898 research outputs found

    Approximating the Pareto Set of Multiobjective Linear Programs via Robust Optimization

    Get PDF

    A New Mechanism for Maintaining Diversity of Pareto Archive in Multiobjective Optimization

    Full text link
    The article introduces a new mechanism for selecting individuals to a Pareto archive. It was combined with a micro-genetic algorithm and tested on several problems. The ability of this approach to produce individuals uniformly distributed along the Pareto set without negative impact on convergence is demonstrated on presented results. The new concept was confronted with NSGA-II, SPEA2, and IBEA algorithms from the PISA package. Another studied effect is the size of population versus number of generations for small populations.Comment: 51 pages, 28 figure

    Utopia point method based robust vector polynomial optimization scheme

    Full text link
    In this paper, we focus on a class of robust vector polynomial optimization problems (RVPOP in short) without any convex assumptions. By combining/improving the utopia point method (a nonlinear scalarization) for vector optimization and "joint+marginal" relaxation method for polynomial optimization, we solve the RVPOP successfully. Both theoratical and computational aspects are considered

    04461 Abstracts Collection -- Practical Approaches to Multi-Objective Optimization

    Get PDF
    From 07.11.04 to 12.11.04, the Dagstuhl Seminar 04461 ``Practical Approaches to Multi-Objective Optimization\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Multi-objective combinatorial optimization problems in transportation and defense systems

    Get PDF
    Multi-objective Optimization problems arise in many applications; hence, solving them efficiently is important for decision makers. A common procedure to solve such problems is to generate the exact set of Pareto efficient solutions. However, if the problem is combinatorial, generating the exact set of Pareto efficient solutions can be challenging. This dissertation is dedicated to Multi-objective Combinatorial Optimization problems and their applications in system of systems architecting and railroad track inspection scheduling. In particular, multi-objective system of systems architecting problems with system flexibility and performance improvement funds have been investigated. Efficient solution methods are proposed and evaluated for not only the system of systems architecting problems, but also a generic multi-objective set covering problem. Additionally, a bi-objective track inspection scheduling problem is introduced for an automated ultrasonic inspection vehicle. Exact and approximation methods are discussed for this bi-objective track inspection scheduling problem --Abstract, page iii

    Comparing Low and High-Level Hybrid Algorithms on the Two-Objective Optimal Design of Water Distribution Systems

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11269-014-0823-8This paper presents the comparison of two hybrid methodologies for the two-objective (cost and resilience) design of water distribution systems. The first method is a low-level hybrid algorithm (LLHA), in which a main controller (the non-dominated sorting genetic algorithm II, NSGA-II) coordinates various subordinate algorithms. The second method is a high-level hybrid algorithm (HLHA), in which various sub-algorithms collaborate in parallel. Applications to four case studies of increasing complexity enable the performances of the hybrid algorithms to be compared with each other and with the performance of the NSGA-II. In the case study featuring low/intermediate complexity, the hybrid algorithms (especially the HLHA) successfully capture a more diversified Pareto front, although the NSGA-II shows the best convergence. When network complexity increases, instead, the hybrid algorithms (especially the LLHA) turn out to be superior in terms of both convergence and diversity. With respect to both the HLHA and the NSGA-II, the LLHA is capable of detecting the final front in a single run with a lower computation burden. In contrast, the HLHA and the NSGA-II, which are more affected by the initial random seed, require numerous runs with an attempt to reach the definitive Pareto front. On the other hand, a drawback of the LLHA lies in its reduced ability to deal with general problem formulations, i.e., those not relating to water distribution optimal design.University of ExeterChina Scholarship CouncilEmilia-Romagna Regional Council (Italy
    • ā€¦
    corecore