8,832 research outputs found

    Algorithms for the minimum sum coloring problem: a review

    Get PDF
    The Minimum Sum Coloring Problem (MSCP) is a variant of the well-known vertex coloring problem which has a number of AI related applications. Due to its theoretical and practical relevance, MSCP attracts increasing attention. The only existing review on the problem dates back to 2004 and mainly covers the history of MSCP and theoretical developments on specific graphs. In recent years, the field has witnessed significant progresses on approximation algorithms and practical solution algorithms. The purpose of this review is to provide a comprehensive inspection of the most recent and representative MSCP algorithms. To be informative, we identify the general framework followed by practical solution algorithms and the key ingredients that make them successful. By classifying the main search strategies and putting forward the critical elements of the reviewed methods, we wish to encourage future development of more powerful methods and motivate new applications

    Minimum Sum Edge Colorings of Multicycles

    Get PDF
    In the minimum sum edge coloring problem, we aim to assign natural numbers to edges of a graph, so that adjacent edges receive different numbers, and the sum of the numbers assigned to the edges is minimum. The {\em chromatic edge strength} of a graph is the minimum number of colors required in a minimum sum edge coloring of this graph. We study the case of multicycles, defined as cycles with parallel edges, and give a closed-form expression for the chromatic edge strength of a multicycle, thereby extending a theorem due to Berge. It is shown that the minimum sum can be achieved with a number of colors equal to the chromatic index. We also propose simple algorithms for finding a minimum sum edge coloring of a multicycle. Finally, these results are generalized to a large family of minimum cost coloring problems

    Weighted Coloring in Trees

    Get PDF
    A proper coloring of a graph is a partition of its vertex set into stable sets, where each part corresponds to a color. For a vertex-weighted graph, the weight of a color is the maximum weight of its vertices. The weight of a coloring is the sum of the weights of its colors. Guan and Zhu (1997) defined the weighted chromatic number of a vertex-weighted graph G as the smallest weight of a proper coloring of G. If vertices of a graph have weight 1, its weighted chromatic number coincides with its chromatic number. Thus, the problem of computing the weighted chromatic number, a.k.a. Max Coloring Problem, is NP-hard in general graphs. It remains NP-hard in some graph classes as bipartite graphs. Approximation algorithms have been designed in several graph classes, in particular, there exists a PTAS for trees. Surprisingly, the time-complexity of computing this parameter in trees is still open. The Exponential Time Hypothesis (ETH) states that 3-SAT cannot be solved in sub-exponential time. We show that, assuming ETH, the best algorithm to compute the weighted chromatic number of n-node trees has time-complexity n O(log(n)). Our result mainly relies on proving that, when computing an optimal proper weighted coloring of a graph G, it is hard to combine colorings of its connected components
    • …
    corecore