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Abstract

The Pareto set of a multiobjective optimization problem consists of the solutions
for which one or more objectives can not be improved without deteriorating one or
more other objectives. We consider problems with linear objectives and linear con-
straints and use Adjustable Robust Optimization and Polynomial Optimization as
tools to approximate the Pareto set with polynomials of arbitrarily large degree. The
main di�erence with existing techniques is that we optimize a single (extended) opti-
mization problem that provides a polynomial approximation whereas existing methods
iteratively construct a piecewise linear approximation. The proposed method has sev-
eral advantages, e.g. it is more useful for visualizing the Pareto set, it can give a local
approximation of the Pareto set, and it can be used for determining the shape of the
Pareto set.

keywords: Pareto set; multiobjective; polynomial inner approximation; robust optimiza-
tion; polynomial optimization; SOS

JEL classi�cation: C61

1 Introduction

Multiobjective optimization problems (MOPs) have a vector valued objective function
f = [fi]1≤i≤k, where each fi is a separate objective. Often it is not possible to have
optimal values for all fi simultaneously, e.g. in portfolio optimization it is not possi-
ble to have minimum risk and maximum return at the same time. Another example is
intensity-modulated radiation therapy, where tumour coverage is balanced with sparing of
surrounding organs [4, 15]. Optimization of a vector valued function involves a trade-o�
between two or more objectives fi (1 ≤ i ≤ k).

A simple way to deal with multiple objectives is by assigning an importance factor wi > 0
to each objective and optimizing

∑k
i=1wifi (we make the assumption that all fi should

be minimized w.l.o.g.). If such importance factors are not known a priori, a Pareto set
(PS) allows the decision maker to make the trade-o� after optimization. The set PS
consists of all objective vectors f in which one or more objectives can not be improved
without deteriorating one or more other objectives. Overviews of MOPs and approximation
methods can be found in [3, 5, 13].
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In practice often approximations of PS are used, since the exact PS can often not be
found. In literature many di�erent approximation methods are proposed. It is desirable to
approximate PS with as few optimization runs as possible [15]. A well-known class of such
approximation methods is sandwich methods. Sandwich methods [15] produce piecewise
linear approximations in which between PS is located. In each iteration an optimization
problem is solved, which leads to adding one or more facets to the approximations. All
other methods (again see [3, 5, 13]) are also sequential, i.e. in each iteration one has to
solve an optimization problem which leads to an improvement of the approximation.

In this paper, we focus on approximating PS for linear programming and propose a to-
tally di�erent way than those in the literature. The �rst di�erence is that our method
is not sequential, but generates the approximation by solving one extended optimization
problem. The second di�erence is that the �nal approximation is not piecewise linear
but a polynomial. The way we construct this approximation is by using techniques from
Adjustable Robust Optimization (ARO) [1] and Polynomial Optimization [9]. We �rst
explain the link to ARO. The Pareto set is seen as a function of the uncertain parameters

f1, ..., fk−1. The area of interest, i.e. the domain for f1, ..., fk−1 for which we would like
to approximate the Pareto set, is considered as the uncertainty region. All variables in
the linear program are made adjustable in the parameters f1, ..., fk−1. We use polynomials
for the decision rule, and use Polynomial Optimization theory to reformulate the resulting
robust counterpart into a Semi-De�nite Programming (SDP) problem. Since the number
of uncertain parameters (i.e. k − 1) is often low, the sizes of the LMIs in the SDP are
relatively small. Notice that in our approach ARO is merely used as a tool, uncertainty in
the data is not considered.

The approach proposed in this paper has the following advantages:

The �rst advantage is that the �nal approximation is more tractable for navigating through
PS. The polynomial representation is useful for the user to visualize PS for selecting the
�nal solution. This is the reason why in [6], afer determining points in the feasible region
close to or on PS, polynomial regression is used to obtain a tractable representation of PS
(a so-called response surface). Our method �nds such a tractable representation directly,
with the additional advantage that it is guaranteed to lie in the feasible region. Some-
times the decision maker needs a local approximation of PS around a given solution. [18]
formulate and test a method that gives a local quadratic approximation of (not necessar-
ily convex) PS, but this approximation is neither an inner nor an outer approximation.
Our method gives a polynomial of arbitrary degree and is guaranteed to give an inner
approximation.

The second advantage is that our approach can be used to certify with a single optimization
run that a given set V is dominated, i.e. that all elements of the set are dominated. If
our method �nds a feasible solution, then this solution is a certi�cate that the set V is
dominated.

The third advantage is that the explicit polynomial approximation can be used in opti-
mization problems with Pareto constraints. Such problems contain constraints that enforce
that the solution should be (near) Pareto optimal for a certain multi-objective linear pro-
gram. Examples of these problems can be found in e.g. [7]. A Pareto constraint can be
replaced by the explicit polynomial approximation found by our method.

The fourth advantage is the possibility to quickly determine the shape of PS. [4], e.g., show
that in IMRT the set of feasible objective vectors is often �long and narrow� and therefore
a linear approximation of PS su�ces. This linear approximation can be easily obtained
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by our approach. Finally, after an initial approximation, the most interesting subregion
can be selected, followed by one or more iterations of approximation and selection. An
interesting subregion can also be used as input for another algorithm that explores it more
carefully.

This method also has �ve disadvantages. First, the resulting problem is often an SDP
while the original problem is LP. Only in case the approximation is linear and the region of
interest is polyhedral, the resulting problem is LP. Note that this is still an interesting case;
see [4] that uses linear approximations in IMRT problems. Second, our method requires
the region of interest to be known. Sandwich algorithms are capable of exploring the
region of interest [15]. Third, it is di�cult to approximate the Pareto set at its vertices,
because polynomials are smooth functions. The further the vertex angle from 180◦, the
more di�cult it is to approximate it. However, in some cases a smooth approximation is
desirable, see e.g. [12]. Fourth, the method can not be extended to nonlinear multiobjective
problems with current RO technology. Methods for approximating nonlinear MOPs can
be found in [11, 16]. Fifth, while we show (Appendix A) that the method can also produce
outer approximations, this is practically impossible due to computational issues.

2 Notation

We use the notation from [15] with some minor changes.

Throughout this paper, we use the following orderings of vectors. Let x,y ∈ Rn with
n ≥ 2. With xi, we denote the i

th element of the vector x. To enumerate di�erent vectors,
we use superscripts. When ordering two vectors, we use:

• x < y ⇔ xi < yi for all i = 1, . . . , n.

• x � y ⇔ xi ≤ yi for all i = 1, . . . , n and x 6= y.

• x ≤ y ⇔ xi ≤ yi for all i = 1, . . . , n.

The symbols >, 	 and ≥ are de�ned accordingly. We furthermore de�ne the set Rn
− =

{x ∈ Rn : x ≤ 0}. If X ⊆ Rn, then we de�ne X + Rn
− = {x + y : x ∈ X,y ∈ Rn

−}. The
sets Rn

+ and X + Rn
+ are de�ned accordingly.

In this paper, we consider the following multi-objective optimization problem:

min f(x) = [(c1)
>
x, . . . , (ck)

>
x]>

Ax ≤ b,

where x ∈ Rn is the optimization variable, ci ∈ Rn are the objective vectors, and A ∈ Rm×n

and b ∈ Rm.

As it is generally impossible to �nd a feasible x that minimizes all objectives at the same
time, our aim is to �nd a set of so-called Pareto optimal solutions.

De�nition 1

An objective vector f(x), for x such that Ax ≤ b, is (strongly) dominated if there exists

an x̃ such that Ax̃ ≤ b and f(x̃) < f(x). If no such x̃ exists, the objective vector f(x)
is weakly Pareto optimal.
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An objective vector f(x), for x such that Ax ≤ b, is weakly dominated if there exists an

x̃ such that Ax̃ ≤ b and f(x̃) � f(x). If no such x̃ exists, the objective vector f(x) is

(strongly) Pareto optimal.

The set of Pareto optimal solutions is denoted by PS. An inner and outer approximation
of the Pareto set are de�ned as follows:

De�nition 2 A set IPS ⊆ Rk is an inner approximation of PS if it satis�es IPS ⊆
PS + Rk

+.

De�nition 3 A set OPS ⊆ Rk is an outer approximation of PS if it satis�es PS ⊆
OPS + Rk

+.

We will approximate PS with polynomials on multidimensional sets. The following de�-
nitions are used to de�ne the degree of a polynomial.

De�nition 4 A monomial of degree d in x ∈ Rn with powers a ∈ Rn is de�ned by∏n
i=1 x

ai
i .

De�nition 5 A polynomial of degree d in x ∈ Rn is de�ned as the sum of monomials in

x of degree up to d. The degree of a polynomial f is denoted as deg(f).

3 Inner approximation

Let U ⊆ Rk−1 be the domain of interest for ((c1)
>
x, (c2)

>
x, . . . , (ck−1)

>
x). For a �xed

u in U , the following optimization problem determines a single weakly Pareto optimal
solution [13, Thm. 3.2.1]:

min
x

(ck)
>
x

(ci)
>
x ≤ ui i = 1, 2, . . . , k − 1

Ax ≤ b.

If the solution x is unique, it is (strongly) Pareto optimal [13, Thm. 3.2.4]. For every u,
there will be a di�erent optimal x. So, we want to solve for x as a function of u. The
constraints should hold for all x(u) for which u is in U , and the goal is e.g. to minimize
the average objective:

min
x(u)

∫
U

(ck)
>
x(u)du (1a)

(ci)
>
x(u) ≤ ui ∀u ∈ U, i = 1, 2, . . . , k − 1 (1b)

Ax(u) ≤ b ∀u ∈ U. (1c)

This is an ARO problem, where u is the uncertain parameter, U is the uncertainty region,
and x is an adjustable variable [1]. It is di�cult to optimize over functions, therefore
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ARO uses parameterized functions for adjustable variables. The adjustable variables then
become expressions that are linear in the parameters. For instance, if we take a linear
parameterization x(u) = α0 + α1u, the parameters are α0 ∈ Rn and α1 ∈ Rn×(k−1).
After substituting x(u) in the problem (1a)-(1c), an ARO problem with constraints that
are linear in α0 and α1 remains. In general, the tractability of (1a)-(1c) depends on the
class of functions considered for x and the set U . Given a solution to this optimization
problem, an inner approximation is given by
{((c1)

>
x(u), (c2)

>
x(u), ..., (ck)

>
x(u)) : u ∈ U}. Constraint (1c) ensures that x(u) is

feasible. So, the resulting inner approximation indeed lies in PS+Rk
+. The objective (1a)

minimizes the volume under the inner approximation if (1b) is tight for all u . Note that
a constant function x(u) may be feasible for this optimization problem. The reason why
this problem returns an interesting inner approximation and not just a constant function
x is because from the objective it follows that a smaller (ck)

>
x(u) is better, and a smaller

(ck)
>
x(u) can only be obtained by increasing (ci)

>
x(u) for i = 1, 2, . . . , k − 1. This

increase as a function of u is constrained by (1b).

A functional description of the inner approximation may be more tractable for a speci�c
purpose. Therefore, we de�ne:

IPS = {(u, (ck)
>
x(u)) : u ∈ U}.

If constraint (1b) is tight for all u, IPS is the same as the inner approximation given
before. Otherwise, the given inner approximation dominates IPS.

The question arises for which regions U and functions x this formulation is tractable. When
U is polyhedral, for instance a box ({u ∈ Rk−1 : ||u||∞ ≤ 1}), and x is linear in u, this
problem can be formulated as an LP. The optimization problem minimizes the volume
enclosed between the linear approximation, the Pareto curve and the boundary of U . In
case of two objectives (k = 2), it will �nd the line connecting the point on the Pareto curve

where (c1)
>
x = −1 with the point on the Pareto curve where (c1)

>
x = 1. Hence, it �nds

two Pareto optimal points. This extends to larger k, where it �nds a plane going through
k − 1 Pareto optimal points. In case U is a box, the instance size also grows linearly in k.
This result of linear growth is new, because determining a linear inner approximation over
a box would require determining the Pareto optimal points at the exponentially growing
number of extreme points of U .

The inner approximation becomes more interesting when x is nonlinear in u. When k = 2,
a tractable choice is given by polynomials: for polynomials of arbitrarily large degree,
the problem can be formulated as an SDP [1, Lemma 14.3.4], for which polynomial time
solvers are available. When k > 2, the problem is tractable when U is ellipsoidal and x
is quadratic in u [1, Lemma 14.3.7]. The resulting problem is an SDP with m + k − 1
variables matrices of size k + 1 and m+ k − 1 constraints.

For k > 2, the problem can also be reformulated as an SDP when U is a semialgebraic
set (U = {u : pi(u) ≤ 0 (i ∈ I)}, where pi are polynomials of arbitrary degree), and
x is a polynomial in u, but the reformulation is not always equivalent. This means that
the resulting optimal solution for the SDP reformulation may not be optimal for (1a)-
(1c). However, the solution to the reformulation is always an inner approximation, and the
numerical results in Section 4.2 are promising. The reformulation is based on polynomials
that are sums of squares (SOS) of other polynomials. An example of an SOS polynomial
is 5x2 + 2x+ 65, because it can be decomposed as (2x+ 4)2 + (x− 7)2. Testing whether
a polynomial is SOS is equivalent to solving an SDP [9, Lemma 3.8] with a matrix of size
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Table 1: An overview of the tractability of inner approximation (1a)-(1c).

k U x(u) Tractability Exact

≥ 2 box linear LP
√

≥ 2 polyhedral linear LP
√

≥ 2 ball linear CQP
√

2 interval polynomial SDP
√

> 2 ellipsoidal quadratic SDP
√

≥ 2 semialgebraic polynomial SDP −

(
k−1+d

d

)
, where k− 1 is the number of variables and d is the degree of the polynomial. An

SOS polynomial is obviously nonnegative. Let us focus on constraint (1b):

u1 − (c1)
>
x(u) ≥ 0 ∀u : pi(u) ≤ 0 (i ∈ I).

By applying Putinar's Positivstellensatz [9, Thm. 3.20], which has been done before in
ARO [2], we can obtain a su�cient condition under which this constraint holds:

u1 − (c1)
>
x(u) = σ0(u) +

∑
i∈I

pi(u)σi(u), (2)

where σ0 and σi (i ∈ I) are SOS. Solving a problem with constraint (2) instead of (1b) is
conservative for two reasons. First, (2) may not be a necessary condition when there are
no σ0, σi that are SOS for which the set {u : σ0(u) +

∑
i∈I pi(u)σi(u) ≥ 0} is compact, or

when (1b) is a not a strict inequality. Compactness can easily be guaranteed by including
a constraint

∑k−1
i=1 u

2
i −R ≤ 0 to the description of U , which can be done without changing

U because U is bounded [9, p. 186]. However, (1b) will in general not be a strict inequality.
Second, solving a problem with constraint (2) as an SDP requires bounding the degree of
σ0 and σi.

We let the degree of x determine the complexity of the problem unless g is of higher
degree, so we take the degree of σ0 equal to max{deg(x),maxi{deg(gi)}}, and the degree
of σi equal to max{0, deg(σ0)− deg(gi)}.

An overview of all tractable cases is given in Table 1.

For many uncertainty regions it may be di�cult to reformulate the integral in the objective
function as a simple linear function in the optimization variables. In that case the objective
can be replaced with the average value of (ck)

>
x(u) at well distributed sampling points

u in U . For e�cient sampling from a polytope, see e.g. [8].

The user has to specify the domain of interest U . If the speci�ed region is too large,
two things may occur. First, U may contain a vector with objective values that are too
optimistic in the sense than they can not be met, in which case constraint (1b) is infeasible.
Second, U may contain objective values that are not weakly dominated by f(x) for any
feasible x. In that case constraint (1b) will not be tight and also the objective is not fully
related to the area of interest.

When the number of objectives is three or more, a weak parameterization of x can be
another cause of infeasibility. If feasible solutions exist for all u in U , it is possible that
these solutions can not be attained with the parameterization. An easy example is the
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case where U contains two di�erent Pareto optimal solutions (projected on the �rst k − 1
coordinates) while x is a constant function. When the optimization problem is infeasible,
we do not see a possibility to detect whether the parameterization is too weak or U contains
infeasible points.

It is known that PS is convex, and that it is nonincreasing. It may be the case that
these properties do not hold for the inner approximation, which is problematic when the
inner approximation is used in an algorithm that assumes these properties to hold. In
case x is linear in u, these conditions are automatically satis�ed. In case k = 2, u is
one-dimensional and convexity and nonincreasingness of (c2)

>
x(u) can be enforced by

constraining the �rst and second derivative w.r.t. u. The �rst and second derivative of
a polynomial is again a polynomial, so constraining these to be negative and positive,
respectively, for polynomial x does not increase the complexity class of the problem. In
case k > 2, U is a polynomial and x is quadratic in u, say x(u)i = α0

i + (α1
i )

>
u+ u

>
Γiu

where α0
i ∈ R,α1

i ∈ Rk−1 and Γi ∈ R(k−1)×(k−1) are decision variables. Nonincreasingness
can easily be enforced by adding the constraints α1

i + 2Γiu ≤ 0 for all u in U , which
is a set of n(k − 1) linear constraints with ellipsoidal uncertainty, each of which can be
reformulated as a conic quadratic constraint. For convexity it is required that Γi is positive
semide�nite, which is an SDP constraint.

4 Numerical examples

4.1 Two objectives

We construct a semi-random 150 × 170 matrix A, a 150-vector b, and two 170-vectors c1

and c2, such that the Pareto cuve is interesting on the interval [0, 25]. We compute a
polynomial inner approximations of degree up to 16.

We solve linear programs with Matlab linprog. We enter linear constraints with LMI un-
certainty into YALMIP [10]. YALMIP reformulates this problem as an SDP. In Appendix
B we show how to do this reformulation by hand in case of a polynomial of degree 3. We let
YALMIP export the resulting problem, then we reformulate free variables as the di�erence
of two nonnegative variables using CSDP's convertf, and solve the problems with SDPA
[17] (SDPA-DD [14] for the problem with a polynomial of degree 16). Figure 1 shows the
resulting solutions. The solution time ranges from 21 seconds for the polynomial approxi-
mation of degree 4 to 4 minutes for degree 8 (with SDPA), and 45 minutes for degree 16
(with SDPA-DD).

4.2 Three objectives

We semi-randomly construct vectors c1 ∈ [0, 1]10, c2 ∈ [0, 1]10 and c3 ∈ [−1, 0]10, and take
R10
+ as the feasible region. Recall from Table 1 that we have an exact result for a quadratic

inner approximation over an ellipsoidal set, and a conservative result for polynomial inner
approximations of arbitrary degree over semialgebraic sets. Again we use YALMIP and
SDPA to formulate the problem and solve the resulting SDPs. We use YALMIPs SOS
module for constraining an expression to be SOS.

We take {u : ||u− 5||2 ≤ 5} as the area of interest for (c1)
>
x and (c2)

>
x, and approximate

the Pareto set with a polynomial of degree 2 and with a polynomial of degree 4. For degree
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(a) degree 1 (b) degree 4

(c) degree 8 (d) degree 16

Figure 1: Numerical example with two objectives indicating the quality of the inner ap-
proximation with a polynomial decision rule. The lowest curve represents the set PS which
is usually not known.
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Figure 2: Numerical example with three objectives indicating the quality of the inner
approximation with a polynomial decision rule. The lowest set represents the set PS
which is usually not known.

2 we solve the exact robust counterpart, while for degree 4 we solve the SOS approximation.
We also solve the SOS approximation for degree 2, and notice that the inner approximation
is the same as with the exact robust counterpart. Figure 2 shows that the polynomial of
degree 4 gives an approximation that is closer to PS than the polynomial of degree 2. The
solution time is around 1.6 seconds for all three approximations.

A Outer approximation

In this appendix we show how ARO can be used to construct an outer approximation.
While theoretically possible, it is practically not tractable to determine polynomial ap-
proximations of degree 2 or higher due to computational issues. For linear approximations,
the results are trivial. We still mention the result because it also uses ARO to approximate
PS.

Let U = [a1, b1] × [a2, b2] × · · · × [ak−1, bk−1] with [ai, bi] be the domain of interest for

(ci)
>
x (i = 1, 2, . . . , k − 1). We construct the set OPS by creating a function function

` : Rk−1 → R for which (u1, u2, . . . , uk−1, `(u1, u2, . . . , uk−1)) is in PS+Rk
−, and optimizing

over this function:

max
`

∫
U
`(u1, u2, . . . , uk−1)du (3a)

`((c1)
>
x, (c2)

>
x, . . . , (ck−1)

>
x) ≤ (ck)

>
x ∀x : Ax ≤ b, ai ≤ (ci)

>
x ≤ bi.

(3b)

Given a solution to this optimization problem, the outer approximation is
{(u1, u2, . . . , uk−1, `(u1, u2, . . . , uk−1)) : u ∈ U}. The objective (3a) maximizes the volume
under this approximation. Constraint (3b) ensures that the outer approximation as a

function of (c1)
>
x lies under (c2)

>
x for every x in the domain of interest.

An optimal outer approximation is tangent to the Pareto curve at (at least) one point.
This becomes clear from (3b): this constraint holds with equality for at least one x because
otherwise we can add a constant to ` without losing feasibility, which contradicts optimality.
Previous results force the decision maker to specify either this point of tangency or the
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derivative at this point a priori. Our formulation determines the point of tangency in such
a way that the volume enclosed between this linear outer approximation and the Pareto
curve over the set U , but in the linear case this turns out to give a trivial result.

When ` is linear, the problem (3b) can be reformulated as an LP using ARO. For the case
k = 2 (two objectives) it can be shown that the optimal linear ` is a line tangent to PS

at a1+b1

2 , i.e. halfway the interval of interest. We conjecture that in higher dimensions the
point of tangency is the barycenter of U . This would imply that the formulation for the
outer approximation is not interesting because it is already known how to obtain an outer
approximation that is tangent at a given point.

For nonlinear ` the SOS framework used in Section 3 can be used to reformulate the
problem as an SDP when ` is a polynomial of arbitrary degree d. This is a polynomial in
the vector x, so the number of terms is

(
n+d
d

)
, which is also the order of the matrix in the

SDP. Even for a quadratic function, the size of the SDP is often too large to solve.

The user has to specify the domain of interest [u1, u2]. Specifying the wrong domain does

not lead to infeasibility. However, if the interval is too large, i.e. (c1)
>
x does not range

through the full interval, part of the outer approximation is meaningless because PS is
inexistent for some u.

B Derivation of the SDP formulation for a polynomial inner

approximation with two objectives

We give a derivation of the SDP formulation of (1a)-(1c) in case x(u) = α0+α1u+α2u
2+

α3u
3 (where αi in R170, i=1,2,3) for the numerical example of Section 4.1. Suppose the

area of interest for (c1)
>
x is [0, 25], then u runs from 0 to 25. Because in the result by [1,

Lemma 14.3.4] u runs from -1 to 1, we use the following linear transformation x→ Dx+d
to transform Z = {(u, u2, u3) : −1 ≤ u ≤ 1} into {(u, u2, u3) : 0 ≤ u ≤ 25}:

D =

 12.5 0 0
312.5 156.25 0

5859.375 5859.375 1953.125

 d =

 12.5
156.25

1953.125


The problem can now be written as follows:

min (c2)
>

(25α0 +
252

2
α1 +

253

3
α2 +

254

4
α3) (4a)

(c1)
>

(α0 + [α1 α2 α3](Dζ + d)) ≤ (Dζ + d)1 ∀ζ ∈ Z (4b)

A (α0 + [α1 α2 α3](Dζ + d)) ≤ b ∀ζ ∈ Z, (4c)

where:

Z = {ζ ∈ R3 :

(
1
ζ

)
=



1 0 0 0
0 2 0 0
3 0 4 0
0 4 0 8
3 0 4 0
0 2 0 0
1 0 0 0



>

λ0
λ1
λ2
λ3
λ4
λ5
λ6


,


λ0 λ1 λ2 λ3
λ1 λ2 λ3 λ4
λ2 λ3 λ4 λ5
λ3 λ4 λ5 λ6

 � 0}.
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Constraints (4b) and (4c) are a total of 151 semi-in�nite constraints that have to hold for an
in�nite number of ζ. LetAj denote the j

th row of A. In order to allow for shorter notation,
we de�ne the linear function ` : R170×R170×R170 → R3 vector `(α) := Aj [α1 α2 α3]D.
The jth constraint of (4c) can be rearranged to:

Ajα0 − b+ [α1 α2 α3]d+ `(α)ζ ≤ 0 ∀ζ ∈ Z,

which is equivalent to:

Ajα0 − b+ [α1 α2 α3]d+ max
ζ∈Z
{`(α)ζ} ≤ 0. (5)

The maximization problem is an SDP. Replacing this problem with its SDP dual and
omitting the min operator is a well-known method to transform a semi-in�nite constraint
into a single constraint. We show how to do this. In the following SDP, we take the
4× 4 matrix with λi's in the description of Z as our variable X. Let `i(α) denote the ith

component of `(α).

The optimization problem in (5) is:

max 〈C,X〉
s.t. 〈Ai, X〉 = bi (i = 1, 2, 3, 4)

X � 0,

where 〈·, ·〉 denotes the trace inner product, b1 = 1, b2 = b3 = b4 = 0, and:

C =


`3(α) `2(α) 4

3`1(α) + `3(α) `2(α)
`2(α) 4

3`1(α) + `3(α) `2(α) 4
3`1(α) + `3(α)

4
3`1(α) + `3(α) `2(α) 4

3`1(α) + `3(α) `2(α)
`2(α) 4

3`1(α) + `3(α) `2(α) `3(α)

 ,

A1 =


0 0 0 2
0 0 2 0
0 2 0 0
2 0 0 0

, A2 =


0 0 −1

2 0
0 1 0 0
−1

2 0 0 0
0 0 0 0

 ,

A3 =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

, A4 =


0 0 0 0
0 0 0 −1

2
0 0 1 0
0 −1

2 0 0

 .

By formulating the dual and putting this into constraint (5), we get the following robust
counterpart:

Ajα0 − b+ [α1 α2 α3]d+ y1 ≤ 0

4∑
i=1

yiAi − C � 0.

Constraint (4b) and the other constraints (4c) can be transformed in a smilar way.
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