Oy. are equal. Thus, for every fixed outcome of the random
sampling, the connection co€tis at most the cosK of
the flow in the tree-core connection game. Since this holds
true for every fixed outcome of the random sampling, it also
The following bound on the Steiner cost is inspired Byolds true unconditionally. We can thus bound the expected
[12]. We recall that we assundé/|D| < €. connection cost by the expected costXaf for the latter,
we derived an upper bound in Section 2. The proof of the
g < following lemma now follows easily.

5. OutputAPX = (F,T,0), whereo assigns each client
j € Dto a closest open facility if.

Proof. We open a subset of the facilities g, which costs
at mostOy.

LEMMA 4.2. The Steiner cost oAPX satisfies E|

Pst(S + (a+€)C*) + (a +€)Cy.
, ) , LEMMA 4.3. The connection cost dAPX satisfiesE[C] <
Proof. We obtain a feasible Steiner tree on the mark%g“rcﬁ_s*/a_

clients inD by augmenting the optimal Steiner tré&é by
the shortest paths from each clientDnto T*. This Steiner Proof. Note that the total weight of the tree-ccfeis S* /M.

tree has expected cost at most From the discussion above and Corollary 2.1 it follows
a 1 . 1 a 1 1
c(e) + =4+ — ) 4(j,F* :—S*+(—+—)C*. .
e;* (e) ]_GZ@(M ‘@‘) U.F) =% M ) E[C] < E[X] < W(H)+ 5 w(T)
Thus the expected cost of tipgr-approximate Steiner tree ) Z 0(j,0%(j)) + z o(j,ou(j)+ Ms
overD computed in Step 4 is at most €D =) a M
Pst a 1 —2C* Ei
Pst o 1~ \c~ =2C+Cy+—.
M + pst(M + |Q)|) a
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Now we have all the ingredients to prove the main reswith opening costO* and connection cost*. Exploiting
of this paper. The following theorem relies on the curretitis, we obtain
best approximation factors for Steiner tree and facilielo
tion, which areps; < 1.55 [24] andpy < 1.52 [18], respec-
tively.

Cu+0y < (1.11+1In8)O* + (14 0.78/3)C".

We can now optimize the paramet@so as to balance the

THEOREM4.1. For a proper choice ofx, randCFL is an coefficients of the connection and opening costs; while the

expected!.55-approximation algorithm foCFL. parft;lmeteu is used to balance the Steiner and connection
costs.
Proof. By Lemmas 4.1, 4.2, and 4.3, (b) Flow canceling.We can refine Corollary 2.1, and hence

. . the bound on the connection cost given in Lemma 4.3, by
E[Z] <Ou+ps(S +(a+€)C") + (o +¢)Cu+2C means of flow canceling. Consider a given edgé7 in the
+Cy+S/a. tree-core connection game anddgtinde, be the two edges
of C associated t@ (because of shortcutting, it might be
The optimum solution to the facility location problem inel:ez). If the flows alonge; ande, in ¢ are equally directed
duced by the input instance is a lower bound(Gn+0"). (ande, +# &,), this means that we are sending two oppositely
As a consequenc€y + Oy < pj (C* + O"). We thus obtain gjrected flows along in 7. In this case, it is possible to
. . cancel the difference of the two flows (independently for
E[Z] < ps(S' + (a+€)C") +2C"+ S /a eache € 7) by redirecting the flow paths in a proper way.
+(14+a+¢g)ps(C" 40" The somewhat technical proof of the following lemma is
< (C*+0")(pst(a+€) +2+p(1+a+¢)) given in the Appendix.

+ S (pst+1/00). THEOREM4.2. For |D| > 1/p, the cost X of the flow

i - i i <
Choosinge sufficiently small and balancing the coeﬁicientgégsv\f(re,re)/csre connection game satisfigX] < w(#/) +
of (C*+0O*) andS*, we obtain the claimed approximation '

ratio fora = 0.334. In particular, since by assumptidD|/M > 1 anda is a

. ) constant, this implies the following refined bound on the
In the special case aBROB we can assume withoutzonnection cost:

loss of generality that the facility location approximatio
algorithm used in Step 1 afandCFL opens all the facilities. E[C] <2C*+Cy+0.807S"/a.
As a consequenceandCFL opens a facility at every marked
client. By imposingOy = O* = Cy = 0 in the analysis
of Theorem 4.1 and choosirig accordingly, we obtain the
following corollary. THEOREM4.3. There is an expected.00-approximation

. , algorithm for CFL. In the special case SRORB the expected
COROLLARY 4.1. For a proper choice ofi, randCFL is an approximation ratio can be reduced 2:92.

expected®.05-approximation algorithm foSROB

Combining Techniques (a) and (b), we obtain the fol-
lowing theorem.

Proof. Let us adapt the proof of Theorem 4.1. Combining
4.3 Refinements.We can improve the approximation rafa) and (b), we obtain

tio of randCFL by combining the following techniques.
_ N . , _ E[Z] <Ou+psi(S + (a+€)C") + (a+€)Cy+2C* +Cy
(a) Bifactor facility location. We obtain a better approxi-
: . ) L +0.807S"/a
mation ratio if we run a (proper) bifactor approximation al-

gorithm on the induced facility location instance in Step 1. < Pst(S"+ (2 +€)C") +2C" +0.807S"/a

An algorithm for the facility location problem is @o, pc)- +(1+a+¢)((1.114+Ind)O* 4 (14 0.78/5)C")
approximation algorithm if for every feasible solution it =C*(pst(0+€) + 24 (1+ 0 +£)(1+0.78/3))
opening cosO and connection co§}, the cost of the solution *

computed by the algorithm is at mgsy O+ pc C. Mahdian, +S'(pst+0.807/0) + O°((1+a +€)(111+In8))

Ye, and Zhang [18] give &1.11,1.78)-approximation algo- 0=0330.5=6657 ) 1oz,

rithm. Moreover, they (essentially) show that aipy, pc)-
approximation algorithm can be converted into(@ + The analysis above can be adaptedSt8OB by imposing
Ind, 1+ (pc — 1)/0)-approximation algorithm forany> 1. Cy = Oy = O*" =0. Fora = 0.591, this yields

Note that an optimum solutio®PTfor CFL induces a

feasible solution for the underlying facility location fem E[Z] < pst(S"+ (0 +€)C") +2C" +0.807S"/a < 2.92Z".
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4.4 Derandomization. We can derandomize our algoProof. By adapting the proof of Theorem 4.3, we obtain
rithm for CFL using the method of conditional expectation
(see, e.g., [20]) and an idea by van Zuylen and Williamson E[Z] < ps(S" + (0 +€)C") +-2C" +0.807S"/a

[27]. Consider any possible choice of a clignt Intuitively, +(1+a+€)pka(C*+O%)

j1 is the clientj* that we sample uniformly at random. Let < (C*+ O")(pet(@ +-€) + 2+ prst(L+ +€))
j213;--+, jjp| be the remaining clients, in an arbitrary order. o 401504

Initially, we markji. Initerationk > 2, we decide whether to +S'(pst+0.807/a) <  6.85Z".

markorunmarkclient jx. LetDg_1 be the subset of clients in
{i1,j2---,jk_1} that we already marked. Ideally, we would\lso in this case the algorithm can be derandomized by
like to mark clientj if and only if applying the technique by van Zuylen and Williamson [27].

_ COROLLARY 5.1. There is a deterministi6.98-approxima-
E[Z|Dk = Dx-1U{ji}] < E[Z| Dk = Dg-1]. tion algorithm fork-CFL.

This would ensure, for a proper choicejaf that the cost of 5.2 Tour-Connected Facility Location. We obtain an al-
the final solution is at most@0Z*. gorithm fortour-CFL by adaptingrandCFL in the following

It is not difficult to see that we can efficiently computavay:
the expected opening cost and connection cost, given
The same holds for the expected augmentation cost in Step In Step 4, compute psp-approximate TSP-tour ob.
4. The problem is that we do not know how to compute Then augment the tour by addigo shortest paths
the conditioned expected cost of the Steiner tree @ver  between every client i and the corresponding open
However, as it is shown by van Zuylen and Williamson facility in F. Eventually, compute an Euler tour on the
[27], we can compute an estimate of this cost if we use a resulting multi-graph and shortcut it to obtain a TSP-
primal-dual 2-approximation algorithm for the Steineretre ~ tourT of F.
computation instead. In our analysis, we essentially o
need to replacps: < 1.55 by pst = 2, which gives a slightly
larger (but deterministic) approximation ratio.

nl
T¥1e algorithm above can be improved by means of Tech-

nique (a). The following result relies on Christofides54
approximation algorithm for metric TSP [5].

THEOREM4.4. There is a deterministigt.23-approxima- THEOREMS5.2. There is an expected.12-approximation
tion algorithm for CFL. In the special case aSROB the algorithm fortour-CFL

approximation ratio can be reduced 828. ) ) .
Proof. (SketchyVe adapt the analysis of Section 4. Trivially,

O < Oy. Taking into account the duplication of the shortest

paths fromD to F and using a similar duplication to bound

Our approach is flexible enough to be adapted to sevefl st of the optimur SRtour overD, we obtain
natural variants ofCFL. In this section we sketch two such

applications. E[S < pisp(S" +2(a+¢€)C*) + 2(a +¢€) Cy.

5 Extensions

5.1 Connected k-Facility Location. An algorithm fork- We can easily adapt Corollary 2.1 to this case, thus obtginin
CFL is obtained by modifyingrandCFL in the following E[X] <w(#)+w(7T)/(2p). It follows that
way:
E[C] <2C*+Cy+ S'/(2a).
e In Step 1, compute @yq-approximate solutiorJ =
(Fu,oy) for the (unconnectedy-facility location in-
stance induced by the input instance.

Altogether
E[Z] < Ou+ pisp(S" + 2(a +€)C*) + 2(a 4 €)Cy+ 2C*

This algorithm can be refined using Technique (b). The +Cu+S/(20) i i}
following theorem relies on the current best approximation < Pisp(S"+2(a+€)C") +-2C* + S/ (20)

ratio for thek-facility location problem, which ipys < 4 +(1+2(a+¢€))((1+0.78/8)C" + (1.11+Ind)O%)
[15, 16] (see also [28]). = C*(2pusp(0 +€) + 24 (1+2(0 +£)) (14 0.78/3))
+ S (psp+1/(20)) + O*((1+ 2(a + €))(1.114 Ind))
THEOREMS5.1. There is an expecte@.85-approximation 0=0.19084 5—6.5004
< "

algorithm fork-CFL.
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6 Conclusions
We described a simple algorithmic framework, based on

random facility sampling, to solve connected facility Ieca{lo]

tion problems. Our novel core detouring scheme provides
a means of obtaining much better approximation algorithms
for the problems considered in this paper.

We leave open the question whether core detouring qam

also be used to obtain significantly better approximatien al
gorithms for MROB and the single-sink buy-at-bulk prob-
lem. The major difficulty here is that the optimum solution
does not exhibit a single central core. While a small imprové 2]
ment seems nonetheless possible for the single-sink buy-at
bulk problem, the situation is less clear fdROB.

There is a strong relation between random sampligl%]

algorithms and the boosted sampling framework for tw
stage stochastic optimization with recourse by Gupta et
al. [13]. Itis a very interesting open question whether our
core detouring scheme also leads to improved approximatjom
algorithms in that framework.
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problems (Lecture Notes). Report No. 05950-OR, Reseaf@fi terms of number of hops) betweenande; alongC; we

Institute for Discrete Mathematics, University of Bonnpg0 havek = |I|. Without loss of generality, we assuregis on
the left side ofl. Let!’ be the complement dfU {e;,e;}
Appendix with respect taC andk’ ;= |I'| = m—k— 2.

Proof. (Theorem 4.2pur client sampling process is equiva- ~ Recall that each node afis by-sampled with probabil-
lent to: ity p, but under the ever® that at least one (random) node

is by-sampled. Lej= 1 — p. We distinguish three evenks
(1) Mark each client independently with probabiljty B, andC, which partition the probability space considered:

(2) Choose a clien}* (either marked or not) uniformly at

random. and mark it. (A) No node selected in I, at least one node selected irhie

value ofF is deterministicallyk+ 1. In fact, if h flow-paths

Consider the following modified sampling process: alongl are directed to the left and the otHe# 1 — hto the
right (eventd’), thenF; = —h, F, = k+1— h, and altogether
(@) Run (1). E[F |A] = E[|(—h) — (k+1—h)|] = k+ 1. Otherwise (event
(b) If no client is marked in Step (a), run (2). A", the flow one; ande, must go in the same direction,

say from left to right, and it must bé&(ep) = f(e1) +k+1

Let Y dgnote the cost of the_f_low n the_ tree-connection ", lects the same flow ag plus the flow alond). Then
game with respect to the modified sampling scheme. B |A"] = E[|f(e1) — (f(e1) + k+1)[] = k+ 1. Since event

simple coupling argument, it is easy to see tBp¢] < E[Y]. A happens with orobabilitgf (1 — ¢¢*1)/(1— g, the

LEtGU|;I|;/5J)1,a?§2p(I;2 gel)?;escgt? 3:3 caHn eﬂzg IT ?Skilj?fiigrﬁttggverall contribution of this case to the total expected flow
boundEJY]. IS

Let Q denote the event that in Step (b) of the modified o<t — gkt
game we run (2). By elementary probability theory, Fa = PrAJE[F |A = 1_—qm(k7L D).

E[Y] =Pr(QE[Y[Q]+Pr(QJE[Y|Q].

(B) No node selected in, lat least one node selected inBy

Trivially, Pr(Q) = (1— p)!”l. Moreover, essentially the same argument as in d#sgwe obtain
E[Y|Q] <W(H)+ |D|w(T) g1 — gty
Fs = Pr(B)E[F |B] = —— (K +1).
We will next show that
(6.2) E[Y |Q] < W(#)+0.8067wW(T)/p. (C) At least one node selected in both | arid IIf we
denote bylL; (R) the distance betweeg and the first by-
From (6.2) we can conclude that sampled node to its left (right), thé{f (e)] = (Li — R)/2.

VariablesL1, Ry, Lo, andRy can be interpreted as random

_n)2l
E[Y] <w(#H) +w(T) ((1—p)™"[D|+0.8067/p) geometric variables of paramefgrunder the constraint that

<W(H)+w(T) (e P?|D| +0.8067/p) X=Ly+R <kandX =L;+Ry <K. Letus study the
< W(H)+0.807W(T)/p, random variableX andX’. Note thatE[F |C] = %E[|X’ -
X|]. Moreover,X andX’ are independent. It is not hard to
where we used the assumpti@h| > 1/p. show that
It remains to prove (6.2). Subsequently, we assume that

the eventQ holds. Itis clear thaE|[f (e)] < 1 holds for every (i+1) Pd e 0,k—1;

ee 7. Thus it is sufficient to show th&[f (e)] < 0.8067/p Pr(X =i) = 1*(1?1 o ’ '

for any givene € 7. Lete; ande; be the two edges of (k+1)fger ifi=k
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Analogously,

gl
k’+1

if j € [0,k —1];

Pr(X' = j
if j =K.

- G+ =
i) =

(K +1)-P
Note thaty¥ o Pr(X =i) = ¥X_Pr(X' = j) =
bution of this case to the overall flow is

1-qK+1
1. The contri-
Fc = Pr(C)E[F |C]

(1 qk+1)(1 qk'+1
= 1 qm

EOZOII—JIPIr

Recall that E[F] = Pr(A)E[F|A] + Pr(B)E[F|B] +
Pr(C)E[F|C] =
and tedious) computation, we obtain

—2(k+1)g™  2q(1+q+0?)
1—qgm p(1—gM)(1+q)3

L PR K- ) (- +

p(1—qM)(1+q)3

E[F] =

(2—2q(1+q)?))

2q(1+9+0?)
~ pl-g)(1+0)?
N P2 (1—?)? + k(1 - &) (3— ) + (2—29(1+0)?))
3 )
p(1—¢)(1+0)
wheree > 0 is an arbitrarily small constant.
inequality we used the assumptions tlatis a positive

constant andn= |D| > 1/p. Consider the function
20(1+a+a)  R(ak
R(g,k) :=
W= argr g
where
R(a,k) = a2k (1— ?)? + k(1 - ) (3~ )

+(2-2q(1+9)?).

It is sufficient to show thaR(qg,k) < 0.8066< 0.8067 for
anyq andk. Fixing g and maximizing ovek,

1 2 1
Orgkziﬁ/{R(q, W} < q((l—:-qq—;q) (1+q)® 0r<nk<k,{R'(q,k)}
29(1+9+9?)

1
e + ETE max{R’(q X)}.

By an elementary analysis of functi®(q, x), we found that
it has a maximum (either feasible or not) for

. -3 1
X=x(a):= 2(1-9?) 2Ing
\/(1+8q+10q2+8q3+q4)ln2q+(1—q2)2

2(1-q?)Ing
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)PI(X" = ).

Fa+ Fs+ Fc. After a simple (but very long

Then, by the constraint> 0, the functionR (g, x) is maxi-
mized forx = 0 if x(q) < 0, and forx = x(q) otherwise. That
is,

r)r(1>a(1)x{R'(q,x)} =R/(q,max{0,x(q)}).
It follows that

20(1+9+¢%) |, R(g,max{1,x(q)})
(1+09)® (1+0)®

We found numerically that the right-hand side is upper
bounded by 066 for any feasible value af. This con-
cludes the proof of the theorem.

Jmax {R(ak)} <

In the last



