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ABSTRACT
In this thesis, model-based multiple criteria decision making (MCDM) is inves-
tigated with the focus being on improving and applying approaches based on
interactive multiobjective optimization methods. These approaches are applied
in real world situations in which there are multiple conflicting objectives: inten-
sity modulated radiotherapy (IMRT) and brachytherapy (and papermaking in the
appendix).

The novel ideas for supporting model-based MCDM and interactive multiobjec-
tive optimization devised in this thesis include efficient use of trade-off information
as a part of the decision making process, and making approximations of Pareto
optimal solution spaces in order to reduce the number of solutions needed to be
computed. In addition, a new way is introduced of visualizing the Pareto optimal
solutions obtained with virtual reality facilities as a part of the decision making
process. All these ideas are designed to make it easier for the decision maker to ob-
tain a more in-depth understanding of the problem under consideration. Processes
of many application areas can be made more efficient with new tools supporting
the decision making.

In addition to the methodological aspects, there has been a focus on apply-
ing the interactive multiobjective optimization and the developed ideas to IMRT,
and brachytherapy (and papermaking in the appendix). The application areas
considered in this thesis contain very complex processes and conflicting targets
which have gathered increasing interest of modeling and optimization during the
years. However, these research areas are still novel, and the problems involved are
not totally understood. Hence, this thesis is one of the first attempts to extend
the research into interactive multiobjective optimization methods applied to ra-
diotherapy treatment planning.

AMS (MOS) Classification: 58E17, 68U35, 90B50, 90C29, 90C90
Universal Decimal Classification: 004.946, 005.53, 005.591.1, 005.642.4, 519.863
INSPEC Thesaurus: optimisation; decision making; decision support systems;
Pareto analysis; virtual reality; data visualisation; simulation; radiation therapy;
brachytherapy; patient treatment; planning; paper making
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Madetoja, Prof. Kaisa Miettinen, Designer Veli-Matti Mönkkönen and Prof. Kalyan-
moy Deb. I want to thank my supervisors Prof. Hämäläinen for giving me a great
opportunity to undertake this thesis, and Dr. Madetoja for giving me everyday
support during the research. Especially I want to say thank you to Prof. Miettinen
for her support in writing this thesis and supervising me despite the fact that we
are not even working in the same university. Discussions also with Petri Eskelinen,
Ph.D., Jussi Hakanen, Ph.D., and Vesa Ojalehto, M.Sc., were helpful and, thus,
acknowledged. In addition, constructive comments given by pre-examiners Prof.
Francisco Ruiz and Prof. Eva K. Lee were valuable when finishing this thesis.

In application areas, collaboration with radiotherapy experts such as Eeva
Boman, Ph.D., Jouko Tervo, Ph.D., Jan-Erik Palmgren, Ph.Lic., Tapani Lahtinen,
Ph.D., Fredrik Carlsson, Ph.D., and Joakim Pyyry, M.Sc.(Tech.), have been very
fruitful. In addition, I wish to thank also papermaking expert Petter Honkalampi,
Ph.Lic., for useful tips and his expertise in papermaking.

This work was financially supported by Tekes (Finnish Funding Agency for
Technology and Innovation) MASI technology programme.

Moreover, I want to say thank you to the pleasant working community and also
to those a few mates I have been working with since my university studies started.
Finally, the biggest thanks goes to my family and fiancée for all the support they
have given to me.

Kuopio, 9th December 2009

Henri Ruotsalainen



Abbreviations

2D two dimensional
3D three dimensional
BTE Boltzmann transport equation
CAD computer aided design
CFD computational fluid dynamics
CPU central processing unit
CRT cathode ray tube
CT computed tomography
DCC digital content & creation
DIN Deutsches Institut für Normung
DTLZ Deb, Thiele, Laumanns, Zitzler: scalable

multiobjective optimization test problems
DSS decision support system
EA evolutionary algorithm
ESTRO European Society for Therapeutic Radiology and Oncology
FEM finite element method
GPU graphics processing unit
GUESS interactive method related to the reference

point method (a näıve method)
Gy Gray, absorbed dose
HDR high dose rate
Hz Hertz
IND-NIMBUS implementation of the interactive NIMBUS method for

multiobjective optimization for industrial purposes
IMRT intensity modulated radiotherapy
KKT Karush-Kuhn-Tucker
LCD liquid crystal display
MCDA multiple criteria decision analysis
MCDM multiple criteria decision making
MIRA multicriteria interactive radiotherapy assistant
MOEA multiobjective evolutionary algorithm
MRI magnetic resonance imaging
NAUTILUS interactive technique in multiobjective

optimization based on the nadir point
NIMBUS interactive classification-based method for

multiobjective optimization
NSGA-II elitist non-dominated sorting genetic algorithm version II
PC personal computer
STOM satisficing trade-off method
SVD singular value decomposition
VR virtual reality



Nomenclature

APi approximated Pareto optimal set i
C critical organ region
d direction
dij kernel value
Di dose in dose point i
E energy domain
EPO Pareto optimal set in decision space
fff vector of objectives
fi (single) ith objective function
g radial dose function
h step length
Ii finite set in i
Jf Jacobian matrix
Mi source node i
MPO trade-off rate matrix
N normal tissue region
Ni node point i
P Taylor’s polynomial
PP subset of Pareto optimal set EPO

rij distance between dwell position j and dose calculation point i

Rk objective space
Rn decision space
S feasible set
S vector of BTE model parameters
Sl radiation field
Sk air kerma strength
tij trade-off rate
tj , t dwell time (decision variables in brachytherapy case)
T target region
Tij ratio of change
ul radiation flux
V patient region
wi objective weight i.e. weighting coefficient
�x point in the patient domain (in radiotherapy cases)
xxx vector of decision variables
zzz objective vector
zi ith aspiration level (for fi)
zzz reference point (vector of aspiration levels)
zzz∗ Pareto optimal objective vector
zzz� ideal objective vector
zzz�� utopian objective vector
zzznad nadir objective vector



Nomenclature

Z image of feasible set
∇fi gradient of fi

∇2fi Hessian matrix of fi

∂fi partial derivative of fi

γ vector of BTE model parameters (decision variables in IMRT case)
θ angular domain
κ artificial stopping power
Λ dose-rate constant
Φan anisotropy function
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Chapter 1

Introduction

1.1 Background

Almost every real-world optimization problem involves simultaneous optimization
of several incommensurable and often competing objectives. For example, consider
the design of a complex system containing hardware and software such as that
found in mobile phones, cars, aeroplanes, etc. Often the cost of such a system needs
to be minimized, but nonetheless maximum performance is desired. Depending on
the application, further objectives may be important such as reliability and energy
consumption. These are only examples, but as can be seen, decision making with
multiple conflicting objectives in every day operations can be difficult. Moreover,
an unfavorable decision can be financially expensive or even hazardous in some
situations. Thus, there exists a need to develop different ways to support multiple
criteria decision making (MCDM) processes.

This thesis begins with a description and definition of multiple criteria decision
making [4, 11, 55, 95, 132, 133, 153, 158], starting with decision making. Deci-
sion making can be understood as an outcome of mental processes leading to the
selection of a course of action after weighting the alternatives [4]. In the decision
making context, criterion can be interpreted as a standard by which one partic-
ular choice or course of action could be judged to be more satisfying than some
other. When we are considering several, i.e. multiple, different choices or courses
of actions which are in conflict, it becomes a multiple criteria decision making
problem. For example, selecting a new car is a MCDM problem which typically
involves consideration of many criteria such as price, comfort, performance, and
safety, see Figure 1.1. In the figure, there are two cars having totally different
characteristics: one is a high-priced luxury model and another one is a cheap and
humble basic model. Nevertheless, both of these cars can be optimal solutions to
a MCDM problem.

In fact, almost every decision we ever make requires MCDM – the consideration
of multiple factors, i.e. criteria. It is such an ordinary action that we sometimes
make these decisions without any conscious thought. For example, when you

11



12 1. Introduction

Figure 1.1: A simplified example of multiple criteria decision making.

consider what to buy in a food shop you automatically pay attention to what you
will be cooking that night, what ingredients you already have in your fridge, do
you or one of the diners have any allergies, or simply how much money do you have
to spend. However, not many individuals build a more formal model for his/her
decision making problems, and probably very few have analyzed their decisions.
That is maybe because it is too complex, the issue is not worth it, or it is easy to
take into account the factors in one’s head with satisfying accuracy. In a nutshell,
in everyday life some decisions do not matter that much. However, when we are
studying MCDM, or applying it to the engineering sciences or health care, all
decisions are important – in other words decisive.

In the engineering sciences or health care, the corollaries of decisions, whether
they affect for example management decisions or clinical treatment plans, are more
substantial. The impacts of the decisions are more long-lasting, more expensive,
and may affect many people. In addition, mistakes might not be easily fixed. In
these circumstances, the tools and methods presented in this thesis are useful,
since it is known that the human brain can only cope with a limited amount of
information simultaneously [76].

The fundamental nature of the MCDM problem is that it is characterized
by complex and conflicting information. This information can reflect different
viewpoints or it can change as a function of time. One goal of the MCDM is
to help decision makers (who are experts on the application being considered
and who will have to make the final decision) to organize all the information to
be considered in such a way that it helps them in making their final decision,
it provides confidence in making a decision, and minimizes the risk of making
costly errors. That is why MCDM or multicriteria decision analysis (MCDA)
can be understood as an umbrella term [4] describing a collection of approaches
which can be used in helping individuals or groups exploring decisions in multiple
criteria problems, whether they are used in personal decisions (buying a car, for
example), or in high level management decisions in public or private sectors (often
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integer problems), or in model-based decision support in engineering and health
care problems (often continuous problems) such as those examined in this thesis.

Here the focus is on utilizing interactive multiobjective optimization [95, 138]
in model-based multiple criteria decision support with applications. In interactive
multiobjective optimization, the optimization process is iterative and the decision
maker directs the solution process during the optimization to the most preferred
direction. The model-based decision support [153] based on interactive multiobjec-
tive optimization belongs to the field of MCDM. In the literature, different MCDM
techniques are utilized for example in sorting problems, ranking problems, descrip-
tion problems, design problems, and, as in this thesis also in engineering problems
and health care problems (see [9, 28, 134, 135, 162], for examples). The diversity
of approaches makes it possible for many kinds of users, i.e. decision makers, to
utilize MCDM tools for different applications and goals.

1.2 Objectives of the thesis

In this thesis, the focus is on improving and applying approaches based on inter-
active multiobjective optimization methods. The approaches studied are applied
to model-based real world applications: intensity modulated radiotherapy (IMRT)
and brachytherapy, and papermaking (in the appendix).

Multiobjective optimization methods are selected for model-based decision sup-
port because they are capable of handling multiple conflicting objectives at the
same time [12, 20, 95]. Solutions of the multiobjective optimization problem form
a Pareto optimal front, i.e. a set of compromised trade-off solutions from which
the best possible compromise solution can be selected. However, even when differ-
ent Pareto optimal solutions are found, choosing a particular optimal compromise
solution is not a trivial task, especially when the number of objectives is larger
than two. Furthermore, the objectives in a multiobjective optimization task do
not need to be commensurable.

In view of the above stated reasoning, one goal of this thesis is to introduce new
ideas for supporting MCDM and interactive multiobjective optimization based de-
cision support. These involve efficient use of gradient and trade-off information,
and making approximations of Pareto optimal solutions and fronts in order to
reduce the number of solutions needed to be computed. In addition, it is appreci-
ated that new ways of visualizing the Pareto optimal solutions as a part of decision
making process are needed [62, 86, 95]. In multiobjective decision making, Pareto
optimal fronts are often visualized because in this way a comparison between so-
lutions becomes easier. A Pareto optimal front is easy to visualize when there are
only two objective functions, but visualizing more than two objective functions is
problematic. This thesis examines the integration of multiobjective optimization
with the three dimensional virtual reality environment in order to study the Pareto
optimal solutions and approximated Pareto optimal fronts. This is done in order
to help in making a better decision when choosing the final solution. Many kinds
of innovative tools are designed to make it easier to obtain a deeper understanding
of the MCDM problem.
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In this thesis radiotherapy and papermaking can be considered to represent
very complex processes which have obtained increasing interest of modeling, sim-
ulation and optimization over the years. However, these research areas are still
novel, and the problems involved are not very well known [5, 87]. At the time
when this research started (end of the year 2005), there were no interactive multi-
objective optimization methods which had been applied to radiotherapy treatment
planning while many other kinds of interactive approaches are used even in the
clinics. Thus, this work is the first attempt to extend research into that area (as
interactive multiobjective optimization methods are defined e.g. in [95]).

In radiotherapy (IMRT [37, 66, 128] or brachytherapy [69, 79, 105]), the goal
is to irradiate the tumor without affecting the surrounding healthy tissue and
critical organs. These targets are competing because in many cases the radiation
dose must be delivered through healthy tissue. Though there are several studies
where the idea of supporting the decision making process and comparing solutions
has been discussed [15, 16, 17, 31, 41, 50, 65, 66, 93, 106, 145], not all the clinics
are using decision support systems actively, i.e. the treatment planning is done at
least partially by using a trial-and-error approach with planning parameters being
adjusted manually by the treatment planner. Thus, easy-to-use and intuitive tools
would be very welcome in the clinics. For some reason, interactive multiobjective
optimization methods, i.e. the optimization process is iterative, have not been
studied in the field of radiotherapy optimization before. The drawbacks of methods
used in the literature are that it can be difficult for the decision maker to specify
preferences (e.g. target weights or penalties) before the solution process has started
and, on the other hand, generating many Pareto optimal solutions for the decision
maker to compare can be computationally costly. It is also problematic to compare
many solutions without imposing an excessive cognitive load on the decision maker
[76]. Thus, it is our belief that an interactive multiobjective optimization method
would be ideal for radiotherapy optimization. They assist the decision maker in
controlling the solution process iteratively and thus he/she can learn about the
conflicting radiotherapy targets during the optimization procedure. An interactive
approach may also involve shorter computing times, because the decision maker
directs the solution process and only solutions are generated in which he/she is
interested. In this way, trial-and-error planning can be avoided.

As this thesis shows, the same multiobjective optimization approaches and
decision making aids can be applied in different applications. In papermaking
[43, 44, 46, 49, 52, 88], the goal is to produce as much paper as possible with
minimal costs. Moreover, there are several paper quality properties which need to
be fulfilled at the same time. As can be easily understood, these objectives are
conflicting and thus MCDM approaches are welcome. The processes used in many
different application areas can be made more efficient with optimization and the
introduction of new tools to support the decision making.
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1.3 Outline of the thesis

Outline of this thesis is as follows. After the Introduction, the basic concepts of
MCDM and multiobjective optimization are considered. They are introduced in
Chapters 2 and 3, respectively, as they are presented in the original works [4, 95,
158]. Chapter 2 will consider the nature of MCDM problems and present the usual
MCDM process: it is divided into different phases and the characteristics of these
phases are discussed. Also implementation and usability of MCDM approaches
are discussed from the applications point of view, and the roles of interfaces, and
simulation and optimization softwares are also examined. Chapter 3 is dedicated
to multiobjective optimization which is the cornerstone of this work. This work
is mostly based on interactive multiobjective optimization which can be used in
finding Pareto optimal solutions and, thus, supporting decision making which is
why it belongs to the subordination of the MCDM. In Chapter 3, concepts and
different methods for multiobjective optimization are presented. However, only
those methods which have been used in this thesis are described.

Chapter 4 constitutes the new theoretical ideas suggested to support model-
based MCDM. This chapter includes new approaches for navigating on a Pareto
optimal front utilizing trade-off information, and making approximations of the
Pareto optimal front in order to reduce the number of solutions needed to be com-
puted. With these approaches, the behavior of the Pareto optimal front can be
predicted in a certain area and the decision maker can predict the most profitable
direction in which to guide the optimization process between the conflicting tar-
gets. In addition, a novel visualization tool based on a virtual reality environment
for visualizing Pareto optimal solutions and thus supporting the decision maker in
decision making is presented in this chapter. Virtual reality offers new and inter-
esting opportunities to support MCDM by providing versatile visualizing abilities
which can be used in studying and analyzing the Pareto optimal solution.

In Chapters 5 and 6, radiotherapy treatment planning is studied and the pre-
sented tools are applied to radiotherapy treatment planning. Academic examples
of treatment planning of IMRT are presented and optimized in Chapter 5, and
clinical examples of patient treatment plans of brachytherapy are presented in
Chapter 6.

Finally, Chapter 7 is devoted to the conclusions and future prospects of how
these ideas and methods can be improved, utilized, and made more applicable to
real world situations.

After these chapters, there are appendices containing a dose calculation model
and a case study. In Appendix A, a dose calculation model-based on the Boltzmann
transport equation is presented. It is presented in the appendix because it is based
on work done by Boman, Tervo and Vauhkonen [5, 144] but it is still an important
piece of this work. In Appendix B, a case study of the interactive multiobjective
optimization of the papermaking process is discussed with examples.
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1.4 Author’s contribution

Although this thesis is a monograph, some of the ideas and research results of this
thesis have been published elsewhere or have been presented in conferences. The
new theoretical ideas suggested for MCDM have been discussed also in:

• a paper Navigation on a Pareto-optimal front utilizing gradient information
in interactive multiobjective optimization [122] published in a conference pro-
ceedings

• a paper Supporting multiobjective decision making with 3D virtual reality:
preliminary results and future extensions [123] submitted to a journal

• a paper Visualizing multi-dimensional Pareto-optimal fronts with a 3D vir-
tual reality system [90] published in a refereed conference proceedings

• a journal paper Approach for visualizing multi-dimensional Pareto-optimal
fronts using a 3D VR system [91].

The first study has been conducted with Prof. Jari Hämäläinen and Dr. Elina
Madetoja, and the author’s role was to execute the research after the idea was
conceived by the co-authors. The three other research papers consider the new
visualization approach with the virtual reality environment. The author’s role in
these papers was to conceive and execute how the VR environment could be used
in supporting model-based decision making, mostly with the help of Dr. Madetoja.
The collaboration of Mr. Veli-Matti Mönkkönen (technical realization), Prof. Jari
Hämäläinen and Prof. Kalyanmoy Deb was also helpful during the research, and
some of the ideas have been devised by these individuals.

The results considering radiotherapy treatment planning have been published
or have been submitted for publication as follows:

• a working paper Interactive multiobjective optimization for IMRT [120]

• a journal paper Nonlinear interactive multiobjective optimization method for
radiotherapy treatment planning with Boltzmann transport equation [121]

• a working paper Interactive multiobjective optimization for HDR brachyther-
apy [125]

• a paper Interactive multiobjective optimization for 3D HDR brachytherapy
applying IND-NIMBUS [124] accepted for publication in a refereed confer-
ence proceedings.

The research considering interactive multiobjective optimization of radiotherapy
treatment planning has been executed by the author utilizing also ideas from the
co-authors. The expertize and support of Prof. Kaisa Miettinen is acknowledged in
the multiobjective optimization side, and the knowledge of radiotherapy experts
Dr. Eeva Boman, Dr. Jouko Tervo, Mr. Jan-Erik Palmgren, Ph.Lic., and Dr.
Tapani Lahtinen was most helpful when the research was being implemented.

The results considering papermaking are discussed also in the following works:
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• a book chapter CFD-based optimization for a complete industrial process:
papermaking [44]

• a paper Simulation-based optimization and decision support for papermaking
[45] published in a conference proceedings

• a paper New visualization aspects related to intelligent solution procedure in
papermaking optimization [89] published in a conference proceedings.

The author’s role in these works concentrated mainly on optimization and aspects
involved in the decision support, and thus these studies are not the focus of this
thesis. These papers were mainly conceived and written by Prof. Hämäläinen and
Dr. Madetoja.



Chapter 2

The multiple criteria problem

2.1 Multiple criteria decision making

To begin with, let us discuss the process of MCDM. Before going into details,
one must consider some important features of MCDM. The goal of MCDM is to
lead to better considered, justified and explained decisions. MCDM will not give
the ”right” answer or provide an ”objective” analysis which will replace decision
makers of making difficult judgments. The MCDM process helps to structure the
problem, and it seeks to pay reasonable attention to multiple and conflicting crite-
ria. Therefore it makes it easier for the decision makers to learn about the problem
being considered, and about their own and others’ values and judgments. The fi-
nal outcome of a MCDM process should provide decision makers with information
to help to identify the most preferred solution or course of action. Extensive dis-
cussion belongs to the nature of a MCDM process. The concepts of MCDM are
presented and discussed mostly based on the book by Belton and Stewart [4].

In the following section, each of the three key phases [4]: problem identification
and structuring, model building and use, and the development of action plans of
the MCDM problem are discussed more thoroughly. The phases are illustrated
also in Figure 2.1.

2.1.1 Problem identification and structuring

”A problem well structured is a problem half solved”

is an old Finnish proverb. Problem identification and structuring is also the first
and very important step of MCDM since no analysis can be done before an ade-
quate understanding of the problem is obtained. At the very onset, initial problem
structuring means a focused way of thinking: opening up the issue, defining the
complexity, and trying to understand and manage the problem. In this phase,
those factors which constitute the agenda for further analysis need to be identified
and considered, such as goals, values, constraints, and uncertainties. A mismatch

18
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Figure 2.1: The process of MCDM

between the problem and model used is the most common reason for the failure
in the MCDM analysis [147].

When applying MCDM to real world problems, goals, limitations and variables
are examples of aspects to be realized which arise from the application area under
consideration and, thus, they are very application specific. In other words, there is
no problem structure which stands for all issues but innovative thinking is needed
in problem structuring.

2.1.2 Model building and use

At some stage, the problem structuring changes to model building. As in the whole
MCDM process, model building must be a very dynamic process interacting with
a problem structuring process and model use. It can involve iteration, searching
for new solutions and criteria, and rejecting old ones. Model building can be
understood as a convergent way of thinking and trying to identify the essences of
the complex phenomena. This is the case especially in the model-based decision
support, where the models to be built are very complex, including physical and
mathematical modeling which can be computationally very challenging. Thus,
model building can be divided into two parts: simulation model building and
optimization model building.

Since some MCDM problems arise from engineering sciences (such as in the
applications presented this thesis) in which large processes need to be modeled,
the simulation model building can be really extensive including different kinds of
modeling techniques. In addition, also computational aspects, numerical issues,
and discretization of the simulation model need to be considered.
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In optimization model building, the goal is to choose the objectives and vari-
ables, and to develop formal models to model the goals (i.e. objectives functions),
values, and preferences so that the alternative actions under consideration can be
compared to each other in a systematic and transparent manner. Depending on
the application, also these models can be very dissimilar. Multiple criteria models
can sometimes appear very simple, but a simple model does not necessarily mean
that there will not be complexity inherent in the problem.

After the models have been built, they can be used in supporting the decision
making. In this thesis, an interactive multiobjective optimization will be used
to solve the devised mathematical optimization models. In that way, all the in-
formation given by the models can be taken into account efficiently in decision
making.

2.1.3 Action plans

Model building and use cannot solve the decision making problem. An important
aspect is to implement the results into specific plans of action. MCDM is not only
technical modeling of the application concerned, it is more about the support and
insight given to implementation.

Action plans are often obtained after moving from one phase back to another
several times. That is why iterative and interactive multiobjective optimization
methods suit well for MCDM, and they are used also in this thesis. As a result of
this MCDM process, the decision maker should have the best possible understand-
ing of the problem considered and he/she should be able to make the best possible
decision. In other words, he/she will now be able to choose the best solution or
course of action to be the final one which then can be executed.

2.2 Implementing and applying MCDM

In the following section, the implementation and utilization of the MCDM tech-
niques in application fields is discussed. In general, implementation is interpreted
as the realization of an application, or execution of a plan, idea, model, or algo-
rithm. In computer sciences, an implementation means a realization of a technical
specification or algorithm as a program, software component, or other computer
system. The development of computers and computing capacity have made it
possible to produce more sophisticated software for solving multiobjective opti-
mization problems and to implement many kinds of algorithms and computer
softwares for MCDM problems. At the same time, these implementations are be-
ing applied to many more varied applications as is done also in this thesis. These
kinds of software packages for MCDM and multiobjective optimization problems
are termed multiobjective decision support systems [4, 95].

2.2.1 Decision support systems

Decision support systems (DSSs) are usually depicted as a specific class of com-
puterized information systems that are designed for supporting business and or-
ganizational decision making activities [95]. A DSS is a software based system
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intended to help decision makers, for example, in compiling useful information
from raw data, documents, personal knowledge, and/or models to identify and
solve problems and, more importantly, make decisions.

A typical decision support system might gather and present information such
as:

• An inventory of all of your current information assets

• Comparative graphs, figures and tables between solutions

• Consequences of different decision alternatives.

This thesis will consider so-called model-based or model-driven decision support
systems [114] which are usually based on statistical data, a simulation model,
and/or optimization. Model-based DSSs use data and parameters provided by an
individual called an analyst to assist decision makers in analyzing a situation and
coming to a decision.

By an analyst we mean an individual (or in some cases a computer program)
responsible for the mathematical side of the solution process [95]. He/she is an
expert in using this kind of software, and sometimes he/she is responsible also
for implementation and programming. In addition to the decision maker who
has responsibility for the decision, an analyst is on hand to guide and assist the
decision maker in reaching a desired decision. The analyst works in co-operation
with the decision maker: he/she generates information for the decision maker to
consider, and then the final solution is selected by the decision maker.

It has been demonstrated that DSSs increase the understanding of the problem,
they contribute to progress in solution process, and thus, reduce frustration in
problem solving [114]. In general, DSSs should be easy to use and they should
follow the decision maker’s thinking. Moreover, they should be able to support
different decision styles, problem structures, and applications [151].

Software specifically implementing MCDM methodology can be divided into
three groups [151]:

• Commercially available software packages

• Software packages developed primarily for research purposes

• Programs written for experimental implementation and testing of new MCDM
techniques.

Commercially available softwares can be true application oriented simulators which
are designed for supporting decision making in some certain application or problem
(e.g. MIRA [145] which is however an open source program). Simultaneously, some
of those software packages are very generic systems which can be implemented to
solve almost any problem which have been modeled in a reliable enough manner
(e.g. modeFRONTIER [36] or NIMBUS [97, 99]). Most of the implementations
are designed for research and testing purposes.
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A list of some software products designed for supporting MCDM can be found
on www.mcdmsociety.org/soft.html which is the webpage of the International So-
ciety on MCDM. Many kind of macros can be used in supporting MCDM. Thus,
the above list does not claim to be complete.

2.2.2 Supporting MCDM in real world problems

In order to support MCDM in solving of a real world problem, the following steps
are considered in a model-based DSS in this thesis:

• Simulation model

• Optimization tool (or optimizer, solver)

• Interface between the model, the optimizer, and the user (decision maker or
in some case analyst).

Here, the interface refers to input, output and exchange of information, and pre-
sentation of results for the decision maker. The cooperation of simulation model,
optimization tool, interface and user is clarified also in Figure 2.2.

Figure 2.2: An illustration of model-based decision support system.

Simulation model

The role of simulation (and optimization) model building was already discussed
in Section 2.1.2. A simulation model forms the cornerstone of model-driven DSSs,
because it is the way the system acquires information and data about the system
considered. Thus, if the simulation model is unreliable, then the information given
by the DSS is unreliable. Optimization models to be solved are built up by using
simulation models.

Optimization tool

Model-based DSSs are usually constructed in such a way that many optimization
tools or optimizers can be used to solve the optimization model or problem in
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question. The selection of the optimizer depends mostly on the problem struc-
ture: problems can be continuous or integer-valued, linear or nonlinear, convex
or non-convex, differentiable or non-differentiable, or problem can be single or
multiobjective optimization problem. There are different methods suitable for dif-
ferent kinds of problems, and choosing the appropriate optimizer case-specifically
is important for maintaining the efficiency of the DSS.

Interface

It is important to highlight the role of the interface. In many cases, a great effort
has been spent in developing the methodological and computational aspects of
the system (i.e. modeling work and developing the optimizer), but the interface
between the model, the optimizer, and the user is not so well clarified [4]. This
can cause problems, since no matter how exact is the model used or how efficient
is the optimizer it will fail if the interface between those features and the user does
not work as expected. Graphical user interfaces with illustrative visualizations,
graphs and figures play an essential role in DSSs nowadays [62, 95].

In a nutshell, examples of the requirements for computer implementation of a
DSS can be listed as follows:

• Simulation model must be validated

• Flexible to test and analyze different model parameters and set-ups

• Possibility to add models to the system

• Proper optimizer and possibility to modify optimization problem solved

• Possibility to add optimizers to the system

• Appropriate interface

• Fast enough results.

2.3 Concluding comments

So far, the problems involved in MCDM have been introduced with simple exam-
ples taken from everyday life. Here, the main concepts of MCDM were discussed
shortly. Only the main works were cited here which does not pay full respects
to the rich literature of MCDM. Thus, readers are recommended to familiarize
themselves with the references listed in [4, 11, 55, 95, 134, 158], for example.

In the following section, some concepts of multiobjective optimization will be
described and then the focus will switch to new ideas developed for interactive
multiobjective optimization and MCDM. As already stated, multiobjective opti-
mization is one part of the MCDM umbrella term since it is used here to help
decision makers in making decision in multiple criteria problems.

After the theoretical and methodological part of the thesis, we apply the in-
troduced and developed approaches to the real world applications IMRT, and
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brachytherapy (and papermaking in the case depicted in the appendix). As can be
understood from the diversity of the applications, model-based MCDM approaches
and DSSs can be implemented in many areas in order to support decision makers.



Chapter 3

Multiobjective optimization

3.1 Multiobjective optimization problem

3.1.1 Basic concepts

In this chapter, the principles of multiobjective optimization are outlined and basic
concepts are formally defined following the notation presented by Miettinen in her
book [95]. A multiobjective optimization problem can be defined as follows [95]

min {f1(x), f2(x), . . . , fk(x)}
subject to x ∈ S,

(3.1)

where x is a vector of continuous decision variables from the feasible set S ⊂ R
n

defined by linear, nonlinear and/or box constraints (k ≥ 2). We can denote an
objective vector by f(x) = (f1(x), f2(x), . . . , fk(x))T . Furthermore, we denote
the image of the feasible set by f(S) = Z and call it a feasible objective set. It
is a subset of the objective space R

k. As stated, the elements of Z are called
objective vectors and denoted by fff(xxx) or zzz = (z1, z2, . . . , zk)T , where zi = fi(xxx)
for all i = 1, . . . , k are objective function values.

The word ”min” means ”minimize” and it is intended to minimize all the
objective functions at the same time. If an objective function fi is to be maximized,
this is equivalent to considering minimization of −fi. If there is no conflict between
the objective functions, then a solution can be found where every the objective
function attains its optimum (i.e. minimum or maximum). In such a case, no
special multiobjective optimization methods are needed. Here, we assume that
there does not exist a single solution that is optimal with respect to every objective
function. This means that the objective functions are conflicting (at least partly).

Before defining optimality in multiobjective optimization, let us define some of
the basic concept of multiobjective optimization used in this thesis.

Definition 3.1.1 The multiobjective optimization problem is linear if all the ob-
jective functions and constraint functions are linear.

25
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We have a nonlinear multiobjective optimization problem if any of the objective
or constraint functions are nonlinear.

Definition 3.1.2 A function fi : R
n → R is convex if for all xxx1, xxx2 ∈ R

n is valid
that fi(βxxx

1 + (1 − β)xxx2) ≤ βfi(xxx
1) + (1 − β)fi(xxx

2) for all 0 ≤ β ≤ 1.

The definition of convex functions can be modified for concave functions by re-
placing ”≤” by ”≥”. A set S ⊂ R

n is convex if xxx1, xxx2 ∈ S implies that
βxxx1 + (1 − β)xxx2 ∈ S for all 0 ≤ β ≤ 1.

Definition 3.1.3 If all the objective functions and the feasible region are convex,
the multiobjective optimization problem is convex.

Definition 3.1.4 A function fi : R
n → R is differentiable at xxx∗ if fi(xxx

∗ + ddd) −
fi(xxx

∗) = ∇fi(xxx
∗)Tddd+||ddd||ε(xxx∗, ddd), where ∇fi(xxx

∗) is the gradient of fi at xxx∗, ddd ∈ R
n

is a feasible direction emanating from xxx ∈ S, and ε(xxx∗, ddd) → 0 as ||ddd|| → 0.

In addition, fi is continuously differentiable at xxx∗ if all of its partial derivatives
∂fi(xxx

∗)
∂xj

(j = 1, . . . , n), i.e. all the components of the gradient, are continuous at xxx∗.

Definition 3.1.5 If at least one of the objective functions or the constraint func-
tions forming the feasible region is nondifferentiable, the multiobjective optimiza-
tion problem is nondifferentiable.

Definition 3.1.6 A function fi : R
n → R is twice-differentiable at xxx∗ if fi(xxx

∗ +
ddd) − fi(xxx

∗) = ∇fi(xxx
∗)Tddd + 1

2ddd
T∇2fi(xxx

∗)ddd + ||ddd||ε(xxx∗, ddd), where ∇fi(xxx
∗) is the

gradient, the symmetric n×n matrix ∇2fi(xxx
∗) is a Hessian matrix of fi at xxx∗ and

ε(xxx∗, ddd) → 0 as ||ddd|| → 0. The Hessian matrix of a twice-differentiable function

consists of second-order partial derivatives ∂2fi(xxx
∗)

∂xj∂xl
, j, l = 1, . . . , n. In other words

∇2fi(xxx
∗) =

⎡
⎢⎢⎣

∂2fi(xxx
∗)

∂x2
1

. . . ∂2fi(xxx
∗)

∂x1∂xn

...
. . .

...
∂2fi(xxx

∗)
∂xn∂x1

. . . ∂2fi(xxx
∗)

∂x2
n

⎤
⎥⎥⎦ .

In addition, fi is twice continuously differentiable at xxx∗ if all of its second-order
partial derivatives are continuous at xxx∗.

Definition 3.1.7 A function fi : R
n → R is increasing if for xxx1 and xxx2 ∈ R

n holds
that x1

j ≤ x2
j for all j = 1, . . . , n imply fi(xxx

1) ≤ fi(xxx
2).

Correspondingly the function fi is decreasing if fi(xxx
1) ≥ fi(xxx

2). Moreover, a
function is monotonic if it is either decreasing or increasing.
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3.1.2 Pareto optimality

Due to the conflicting objectives and possible incommensurability of the objective
functions it is not possible to find a single solution that would be optimal for
all the objectives at the same time. In multiobjective optimization, optimality is
often understood in the sense of Pareto optimality [95]. The existence of Pareto
optimal solutions has been discussed in [95, 126], for example. Pareto optimality
is named after Vilfredo Pareto [111, 112].

Definition 3.1.8 A decision vector x∗ ∈ S is Pareto optimal if there does not
exist another decision vector x ∈ S such that fi(x) ≤ fi(x

∗) for all i = 1, . . . , k
and fj(x) < fj(x

∗) for at least one index j.

Definition 3.1.8 introduces also global Pareto optimality.

Definition 3.1.9 An objective vector zzz∗ ∈ Z is Pareto optimal if there does not
exist another objective vector zzz ∈ Z such that zi ≤ z∗i for all i = 1, . . . , k and zj

< z∗j for at least one index j.

Equivalently, zzz∗ is Pareto optimal if the decision vector corresponding to it is
Pareto optimal.

These Pareto optimal solutions form a Pareto optimal set (or front) (bold line
in Figure 3.1). This figure illustrates a feasible set S ⊂ R

3 and its image, a fea-
sible objective set Z ⊂ R

2. Usually, for continuous problems there is an infinite
number of Pareto optimal solutions. The Pareto optimal set can be nonconvex
and disconnected.

Figure 3.1: An example of the sets S and Z and the Pareto optimal set.
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Definition 3.1.10 A decision vector xxx∗ ∈ S is locally Pareto optimal if there
exists δ > 0 such that xxx∗ is Pareto optimal in S ∩B(xxx∗, δ).

Naturally, any globally Pareto optimal solution is locally Pareto optimal. In ad-
dition, any locally Pareto optimal solution is globally Pareto optimal in convex
multiobjective optimization problems [95].

Definition 3.1.11 A decision vector xxx∗ ∈ S is weakly Pareto optimal if there does
not exist another decision vector xxx ∈ S such that fi(x) < fi(x

∗) for all i = 1, . . . , k.

Definition 3.1.12 An objective vector zzz∗ ∈ Z is weakly Pareto optimal if there
does not exist another objective vector zzz ∈ Z such that zi < z∗i for all i = 1, . . . , k.

The weakly Pareto optimal set is also denoted in Figure 3.1. The Pareto optimal
set is a subset of the weakly Pareto optimal set which can be seen also from the
figure.

In the Pareto optimal set, an ideal objective vector z� ∈ R
k gives lower bounds

for the objective functions, and it is obtained by minimizing each objective function
individually subject to the constraints. A vector strictly better than z� can be
called a utopian objective vector z��, that is, we set z��

i = z�
i − ε for i = 1, . . . , k,

where ε is a small positive scalar. A nadir objective vector znad giving upper
bounds of objective function values in the Pareto optimal set is usually difficult
to calculate, and, thus, its values are usually only approximated e.g. by using
pay-off tables, see, for example [23, 95]. The ideal and nadir objective vectors are
illustrated in Figure 3.2.

In the multiobjective optimization context, we are usually interested in the
objective space R

k whereas in single objective optimization the main focus is often
on the decision variable space R

n. That is because in multiobjective optimization,
we usually have less objectives than variables and the objectives describe the trade-
offs in the problem but also the variables are important. Typically, only Pareto
optimal solutions are interesting, not the other feasible solutions in Z. If the
optimization model is badly defined or it does not describe the real goals of the
problem, some other feasible solutions can be better than Pareto optimal ones.
Since all the Pareto optimal solutions are equally good from a mathematical point
of view, they can be regarded as equally valid compromise solutions of the problem.
Thus, there exists no trivial mathematical tool in order to find the best solution
in the Pareto optimal set because vectors cannot be ordered completely. For this
reason some additional information is needed in decision making.

3.1.3 Decision making

When are needs to solve a multiobjective optimization problem, two separate
phases can be identified: multiobjective optimization and decision making [53]
(compare to the phases two and three of the MCDM problem [4]). The first phase
refers to the optimization process in which the feasible set is sampled for Pareto
optimal solutions without committing any information about what represents a



3.1 Multiobjective optimization problem 29

Figure 3.2: An example of an ideal objective vector and a nadir objective vector.

suitable compromise solution. The second phase addresses the problem of selecting
a suitable compromise solution from the Pareto optimal set (in some cases, decision
making process can happen before the multiobjective optimization or during the
multiobjective optimization process). Thus, usually a human decision maker is
necessary to make the often difficult trade-offs between conflicting objectives. In
other words, when one speaks of solving a multiobjective optimization problem,
what is meant is finding a feasible Pareto optimal decision vector that also satisfies
the requirements set to the solution.

Typically a decision maker (or a group of decision makers), i.e. an expert of
the problem, is needed in order to find the best or most satisfying solution to
be called the final solution, see [95] and references therein. It is assumed that
the decision maker has a better insight into the problem, and he/she can express
preference relations between different solutions. Thus, for example it can be useful
for the decision maker to know the ranges of the objective function values (ideal
and nadir points) in the Pareto optimal set. The decision maker can participate
in the solution process, and, in some way, determine which of the obtained Pareto
optimal solutions is the most satisfying to considered as the final solution.

One example of ways how the decision maker can specify preference informa-
tion when looking for the best possible compromise, is that he/she can define
aspiration levels (forming a reference point) [152].

Definition 3.1.13 Objective function values that are desirable to the decision
maker are called aspiration levels and denoted by z̄i, i = 1, . . . , k.
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Definition 3.1.14 The vector z̄zz ∈ R
k (consisting of aspiration levels) is called a

reference point.

3.2 Multiobjective optimization methods

Multiobjective optimization problems are often solved by scalarization. Well-
known exceptions are linear multiobjective optimization problems (some simplex-
based solution methods can find Pareto optimal extreme points) [94], multiobjec-
tive proximal bundle method for nondifferentiable problems (though this is not
based on scalarization in the traditional sense) [94, 95], and multiobjective evolu-
tionary algorithms [20]. In scalarization, objectives are aggregated into a single,
scalarized objective function before the optimization search. Three requirements
are set for a scalarizing function [126]:

1. It can cover any Pareto optimal solution

2. Every solution it finds is a Pareto optimal

3. Its solution is satisficing (i.e. it satisfies all the aspirations of the decision
maker) if the aspiration levels used are feasible (only if the scalarizing func-
tion is based on aspiration levels)

Unfortunately, not any scalarizing function is satisfying all three requirements.
The scalarization function may contain preference information set by the deci-

sion maker as its parameters. Several optimization runs with different parameters
may be performed in order to achieve a set of solutions which approximates to the
Pareto optimal set, or only one scalarizing function is used if only one Pareto opti-
mal solution is generated at a time. Basically, this procedure is independent of the
underlying optimization algorithm which is used to solve the scalarized objective
function. In the literature, difficulties of using scalarizing functions are mentioned:
e.g. some of the techniques can be sensitive to the shape of the Pareto optimal
front, or knowledge of the problem can be required which may not be available
[163].

Recently, multiobjective evolutionary algorithms [12, 20] have become popu-
lar alternatives for solving multiobjective optimization problems in addition to
scalarazing-based methods. The advantages of using evolutionary algorithms are
that large search spaces as well as nondifferentiable and nonconvex problems can be
handled, and multiple alternative trade-offs can be generated in a single optimiza-
tion run, see e.g. [163]. In contrast, the drawbacks of evolutionary algorithms are
that generating many Pareto optimal solutions for the decision maker to compare
can also be computationally costly, it is problematic to compare many solutions
without imposing too great a cognitive load on the decision maker, and comparing
the solutions is difficult when k > 3.

Methods developed for multiobjective optimization can be divided into four
classes according to role of the decision maker [95]. Those classes are:
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• Methods where a decision maker is not used

• A priori methods

• A posteriori methods

• Interactive methods

In those methods where no decision maker is available, the final solution is
some neutral compromise solution [95]. In the three other classes, the decision
maker participates before the solution process has started, after it or iteratively,
and they are called a priori, a posteriori and interactive methods, respectively. In
the following section, the multiobjective optimization methods (several interactive
methods, a priori weighting method and a posteriori multiobjective evolutionary
algorithms) used in this thesis are shortly presented.

Interactive methods were selected in this thesis because they are applied suc-
cessfully for different applications [40, 46, 47, 101], and the implementations of
those were available. The weighting method was selected because it has been
used considerably in the literature. Thus, it is used for comparison in this thesis.
Multiobjective evolutionary algorithms were used since they are convenient when
generating a large number of Pareto optimal solutions, and they are used also
extensively in the literature.

3.2.1 Interactive multiobjective optimization methods

In interactive multiobjective optimization methods, the decision maker works to-
gether with an analyst or an interactive computer program. A solution pattern is
formed and repeated several times, and after every iteration, information is given
to the decision maker and he/she is asked to provide some other type of informa-
tion. The information given to and asked from the decision maker must be readily
understandable. Finally, he/she decides, which one of the obtained Pareto optimal
solutions is the most desired.

In this thesis, we use the so-called synchronous NIMBUS method [95, 97, 99].
The NIMBUS method is based on the idea of classification of objective functions.
It is known that the classification can be considered as an acceptable task for
human decision makers from a cognitive point of view [76]. During the solution
process, the decision maker classifies objective functions at the current Pareto
optimal point into up to five classes. The classes are the following:

– I< functions whose values should be improved,

– I≤ functions whose values should be improved until a desired aspiration level
ẑi,

– I= functions whose values are satisfactory,

– I≥ functions whose values can be impaired until a given bound εi,

– I> functions whose values can change freely.
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Since all the solutions considered are Pareto optimal, the decision maker can not
make a classification where all the objective function values need to be improved
without allowing at least one of the objective functions to be impaired. The
aspiration levels and the bounds are asked from the decision maker during the
classification procedure if they are needed. Based on preference information about
how the current solution should be improved (given by the decision maker by clas-
sifying the objective functions), a scalarized single objective optimization problem,
a subproblem, as we call it, can be formed.

In the synchronous NIMBUS method [99], there are four different subproblems
available, and thus, the decision maker can choose if he/she wants to see one
to four new solutions after each classification. Each subproblem uses a different
scalarization, and thus generates a new Pareto optimal solution that satisfies the
preferences given in the classification as well as possible, but the preferences are
taken into account in slightly different ways [98]. As stated, subproblems formed
are solved with an appropriate single objective optimizer.

When using the synchronous NIMBUS, the decision maker can use any solution
obtained at that point as a starting point for a new classification. Alternatively,
the decision maker can generate a desired number of intermediate Pareto optimal
solutions between any two Pareto optimal solutions. He/she can also save inter-
esting solutions in a database to allow him/her to return later to these solutions
and continue the solution process from any of them. The NIMBUS flowchart is
presented in Figure 3.3. For further details, see [99].

Interactive multiobjective optimization approaches may provide shorter com-
puting times compared to other methods because the decision maker directs the
solution process in the way he/she desires and only such solutions are generated in
which he/she is interested. In this way, trial-and-error optimization, i.e. varying
objective weights and/or other optimization parameters, can be avoided.

Scalarizing functions and subproblems

Scalarizing functions used in subproblems play a vital role in solving multiobjective
optimization problems. In the literature, many different scalarizing functions have
been presented but this thesis will concentrate on classification and reference-
point based functions which are available in the synchronous NIMBUS (selected
the comparisons reported in [98]).

In the NIMBUS method [95, 97], a subproblem is formed based on the clas-
sification and the corresponding aspiration levels and upper bounds. Different
formulations have been used in different NIMBUS versions. The subproblem used
in the synchronous NIMBUS [99] is

min maxi∈I<,j∈I≤

[
fi(x)−z�

i

znad
i −z��

i

,
fj(x)−z̄j

znad
j −z��

j

]
+ ρ

∑k
i=1

fi(x)

znad
i −z��

i

subject to fi(x) ≤ fi(x
c) for all i ∈ I< ∪ I≤ ∪ I=

fi(x) ≤ εi for all i ∈ I≥

x ∈ S,

(3.2)
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Figure 3.3: The NIMBUS flowchart [102].

where a so-called augmentation coefficient ρ > 0 is a relatively small scalar, and
xc ∈ S the current Pareto optimal decision vector. Aspiration level z̄j and bound
εi are given by the decision maker by classifying the objectives [95]. The scaling
factors (1/(znad

j − z��
j )) are used because they increase computational efficiency

and better enable capturing the decision maker’s preferences [100].

The other subproblems available in the synchronous NIMBUS originate from
reference point based methods. For a description on how a reference point is
obtained from classification information, see [98, 99]. The second subproblem
emerges from the satisficing trade-off method (STOM) [109]. The subproblem is
of the form

min maxi=1,...,k

[
fi(x)−z��

i

z̄i−z��
i

]
+ ρ

∑k
i=1

fi(x)
z̄i−z��

i

subject to x ∈ S,
(3.3)

where z̄i must be strictly higher than the corresponding component of z��
i .

Thirdly, there is the achievement scalarizing function which has been presented
in [152], for example. In NIMBUS, we use the formulation

min maxi=1,...,k

[
fi(x)−z̄i

znad
i −z��

i

]
+ ρ

∑k
i=1

fi(x)

znad
i −z��

i

subject to x ∈ S.
(3.4)

The fourth subproblem used is related to that used in the GUESS method [8]
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min maxi=1,...,k

[
fi(x)−znad

i

znad
i −z̄i

]
+ ρ

∑k
i=1

fi(x)

znad
i −z̄i

subject to x ∈ S.
(3.5)

In conclusion, each of these subproblems generates a solution taking the clas-
sification information into account in a slightly different way. In addition, the
solutions generated are Pareto optimal and any Pareto optimal solution can be
found [99].

Remark Only the NIMBUS method includes other constraints than box con-
straints for decision variables. In three other subproblems, aspiration level ẑi and
bound εi are handled as a soft constraint which can be violated [99].

Instead of an interactive method, one can use an a priori method and generate
a Pareto optimal solution after having asked the decision maker to specify his/her
preferences. One of the simplest methods is the weighting method.

3.2.2 Weighting method as an a priori method

In the weighting method, the idea is to equip each objective function with a weight-
ing factor and minimize the weighted sum of the objectives. In this way, the
multiple objective functions are transformed (scalarized) into a single objective
function. Weighting coefficients wi are real numbers such that wi ≥ 0 for all
i = 1, . . . , k. In addition, weights are often normalized, that is,

∑k
i=1 wi = 1.

Now, the multiobjective optimization problem can be formulated as

min
∑k

i=1 wifi(x)
subject to x ∈ S,

wi ≥ 0 for all i = 1, . . . , k, and∑k
i=1 wi = 1.

(3.6)

Theorem 3.2.1 The solution of the weighting method is Pareto optimal if the
weighting coefficients are all positive, i.e. wi > 0, for all i = 1, . . . , k. See [95] for
proof.

Theorem 3.2.2 The solution of the weighting method is Pareto optimal if the
solution is unique. See [95] for proof.

The weakness of the weighting method is that all of the Pareto optimal solutions
cannot be found unless the problem is convex. This is illustrated in Figure 3.4. As
can be seen from the figure, Pareto optimal solutions located in the middle part
of the front cannot be obtained because the w1f1 +w2f2 is linear. More formally,
we have the following theorem.

Theorem 3.2.3 If xxx∗ ∈ S is a Pareto optimal solution of a convex multiobjective
optimization problem, then there exists a weighting vector www ((w1, . . . , wk)T) such
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that xxx∗ is the solution of the weighting problem (3.6). See [95] for proof.

Furthermore, all the solutions of a multiobjective linear programming problem
can be hard to find by the weighting method. That is because the single objective
optimization routines for linear problems usually find only extreme point solu-
tions. Thus, if some facet of the feasible region is Pareto optimal, it can remain
unidentified [95].

Furthermore, the weighting vector that produces a certain Pareto optimal so-
lution is not necessarily unique. This is true especially for linear problems [95].

Figure 3.4: An example of weighting method with a nonconvex problem.

In the weighting method, the decision maker specifies a weighting coefficients
representing her/his preference information beforehand (an a priori method). The
weighting method can be used also as an a posteriori method where the decision
maker selects the most preferred solution out of all the generated alternatives.
Here, we use it as an a priori method, and thus, we minimize the weighted sum
of the objectives obtaining only one solution to be the final version. This method
can also be extended into an interactive form by letting the decision maker modify
the weighting coefficients after each iteration. The drawback is that weights are
not so intuitive and they can be even misleading. Thus, it can be time consuming
and difficult to obtain a satisfying solution. A notable point is that the objective
functions should be normalized or scaled so that their objective values are approx-
imately of the same magnitude. This is done in order to produce solutions which
have desirable ranges of the objective functions [95].
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3.2.3 Multiobjective evolutionary algorithms

The term evolutionary algorithm (EA) stands for a class of stochastic optimiza-
tion methods that simulate the process of natural evolution. Multiobjective evo-
lutionary algorithms (MOEA) are often well-suited for demanding optimization
problems involving conflicting objectives because they can handle nonconvex and
nondifferentiable problems [12, 20, 163]. An EA is a generic population-based
meta-heuristic global optimization algorithm, and its principle is described in Fig-
ure 3.5. An EA uses several mechanisms inspired by biological evolution: repro-
duction, mutation, recombination, and natural selection. Solution candidates of
the optimization problem play the role of individuals in a population, and the
fitness function determines the way in which the goodness of the solutions are
evaluated. In MOEAs, a typical fitness function assignment strategy is based on
Pareto dominance, see for example [20]. It is common that MOEAs generate a
large set of solutions approximating to Pareto optimal solutions for many types of
problems because they do not make any assumption about the underlying fitness
landscape: this generality is shown by their successes in fields as diverse as en-
gineering, biology, physics and operations research, see for example [12]. Genetic
algorithms are a particular class of evolutionary algorithms.

Figure 3.5: Principle of evolutionary algorithms.
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From the decision making point of view, MOEAs belong to the class of a pos-
teriori methods. In other words, a large set of solutions approximating to Pareto
optimal solutions are calculated beforehand, and the decision making process is
executed subsequently. However, Pareto optimality of the solutions obtained can-
not be guaranteed. Since one may have a large set of solutions approximating
to a Pareto optimal front, it is sometimes difficult to compare and visualize the
solutions obtained with a MOEA. This is an issue especially when there are more
than two objectives in the problem. Generating many solutions for the decision
maker to compare can also be computationally costly.

In this thesis, no particular MOEA is introduced because they are used as
black-box solvers solving the multiobjective optimization problems formed. In
other words, any MOEA could be used in the examples presented in this thesis.

After presenting the necessary basic concepts of MCDM and multiobjective
optimization, the next chapter will describe some new ideas for supporting MCDM
and interactive multiobjective optimization.



Chapter 4

New approaches for supporting MCDM

In this chapter, some new ideas for MCDM and multiobjective optimization are
suggested. Section 4.1 includes new ideas for navigating on a Pareto optimal front,
and Section 4.2 involves a novel visualization tool for viewing multiple dimensional
Pareto optimal solutions and thus supporting the decision maker in decision mak-
ing.

4.1 Navigation on a Pareto optimal front utilizing gradient

information

This section provides some preliminary ideas on how gradient (i.e. derivative) infor-
mation can be used to assist solution processes and navigation through a Pareto
optimal front in multiobjective optimization in different ways. First, a compu-
tationally efficient meta-model for approximating a Pareto optimal front can be
produced using the gradient information. With the approximated Pareto optimal
front, behavior of the Pareto optimal solutions can be predicted in a certain area,
which can be useful information in decision making. This kind of meta-modeling
is computationally light since in many cases it is essential that gradients are cal-
culated (e.g. in gradient-based optimization solvers). Here, we utilize the existing
gradient information more thoroughly to assist the decision making process, and
thus these kinds of ideas are welcome. Similar ideas of approximating Pareto
optimal fronts have been presented also in the literature [60, 139, 140, 141].

Second, gradient information can be employed during an interactive solution
process to generate so-called trade-off information. Here, a decision maker utilizes
the trade-off information to predict the most profitable direction in which to seek
the best Pareto optimal solution. In other words, when one target is being im-
proved, how can one maintain reasonable levels as the other targets. The concept
of the trade-off is used in the context of multiobjective optimization because the
Pareto optimal solutions of the conflicting targets are mathematically incompa-
rable and one has to make a sacrifice in some objective in order to gain in some
other objective, and this is called trading-off [11]. In other words, this kind of

38
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trade-off information describes interdependencies between objective functions and
how their values change locally with respect to the other functions. Furthermore,
we want to present the trade-off information to the decision maker as clearly as
possible so that interpreting and utilizing this data becomes easier and the desired
solution is straightforward to choose. The concept of trade-off has been widely
discussed in the literature, see e.g. [32, 33, 34, 38, 48, 57, 58, 67, 108, 155, 156],
but here the emphasis is placed on the decision making process with the trade-off
information such as in [39].

The support provided by gradient information is extremely useful especially
when the evaluation of objectives requires solving of computationally costly math-
ematical models (assuming that the gradients can be calculated in a reliable way
by using finite differences or analytically). That is the case in engineering prob-
lems, see e.g. [44], in which it is important to reduce the number of trial-and-error
computations to be made.

4.1.1 Approximating Pareto optimal fronts

Here, we produce a meta-model for approximating a Pareto optimal front using
the gradient information, and, with this approximation, the behavior of the Pareto
optimal solutions can be predicted in the neighborhood of Pareto optimal points.

In this thesis, Taylor’s formula has been utilized to find a successive approx-
imation to a Pareto optimal front. Taylor’s formula expresses a function as an
infinite sum of terms calculated from the values of its derivatives at a single point.

Definition 4.1.1 Taylor’s formula in the neighborhood of xxx (a polynomial ap-
proximation and an error (remainder) term) can be written as

f (x + h) =

p∑
l=0

1

l!

∂lfff(xxx)

∂x l
h l +

1

(p+ 1)!

∂p+1fff(ξ)

∂x p+1
hp+1,

where p ∈ N and ∂lfff
∂x l denotes l order of derivatives, h describes a small step from

point xxx, and ξ is a point in the neighborhood of xxx [115].

In Taylor’s formula, the first term (expressed as a sum) gives a polynomial
approximation of function f in the neighborhood of point xxx, and its accuracy can
be estimated with the second term even if the point ξ is unknown.

Using Taylor’s formula, a polynomial approximation of function f

P(x + h) =

p∑
l=0

1

l!

∂lfff(xxx)

∂x l
h l, (4.1)

is a Taylor’s polynomial of a function f in point x + h ∈ R
n. Using Equation

(4.1), an approximation of a Pareto optimal front can be formed (see, e.g. Figure
4.1). In the Figure 4.1, different order (p = 0, . . . , 3) polynomial approximations
of a Pareto optimal front based on Taylor’s polynomial are presented. Polynomial
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P(x + h) of degree p describes a Pareto optimal front better than any other
polynomial of degree p. In addition, the approximation is more exact when p
becomes larger.
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Figure 4.1: Approximations of a Pareto optimal front based on Taylor’s poly-

nomial for a multiobjective optimization problem formulated in [127].

If we have derivative information of a high degree p, it is possible to find a
Taylor’s polynomial approximation to a Pareto optimal front. Nevertheless, in
practice (in real world problems), we usually have only first order of derivatives
(p = 1), and thus the approximation is not accurate globally though it does provide
information about local changes. Then, the Taylor’s polynomial can be written in
the form

P(x + h) = f (xxx) + Jf (xxx)h , (4.2)

where Jf denotes a Jacobian matrix, i.e. ∂1fff
∂x1 . In the following section, it will be

assumed that only first order of derivatives are available.

Based on the presented first order linear Taylor’s polynomial approximation
(4.2), new points (approximating Pareto optimal points) can be generated to the
neighborhood of the Pareto optimal point without solving the original problem.
The principle is that a polynomial approximation of the Pareto optimal front can
be fitted based on the Pareto optimal points and the approximated Pareto optimal
points generated by using the first order linear Taylor’s polynomial approximation.
In a bi-objective case, at least two Pareto optimal points and two approximated
Pareto optimal points between these points are needed, and, in three dimensions, at
least three Pareto optimal points and six approximated points between these points
are needed in order to form the polynomial approximation. This approach can be
realized as a global algorithm in which the Pareto optimal front is approximated
globally, or as a local algorithm in which the Pareto optimal front is approximated
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only between Pareto optimal points. In addition, when using this approach, the
Pareto optimal front should not be non-connected.

In the algorithms, approximated Pareto optimal points are first calculated by
using the Taylor’s polynomial, and subsequently, a proper polynomial approxi-
mation of a Pareto optimal front is fitted to the Pareto optimal points and the
approximated Pareto optimal points. Thus, two algorithms can be written:

Algorithm 4.1.1 (local) Let PP be a set of Pareto optimal points in objective
space and let M be number of these points. Let APi for all i = 1, . . . ,M be a set
of approximated Pareto optimal points generated with the algorithm. Assume that
M ≥ k.

1. Set APi = φ for all i = 1, . . . ,M.

2. Let i = 1.

Do for zzzi ∈ PP (xxxi corresponds to zzzi).

(a) Select k−1 nearest points (based on e.g. Euclidean norm) from PP\{zzzi}

and define a set P̂Pi = {zzz1,. . . ,zzzk−1,zzzk}, where zzzj , j = 1, . . . , k−1, are
k − 1 nearest points, and zzzk = zzzi.

(b) Check if there exists another set P̂Pj such that P̂Pi = P̂Pj for some

j = 1, . . . , i− 1, then P̂Pi = φ and go to (d).

(c) Calculate using Taylor’s polynomial approximation (4.2) new points as
follows:

Do for each zzzj ∈ P̂Pi while j = 1, . . . , k

Do l = 1, . . . , k − 1

zzzAP
j,l = P(xxxj + h) = f(xxxj) + Jf (xxxj)h = zzzj + Jf (xxxj)h,

where h =
xxxl−xxxj

max(C1,C2a) , and C1, C2 are constants, a = ||zzzl−zzzj ||

and zzzl is the lth point in P̂Pi\{zzzj}.

End Do

Add the approximated points zzzAP
j,l into APi for all l = 1, . . . , k − 1.

End Do

(d) Set i = i+ 1.

End do

3. For each i = 1, . . . ,M , fit a proper polynomial approximation for a Pareto
optimal front using APi ∪ P̂Pi.

4. Visualize the approximations obtained to the decision maker. If the decision
maker is satisfied with the approximation, then exit.

5. Calculate a new Pareto optimal solution with a multiobjective optimization
solver and add it in PP, update M = M + 1, i=1 and continue from 2.
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Algorithm 4.1.2 (global) Let PP be a set of Pareto optimal points in objective
space, and let M be number of these points. Let APi for all i = 1, . . . ,M be a set
of approximated Pareto optimal points generated with the algorithm. Assume that
M ≥ k.

1. Set APi = φ for all i = 1, . . . ,M .

2. Let i = 1.

Do for each zzz ∈ PP (xxx corresponds to zzz).

(a) Select k - 1 nearest points (e.g. Euclidean norm) from PP\{zzz} and

define a set P̂Pi = {zzz1,. . . ,zzzk−1}, where zzzj , j = 1, . . . , k − 1, are k − 1
nearest points.

(b) Calculate using Taylor’s polynomial approximation (4.2) new points as
follows:

Calculate new point:

Do l = 1, . . . , k − 1

zzzAP
l = P(xxx+ h) = f(xxx) + Jf (xxx)h = zzz + Jf (xxx)h,

where h = xxxl−xxx
max(C1,C2a) , where xxxl is the lth point in P̂Pi and

C1, C2 are constants, and a = ||zzzl − zzz||.

End Do

Add these points {zzzAP
1 , . . . , zzzAP

k−1} into APi.

(c) Set i = i+ 1

End Do

3. Fit a proper polynomial approximation for a Pareto optimal front using
(∪M

i=1APi) ∪ PP .

4. Visualize the approximations obtained to the decision maker. If the decision
maker is satisfied with the approximation, then exit.

5. Calculate a new Pareto optimal solution with a multiobjective optimization
solver and add it in PP, update M = M + 1, and continue from 2.

Remark Parameter C1 is needed in such case where C2a → 0. The parameter
could be C1 = 10−6, for example. Parameter C2 can be understood as a case
specific weighting factor of parameter a, or it could be 1.

Remark Note that approximated Pareto optimal points zAP can be dominated
by other(s).

Examples of using these algorithms are presented in this thesis. Algorithm
4.1.1 is used in Section 4.1.3 in order to form a local piece-wise polynomial ap-
proximation of a Pareto optimal front, and Algorithm 4.1.2 is used in Section 5.4.2
to approximate a Pareto optimal front globally.
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For nonlinear problems, the first order Taylor’s polynomial is an accurate ap-
proximation only in some finite neighborhood of the current solution. In that
sense, a fitted approximation of the Pareto optimal front based on only a few
Pareto optimal points (and a few approximated points) can even be misleading in
some cases; if the Pareto optimal points are not closely-spaced, the approximation
between these points may not be accurate. However, a skillful decision maker
can obtain more information from the approximation than only from the Pareto
optimal points, and naturally the fitted nonlinear approximation of the Pareto
optimal front becomes more accurate when the number of Pareto optimal points
calculated increases. The next important step in developing this concept is to add
an error estimate for the approximated front.

4.1.2 Utilizing trade-off information

Definition of trade-off

Definition 4.1.2 The ratio of change between points x and x∗ involving objective
functions fi and fj is

Tij(x,x
∗) =

fi(x) − fi(x
∗)

fj(x) − fj(x
∗)
, x, x∗ ∈ S,

where fj(x) 
= fj(x
∗) [38].

Definition 4.1.3 If fl(x) = fl(x
∗) for all l 
= i, j, l = 1, . . . , k, then Tij is called

partial trade-off between vectors x and x∗.

If fl(x) 
= fl(x
∗) for at least one l 
= i, j, l = 1, . . . , k, then Tij is called total

trade-off.

Using the ratio of change Tij(x,x
∗) we can define total trade-off rate at the

point x ∈ R
n to direction d ∈ R

n. Let x ∈ S be a decision vector and let
d 
= 0 ∈ R

n be a feasible direction emanating from x.

Definition 4.1.4 The total trade-off rate at x, involving fi and fj along the di-
rection d, is tij(x,d) = limα→0+ Tij(x + αd,x) [38].

There exists α0 > 0 such that x + αd ∈ S for all α ∈ [0, α0]. If d is a feasible
direction such that there exists α > 0 satisfying fl(x + αd) = fl(x) for all l 
=
i, j, l = 1, . . . , k, and for all 0 ≤ α ≤ α, then the corresponding tij is called a
partial trade-off rate.

In a continuously differentiable case, the total trade-off rate and the partial
trade-off rate can be formulated as follows [95]

Definition 4.1.5 The total trade-off rate can be formulated as (in a continuously
differentiable case)
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tij(x,d) =
∇fi(x)T d

∇fj(x)T d
,

where ∇fj(x)T d 
= 0.

Definition 4.1.6 The partial trade-off rate can be formulated as (in a continuously
differentiable case)

tij(x) =
∂fi(x)

∂fj

,

where ∂fj 
= 0.

Figure 4.2 shows the concept of trade-off in the bi-objective function case in the
objective space. In the figure, the set Z = f(S) denotes the image of the feasible
set. The trade-off rate related to the objective vector zzz∗ is shown by an arrow.
This means that if we want to improve the objective f2 by an amount Δf2, we
can approximate the impairment of objective f1 by Δf1. As can be seen in Figure
4.2, the trade-off rate in a point is exact, but outside the point in question it is a
linear approximation and, thus, can only be used in some finite neighborhood of
the point being considered.

Figure 4.2: An illustrated trade-off for two objectives.

In this thesis, we consider only trade-off rates and by trade-off information
we mean trade-off rates. In addition, we are interested in trade-off rates only at
Pareto optimal points. Thus, in the above presented trade-off definitions, a feasi-
ble set S is replaced by the Pareto optimal set EPO.
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Definition 4.1.7 At every point x ∈ EPO, the total trade-off rate matrix can be
formulated as

MPO(x,d) =

⎡
⎢⎣
t11(x,d) . . . tk1(x,d)

...
. . .

...
t1k(x,d) . . . tkk(x,d)

⎤
⎥⎦ .

The trade-off matrix MPO(x,d) reflects sensitivies between objectives when we
are moving in the direction d from the point x. A similar matrix MPO(x) can be
defined also for partial trade-off rates.

With partial trade-offs, it is possible to study how one objective becomes im-
paired if we want to improve one other objective by one unit, and other objectives
stay unchanged at the same time. In the case of a total trade-off, we can consider
how all other objectives change if we improve one objective by one unit. When
we have only two objectives, the total and partial trade-off rates are naturally the
same. Computing the trade-off rates is presented in [39], for example.

Using trade-off information to control the optimization process

Trade-off information has been traditionally used as a part of a multiobjective
optimization method, see [11], for example. The approach used here concentrates
on utilizing the trade-off information as an aid that supports decisions in a similar
manner to [32, 34]. In other words, the intention is to produce additional value
to the multiobjective optimization method used to ease the decision making. It is
possible to use the trade-off information idea in many interactive multiobjective
optimization methods such as classification-based methods and reference point
methods [39], where the preference information given by the decision maker is
needed in specifying a reference point or classifying the objective functions in
different classes. The intention is to support the decision maker in the selection of
the next reference point or making the next classification. As a consequence, the
number of iterations can be reduced. Thus, the whole interactive solution process
can be shortened, which saves time of the decision maker and reduces the number
of Pareto optimal solutions needed to be calculated.

For nonlinear problems such as those examined in this thesis, the trade-off
rate matrix values are often accurate enough approximations only in some finite
neighborhood of the current solution. In this sense, it might be misleading to
show the trade-off rate matrix to the decision maker who does not appreciate the
problem. The proper neighborhood is problem specific and sometimes difficult
to characterize. That is why the decision maker has to be a skillful expert in
his/her field and to understand the interpretation of the matrix to use the trade-
off information.

In this thesis, two different ways to present the trade-off information to the
decision maker are proposed. The straightforward approach is to show the numer-
ical trade-off rate information from the trade-off matrix. Another way to present
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the trade-off rates to the decision maker is to make some simplifications to the nu-
merical trade-off rate information presented. The reason is because sometimes it
might be sufficient for the decision maker simply to appreciate whether the trade-
off between the objectives is below, equal or above a neutral rate of change. In
such a case, the so-called arrow matrix visualization and visual compromise bars
proposed in [39] can be used.

4.1.3 Example

Similar ideas for presenting information and supporting the decision making pro-
cess have been used with a reference point method [39]. Therefore, we tested
these ideas along with the classification based method. In order to demonstrate
the ideas, the example presented in [127] will be considered in which there are two
conflicting objective functions (f1 : R → R and f2 : R → R) to be minimized at
the same time:

f1(x) = x2 (4.3)

and

f2(x) = (x− 2)2. (4.4)

The problem is as follows

minimize {f1(x), f2(x)}
subject to −105 ≤ x ≤ 105.

(4.5)

We want to present useful information to the decision maker as much as possi-
ble to support the decision-making procedure with a minimal computational effort.
Using an interactive classification-based optimization method, after every classi-
fication a new Pareto optimal solution is computed, and assuming that gradient
information can be utilized, an approximating Pareto optimal front and computing
the trade-off rate matrix can be done as follows.

Using the Algorithm 4.1.1 (local), an approximation of a Pareto optimal front
is generated during the iterative solution process. First, two Pareto optimal solu-
tions with the interactive multiobjective optimization method are calculated: the
decision maker wants to obtain two different kinds of solutions, and thus he has
to make two different classifications. Firstly preference may be given to objective
function f1 and secondly to objective function f2. Two different kind of solutions
are obtained (Figure 4.3 on the upper-left, triangle markers). Using Taylor’s poly-
nomial with first order derivatives, a linear approximation of the Pareto optimal
front in the neighborhood of the Pareto optimal points is made. With this approx-
imation, two approximating Pareto optimal points are calculated between the real
Pareto optimal points (circle markers in Figure 4.3 on the upper-left. Next, the
decision maker has four points (two real Pareto optimal points and two approx-
imated), and a nonlinear second order polynomial approximation of the Pareto
optimal front can be made to these four points using the least square method
(Figure 4.3 on the upper-left). For comparison, there is a linear approximation
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Figure 4.3: A piece-wise nonlinear approximation of a Pareto optimal front

based on gradient information for two objectives.

between these two Pareto optimal points presented in the same figure (dash line).
The optimization process is iterative: now a new Pareto optimal point between the
existing ones can be calculated, and a new Taylor’s polynomial approximation of
the Pareto optimal front in the neighborhood of this new point can be estimated.
Using this Taylor’s polynomial approximation, new Pareto optimal points are esti-
mated. Now, the decision maker is able to generate two local separate second order
polynomial approximations of the Pareto optimal fronts in both sides of the new
Pareto optimal point (Figure 4.3 on the upper-right). In this way, it is possible to
obtain a local piece-wise nonlinear approximation of the Pareto optimal front the
accuracy of which naturally increases when the number of Pareto optimal points
increases (Figure 4.3 on the lower-left, with four Pareto optimal points). In this
way, by following the Algorithm 4.1.1, the Pareto optimal points and their gradi-
ent information can be utilized in forming an approximation of the Pareto optimal
front by computing less Pareto optimal points with the real model (e.g. this can
be computationally costly). Even if the approximation gives no error estimate, it
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provides more information to the decision maker than if only the Pareto optimal
points had been calculated.

In addition, based on the gradients calculated, the trade-off rate matrix is
formed. In Table 4.1, there is an example of the trade-off rate information obtained

Table 4.1: Matrix of total trade-off rates in the Pareto optimal point presented

in Figure 4.1.

f1 f2
f1 1 -0.414
f2 -2.414 1

in the Pareto optimal point presented in Figure 4.1. This information is shown
to the decision maker after every iteration (i.e. in each Pareto optimal point).
To avoid imposing an information burden on the decision maker, the information
presented is reduced by using an arrow matrix visualization as discussed in the
previous section. In Figure 4.4, an example of an arrow matrix visualization and
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Figure 4.4: Visual rate of change arrows and visual compromise bars for two

objectives.

visual compromise bars including the trade-off rates is presented. In this example,
threshold values used in the rate of change arrows are as follows: white color
represents a small change in objective values (rate of change is from -0.5 to 0.5),
and light gray is a neutral change (rate of change is from -2 to -0.5 or from 0.5 to
2). In addition, a significant change is expressed with black color (rate of change
less than -2 or more than 2). If the arrow points up, the objective improves, and
if the arrow points down, then the objective is impaired. In this particular Pareto
optimal point, one can see that if both objectives are equally important to the
decision maker, it could be profitable to try to improve f1 because f2 impairs only
slightly at the same time. Instead, if the decision maker tries to improve f2, this
will worsen f1 significantly.
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If this information is presented to the decision maker, then the optimization
process could be made more efficient and the decision maker could better under-
stand the interrelationships between targets without the numerical burden. There-
fore, less Pareto optimal solutions are needed to be computed, and thus solving
the optimization problem is shown to be easier and faster.

4.2 Novel visualization technique: virtual reality

As already introduced, the solutions of the multiobjective optimization problem
form a Pareto optimal front from where an individual solution can be chosen by the
decision maker as the final solution. A Pareto optimal front is often studied with
different visualization tools, because in this way comparison between solutions
is more illustrative. A Pareto optimal front is easy to visualize when there are
only two targets, i.e. objective functions. However, visualizing with more than
two objectives has so far been problematic and few attempts have been made to
visualize a Pareto optimal front in greater than two dimensions, see [82, 83, 84, 85].
To overcome this shortcoming, we present a new way to support the multiobjective
decision making process: visualizing Pareto optimal solutions or a Pareto optimal
front with three-dimensional (3D) virtual reality (VR). Our approach utilizes some
of Lotov’s ideas for presenting objectives in two-dimensional (2D) decision maps
[85] (e.g. with colors), but we visualize a Pareto optimal front (decision map) in
3D with VR.

VR is a computer created environment which can be used for visualizing 3D
objects (see [29, 130, 148], for example, and references therein). Hence it makes
possible to compare solutions which are on a 3D Pareto optimal front. A visualized
3D Pareto optimal front can be examined in many ways: it can be zoomed, rotated,
and the decision maker can delve into it. This makes it easier to compare solutions,
and learn about the problem and the target’s interrelationships, thus, making
it easier to identify which solution is the best to choose as the final one. The
VR approach has been suggested in multiobjective optimization framework in
[148, 149] but in this thesis it is proposed that the VR environment should be
used not only to visualize a higher dimensional Pareto optimal front, but also to
analyze and understand the nature and relative location of solutions in order to
help the decision maker to select the best solution for the particular problem.

Different kinds of 3D visualizations can be done in different cases. First, in
evolutionary algorithm-cases, where a large number of solutions form a dense set of
non-dominated solutions, the Pareto optimal front obtained can be visualized (see,
section 4.2.3). Secondly, if only a few Pareto optimal solutions are obtained, with
a reference point approach for example, they can be visualized as 3D points in a
virtual reality environment (see, section 5.4.3). In the third case, an approximation
of a Pareto optimal front can also be formed with only a few Pareto optimal
solutions (see, Appendix B). In this case, after the decision maker has made the
final decision about which of the approximated solutions is the most desired, the
real model can be used to revise the accuracy of the approximation. In this thesis,
examples of these visualizations are presented, and the benefits of employing a
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virtual reality as a decision support tool are discussed. In addition, there are some
future extensions and ideas considered.

4.2.1 Virtual Reality

VR is often described as a computer-based virtual world [130]. It allows a user
to interact with a computer-simulated environment, and produces a physically
immersive effect. Most virtual environments give only a visual experience, but
more immersive environments can be built by adding sound or haptic elements.
Virtual environments can be controlled through a mouse or a 3D pointing device
called a wand. Virtual realities have been used since the 1990’s, when the first
virtual environment called Cave was build in 1992 [18]. The first room-type of
environment, the six wall Cave, was built in the Royal Institute of Technology in
Stockholm in 1998, and the first one in North America was installed at Iowa State
University in 2000 [130].

According to [130], virtual reality consists of four key elements:

• virtual world,

• immersion,

• sensory feedback, and

• interactivity.

A virtual world means an imaginary space manifested through a medium and a
collection of objects in the space, and the rules and relationships governing those
objects. Immersion can be defined as the experience of being in an alternative
reality, based on mental immersion, i.e. a sense of presence, and physical immer-
sion. To create a good immersion experience, the system must have another key
element, sensory feedback, based on the user’s physical position. Thus, objects in
a virtual world alter depending on the user’s position giving her/him the most
realistic visual experience. In addition to the visual experience, interactivity pro-
vides other ways in which the environment responds to the user’s actions so that
the user can affect the computer-based world.

There are many applications that can utilize VR technology: visualizing sci-
entific results, interior design in architecture, and prototype testing in industry
[3, 56], for example.

4.2.2 Integration of multiobjective optimization and virtual reality

Integration of multiobjective optimization and VR requires some kind of software
for calculating Pareto optimal solutions and hardware for the VR environment as
well as software for visualization in stereo [130]. This thesis presents several exam-
ples where different optimization methods have been used to calculate a number
of Pareto optimal solutions. The virtual reality system in use has been built in the
University of Kuopio, Finland, and it is based on OpenDX visualization software.
Graphics Computer SGI Prism with 8 CPUs (à 64-bit 1.5 GHz Intel Itanium 2,
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24 GB memory, 48 Gflops) was used with SuSe Linux Enterprise Server 9.3 as an
operating system. 3D effects were generated through wireless set of liquid crys-
tal shutter eye wear (stereo glasses). The stereo glasses shut alternately left and
right eye view with frequency about 45 pictures per eye per second. Visualized
3D objects (in this thesis, Pareto optimal fronts) were controlled through a wand.
Polhemus equipment was used to follow the user’s movements and to generate an
authentic view of the object based on user’s location.

Visualization in stereo can be executed also in a modest way with a personal
computer. When using a personal computer to visualize the stereo effect, the
stereoscopic viewing can be performed on monitors supporting a vertical refresh
rate of 100 Hz or more, to avoid noticeable flicker. Stereoscopic viewing with page
flipping requires a CRT monitor. Due to the high refresh frequency rate, stereo-
scopic viewing in a page-flipping mode is not possible with a normal LCD flat
panel. In addition, a stereo-ready graphic card with a stereo connector (e.g. 3-pin
mini-DIN) is needed. With the stereo ready graphic card, left and right eye views
are synchronized (with a frequency of about 45 pictures per eye per second). Vi-
sualizing in stereo requires considerable computation power for the graphic card.
GPU (graphics processing unit) manufactures provide special graphic cards for
this purpose. For example ATI has manufactured FireGL graphic card models
and also NVIDIA has a type of Quadro FX graphic card which have been de-
signed to be used in heavy 3D visualizations such as stereoscopic viewing and 3D
modeling purposes (e.g. CAD and DCC modeling). Moreover, stereo spectacles
and an emitter, which transmits a synchronization signal for the stereo glasses,
are required for stereoscopic viewing with a personal computer.

Visualizing in stereo with a personal computer will make it possible for the 3D
visualizations of this kind to become more common because there are no major
start up costs (no need for a laboratory). Stereoscopic viewing with a personal
computer is in use for example in engineering and medicine, but it has unused
potential also in computational and decision sciences. However, when using a
personal computer in stereoscopic viewing, one has to immerse oneself in the VR
and other key elements of VR are not that animated, and furthermore only a few
people can examine the visualized object at the same time because of the small
display screen.

Figure 4.5 shows users utilizing the VR in order to examine an approximated
Pareto optimal front. Here, the users can study the relationships between objec-
tives and then obtain ideas of what kind of compromises between multiple opti-
mization targets can be made, and based on that, the final solution can be selected
or new solutions can be computed with better preference information. In Figure
4.5, the front is controlled (zoomed, rotated and scaled) by a user using a wand.

Remark One should note that figures of 3D Pareto optimal fronts visualized in
the virtual reality are presented as 2D figures in this thesis. This is because the
realistic immersion can only be experienced in laboratory, not by looking at the
figures on a flat page.
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4.2.3 Example

In this section, we present an example illustrating the new visualizing benefits
which a VR facility can offer. In this example, Pareto optimal points of a standard
three-objective test problem DTLZ6 [26] having a disconnected set of nonlinear
Pareto optimal fronts were produced by MOEA NSGA-II [20], which is capable of
finding a large set of trade-off solutions as presented in the example.

In the general form of this problem, there are k objective functions with a
complete decision variable vector partitioned in k non-overlapping groups xxx ≡
(xxx1, . . . ,xxxk)

T
. We solved a three-objective version of the problem that is written

as follows:
minimize {f1(xxx), f2(xxx), f3(xxx)}
subject to 0 ≤ xi ≤ 1 for i = 1, . . . , 22,

(4.6)

where the objective functions were defined as

fff1(xxx1) = x1,
f2(xxx2) = x2,
f3(xxx) = (1 + g(xxx3))h(f1, f2, g),

and the functionals were

g(xxx3) = 1 + 9
|xxx3|

∑
xi∈xxx3

xi,

h(f1, f2, g) = 3 −
∑2

i=1

[
fi

1+g

(
1 + sin(3πfi)

)]
.

Figure 4.5: Analyzing a Pareto optimal front with the 3D virtual reality.
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Figure 4.6: Disconnected set of nonlinear Pareto optimal regions (forming the

Pareto optimal front) in evolutionary computation example (DTLZ6) in a VR

environment. Solutions having 4.2 ≤ f3 ≤ 4.4 are colored red.

The functional g(xxx3) required |xxx3| = 20 variables and n was the total number of
variables, here n = 22. In this test problem, there were 22 = 4 disconnected Pareto
optimal regions.

The NSGA-II procedure was run with 1,000 population members. The final
solutions were visualized with the proposed VR system and they are shown also
in Figure 4.6. With the 3D visualization capabilities, the nonlinear feature of
the disconnected Pareto optimal regions was much easier to see in comparison to
earlier studies [26]. In this example, the decision maker was first interested in
seeing all the solutions in which 4.2 ≤ f3 ≤ 4.4 as presented in Figure 4.6 (in
red). As one can see in the figure, this constraint showed that there could be quite
different compromises between the other two objectives: the highlighted solutions
were located into three separate Pareto optimal regions. Moreover, because of
zooming, rotating, and immersion possibilities, the Pareto optimal front was easy
to comprehend. Also, the trade-offs between targets were easy to appreciate, and
hopping from one Pareto optimal region to another was greatly simplified.

In the concept of innovization [24], the task of MOEA optimization is fol-
lowed by a search of hidden interactions among decision variables and objective
functions within obtained solutions. This concept has revealed interesting and im-
portant insights about design and optimization problems. Here, we suggest that
the proposed VR based visualization tool can be used as an aid to assist in the
innovization task. Combining these two concepts allows the decision maker to
test the validity of different interrelationships among the decision variables and
objective functions. For example, the existence of a given relationship, such as
Φ(fff,xxx) = 0, can be tested by marking all solutions (among the obtained MOEA
solutions) which restrict the absolute value of Φ within a threshold, say ε = 10−6,
in red. The location and trace of these solutions on the Pareto optimal front will
provide a plethora of information to the decision maker about the importance of
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the above relationship before choosing a particular solution. As an example, we
return to the DTLZ6 test problem and investigate the existence of Pareto optimal
solutions having the following relationships:

Φ1(fff,xxx) : x1 = 0 (Red),
Φ2(fff,xxx) : x2 = 0 (Blue),
Φ3(fff,xxx) : x1 = 1 (Brown),
Φ4(fff,xxx) : x2 = 1 (Purple).

The above conditions check if any Pareto optimal solution made box constraints
on variables x1 and x2 active. In Figure 4.7, all such solutions are marked with
in ε = 10−6. It is interesting to note that there were no solutions on the Pareto
optimal front close to the upper bounds of these two variables and there were a
number of solutions which were close to their lower bounds. Only a few solutions
existed where the x1 value was close to zero, but there are a number of solutions
with the x2 value close to zero. Furthermore, all these solutions seemed to lie on
only one of the four Pareto optimal regions. It could be useful to identify solutions
close to constraint boundaries and a further investigation and relaxation of active
constraints could lead to better solutions. Such information is not only interesting
but could be useful if problem-specific relationships were tested.

Figure 4.7: Pareto optimal solutions close to the constraint boundaries are

highlighted with red and blue colors using the VR environment for DTLZ6 test

problem.
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4.2.4 Future extensions

In this section, we have revealed a number of advantages of using a VR system in
making a better realization of the Pareto optimal fronts and sets of Pareto optimal
points in a multiobjective optimization problem. However, the VR system can also
be used to pursue a number of other interesting tasks:

1. Navigating through a selected set of Pareto optimal solutions.

2. Navigating through a part of the Pareto optimal front, instead of the com-
plete front.

3. Highlighting Pareto optimal solutions which have special properties.

4. Dealing with more than three (or four) objectives.

5. Comparing different generating methods for multiobjective optimization.

These are only just some examples of how the VR capability can be used to
support the decision maker. The purpose of this section is to discuss the power and
usefulness of VR in multiobjective optimization and to encourage other researchers
to undertake similar research activities. The following paragraphs discuss each of
the above issues in greater detail.

Navigating through a selected set of Pareto optimal solutions

First, the idea of combining multiobjective optimization and VR might be useful
e.g. when working with Korhonen et al’s reference direction concept (the Pareto
race concept) [63] or with Eskelinen et al’s Pareto navigator for nonlinear multi-
objective optimization problems [35]. By specifying a direction (by the decision
maker), the corresponding Pareto optimal solutions with the smallest achievement
scalarizing function value can be marked on the Pareto optimal front. The visual-
ized 3D Pareto optimal front can then be used to navigate through these Pareto
optimal solutions. In this way, the decision maker can see these points by delv-
ing into the points or by following them along the Pareto optimal front. The 3D
navigation facility offered by a VR system should make the Pareto race or Pareto
navigator concepts more lively and interesting for designing a better interactive
decision making task.

In addition, other such navigation ideas (e.g. NAUTILUS method [103] or
reference-based MOEA [146]) can also be implemented with the VR facility. If
the decision maker is not sure that he/she has identified a particular reference di-
rection emanating from the current solution, multiple reference directions can be
specified and then the solutions corresponding to each reference direction can be
navigated one at a time. The solutions traversed along each path can be qualita-
tively compared, and a single preferred solution can be chosen for further analysis.
A similar concept can also be implemented by suggesting multiple reference points
and by navigating from the region obtained by one reference point to another re-
gion marked by another reference point. Navigating from one region to another
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provides the decision maker with an impression of the relative trade-off regions on
the Pareto optimal front, and thereby allows her/him to choose a preferred region
for further analysis.

Navigating through a part of the Pareto optimal front

So far, we have demonstrated the use of VR facilities in understanding the com-
plete Pareto optimal front. Similar approaches can also be applied to a particular
preferred region on the Pareto optimal front, if one has already been identified.
This is particularly useful in dealing with a large dimensional Pareto optimal front,
since a suitable representation of a higher dimensional Pareto optimal front de-
mands the computation of exponentially large numbers of solutions. Generating
multiobjective optimization methods, such as a MOEA, are useful if a part of the
Pareto optimal front becomes the target. For this purpose, recent MOEA exten-
sions (the reference point method [25], the light beam method [22]) and other
interactive MCDM methods can be implemented with our VR system.

Highlighting Pareto optimal solutions which have special properties

Since the VR facility allows the use of the color, size and shape of points to
differentiate different solutions qualitatively, the VR system becomes an ideal tool
for highlighting special solutions on the Pareto optimal front. The special points
may be chosen using one or more of the following concepts:

• Utility function: The optimal solution(s) of one or more utility functions
supplied by a decision maker can be highlighted to obtain a better under-
standing of their location on the Pareto optimal front and their trade-off.

• Solutions with common properties: In selecting a preferred solution or un-
derstanding the Pareto optimal front better, the decision maker may be in-
terested in visualizing the solutions which have certain relationships among
the variables (xxx) and/or objectives (fff). The decision maker can try differ-
ent pre-defined relationships to obtain a better idea of the function-variable
interactions present among the Pareto optimal solutions. As stated, one
extension of this approach for knowledge discovery is the task of innoviza-
tion [24]. In this task, instead of the decision maker supplying relationships,
hidden relationships among the objective and variable values among Pareto
optimal solutions are deciphered. Once identified, these properties will indi-
cate relationships inherent to the Pareto optimal solutions and they can act
as a ’recipe’ for finding the optimal solution. The VR tool suggested here
can be used to study the relationships between data supplied by the decision
maker and the hidden relationships among all Pareto optimal solutions.

• Robust solutions: In many practical problems, decision variables and some
problem parameters are uncertain. As a result, their optimum values cannot
be estimated with accuracy in practice. For example, if 10 mm is found to
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be the optimal diameter of a cylindrical material, the manufacturing pro-
cess cannot guarantee achieving exactly 10 mm throughout its length. Cer-
tain Pareto optimal solutions may be quite sensitive to such uncertainties,
whereas some may not [21]. In these kind of scenarios, it may be useful to
highlight those Pareto optimal solutions which are less sensitive (within a
desired threshold) to parameter and variable uncertainties (called the robust
solutions). This will also allow the decision maker to obtain a comprehensive
idea of the location of the robust part of the Pareto optimal front.

• Solutions close to constraint boundaries: In most optimization problems, op-
timal solutions lie on the intersection of one or more constraint boundaries.
These kinds of constraints are critical, and a further investigation and relax-
ation of such constraints may result in better solutions [161]. If one wishes,
Pareto optimal solutions active on different constraints can be highlighted.
This will provide a clear picture of the relative importance and effect of each
constraint on Pareto optimal solutions, particularly on the region of interest
to the decision maker.

• Special Solutions: Solutions with special properties, such as exhibiting a
knee, a kink, a large trade-off between the objectives, non-convexity, and
mathematical Karush-Kuhn-Tucker (KKT) conditions may be of interest to
the decision maker and can be highlighted for a better understanding of the
nature and shape of the Pareto optimal front.

All these tasks will allow the decision maker to investigate the characteristics of
Pareto optimal solutions obtained before making a decision about a region or
solution of interest.

Dealing with more than three (or four) objectives

In this thesis, there is an example with four objective functions visualized in VR
shown in Appendix B. In that example, the fourth objective is presented in color.
However, there can be more than four objective functions at the same time. In
that case, the visualization of the fifth (and even sixth and seventh) objective
function value can be done with a size or shape of the selected solution markers,
for example. The navigation facilities associated with the VR system will allow a
decision maker to obtain a better understanding of the higher-dimensional surface
than 2D or 3D figures.

Comparing different generating methods for multiobjective opti-

mization

A VR tool can also be used to achieve a better qualitative comparison of non-
dominated fronts obtained by different generation-based multiobjective optimiza-
tion algorithms. For example, different fronts can be represented by different colors
or markers. An appropriate navigation of both fronts simultaneously should pro-
vide a clear idea of the extent of domination of one set of solutions compared to
some others, thereby revealing the strengths and weaknesses of each algorithm.
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In addition to these consepts, more interactive interfaces are being planned
between the VR and multiobjective optimization solution algorithm. It should be
straightforward to communicate and transfer data between programs when solving
multiobjective optimization problems iteratively in an interactive way. For exam-
ple, if one has an interactive method then by providing new preference information
to the multiobjective solution algorithm, it should be possible to see the outcome
with the visualization tool, and new solutions should be calculated automatically.

The following chapters will discuss the applicability of these approaches. Inter-
active multiobjective optimization and the new decision support ideas are tested
for use in IMRT, brachytherapy (only interactive multiobjective optimization),
and, in the appendix, in papermaking.



Chapter 5

Interactive multiobjective optimization of IMRT

5.1 Introduction to IMRT

This year, millions of people all over the world will be diagnosed with cancer.
More than half of these patients will receive radiation at some point during their
treatment. Radiation affects the cells’ DNA and can kill cancerous cells or prevent
them from growing and dividing. Cancerous cells are more susceptible to radiation
than healthy ones but radiation affects healthy cells as well. Thus, treatments must
be carefully planned so that the effect of radiation is concentrated on cancerous
cells while healthy tissue does not receive too much radiation. In this thesis, it will
be demonstrated how intelligent interactive multiobjective optimization methods
can offer better solutions than the approaches used so far. At the same time, they
provide a way to formulate the optimization problem so that the real goals can be
considered without overlooking any information about the solution.

In external radiotherapy as in intensity modulated radiotherapy (IMRT), the
radiation is delivered via beams fired into the patient’s body from an external
source. A linear accelerator located in a gantry which can be moved around a
patient lying on a couch, allowing the beams to be delivered from a number of
different angles, is used to produce the beams. Wedges or a multileaf collimator
can be placed in front of the beam across the field to change the shape of the beam.
In the so-called step and shoot treatment, the beam is aimed from a number of
different angles, a wedge orientation and multileaf collimator shape is chosen for
each angle, and the radiation beam is radiated for a certain amount of time.
There are two major variants of this approach: conformal radiotherapy, in which
the shape of the multileaf collimator at each angle is chosen to match the shape
of the tumor as viewed from that angle, and IMRT, in which the beam field is
divided for planning purposes into a rectangular array of ”beamlets”.

Mathematical models describing the behavior of radiation in a patient (needed
for radiotherapy treatment planning) have improved over the years, and the dose
distribution can be calculated more accurately. Models based on the Boltzmann
transport equation (BTE) have been studied extensively for radiotherapy purposes,
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and at the moment they are regarded as one of the most promising techniques
for dose calculation [137]. Most studies consider the solution of the radiotherapy
forward problem, i.e. how to compute the dose within a patient when the treatment
settings are decided. Recently, there has been interest in using BTE models in
solving the radiotherapy inverse problem, i.e. how to solve the treatment settings
when there are some limitations for the dose distribution in the patient [142,
144]. The challenge in using the BTE models is their long computing time and
therefore a much faster novel method called parameterization was used in [144] for
solving the radiotherapy inverse problem. In this thesis, the BTE model and the
parameterization technique have been used in dose calculation.

There has recently been considerable interest in employing multiobjective opti-
mization in radiotherapy treatment planning (see e.g. [14, 37, 42, 51, 64, 74, 118]).
This is because the aim of radiotherapy is to destroy the tumor without affecting
the healthy tissue, but, naturally, increasing the dose in the tumor also increases
the unwanted dose in the surrounding healthy tissue. Thus, when one target is
optimized, the other will suffer, and the solution has to be some kind of com-
promise. This trade-off is complex, and optimization tools capable of handling
multiple and conflicting objectives are required. The multiobjective optimiza-
tion approaches presented in the literature are typically based on using objective
weights or penalty coefficients defined beforehand, where the objective function
is expressed as a weighted sum of objectives (often penalty functions), see e.g.
[30, 65, 66, 72, 93]. Alternatively, evolutionary algorithms (see e.g. [128, 154]) have
been used. These methods have their own limitations, e.g. it is typically difficult
to predefine the priorities or weights of the optimization targets (for the weight-
ing method) or they are very time consuming, necessitating extensive calculation
(evolutionary algorithms). Moreover, sometimes information about the objectives
and even the practical relevance of the objective functions can become blurred
if the objectives are expressed as a sum. To avoid all these limitations and to
overcome the problems related to the computational cost of the BTE modeling in
treatment planning optimization, in this thesis work an interactive multiobjective
optimization approach was combined with the parameterized BTE radiotherapy
dose calculation model.

An interactive multiobjective optimization method was applied for the non-
linear BTE model-based radiotherapy treatment planning problem. Typically,
optimization problems in treatment planning are often solved without explicitly
emphasizing the multiobjective nature of the problem [5]. Here, the multiob-
jective nature of the problem was exploited in the problem formulation and in
the interactive solution process, and demonstrating the advantages of our interac-
tive approach. In this approach, the decision maker’s (i.e. radiotherapy expert’s)
knowledge is used during the iterative solution process in conjunction with the
parameterized BTE dose calculation model to direct the search so that it iden-
tifies the most preferred plan, that is, the best Pareto optimal solution, between
the conflicting criteria. In our earlier research, we have integrated an interactive
multiobjective optimization method with a simple pencil beam dose calculation
model of IMRT [120], and since the results were promising, we now use the deter-
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ministic coupled time-independent linear BTE model, which is an integro-partial
differential equation, in the dose calculation. The BTE model enables a more
exact and realistic dose calculation. Although the computation of the parame-
terization is difficult and time-consuming, it has to be done only once before the
optimization procedure and thus the BTE model can conveniently be used in an
interactive multiobjective optimization procedure with consecutive iterations. In
addition, since the decision maker directs the solution process interactively, only
feasible and interesting Pareto optimal solutions are generated (according to the
preferences of the decision maker). Thus, there is no need for lengthy calculations
and a large solution database. With the approach, the desired solution is easily
achieved by the decision maker by manipulating the desired values of the objective
functions directly. This kind of decision support aid overcomes the drawbacks of
trial-and-error planning and defining weights beforehand (which have no direct
and fully intuitive meaning for the decision maker), and planning times can be
shortened and plan quality can be improved by finding advantageous trade-offs.
The idea of supporting the decision making process and comparing solutions has
also been presented in [15, 16, 17, 31, 41, 50, 65, 66, 93, 106, 119, 145] but the
optimization methods used were either not interactive (as interactive multiobjec-
tive optimization is defined e.g. in [95]), or alternatively, they were based on a
beforehand calculated database of Pareto optimal plans, and the dose was not
calculated with the BTE model. In spite of all research work done so far, it is
not well-known how to navigate around in the Pareto set in order to find the final
solution.

5.2 Dose calculation using finite element model

Mathematical models describing how radiation behaves have improved continu-
ously, and the dose distribution in a patient can now be calculated quite accu-
rately. Recently, there has interest in using transport equation models to compute
an estimate for the propagation of electrons or photons in tissue instead of the ker-
nel models and the Monte Carlo method [142, 144]. The use of the BTE model is
becoming more popular as computer power increases, but it is not yet used in clin-
ics because of computational problems. The BTE model takes a rigorous account
of patient inhomogeneity and scattering effects. Apart from the drawback arising
from computation time, the advantages of using a BTE model in radiotherapy dose
calculation are clear. Thus, new methods must be developed to enable the use of
the BTE model for radiotherapy dose calculations. For this reason, in this thesis
parameterization [144] was used to shorten the long BTE model dose calculation
times in treatment planning optimization. For brevity, the dose calculation model
used is presented in Appendix A.

5.3 Objective function formulation

In this section, we specify our goals and objective functions of radiotherapy treat-
ment planning. As stated above, the aim of radiotherapy is to destroy the tumor
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without causing damage to healthy tissue. However, these targets are conflict-
ing since increasing the dose in the tumor also increases the unwanted dose in
the surrounding healthy tissue. Thus, the final solution is always a compromise
and the trade-off is complex. In the literature, guiding the optimization to the
solutions most likely to satisfy the radiotherapist has been regarded as a notori-
ously difficult task, e.g. see [106], and thus some compromises with the objective
function formulation (e.g. formulating those as penalties) have been made. This
is because it is easier to achieve a solution when simplifications are made to the
objective functions, but at the same time information about the actual problem
will be lost. In this section, we will formulate alternative objective functions to
satisfy the radiotherapy goals without loss of relevant information while aiming at
achieving the best possible solution.

5.3.1 Acceptable solution for radiotherapy treatment planning

We define a patient domain V ⊂ R3 containing a target region T (which is a
tumor), a critical organ region C (which is a very dose-sensitive healthy organ)
and a region of normal tissue N (healthy tissue surrounding T and C). Thus, we
have the union V = T ∪ C ∪ N, see Figure 5.1. Let us assume that we have fields
Sl (l = 1, ..., L) from where the radiation flux ul is emitted.

x

x
x

1

2

3

T

C
N

NS

u

l

l

Figure 5.1: In dose calculation, in field Sl there is flux ul in the treatment space.

The flux passes to the patient domain V which includes regions T, C and N.

It is shown in Appendix A that the dose D(�x) can be obtained from the func-
tional (A.23), and an acceptable solution for radiotherapy can now be defined.
Note that �x is a point in a patient domain, not a decision variable. It is assumed
that D0 is the prescribed uniform desired dose in tumor T (in practice, it is equally
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undesirable to be under or over the prescribed dose in T) and that DC and DN

are the upper bounds of dose in the critical organ C and in normal tissue N,
respectively. The limits D0, DC and DN are defined by a radiotherapy expert
according to commonly used dose limits. Note that the tumor, the critical organ
and the normal tissue may be divided into many separate parts, and dose limits
may be different in these parts. Now we can write: determine the incoming flux
u ∈ L2(∂V × I × S) such that

D(�x) = D0, �x ∈ T

D(�x) ≤ DC, �x ∈ C (5.1)

D(�x) ≤ DN, �x ∈ N

and that

u ≈ S2γ ≥ 0, (5.2)

where u ≥ 0 prevents a negative flux, see Appendix A. The dose in (5.1) could
be denoted as D(�x) = D(�x, u) where the dose’s dependence on vector u is also
shown. These requirements are commonly used in clinics and in the literature,
to guarantee the acceptability of a treatment plan. In other words, these are the
minimal requirements that the plan must fulfill. Nevertheless, we should point out
that the actual goal is to minimize the unwanted dose in total, not only the dose
exceeding the limits DC and DN. In order to follow the notation used in Appendix
A, we denote D(�x) ≈ Dγ(�x) in future.

In addition to the requirements (5.1), sometimes dose volume constraints can
be used (see e.g. [144]). Dose volume constraints may be necessary for critical
organs, for example. Radiobiological or biological objective functions can also be
included in some cases (see e.g. [1, 6, 73, 75, 77, 143]), and a large number of other
performance measures can be used in conducting the assessment of the treatment
plan. Many of these measures are very important in clinical decision making and
they can be used as objective functions in optimization, but they will not be used
in this work because of the academic nature of our example.

5.3.2 Objective functions

Next, a description and formulation of the objective functions of the multiobjective
optimization problem are undertaken in such a way that the treatment planning
goals and the principles of an acceptable solution (5.1)-(5.2) are truly taken into
account: i.e. these objective functions really minimize the harmful radiation in
C and N. These objective functions are not often used without constraints, i.e.
setting bounds on the dose to be delivered to the tumor, see e.g. [129]. In addi-
tion, with the optimization methods commonly used it is sometimes difficult to
guide the solution in the most desired direction if the objectives are not formulated
as weighted penalty functions, penalizing only the dose beyond the defined dose
limits. However, formulating objectives as penalties, in turn, means that informa-
tion about the phenomenon can be lost. To avoid this we define three objective
functions (instead of only one) according to the wishes of the decision maker as
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f̃1(γ) = ||D0 −Dγ||L∞(T), (5.3)

f̃2(γ) = ||Dγ||L1(C) (5.4)

and

f̃3(γ) = ||Dγ||L1(N), (5.5)

where the decision variables are denoted as γ (not x). For computational needs,
functions must be discretized. In a discrete form, these functions are (f2 and f3
are scaled) as follows

f1(γ) = max
�x∈IT

(|D0 −Dγ(�x)|), (5.6)

f2(γ) =
1

|IC|

∑
�x∈IC

Dγ(�x) (5.7)

and

f3(γ) =
1

|IN|

∑
�x∈IN

Dγ(�x), (5.8)

where IT, IC and IN are selected finite sets of nodes in T, C and N, respectively.
|IC| and |IN| are the numbers of elements of IC and IN, respectively, subject to the
constraint u ≈ S2γ ≥ 0, where S2 is a component of a matrix S (see, Appendix
A).

Here, the objective function f1 means the maximum dose deviation from a
desired dose D0 in T, and this is the function which needs to be minimized. The
objective functions f2 and f3 are the averaged doses in C and N, respectively,
which are also to be minimized. These two objective functions really minimize
the unwanted (integrated) dose in C and N, i.e. they not only minimize the dose
beyond limits DC and DN. Another way of looking at these functions is that they
realize the actual goals of optimization in radiotherapy treatment planning. The
use of such objective functions is recommended because radiotherapy experts have
observed that the integral dose can be high when the critical organs and normal
tissue are only kept under a predefined dose limit.

Here, a comparison between different optimization approaches is made to demon-
strate the convenience of this interactive approach. In the comparison, the objec-
tive functions presented in [5, 144] were used, where the penalty function method
(also called the weighting method in some cases) is utilized without explicitly
emphasizing the multiobjective nature of the problem.

In this case, we can formulate the problem as if we had three objective functions
to be minimized as

f̃4(γ) = ||D0 −Dγ||2L2(T), (5.9)

f̃5(γ) = ||(DC −Dγ)−||
2
L2(C) (5.10)
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and
f̃6(γ) = ||(DN −Dγ)−||

2
L2(N). (5.11)

For computational needs, these functions must also be discretized. In a discrete
form, the functions are (as scaled)

f4(γ) =
1

|IT|

∑
�x∈IT

|D0 −Dγ(�x)|2, (5.12)

f5(γ) =
1

|IC|

∑
�x∈IC

|(DC −Dγ(�x))−|
2 (5.13)

and

f6(γ) =
1

|IN|

∑
�x∈IN

|(DN −Dγ(�x))−|
2. (5.14)

The objective function f4 controls the violation of the requirement D0 = D(�x)
(�x ∈ T). The minimization of f5 and f6 is actually a part of a penalty function
method for handling constraints and it takes care of the requirements D(�x) ≤ DC

(�x ∈ C) and D(�x) ≤ DN (�x ∈ N). Note that in functions f5 and f6, the subscript
”−” refers to the negative part of the function. In other words, the functions f5
and f6 will minimize only the dose which oversteps the preset limits, not all the
unwanted doses. With these objective functions, the constraint u ≈ S2γ ≥ 0 must
be used.

These objective functions and weighting coefficients has been routinely used
in radiotherapy for over 30 years in studies presented in the literature because it
is then easy to obtain the final solution, see [5, 7, 150] and references therein, for
example. However, it is particularly difficult to set the optimization parameters,
e.g. objective weights, to guide the solution process in the direction desired by
the decision maker when the objectives are in such a strong conflict as in this
case. These functions are used to guarantee that the solution fulfills the minimum
requirements of the plan but, at the same time, the harmful dose is not really
minimized and information about the solution is lost due to the use of a quadratic
form of functions and penalizing only the dose beyond the predefined dose limits.

In [5, 144], no active constraint handling was used for the constraint u ≈ S2γ ≥
0, which was formulated as one more objective in the penalty function method

f̃7(γ) = ||S2γ−||
2
L2(∂V ×I×S), (5.15)

which achieves a discrete form (as scaled)

f7(γ) =
1

max�x∈I∂V ×I×S
S2γ(�x)

∑
�x∈I∂V ×I×S

((S2γ)−)2(�x). (5.16)

Therefore, the method used in [5, 144] is actually a combination of the ε-constraint
method (see e.g. [95]) and the penalty function method. The method used in
[5, 144] is sometimes called the weighted sum method or weighting method. Here
the weights to be adjusted are the penalty coefficients. Note that this is not the
same as the multiobjective optimization method known as the weighting method.
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5.4 IMRT examples

In this section, we solve two radiotherapy treatment planning optimization prob-
lems with an interactive multiobjective optimization method. In these examples,
the real multiobjective nature of the treatment planning process is discussed, and
the decision maker’s knowledge is utilized during the optimization process. More-
over, in the second problem, we compare the results to those obtained with the
single-objective optimization penalty function method described in [5].

There is also an example in which gradient information is utilized in supporting
the radiotherapy treatment planning decision-making process as suggested in Sec-
tion 4.1. Subsequently, there is an example where the VR environment is utilized
as well in the process of the radiotherapy treatment planning. The VR tool is used
to visualize the conflicting targets of radiotherapy as presented in Section 4.2.

5.4.1 Interactive treatment planning optimization

Test settings

The radiotherapy dose calculation model presented in Appendix A was solved
using finite element method (FEM) and only one BTE was used to describe the
path of artificial particles in a 2D plane (�xxx = (�x2, �x3)). The photon scattering
data was used, but the dose computation was done from the photon flux using
artificial stopping powers κ(�xxx,E). The particles were assumed to scatter in the
spatial 2D plane. Thus, the angular variable was θ ∈ [0, 2π[ and θ = 0 toward
the x3 axis. This caused an insignificant inaccuracy in the computations of the
forward problem because the out-of-plane scattering was neglected.

The FEM simulations using singular value decomposition (SVD) parameteri-
zation was done in a [-5,5] × [0,10] cm2 domain, which consisted of water. The
domain was divided into 121 rectangular elements with 144 node points (Ns=144).
The elements, node points, and the source nodes for the fields are shown in Fig-
ure 5.2. The angular domain θ ∈ [0, 2π[ was divided into 8 evenly distributed
intervals, and the energy domain E ∈ [0.1, 10] MeV was divided into 3 evenly
distributed intervals with 4 node points. Thus, we had No = 8, Ne = 4 and
N = NsNoNe = 4608. In the simulations, only inward directions and maximum
energy E=10 MeV were allowed in the source nodes, thus Me = 1 and Mo = 3.
The number of source nodes was Ms = 32, and M = MsMoMe = 96: hence there
were 96 continuous decision variables in this case. The computation of matrix S
(Equation (A.18)) took about 3 hours, but when the geometry remains unchanged
and the source nodes are the same, there is no need to re-calculate the matrix S
between optimization runs. The different regions of the domain, T (dark gray),
C (light gray), and N (white area), are also shown in Figure 5.2. The interac-
tive multiobjective optimization of radiotherapy treatment planning is at its best
when T and C are close together, and when targets are strongly conflicting (clinical
examples are head-and-neck and prostate cases).

All the simulations were carried out with the mathematical software Matlab R©.
The multiobjective optimization was made with a personal computer (Pentium R©
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Figure 5.2: Elements, node points, and source nodes.

4 CPU 3.00 GHz with 2 GB central memory). Solving the BTE model, the pa-
rameterization and the penalty function method optimization were carried out
using a personal computer (Pentium R© 4 CPU 2.00 GHz with 2 GB central mem-
ory). For the multiobjective optimization, an implementation of the NIMBUS
method, called IND-NIMBUS R© [96], was used with a local optimizer based on
the proximal bundle method [99], as justified in Section 3.2. In the optimization
with the penalty function method, global optimization was done using a simulated
annealing algorithm [13] with Matlab R©.

Example 1

This example reveals how our interactive approach is capable of handling objective
functions which are strongly conflicting. Thus, the multiobjective optimization
problem is of the form

minimize f1(γ), f2(γ), f3(γ)
subject to u ≥ 0,

(5.17)

where γ is a vector of continuous decision variables. In equation (5.6), the dose
limit D0 was set to 10 Gy, and in this example all the objective function values
describe dose deviation from the desired dose (f1) or actual dose (f2 and f3) in
Grays (Gy). The isodose maps (contour plots) presented are plotted from per-
centual dose values in which D0 was scaled to 100%.

Initial solution The interactive multiobjective optimization solution process was
guided by preference information obtained from a radiotherapy expert, who was
acting as a decision maker. The aim of the planning is to ensure the pre-specified
dose D0 and dose distribution in T and to minimize the unwanted dose in C and N.
Initially, the decision maker was given the initial solution, in which the objective
functions had the initial values f1 = 5.399, f2 = 3.085 and f3 = 3.274. The initial
solution fff(γ1) was produced with typical values of the decision variables and was
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projected on the Pareto optimal set by IND-NIMBUS R©. Figure 5.3 shows the
contours describing the dose distribution in the phantom area and a dose volume
histogram which were calculated from the initial solution values.
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Figure 5.3: Initial solution. Dose distribution with isodoses 20, 40, 70, 90, 100,

where 100% is D0 = 10 Gy, and the corresponding dose volume histogram.

In brief, throughout the optimization process, the decision maker had the fol-
lowing aims: he wanted to obtain a solution in which the dose deviation from D0

in T would be minimized. In addition, he considered it was important that the
maximum 10% dose deviation from D0 should not be overstepped, while the dose
in both areas C and N should be as low as possible. As can be seen from the initial
objective function values (deviation should be under 10% of D0, that is, 1 Gy) and
from Figure 5.3, the f1 value was certainly too high. In the initial solution, the
objective functions f2 and f3 were nearly at a clinically acceptable level, i.e. the
harmful dose in C and N was low but at the same time the deviation from D0 in
T was too high. In other words, the dose in the target was too low and the tumor
would not be treated properly. Hence, the decision maker wanted to search for a
better solution in an iterative way. The decision maker wanted to obtain four new
solutions after every classification. All the solutions obtained during the solution
process are collected in Table 5.1.

1st Classification In the first classification, the decision maker wanted to im-
prove the value of f1: to decrease the deviation from the desired dose D0 in T.
Simultaneously, he tried to improve f2 (minimizing the dose in C), but he allowed
f3 (the dose in N) to change freely. This means that he wanted to protect C more
efficiently than N. In clinical planning, it is usually more important to save C than
N. In brief, the decision maker classified f1 and f2 into class I<, and f3 into class
I> (see classes in Section 3.2.1).

After the classification, the decision maker obtained four new solutions (see
Table 5.1). He was able to achieve some improvements and the values of f1 and f2
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Figure 5.4: 1st classification. Dose distribution with isodoses 20, 40, 70, 90,

100, where 100% is D0 = 10 Gy, and the corresponding dose volume histogram.

in all the new solutions were at a better level than had been obtained in the initial
solution. At the same time, the objective function f3 naturally deteriorated. The
best of the solutions according to the preferences of the decision maker is shown
in Figure 5.4 (fff(γ5)=(1.529, 2.170, 4.981)). As can be seen, the dose in C is low.
Nevertheless, the decision maker was not satisfied with the solution because the
objective functions f1 and f3 were not at acceptable levels; the dose deviation
from the desired dose D0 in T was too high, as was the harmful dose in N. Since
the solution was not clinically desirable, the decision maker wanted to classify the
objective functions again. Having learnt about the trade-offs in the problem, the
decision maker chose to give a new classification, and he used the obtained solution
as the starting point of the new classification.

2nd and 3rd Classification In the second classification, the decision maker
wanted to guarantee a good level of f1 (class I<), but now he was ready to impair
f2 up to a bound 3 (Gy). Hence, he classified f2 into class I≥. Simultaneously
he wanted to improve the objective function f3, i.e. he chose classification I≤ and
the desired aspiration level was 3 (Gy).

After the second classification, the decision maker obtained two new solutions.
He obtained a solution (fff(γ7)=(0.765, 2.584, 5.608)) in which the objective func-
tion f1 (which he considered to be very important) was at a clinically acceptable
level, but the other objective function values were worse. In the other solution ob-
tained, f1 was not good enough, but f3 was good. In other words, if the function
f1 was at a good level, the function f3 was too poor, and vice versa. The decision
maker understood that both the aspiration level and the upper bound he set were
too demanding, and he wanted to classify the objective functions again. He used
the solution fff(γ5)=(1.529, 2.170, 4.981) again as the starting point of the new
classification.
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Figure 5.5: 2nd classification. Dose distribution with isodoses 20, 40, 70, 90,

100, where 100% is D0 = 10 Gy, and the corresponding dose volume histogram.

In this classification, the decision maker wanted to moderate his demands. He
changed his classification in order to achieve good values of f1 and f3 simulta-
neously. Thus, the third classification was I<, I≥ and I≤, where the aspiration
level and bound was 4 (Gy). After the third classification, some of his goals were
fulfilled: now he obtained two solutions which both have excellent f3 value. How-
ever, f1 was still too poor in both solutions and thus, new solutions were needed
to be calculated. The decision maker selected the solution fff(γ9)=(2.324, 2.525,
3.993) as a starting point of a new classification.

4th and 5th Classification and final solution The decision maker knew that
if he wanted to improve the value of f1, he would have to let f2 and f3 deteriorate.
The decision maker felt he was close to the most satisfying solution, which is why
he set an aspiration level for f1 and upper bounds for f2 and f3. Firstly, he set
that the objective function f1 should be better than 1.1 (Gy) and the bound for
both f2 and f3 should be 4 (Gy). In other words, he made the classification f1 to
I≤ (aspiration level 1.1 (Gy)), and f2 and f3 to I≥ (bound 4 (Gy)) and obtained
two solutions (f(γ10) and f(γ11)). However, he still wanted to improve the value
of f1. Thus, he made straight away a new classification which differed from the
fourth classification only slightly: he set a new aspiration level 0.999 (Gy) for f1
and used the solution fff(γ9) as a starting point.

Again, after the fifth classification, the decision maker obtained two new solu-
tions. Another of them (fff(γ13) = (0.985, 2.475, 4.518)) was an absolutely satisfy-
ing compromise and the decision maker felt he was now able to come to the final
decision. He was looking for a solution with as uniform a dose in T as possible
and where the preferences concerning dose limitations were satisfied. He achieved
a solution in which the deviation from the desired dose D0 in T was satisfactory
(f1=0.985, which is under 10% of D0), and simultaneously the unwanted dose in C
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Figure 5.6: Optimal dose distributions with isodoses 20, 40, 70, 90, 100, where

100% is D0 = 10 Gy, and the corresponding dose volume histograms.

(f2=2.475) and in N (f3=4.518) was as small as could reasonably be achieved. This
can also be seen in Figure 5.6. This solution fff(γ13) was the most preferred out-
come and was considered as the final solution according to the decision maker’s
expertize in radiotherapy. A summary of the solution process and trade-offs is
presented in Table 5.1, including the steps taken by the decision maker and the
solutions selected at each iteration (denoted in bold face). Table 5.1 also shows in-
formation about the approximate objective function ranges in the Pareto optimal
set as discussed in Section 3.1.2. Information of this kind can be easily obtained
with this approach and this enables the decision maker to learn and to analyze
the interrelationships between the objectives and to compare solutions.

Discussion In this example, our interactive approach was demonstrated to be
able to handle the strongly conflicting objective functions in a radiotherapy case.
In general terms, it is said that strongly conflicting objective functions are noto-
riously difficult to guide to the solutions most likely to satisfy the decision maker
(the radiotherapist). This is because the objective functions have typically been
expressed as a sum where practical information about the functions may have
been lost, or it may be hard to define objective weights beforehand because they
are not so intuitive. In our approach, practical information about every objective
function was maintained, e.g. the objective function values described understand-
ably averaged doses, not uninformative quadratic sums of doses. As can be seen in
this example, the objective functions really illustrated how the dose behaved. The
function f1 described the maximum dose deviation from the desired dose and the
goodness of the objective function value was easy to understand. In addition, the
functions f2 and f3 were the averaged doses in C and N, respectively. In this way,
the dose could really be minimized in C and N. As can be seen in Table 5.1, with
our approach with the objective functions f1 . . . f3, it was not hard to identify the
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Table 5.1: Example 1: Summary of interactive solution process. Aspiration

levels and bounds used are denoted as superscripts in the classification notation.

Solution f1(Gy) f2(Gy) f3(Gy)
Ideal 0.274 0.001 0.008
Nadir 10.398 7.349 6.475
Initial solution
fff(γ1) 5.399 3.085 3.274
1st classification I< I< I>

fff(γ2) 2.990 1.847 4.668
fff(γ3) 3.060 2.013 4.621
fff(γ4) 1.533 1.182 5.150
fff(γ5) 1.529 2.170 4.981
2nd classification I< I≥3 I≤3

fff(γ6) 2.463 2.462 4.329
fff(γ7) 0.765 2.584 5.608
3rd classification I< I≥4 I≤4

fff(γ8) 3.061 2.092 3.923
fff(γ9) 2.324 2.525 3.993
4th classification I≤1.1 I≥4 I≥4

fff(γ10) 1.483 4.223 4.309
fff(γ11) 1.078 4.285 4.483
5th classification I≤0.999 I≥4 I≥4

fff(γ12) 1.548 4.071 4.148
fff(γ13) 0.985 2.475 4.518

most satisfying solution by manipulating the desired values of objective functions
directly (not the weights). Thus, only a few iterations and calculations of Pareto
optimal solutions were needed.

In treatment planning, the interactive multiobjective optimization approach
made it possible for the decision maker to learn about the conflicting dose distri-
bution targets and their interrelationships. Moreover, a thorough decision maker
can see what happens when he/she directs the solution process in different ways.
Good and unique solutions, which are hard to obtain without a decision support
aid of this kind, can be found to satisfy the therapy plan.

Note also that computing times were short: only about one to two minutes per
classification (with a PC). The most time-consuming part was solving the BTE
forward problem which was performed before involving the decision maker in the
solution process. In the parameterization procedure, the matrix S is calculated
with SVD, which took approximately three hours. Since the matrix S is solved only
once, there is no need to re-solve it if the geometry remains unchanged. Once the
matrix S has been found, the optimization method does not represent a bottleneck
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for more complicated simulation models.

Example 2

As a comparison, an optimization problem presented in [5] was solved with our
interactive multiobjective optimization approach, and here we compare the results
with those presented in [5]. In [5], the penalty function method was used without
emphasizing the problem’s multiobjective nature, and the optimization problem
was given as

minimize fwm =

7∑
i=4

wifi(γ), (5.18)

where wi (i = 4, ..., 7) were positive weights set as w4 = 3, w5 = 1.5, w6 =
0.5, w7 = 100 (obtained as the final weights after several trials), and the threshold
values used in (5.12)-(5.14) were D0 = 10 (Gy) (in T), DN = 5 (Gy) (in N) and
DC = 2 (Gy) (in C) [5]. A global single objective solver had to be used to solve
the weighted problem (5.18) and this took about 20 minutes [5].

The aim of the planning was to ensure the pre-specified dose D0 and dose
distribution in T. In addition, in C and N, the dose was penalized if the threshold
values of 20% (2 Gy) and 50% (5 Gy) of the D0, respectively, were overstepped.

On the other hand, the decision maker solved the problem

minimize f4(γ), f5(γ), f6(γ)
subject to u ≥ 0

(5.19)

with our NIMBUS approach in an iterative and interactive way, as in Example
1. Those objective functions are used in order to compare the results to those
presented in [5]. During the solution process, the decision maker used three clas-
sifications until he obtained a satisfactory solution. All the solutions generated
are shown in Table 5.2, and the solutions used as a starting point for the next
new classification are denoted in bold face. Note that the objective function val-
ues are quadratic sums of dose differences, thus the physical meaning of the value
becomes blurred. The final solution fff(γ9) = (0.985, 0.512, 6.028) obtained with
the interactive approach is presented in Figure 5.7, on the left. For comparison,
the final solution obtained with the penalty function method in [5] is presented in
Figure 5.7, on the right. One should notice that the solution obtained in [5] covers
the corners of T clearly less well than the solution obtained with the interactive
method. The objective function values of these two solution processes are shown
in Table 5.3.

Discussion In this example, the results of our interactive approach and those of
the penalty function method can be compared (Figure 5.7 and Table 5.3). One can
see that the final treatment plan of our approach is better than the plan obtained
in [5], but the advantages of our approach are even clearer when the efficiency
of the optimization process is considered. As can be seen from the results, with
our approach we could see in an understandable manner how the solution process
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Figure 5.7: On the left, the solution using our interactive approach and, on

the right, the solution using the penalty function method [5]. Optimal dose

distributions with isodoses 20, 40, 70, 90, 100, where 100% is D0 = 10 Gy, and

corresponding dose volume histograms where the predefined dose limits (vertical

lines) are plotted.

progressed and how the new radiotherapy treatment plan was fulfilling the deci-
sion maker’s requirements after every iteration concerning the requirements of the
radiotherapy process. In this way, we could avoid the time-consuming trial-and-
error planning and re-optimization which happens in the penalty function method
if the plan is not satisfactory or the weighting coefficients are not optimally chosen.
For example, Figure 5.7 depicts the solution obtained with the penalty function
method where all the corners of T are outside the 90% isodose, which is not desir-
able at all. For comparison, with the interactive multiobjective optimization, only
the corners of T nearest to C were outside the 90% isodose. It seems that the so-
lution obtained with the penalty function method was not the most satisfying for
the decision maker, and new weighting coefficients would need to be discovered,
and the time-consuming optimization procedure repeated if the decision maker
wanted to improve the solution. On the other hand, in the interactive multiob-
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Table 5.2: Example 2: Summary of interactive solution process. Bound used is

denoted as superscripts in the classification notation.

Solution f4(Gy) f5(Gy) f6(Gy)
Ideal 0.001 0 0
Nadir 75.156 32.559 19.175
Initial solution
fff(γ1) 7.188 3.121 1.014
1st classification I< I> I>

fff(γ2) 0.067 22.568 7.505
fff(γ3) 0.001 31.831 8.825
fff(γ4) 0.090 21.299 7.336
2nd classification I< I< I>

fff(γ5) 1.173 5.000 3.395
fff(γ6) 1.363 5.590 3.346
fff(γ7) 0.004 19.569 9.853
fff(γ8) 1.429 5.523 3.309
3rd classification I< I< I≥7

fff(γ9) 0.985 0.512 6.028
fff(γ10) 0.098∗ 9.764 7.595
fff(γ11) 0.001 25.795 9.009
fff(γ12) 0.098∗ 9.760 7.594
∗ Pareto optimality is hidden due to
the rounding up the decimals

jective optimization, since the decision maker himself was actively involved in the
solution process, only interesting Pareto optimal solutions needed to be generated.

Table 5.3: Interactive multiobjective optimization vs. penalty function method.

Interactive MOO Penalty function method
f4(Gy) 0.985 1.287
f5(Gy) 0.512 0.368
f6(Gy) 6.028 4.834
Neg. flux 0 0.001

Furthermore, it was observed that the physical feasibility of the solutions ob-
tained was an issue. With the penalty function method, the constraint u ≥ 0 was
included as a penalty term in the objective function. This constraint guarantees
that there is no radiation coming outward from the phantom, because only radia-
tion flux inward is physically feasible. Nevertheless, in the solution obtained, there
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was a negative flux (0.001 units), as can be seen in Table 5.3, and this affects the
solution significantly. It eliminates the dose in the edges of the phantom, and this
affects the value of the objective function f6. Consequently, the solution of the
penalty function method was not physically feasible. In Table 5.3, since the ob-
jective function f6 describes the dose in N, the solution obtained with the penalty
function method (or the value describing the dose in N) is unrealistically good.
However, this has remained unnoticed previously e.g. in [5] and this phenomenon
can occur with the penalty function method if the feasibility of the solutions is
not specifically checked.

In our interactive multiobjective optimization approach, u ≥ 0 could be treated
as a constraint, which meant that there was no negative flux in the solution. Thus,
in addition to the fact that the solution was somewhat better at handling the dose
in the target, the solution obtained with our approach was automatically physi-
cally feasible, unlike the other outcome. Without this interactive multiobjective
optimization, the infeasibility of the solution would not have been observed be-
cause, in the penalty function method, the objectives are expressed as a sum that
hides the negative flux value.

When comparing the dose volume histogram obtained in Example 1 with that
obtained in Example 2, we see that with the functions f1, f2, f3, T obtained a
steeper curve towards the zero than with the objective functions f4, f5, f6. In
addition, a similar trend can be seen at the beginning of the C and N curve. This
is due to the better choice of objective functions: harmful doses in C and N are
really minimized, not only penalizing beyond the predefined dose limits (2 Gy and 5
Gy, respectively). Thus, it can be said that formulating the problem as a genuine
multiobjective optimization problem and solving it with an interactive method
confers many advantages. In addition to the factors discussed so far, it is important
to point out that our objective function formulation produced a convex problem
that could be solved with a computationally efficient local optimization method
(and optimality for that reason could be guaranteed), whereas the formulation in
[5] necessitated the use of a computationally costly global optimization method.

5.4.2 Utilizing gradient information

In this section, it will be demonstrated that the use of gradient information can
support the radiotherapy treatment planning decision making. The same objective
functions as in Example 1 (5.3-5.5) are used. The treatment planning problem is
similar to that problem (5.17), but the geometries of the target and critical organ
are different, see Figure 5.10. Also in this case D0 = 10 Gy.

In this example, Algorithm 4.1.2 was used to generate a global approximation of
a Pareto optimal front. By following the algorithm, Pareto optimal points and their
gradient information (calculated by using finite differences) were utilized to form
a nonlinear approximation of the global Pareto optimal front. The basic idea is to
compute less Pareto optimal points with the computationally costly real model and
thus make the treatment planning process more efficient. In this example, there are
three Pareto optimal solutions and a total number of six solutions approximating
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to Pareto optimal solutions calculated, and the approximation of Pareto optimal
front is based on those nine points.

By studying the approximation (Figure 5.8), the decision maker could obtain
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Figure 5.8: A nonlinear approximation of the Pareto optimal front based on

gradient information. Three Pareto optimal points calculated are marked with

triangles.

a picture in his mind about how the conflicting objectives would behave, and it
was possible to identify the interesting regions of the Pareto optimal front. Based
on this information, the decision maker is better prepared to guide the planning
process in order to find the most satisfying Pareto optimal solution. This approx-
imation of the Pareto optimal front is computationally much less complex than
approximating the Pareto optimal solutions e.g. with MOEA, and the approxima-
tion gives some more information to the decision maker compared to the numerical
values only. However, in Figure 5.8, one can see that the approximation is accurate
only in some finite neighborhood of the Pareto optimal solutions: the farthermost
parts of the approximated Pareto optimal front represent unrealistically good so-
lutions (in lower-left corner, for example). Thus, the decision maker should be a
skillful expert in his/her own field in order to interpret the approximated Pareto
optimal front.

In addition to the approximated Pareto optimal front, trade-off information
was shown to the decision maker during the interactive multiobjective optimization
process after every iteration. For example, Figure 5.9 (and in Table 5.4) presents
the total trade-off information after one iteration. The total trade-off was used
because the decision maker felt that it described better his preferences than the
partial trade-off: he wanted to see what would happen to the other objectives if he
improved one of the objectives by one unit. As can be seen in the figure, it would be
profitable to try to improve objective f3. For example, if objective f3 was improved



78 5. Interactive multiobjective optimization of IMRT

Table 5.4: Matrix of total trade-off rates.
f1 f2 f3

f1 1 -5.161 -1.999
f2 -0.093 1 0.211
f3 -0.286 1.673 1
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Figure 5.9: Visual rate of change arrows and visual compromise bars for three

conflicting objectives.

by one unit, the objective f2 would also improve and the objective f1 would be
impaired only marginally, for example. As a comparison, if he wanted to improve
the objective f1 by one unit, both f2 and f3 would be impaired significantly at
the same time.
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Figure 5.10: Optimized radiotherapy treatment plan. Left, isodose map (where

light gray is C and dark gray is T) and right, dose volume histogram.

With this additional information presented to the decision maker during the
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iterative solution process, he was able to guide the solution process in an efficient
way and better treatment plans were created by finding advantageous trade-offs.
In addition, fewer Pareto optimal solutions were needed to be computed because
after a couple of iterations the decision maker had a clear picture in his mind of
the conflicting targets and their behavior and trade-offs. This explains why solving
the optimization problem became easier and faster. Figure 5.10 shows the final
solution (treatment plan).

5.4.3 Utilizing virtual reality

In this section we visualize the Pareto optimal solutions obtained in Example
1 by using the VR environment. In this way, the decision maker can obtain
a confirmation of his impressions and the interrelationships between the Pareto
optimal points could be easily seen. All the 13 Pareto optimal points computed
(presented in Table 5.1) are visualized in Figure 5.11.

As seen in Figure 5.11, the values of f1, f2 and f3 were visualized as points
in 3D space (they are illustrated in a 2D figure in this thesis), where each axis
corresponded to one objective. In the visualization in the VR environment, the
conflict between the objectives can be seen in an animated manner, since when
one value improves, at least one other is impaired. For example, when the first
objective was minimized, the second and third objectives obtained large values
which were not desired. However, there were good compromise solutions between
the objectives especially when the value of f1 was around 1. After analyzing and
studying the visualized Pareto optimal solutions, the decision maker was convinced
that the chosen compromise solution fff(γ13) = (0.985, 2.475, 4.518) was the most
optimal outcome. In this solution, the first objective was at the good level, which
was one of the main criteria. In addition, the second and the third objective had
achieved acceptable values at the same time.

Here, using the virtual reality for visualizing the Pareto optimal solutions con-
ferred confidence on the decision maker in that he was actually choosing the final
solution in radiotherapy treatment planning because the interrelationships between
the objectives could be visualized more clearly. In addition, the plan quality could
be improved by finding advantageous trade-offs by analyzing and navigating among
the Pareto optimal solutions.

5.5 Concluding comments

New treatment machines provide an opportunity to treat cancer patients in more
effective ways but, at the same time, they complicate the radiotherapy modeling
and optimization in treatment planning. This chapter had two aims, i.e. not only to
obtain an optimal radiotherapy treatment plan, but also to reveal the advantages
of interactive multiobjective optimization in radiotherapy treatment planning and
to encourage further research in this direction.

We combined the interactive multiobjective optimization approach NIMBUS
with the novel parameterized BTE radiotherapy dose calculation model since we
wanted to avoid the limitations of the optimization techniques widely used, and
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Figure 5.11: Visualized 3D Pareto optimal points of a radiotherapy treatment

planning problem.

the advantages of using the BTE model in dose calculations are well recognized.
By using parameterization, the BTE dose calculation model is so fast that it can
be used in an interactive multiobjective optimization.

In an interactive multiobjective optimization approach, the decision maker’s
knowledge is used during the iterative solution process to direct the optimization in
order to find the most preferred plan, i.e. the best Pareto optimal solution, between
the conflicting radiotherapy targets. A decision support aid of this kind overcomes
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the drawbacks of trial-and-error planning, and planning times can be shortened
and plan quality improved by finding advantageous trade-offs and finding only
feasible solutions by manipulating the desired values of the objective functions
directly (e.g. not by using weightings). Our interactive approach is capable of
handling radiotherapy objectives which are strongly conflicting. Thus, we are able
to describe the objective functions in a way that truly minimized the unwanted
dose, i.e. there is no need for penalty functions. Some of these benefits can be
obtained by using some other multiobjective optimization approach also, or an
interactive treatment planning software in general.

Our BTE model is 3D spatially. Nevertheless, we were able to use it in two-
dimensional planning only because of the long computing time of matrix S. Fur-
ther, the computing time can be a difficulty in maintaining the interactivity of
the planning process in 3D cases. Applicability of the interactive approach to
real 3D clinical problems is untested and, thus, it cannot be concluded. How-
ever, although the research documented in this paper is academic, the results are
promising. In the future, these kinds of computational problems will be overcome,
and this approach is worthy of further study in clinical cases.

In addition, presenting an approximation of a Pareto optimal front and the
trade-off information to the decision maker makes the optimization process more
intuitive. Since decision makers are able to predict how the solutions may behave,
directing the solution process becomes more efficient and he/she can learn about
the interrelationships between the objectives. Thus, there will be a decrease in
the number of uninteresting solutions being computed. The support provided by
gradient information is welcome especially when the evaluation of the objectives
requires the solution of computationally costly mathematical simulation models.

Moreover, Pareto optimal fronts (i.e. different treatment plans) are often visu-
alized when possible because in this way a comparison between solutions becomes
easier. In this thesis, multiobjective optimization have been integrated with the
3D VR tool to supplement the Pareto optimal solutions in order to help the deci-
sion maker when choosing the final solution. The 3D VR tool makes it easier to
compare solutions, navigate from one solution to another by zooming and rotat-
ing the front. Thus, it allows a better comprehension of those solutions with the
desired properties. In addition, the use of sophisticated visualization tools means
that fewer solutions need to be computed in order to learn and understand the
interrelationships of the conflicting objectives.

The following chapter will illustrate how this interactive multiobjective opti-
mization approach can be applied to brachytherapy treatment planning with clin-
ical examples. Brachytherapy treatment planning suffers from similar problems to
those needing to be solved in IMRT.



Chapter 6

Interactive multiobjective optimization of b-therapy

6.1 Introduction to brachytherapy

The delivery of radiation in high-dose-rate (HDR) intracavitary brachytherapy
using an afterloading unit is realized by using temporarily implanted catheters: a
programmable remote unit moves a single radioactive source along the catheters.
This system produces a high-dose region centered on the target while sparing the
adjacent sensitive organs such as bladder and bowel. The flexibility of this system
allows it to be tailored to a variety of different patient anatomy and cancer types
because a wide variety of dose distributions can be generated from a given implant
simply by adjusting the length of time (dwell time) that the source dwells at any
location within a catheter (dwell position). In the clinics, this flexibility allows
the full benefit of the use of a three-dimensional (3D) planning system based on
computer tomography (CT) or magnetic resonance imaging (MRI).

However, the increased flexibility in treatment applications and imaging in-
creases also the complexity in the treatment planning. As in Chapter 5, a patient
domain can be divided into three different parts based on the patient’s anatomy:
a target volume (T), dose sensitive critical organs at risk (C) and healthy normal
tissue (N). C and N are typically near T, and thus, they may be unnecessarily over-
dosed. To maintain a complete coverage of T and simultaneously to reduce the
dose to N and C, the dose distribution should conform as well as possible to the rel-
evant anatomy. One way to achieve this goal is to manually adjust the dwell time
values until an acceptable solution is found (a computer is used to calculate the
dose distribution). This is called forward planning. Nevertheless, this approach is
time consuming and, thus, some kind of optimization method could be used. When
using an optimization method, a computer is used to determine treatment settings
(i.e. dwell times) such that the aims of the treatment planning are met (this is
called inverse planning), see e.g. [2, 10, 27, 54, 61, 79, 80, 107, 113, 131, 136, 157].

In addition to the inverse planning, there has been interest in using multiobjec-
tive optimization in brachytherapy treatment planning (see, e.g. [69, 78, 159, 160])
similarly to IMRT. This is because the aim of brachytherapy is to treat the tu-

82
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mor without affecting the healthy tissue but, naturally, increasing the dose in the
tumor also increases the unwanted dose in surrounding healthy tissue as also in
IMRT. Thus, when one target is optimized, the other will suffer, and the solution
is a compromise between these goals. This trade-off is complex, and optimization
tools capable of handling multiple and conflicting objectives are naturally required
also in brachytherapy. Similar trends can be seen in the brachytherapy literature
as encountered in IMRT: the multiobjective optimization approaches are based on
using objective weights defined beforehand, where the final objective function is
expressed as a weighted sum of the conflicting objectives (e.g. [68, 105]). In these
cases, objectives are often formulated as using penalties where values exceeding
predefined upper limits for doses are penalized (e.g. [70]), and the approach is
often the same as in used in inverse planning. Unfortunately, it is typically diffi-
cult to predefine the priorities or weights of the optimization targets. Moreover,
sometimes information about objectives and even the practical relevance of the
objective functions can become blurred if the objectives are expressed as a sum.
Furthermore, penalizing only the overdose should not be the actual goal as em-
phasized in this work. Alternatively, evolutionary algorithms (e.g. [71, 104]) have
also been used. These methods have their own difficulties because they are time
consuming requiring a considerable amount of calculations when computing a large
set of approximating solutions.

In order to overcome some of the shortcomings of the currently used ap-
proaches, in this thesis an interactive multiobjective optimization method was
utilized for 3D HDR brachytherapy optimization. Surprisingly, interactive mul-
tiobjective optimization methods have not been studied previously in the field
of brachytherapy optimization. As mentioned, the studies where brachytherapy
treatment plan has been optimized are usually based on a priori methods (weight-
ing method, e.g. [105]) or a posteriori methods (evolutionary algorithms, e.g. [70]).
The greatest difference between these approaches and our approach is that the de-
cision maker’s (i.e. treatment planner’s) knowledge and preferences should be used
during the iterative optimization process to direct the search in order to find the
most preferred plan. In other words, this is the best way to identify the best
Pareto optimal solution between the conflicting treatment planning targets. This
makes treatment planning times shorter (because there is no need for computing
a database of Pareto optimal solutions beforehand which can take two to three
hours, for example [145]), and a good trade-offs between the targets can be found
to improve the quality of the treatment plan. Furthermore, the interactive ap-
proach improves the decision maker’s control over treatment: with this system,
the treatment planner plays directly with the compromises between target cover-
age and protection of critical organs instead of with dwell positions, dwell times,
and objective weights as shown in Figure 6.1 (as a comparison, see similar illustra-
tion in [31]). In the figure, the procedures of forward planning, inverse planning
and interactive planning are presented and compared.

Because of this reasoning and experiences from IMRT treatment planning op-
timization, it seemed reasonable to propose that an interactive multiobjective
optimization method would be ideal for brachytherapy optimization, and the ad-
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vantages of this interactive approach are demonstrated by providing examples of
a treatment plan of cervical cancer. In these examples, the real multiobjective
nature of the problem is taken into account in the problem formulation and in
the interactive solution process as discussed also in the previous chapter. It is
realized that there is not so much scope for improvement of the final treatment
plan but the strength of our approach is its interactivity. Our approach brings the
planning process near to the real clinical issues avoiding artificial simplifications,
and when compared to the occasionally used trial-and-error planning (i.e. treat-
ment planner manually adjusts dwell times and positions), our approach (as also
inverse planning algorithms in general) guarantees the mathematical optimality
of the final solution, i.e. treatment plan. It is important to emphasize that these
kinds of tools are designed to assist human treatment planners in their work, not
to replace them.

Figure 6.1: Philosophies underpinning forward planning, inverse planning, and

interactive planning (see also [31]).

6.2 Dose calculation

Before optimization, the dose distribution in a patient needs to be calculated. The
dose D(�x) at the ith sampling (dose calculation) point �x is calculated by

D(�x) =

p∑
j=1

tjdij , (6.1)

where p is the number of sources, tj is the dwell time of the jth source dwell
position and dij is the kernel value, i.e. dose value, for the ith sampling point and
jth source dwell position. The dose rate matrix dij can be calculated using the
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following equation according to TG43 [110, 116]:

dij = SkΛΦan(θ, rij)g(rij)/r
2
ij , (6.2)

where Sk is the air kerma strength, Λ is the dose-rate constant, Φan(θ, rij) is the
anisotropy function, g(rij) is the radial dose functions, and rij the distance be-
tween the dwell position j and the dose calculation point i (point source). In this
section, we use equation (6.1) for dose calculations with a simplification made to
the kernel dij : anisotropy of the patient is neglected. In the interactive multiob-
jective optimization, the dwell times tj are the decision variables, not the variable
x.

6.3 Objective function formulation

The aim of brachytherapy treatment planning is to obtain a plan which covers T
with some specified dose value DT, which will be case-specific depending on the
type of the tumor. In addition, there is an upper bound (ESTRO’s guideline) for
the dose in N and C which should not be exceeded. We denote these bounds by
DN and DC. Traditionally in the optimization process, dwell times t (t:=tj) are
sought so that the above-mentioned requirements are fulfilled, that is

D(�x) ≥ DT, x ∈ T,
D(�x) ≤ DN, x ∈ N,
D(�x) ≤ DC, x ∈ C.

(6.3)

In the literature, several different objective functions have been used to fulfill
these requirements; variance based objective functions (e.g. [68]) or dose volume
histogram based objective functions (e.g. [70]). In addition, the formulation used
in [79, 80] is well known. However, it is important to note that even though (6.3)
describes an acceptable solution, it is important to carefully consider what actually
needs to be optimized: the goal is that the dose in N and C should be as low as
possible (minimized), not only under the predefined bounds (as also in IMRT).

Now, based on the fact that it is required to minimize the dose in N and C
(i.e. not only the dose exceeding limits DN and DC), objective functions can be
formulated (in a discrete form) as

f1(t) =
|IT̃|

|IT|
, (6.4)

f2(t) =
1

|IN|

∑
�x∈N

D(�x), (6.5)

f3(t) =
1

|IC|

∑
�x∈C

D(�x) (6.6)

and
f4(t) = max

�x∈T
D(�x), (6.7)
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where |IT|, |IN| and |IC| denote numbers of sampling points in region T, C and N,
respectively. For computational reasons, all the sampling points are situated on
the surface of the region, and thus a maximum dose inside the T is not an objective
but it is controlled later. Here, |IT̃| represents the number of sampling points in T
that have a dose value equal to or larger than the dose limitDT. Thus, the function
f1 represents a percentual volume where the dose is higher or equally high to the
prescribed dose DT in T, and it is maximized. The functions f2 and f3 are the
averaged doses on the surface of N and C, respectively, to be minimized. If there
are multiple critical organs C (as also here in the examples), there are as many
objective functions, each similar to f3. The objective function f4 describes the
maximum dose on the surface between T and N. With these objective functions,
the unwanted dose in N and C is truly minimized, not only penalized if it exceeds
predefined upper limits for doses as it is often presented in the literature, see [70],
for example.

In addition to objective functions f1, f2, f3 and f4, the decision maker (treat-
ment planner) may want to control the dose in T with a continuous objective
function. In addition to the functions f1, . . . , f4, one more objective function can
be formulated as:

f5(t) = max
�x∈T

|DT −D(�x)|. (6.8)

The objective f5 represents the maximum dose deviation from a desired dose DT

in T (to be minimized).
The use of the objective function f1 makes the optimization problem non-

convex [19]. There are several ways to convert non-convex objectives into convex
forms [118], and this feature has been utilized e.g. in IMRT optimization [16, 17, 41,
117]. The reason for modifying the objective functions into linear convex objectives
in optimization is clear: many optimization approaches are capable of solving
those optimization problems quickly and exactly, and non-convex objectives cause
problems in finding all Pareto optimal solutions when using objective weights [95,
118]. However, here we use an optimization method (NIMBUS, see Section 3.2.1)
which is designed to solve non-linear multiobjective optimization problems. Thus,
there are no enforcing needs for using linear convex functions in optimization. In
addition, the optimization method in use is able to identify any Pareto optimal
solutions.

In the following section, some clinical examples of interactive multiobjective
optimization of brachytherapy treatment planning will be considered.

6.4 Brachytherapy examples

6.4.1 Problem settings

Here, two clinical examples of seeking dwell time values of a source in a gynecologic
cervix cancer treatment are presented. In the examples, Fletcher-Suit and Ring
intracavitary applicators were used to deliver the radiation. In Example 1, there
were 17 possible dwell positions (resolution of 5 mm in three applicators, Fletcher-
Suit intracavitary applicator system). Thus, the number of continuous decision
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variables was 17. In addition, the number of sampling points was 508. In the
second example, the number of possible dwell positions was 21 (resolution of 5
mm in two applicators, Ring intracavitary applicator system), and the number of
sampling points was 473. The problems contained box constraints for the decision
variables (i.e. dwell times). In the first example, there were two critical organs
C (bladder and rectum, sigmoid colon (abbreviated in future to sigma) was not
adjacent to the tumor), and thus, there were two objective functions similar to f3
(f bladder

3 and frectum
3 ). In the second example, there were three critical organs C

(bladder, rectum, and sigma) and three objective functions similar to f3 (f bladder
3 ,

frectum
3 and fsigma

3 ).

In these examples, all the simulations were carried out with the mathematical
software Matlab R© R2006b after the patient geometries (anatomy and sampling
points) had been generated with a treatment planning software (BrachyVision R©,
Varian Medical Systems, software version 7.3.10) at the Kuopio University Hos-
pital. The optimization was conducted with a personal computer (PentiumR© 4
CPU 3.00 GHz with 2 GB central memory). As in Chapter 5 for interactive
multiobjective optimization, an implementation of the NIMBUS method, called
IND-NIMBUS R© was used [96].

In the first example (non-convex optimization problem), a heuristic optimiza-
tion method approximating global Pareto optimal solutions (a genetic algorithm,
computation time was minutes per classification with the presented PC) was used
to solve the subproblems deviced by NIMBUS. This optimization method does not
require continuity of the objective functions. The rapid (computation time was
only a few seconds per classification) local optimizer based on the proximal bundle
method, which utilizes the continuity of the objective functions, was used in the
second example (convex optimization problem). Since the optimization methods
used were capable of handling nonlinear objectives and computation times were so
short, there was no need for converting objectives into linear objectives in order
to enable utilization of linear programming.

6.4.2 Example 1: Fletcher-Suit applicator

The first optimization problem used for the demonstration of the proposed inter-
active multiobjective optimization approach has the form

optimize {f1(t), f2(t), f
bladder
3 (t), frectum

3 (t), f4(t)}
subject to t ∈ S,

(6.9)

where t is a vector of continuous decision variables, and S = [0, 100]×[0, 100]×· · ·×
[0, 100] ⊂ R17. Objective functions f1 − f4 are defined in Section 6.3: the value of
f1 represents the percentual value of sampling points in T which has a dose value
equal to or larger than the dose limit DT (7 Gy), and values f2, f

bladder
3 , frectum

3

represent averaged dose values in N, bladder, and rectum, respectively (in Gy).
Finally, f4 is the maximum dose on the surface between T and N (in Gy).
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Interactive solution process

In this optimization problem, the interactive solution process (i.e. moving from
one Pareto optimal solution to another) was guided by preference information of
a treatment planner, who was acting as the decision maker. Before the solution
process, the decision maker expressed the following desires: the percentual value
of sampling points in T that have a dose value equally high or higher than the
dose limit DT should be maximized (f1). At the same time, the averaged doses in
N and both critical organs C should be minimized (f2, f

bladder
3 , frectum

3 ). Since
the objective function f4 shows the maximum dose on the surface between T and
N, the decision maker also wanted to minimize this value. At the very beginning,
the objective functions had the initial values (generated by IND-NIMBUS) f1 =
0.58, f2 = 9.89, f bladder

3 = 1.96, frectum
3 = 3.13 and f4 = 96.80 (initial solution

f(t1)). As can be seen from the initial objective function values f(t1), the f1 value
was certainly too low (f1 = 0.58, i.e. 58% of T received a higher dose than DT

which was 7 Gy). Nevertheless, the objective functions f2, f
bladder
3 and frectum

3

were at a good level and, thus, the dose in N and critical organs C was low but,
as stated, at the same time the dose in T was too low and the tumor would
not be treated properly. Thus, the decision maker wanted to search for a better
solution in an iterative way. He started to classify the functions and generated
new solutions (see classes introduced in Section 3.2.1), and in this way declared his
preferences and steered the solution process interactively and iteratively towards
the most satisfying Pareto optimal solutions.

In the 1st classification, as stated, he wanted to obtain a better value to f1
(aspiration level 0.70) and simultaneously maintain the good values of f3 and f4
(save Cs). Thus, he set a bound to f bladder

3 , and an aspiration level to frectum
3 .

The bound and aspiration level both were 2.00. At the same time, he had to allow
some other targets (f2 and f4) to deteriorate. In other words, the classification
was f1 : I≤0.70, f2 : I>, f bladder

3 : I≥2.00, frectum
3 : I≤2.00 and f4 : I>, and he

wanted to generate one new solution (solutions are collected in Table 6.1). After
the first classification, the decision maker obtained a better solution (f(t2)) be-
cause the rectum (frectum

3 =2.74), which he considered as very important, obtained
a smaller dose value than in solution f(t1), but f1 was still too low according to
his preferences. For this reason, he decided to do the 2nd classification using the
solution f(t2) as a starting point of the classification. In this classification, the de-
cision maker wanted to improve f1 as much as possible, and again, he set a bound
to f bladder

3 , and an aspiration level to frectum
3 to achieve the best levels of these

objectives. In addition, the decision maker allowed f2 and f4 to change freely.
Therefore, the classification was f1 : I<, f2 : I>, f bladder

3 : I≥2.00, frectum
3 : I≤2.00

and f4 : I>. After the second classification, the decision maker asked for three
new solutions and they all had excellent f1 values, but, at the same time, values of
other objectives were not so good (Table 6.1). This is the reason why he wanted to
generate five intermediate solutions between the solutions f(t2) and f(t3), which
had good values of objectives f bladder

3 and frectum
3 , and f1, respectively. Interme-

diate solutions represent compromise solutions between the conflicting treatment
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planning targets, and the decision maker was able to choose the best Pareto opti-
mal solution according to his knowledge of what he considered the final solution,
i.e. the final treatment plan. That solution was f(t9), in which the objective values
were f1 = 0.73, f2 = 10.50, f bladder

3 = 2.35, frectum
3 = 3.15 and f4 = 52.23. As can

be seen in Figure 6.2 (left) and Figure 6.3, all the requirements of the treatment
plan were taken into account as much as possible: the harmful dose in rectum
and bladder was minimized and the prescribed dose in T was delivered. Thus, the
treatment plan was clinically acceptable.

All the solutions obtained and steps taken by the decision maker during the
solution process are collected in Table 6.1. In this table, the starting point of a new
classification and the final solution are given in bold face. Furthermore, a more
thorough description of a typical process of classifying objective functions in a
radiotherapy case and steering the optimization process was presented in Chapter
5 (IMRT example).

Table 6.1: Summary of interactive solution process. Bounds and aspiration

levels used are denoted as superscripts in the classification notation.

Solution f1(−) f2(Gy) f bladder
3 (Gy) frectum

3 (Gy) f4(Gy)
Ideal 1 0 0 0 0
Nadir 0 25.82 4.64 7.72 744.33
Initial solution
f(t1) 0.58 9.89 1.96 3.13 96.80
1st classification I≤0.70 I> I≥2.00 I≤2.00 I>

f(t2) 0.58 9.55 1.98 2.74 135.89
2nd classification I< I> I≥2.00 I≤2.00 I>

f(t3) 0.83 11.18 2.67 3.29 55.18
f(t4) 1.00 15.86 3.34 4.05 109.89
f(t5) 0.79 11.57 2.55 3.24 76.85
Intermediate sol.a

f(t6) 0.64 9.87 2.12 2.86 64.23
f(t7) 0.69 10.02 2.24 2.90 62.11
f(t8) 0.71 10.44 2.36 3.04 52.23
f(t9) 0.73 10.50 2.35 3.15 52.23
f(t10) 0.76 10.87 2.45 3.22 54.00

a Intermediate solutions between f(t2) and f(t3).

Comparison and discussion

In this example, we have shown how the interactive approach can handle the
strongly conflicting objective functions in a case of cervix cancer. As can be
seen in Figure 6.4 (a display of IND-NIMBUS software), the solutions obtained
can be compared and carefully studied during the interactive solution process.
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Figure 6.2: Left, the final dose distribution with IND-NIMBUS (solution f(t9))

from different point of views (x, y, and z-direction), and right, for comparison,

the solution obtained with BrachyVision R© optimization. Target is red, rectum

green, bladder yellow, and sigma is blue. Isodose of 7 Gy (prescribed dose in

target) is colored green.
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Figure 6.3: For comparison, dose volume histograms of critical organs C. Dose

volume histogram values start to decline faster in IND-NIMBUS solution than in

the solution obtained with BrachyVision R©.

Thus, the decision maker is better prepared to come to the final decision, i.e.
choose the final treatment plan, after analyzing the isodose maps (Figure 6.2), dose
volume histograms (Figure 6.3), graphical information (Figure 6.4), and numerical
information (Table 6.1 and Figure 6.4). A good example of comparing the trade-
offs between the objectives can be seen in Table 6.1: when comparing solutions
f(t1) and f(t2), the dose in the rectum could be decreased without losing the
target coverage, for example. With our approach, good trade-offs between the
objectives could be found to improve the treatment plan’s quality. Similar ideas
for presenting information for the decision maker have been presented also in
[17, 31, 66, 106, 145].

For comparison, a treatment plan with the BrachyVision R© optimization tool
was made (Figures 6.2 (right) and 6.3) with the objectives being formulated as
weighted penalties if the dose exceeded the following limits: bladder 6.2 Gy, rectum
4.9 Gy, and sigma 4.5 Gy. In addition, the dose in T should be at least 7.2 Gy.
These limits were based on ESTRO’s guideline. The same decision maker executed
also the treatment planning optimization using the BrachyVision R© optimization
tool. The time required for this procedure was about half an hour (IND-NIMBUS
took about 20 minutes) because the decision maker had to vary the weighting
factors many times, and he was not able to say how they should be changed. As
stated, the weighting factors are not intuitive and thus it took such a long time to
obtain an acceptable solution. For that reason, the BrachyVisionR© optimization
tool is not in use in this hospital considered but the treatment planners prefer to
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Figure 6.4: All the solutions obtained during the optimization process can be

compared also with a graphical tool in IND-NIMBUS. On the left, the final solu-

tion f(t9) presented with bars describing objective function values, and, on the

right, all 10 solutions generated. On the lower-right, best candidates, that is,

solutions used in classifications and generating intermediate solutions. Solutions

can also be visualized in many ways e.g. with value paths, whisker plots, petal

diagrams, or spider webs, see for example [99].

rely on the ineffective trial-and-error manipulation of dwell times and positions for
treatment planning.

When comparing the results, it can be seen from Figure 6.3 that dose volume
histogram values start to decline faster in the IND-NIMBUS solution than in the
BrachyVision R© solution, which is good. In addition, Table 6.2 presents T 90%
dose volume value, C 2 cm3 dose volume values, and N’s volume where 50% of DT

is exceeded. Here, N includes also Cs but not T. The threshold value 50% of DT

was selected because that dose can cause secondary effects to N. When comparing
the values in Table 6.2, we can see that T (90%) is covered with radiation better
and the doses in sigma (2 cm3) and N are smaller in the IND-NIMBUS solution
than with BrachyVision R© solution. Since there are conflicting targets, at the same
time we can observe that the dose (2 cm3) in bladder and rectum is smaller in the
solution obtained with BrachyVision R© than in IND-NIMBUS solution. This is a
good example of a trade-off.

When T exceeds the prescribed dose (here, 7 Gy) it is not because a higher
value is better (especially not in an IMRT case). However in brachytherapy in
which a radiation source is located in T this is not so critical, and this can be
arranged in order to obtain as conformal dose distribution as possible to T.

As can be seen, the results obtained are one further piece of evidence showing
that the radiotherapy objectives are in conflict, and new tools capable of help-
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ing the decision maker (treatment planner) in navigating among different optimal
treatment plans are needed. This is because the optimization tools currently used
by treatment planners are not easy to use, they are not intuitive since they are
based on setting dose limits and weights, and they are time consuming because
the unintuitive weights must be varied. These drawbacks explain why the deci-
sion makers prefer to use the trial-and-error approach. However, an interactive
approach has been demonstrated to be easy to use and intuitive because the deci-
sion maker manipulates directly the balance between target coverage and healthy
tissue protection (instead of objective weights). Moreover, with an interactive
approach such as NIMBUS, the decision makers can learn about the conflicting
targets and their interrelationships during the iterative solution process. Finally,
the treatment plan obtained with our approach is really a mathematically optimal
plan, which is not the case when one relies on trial-and-error planning.

Table 6.2: Comparison of T 90% values, C 2 cm3 values, and volume of N

exceeding 50% of DT.

Interactive method (Gy) BrachyVision R©(Gy)
Target 90% 7.32 7.23
Bladder 2 cm3 5.24 5.06
Rectum 2 cm3 5.64 5.01
Sigma 2 cm3 1.38 1.61
N 3.5 Gy 177.9 cm3 200.4 cm3

6.4.3 Example 2: Ring applicator

In Example 2, the optimization problem has the form

optimize {f2(t), f
bladder
3 (t), frectum

3 (t), fsigma
3 (t), f4(t), f5(t)}

subject to t ∈ S.
(6.10)

Functions f2−f4 are the same as in the previous example except for f5 representing
the maximum dose deviation from a desired doseDT (7 Gy) in T (to be minimized).
Thus, the dose in T is controlled with f5.

The decision maker solved the problem in an interactive way using the IND-
NIMBUS software as in Example 1, and the final solution (obtained after four
classifications which took about ten minutes) had objective function values f2 =
6.70, f bladder

3 = 1.68, frectum
3 = 1.64, fsigma

3 = 1.87, f4 = 18.83 and f5 = 2.88 (in
Gy). Here, for brevity, the results are only briefly compared with those obtained
with the BrachyVision R© optimization (Figure 6.5 and 6.6). In Table 6.3, T 90%
dose volume value, C 2 cm3 dose values, and N volume, where 50% of DT is
exceeded, are presented.

In the comparison of the solutions, it can be seen that the treatment plan
devised with the interactive approach is better than the plan obtained with the
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BrachyVision R© optimization. In addition, the treatment plan is intuitive and quick
to obtain with an interactive method (no need for varying the objective function
weights, which is time consuming and difficult), the target coverage (90%) is better
and doses in rectum (2 cm3) and N are lower in the solution obtained with IND-
NIMBUS. In addition, the dose in sigma (2 cm3) is the same with both solutions.
However, bladder receives a lower dose (2 cm3) in the plan given by BrachyVision R©

optimization. Moreover when studying the dose volume histograms (Figure 6.6), it
seems that Cs is radiated with lower doses in the treatment plan obtained with the
interactive method than with BrachyVision R© optimization. Thus, the treatment
plan obtained with IND-NIMBUS is clearly superior to the plan obtained with
BrachyVision R© optimization. Further, when comparing the planning processes,
the advantages of using an interactive method are obvious: as stated, the treatment
planner manipulates directly the desired values of the objective functions, not the
objective weights, dwell positions, or dwell times, and thus one can obtain good
trade-offs between the solutions and the drawbacks of currently used methods
could be overcome.

Table 6.3: Comparison of T 90% values, C 2 cm3 values, and volume of N

exceeding 50% of DT.

IND-NIMBUS (Gy) BrachyVision R©(Gy)
Target 90% 7.20 7.15
Bladder 2 cm3 4.53 4.36
Rectum 2 cm3 3.60 4.17
Sigma 2 cm3 4.71 4.71
N 3.5 Gy 106.4 cm3 122.8 cm3

6.5 Concluding comments

In this chapter, we have presented a new approach utilizing interactive multiob-
jective optimization for anatomy based 3D HDR brachytherapy optimization, and
the advantages of a classification-based interactive approach are demonstrated by
two examples of a clinical gynecologic cancer.

In this study, an interactive approach has been used to determine the dwell
time values needed to fulfill the prescribed dose to the tumor and to minimize
dose in each critical organ. In our approach, the decision maker’s (i.e. treatment
planner’s) knowledge and preferences are used during the iterative optimization
process to direct the search in order to find the most preferred treatment plan.
This can make treatment planning times shorter and improve the quality of the
plans. In addition, one must emphasize that our interactive approach is capable of
handling multiple and strongly conflicting objectives in a convenient way, and thus,
it offers the possibility to navigate among the obtained Pareto optimal solutions,
i.e. different treatment plans. As seen, there is not so much space for improvement
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Figure 6.5: Left, the final dose distribution with IND-NIMBUS from different

point of views (x, y, and z-direction), and right, for comparison, the solution

obtained with BrachyVision R© optimization. Target is red, rectum green, bladder

yellow and sigma is blue. Isodose of 7 Gy is colored green.

of the final treatment plan compared to the other methods but the strength of our
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Figure 6.6: For comparison, dose volume histograms of critical organs C. Dose

volume histogram values start to decline faster in the IND-NIMBUS solution than

in the solution obtained with BrachyVision R©.

approach is its interactivity during the planning process, and thus the drawbacks
(e.g. defining weights) of currently used methods can be avoided.

In the presented examples, there were 17 and 21 continuous decision variables
and 508 and 473 sampling points, respectively. The amount of variables and sam-
pling points can increase dramatically in more complex cases which are not studied
here. Thus, it remains unclear and cannot be concluded how efficient our approach
is in such cases. In addition, there were only box constraints for variables. How-
ever, it is easy to add any other constraints to our interactive multiobjective opti-
mization approach if needed. Moreover, the idea of classifying objective functions
is practical and their computation is fast also with different numbers of objective
functions. The number of objective functions can be increased, but naturally this
will increase the cognitive load imposed on the decision maker.

Finally, one must state that this approach brings the planning process near to
the real clinical issues. With this system, the treatment planner considers directly
the compromises to be made between target coverage and protection of critical
organs instead of manipulating planning parameters such as dwell positions, dwell
times, and objective weights. Whenever a trial-and-error planning is used, there
are no guarantees for the optimality of the final solution. In contrast, our approach
avoids these shortcomings and the treatment planner can be convinced that the
final solution is the best compromise that can be achieved. As stated, these kinds
of tools are not intended to replace human treatment planners, but to support
them in their work.



Chapter 7

Conclusions and topics for further research

In this thesis, MCDM and, in particular, multiobjective optimization were stud-
ied and developed. The goal was to improve interactive multiobjective optimiza-
tion methods which could be implemented in real world applications: IMRT and
brachytherapy (as well as in papermaking in the appendix). At the time when
this research started, in the literature there were no interactive multiobjective
optimization methods being applied to planning radiotherapy treatment and the
material in this thesis was the first attempt to extend research into that area.
There are investigations which are using some other multiobjective optimization
method or some other interactive approach (even in the clinics). However, as far
as is known, this is still the only approach which tackles the treatment planning
process in an interactive and multiobjetive way.

The application areas considered in this thesis contain very complex processes
which have been developed during the years with the emphasis on modeling and
optimization. However, these research areas are still novel, and the problematic
is not very well known. These are the reasons why this thesis has focused on
studying and developing new ideas for MCDM and multiobjective optimization
to be applied to these real world problems. There is still a need for improving
the MCDM tools, and the increased computational power has made it possible to
use more precise simulation models mimicking the processes in optimization and
supporting MCDM.

In this thesis, new ideas developed for supporting MCDM and multiobjective
optimization were implemented. These included efficient use of trade-off informa-
tion, and making approximations of Pareto optimal solutions and fronts in order
to reduce the number of solutions needed to be computed. In this thesis, gradient
information was used to support the navigation through a Pareto optimal front
in interactive multiobjective optimization in different ways. First, we developed
an idea on how to produce an approximation of a Pareto optimal front utilizing
the gradient information. With this model, the behavior of the Pareto optimal
front could be predicted. Second, gradient information could be used to generate
trade-off information. In this part of the study the emphasis was that the deci-

97
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sion maker could utilize the trade-off information to predict the most profitable
direction where to guide the optimization process between the conflicting targets.

Presenting the gradient information to the decision maker in different ways
could make the optimization process more intuitive, and decrease the number of
irrelevant solutions needing to be computed. Since decision makers are able to
predict how the solutions may behave and thus, identify solution process more
efficiently and learn about the interrelationships between the objectives. This
kind of assistance is welcome especially when these kinds of simulation models can
be computationally costly.

In addition, a new way of visualizing the Pareto optimal solutions obtained as
a part of decision making process was introduced in this thesis. In multiobjective
decision making, Pareto optimal fronts are often visualized because in this way
a comparison between solutions becomes easier. A Pareto optimal front is easy
to visualize when there are only two to three objective functions, but visualizing
more than three objective functions is challenging. Therefore, we have integrated
multiobjective optimization with the 3D VR tool in order to study higher dimen-
sional Pareto optimal solutions and approximated Pareto optimal fronts. The 3D
VR tool made it easier to compare solutions, and to navigate from one solution
to another by zooming and rotating the front. Moreover, it allowed a better com-
prehension of those solutions with the desired properties through highlighting. In
addition, the use of sophisticated visualization tools meant that fewer solutions
were needed to be computed in order to learn and understand the interrelation-
ships of the conflicting objectives, and analyzing the solutions obtained became
easier and more easily visualized and animated. This is also important especially
if a problem is computationally expensive (e.g. in real-world industrial cases).

The ability to integrate VR with multiobjective optimization opened up a num-
ber of challenging research issues, such as handling a large number of objective
functions, and simultaneous visualization of objective and solution spaces, as dis-
cussed in this thesis. The purpose was to reveal the power and usefulness of the
VR environment in multiobjective optimization, and to introduce this technique as
a new and promising means of visualizing and understanding complex interactions
among objectives and solutions. All these kinds of innovative tools are designed
to make it easier to obtain a deeper understanding of the MCDM problem.

In addition to the methodological ideas, in this thesis interactive multiobjec-
tive optimization was applied to real-world applications. These applications were
IMRT and brachytherapy (and papermaking presented in the appendix). In a
nutshell, we can say that based on the research conducted in this thesis, these
interactive methods are now ready for implementation in radiotherapy treatment
planning in the clinics.

IMRT

In this thesis, we presented an interactive multiobjective optimization approach
using a classification-based method NIMBUS combined with the novel parame-
terized BTE radiotherapy dose calculation model in order to optimize treatment
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plans interactively. This was done to avoid the limitations of the widely used op-
timization techniques, and because of the obvious advantages of using the BTE
model in dose calculations. By using parameterization, the BTE dose calculation
model is so fast that it can be used in an interactive multiobjective optimization.

In this approach, the decision maker’s (i.e. treatment planner’s) knowledge
was accessed during the iterative solution process to direct the optimization using
intuitive preference information in order to find the most preferred plan, that is,
the best Pareto optimal solution, finding the correct balance between conflicting
radiotherapy targets. This kind of decision support aid overcomes the drawbacks of
trial-and-error planning, and planning times can be shortened and the plan quality
improved by finding advantageous trade-offs and finding only feasible solutions by
manipulating the desired values of the objective functions directly (not having
to rely on weights or penalties). Our interactive approach is capable of handling
radiotherapy objectives which are in conflict. Thus, we were able to describe the
objective functions in a way that truly minimized the unwanted dose. Although
this thesis studied academic examples only, we are interested to see how capable
this approach is to be used also in clinical IMRT treatment planning problems.

Brachytherapy

Furthermore, an interactive multiobjective optimization method NIMBUS was
applied for anatomy based 3D HDR brachytherapy optimization. In this research,
the multiobjective nature of the problem was also genuinely taken into account in
the problem formulation and in the interactive solution process which was directed
by a treatment planner. The advantages of this kind of interactive approach were
demonstrated by clinical examples.

The interactive approach was used to determine the dwell time values needed
to deliver the desired dose to the tumor and to minimize the dose in each organ at
risk in these clinical cases. When using the classification-based NIMBUS method,
the decision maker’s knowledge and preferences could be used during the itera-
tive optimization process to direct the search in order to find the most preferred
treatment plan. This information exchange was intuitive and understandable for
treatment planners. In this way, treatment planning times can be made shorter
and the quality of the treatment plans can be improved. Furthermore, the interac-
tive approach offers a possibility to navigate among the obtained Pareto optimal
solutions (i.e. different treatment plans). Therefore, the strength of our approach
is its interactivity during the planning process. This approach brings the planning
process near to the real clinical issues: with this system, the treatment planner
plays directly with the compromises between target coverage and protection of
organs at risk instead of manipulating dwell positions, dwell times, and objec-
tive weights. These kinds of tools are not intended to replace human treatment
planners, but to support them in their work.

As a comment given by the radiotherapy experts, they conclude that there is
a real need for having this kind of decision support tool in clinical use. Treatment
planner who acted as a decision maker in this thesis was convinced of the poten-
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tial of interactive methods, i.e. he felt that steering the optimization process in an
interactive way is a good manner to execute the optimization of a treatment plan.
However, he gave also some critical comments concerning the usability and com-
fortability of the decision making process. In other words, in addition to founding
Pareto optimal solutions (treatment plans), the comfortability and smoothness of
the treatment planning process must be really taken into account when designing
the decision support tools.

In this study, the interaction between treatment planning software (including
e.g. patient geometry) and the interactive optimization method was executed using
text-files, and this is one reason why the decision making process was not so
enjoyable and handy. However, the results presented in this thesis have proved
that the approach is ready and easy to be integrated with a treatment planning
software when also the usability problems can be fixed. Then, the approach could
be taken into fully clinical use.

Topics for further research

Model-based decision support systems will become increasingly common in the
near future, and one can predict that they will enter everyday use in the real
world applications such as radiotherapy and industry. All the examples presented
here are from radiotherapy (from papermaking in the appendix) but, nevertheless,
irrespective of the industrial sector in question (e.g. motor, or aircraft industries),
modeling related optimization problems need to solve the same challenges every-
where: selection of optimization methods, needs for modeling work, and handling
conflicting multiple criteria. Evidence of this is that in this thesis the same opti-
mization approaches were tested with two very different problems – radiotherapy
and papermaking. Thus, the approaches presented can be applied to many more
areas than considered here.

There are many further potential research topics in the field of MCDM. Ideas
developed in this thesis for supporting the decision maker should be developed
much more and further. For example, utilizing the gradient information in deci-
sion making process is only a beginning of the research. One can envisage more
sophisticated ways to approximate Pareto optimal fronts and present the trade-off
information to the decision maker. However, hopefully these ideas introduced will
inspire further research and other researchers in this direction.

The VR environment also holds massive potential for visualization in the field of
MCDM. Some of the developing ideas were discussed in Section 4.2 where the tool
was introduced. The power of VR lies in its visualization potential and versatility.
It can be used in visualizing not only objects but also scientific results, designs,
etc. Thus, the human imagination is truly the only limit when devising the targets
where VR technology can be utilized.

One further research topic in the field of model-based decision support systems
and model-based multiobjective optimization could be dynamic process modeling
and, as a result one could achieve dynamic multiobjective process optimization,
for example. Preliminary studies in this area have been already made, see e.g.
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[81].
Another potential research interest in the future could be pushing a Pareto

optimal front toward on ideal point by reformulating the optimization problem
during the optimization process similarly to the ideas presented in [24, 161]. This
new optimization procedure differs from earlier approaches since first a multiobjec-
tive optimization problem is solved, and subsequently new parameters are explored
and set for decision variables to be used in the second multiobjective optimization
problem. The hypothesis is that in this way, a Pareto optimal front formed in the
first step can be moved toward an ideal point. This would represent a very innova-
tive way of seeking new and innovative variables to be used as a decision variables
in the optimization procedure. This approach could be useful in the redesigning
of process equipment, for example, in which some of the process parameters are
fixed but some other could be used as new variables in the process design. This
may help to cut costs by simplifying the manufacturing process and providing new
design parameters for remodeling and redeveloping processes.

If one wishes to draw a conclusion about future research actions to be done
in the field of IMRT and brachytherapy, one can state that the research should
be directed strongly in the clinical direction. In other words, the emphasis should
be on integrating the interactive multiobjective optimization approach presented
here with a clinical treatment planning software and then the developed approach
would be ready to be adopted into clinical use on the hospital wards.
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[64] Küfer KH, Hamacher HW, and Bortfeld TR. A multicriteria optimization
approach for inverse radiotherapy planning. In Bortfeld TR and Schlegel W,
editors, Proceedings of the XIIIth ICCR, pages 26–29. Springer, Berlin, 2000.
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[99] Miettinen K and Mäkelä MM. Synchronous approach in interactive multi-
objective optimization. European Journal of Operational Research, 170:909–
922, 2006.
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Switzerland, 1999. Doctoral thesis.



Appendix A

Dose calculation using finite element model

Boltzmann transport equation model

Here, the BTE model used in this thesis is described briefly: for further infor-
mation, see [144]. Physically, the BTE model is based on particle equilibrium in
infinitesimally small voxels of tissue. In the case of radiotherapy, it is appropriate
to use the stationary form of the BTE. In this case, taking into account elastic col-
lision, inelastic collision and deceleration radiation, the model consists of a coupled
system of stationary linear integro-partial differential equations

Ω · ∇ψ1 +K1(ψ1, ψ2, ψ3) = Q1(�x,E,Ω)

Ω · ∇ψ2 +K2(ψ1, ψ2, ψ3) = Q2(�x,E,Ω) (A.1)

Ω · ∇ψ3 +K3(ψ1, ψ2, ψ3) = Q3(�x,E,Ω),

where ψj = ψj(�x,E,Ω) (j = 1, 2, 3) are the phase space densities for photons,
electrons and positrons, respectively. The variable �x = (�x1, �x2, �x3) is a point in
the patient domain V ⊂ R

3. Particle energy is denoted by E. The surface of the
unit sphere in R

3 is denoted by S, and Ω = (cosϕ sin θ, sinϕ sin θ, cos θ) =: h(ϕ, θ)
is a point on S, where ϕ and θ are standard spherical coordinates on surface S.

The functions Kj(ψ1, ψ2, ψ3) (j = 1, 2, 3) are collision terms combining at-
tenuation and secondary production resulting from the above-mentioned different
kinds of interactions, and K1, K2, K3 are linear operators of ψ := (ψ1, ψ2, ψ3).
Finally, Qj(�x,E,Ω) (j = 1, 2, 3) are the source terms, which are typically zero in
external radiotherapy, as also in this case. In the following section, we denote the
system (A.1) in a compact way by

(Ω · ∇ +K)ψ = Q. (A.2)

Boundary conditions and variational form

We consider the external photon radiation by setting boundary conditions for the
photon inflow [144]. We assume that the boundary of the patient domain ∂V is a
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piecewise smooth Lipschitz boundary. Thus, the outward normal ν(�x) exists and
is continuous on ∂V even though there might exist a set with surface measure zero.

A typical photon inflow boundary condition for the solution ψ is of the form

ψ2(�x,E,Ω) = ψ3(�x,E,Ω) = 0 for (�x,E,Ω) ∈ ∂V × I × S

such that Ω · ν(�x) < 0

ψ1(�x,E,Ω) = u(�x,E,Ω) for (�x,E,Ω) ∈ ∂V × I × S (A.3)

such that Ω · ν(�x) < 0,

where I is an energy interval. The symbol u stands for the photon flux density
on ∂V and u ∈ L2(∂V × I × S). The boundary condition ψ1 = u for Ω · ν(�x) < 0
and �x ∈ ∂V means that the flux u is incoming outwardly on the patch ∂V and
the boundary condition ψj = 0, (j = 2, 3) for Ω · ν(�x) < 0 means that no other
particles generate outward fluxes. The solution ψ is defined in the six-dimensional
state space G := V × I × S.

The variational form of the equation (A.2) with the stated boundary condition
(A.3) is given in [144], and it is of the form

B(ψ, v) = F (v), v ∈ H3, (A.4)

where B(·, ·) : H3 × H3 → R is the bilinear form, v is a test function, H is an
appropriate Hilbert space,

B(ψ, v) = −〈ψ,Ω · ∇v〉L2(G)3

+

3∑
j=1

∫
S

∫
I

∫
∂V

(Ω · ν)+ψjvjdσdEdΩ + 〈Kψ, v〉L2(G)3 (A.5)

and

F (v) = 〈Q, v〉L2(G)3 +

∫
S

∫
I

∫
∂V

(Ω · ν)−uv1dσdEdΩ, (A.6)

where σ is the surface measure on ∂V . The subscript ”+” refers to the positive part
of the function and the subscript ”−” refers to the negative part of the function.

Dose computation

We compute the dose in the following way. The incoming flux density of the lth

field Sl is ul. It is assumed that ul ∈ L2(Γl × I × S), where Γl is a patch of ∂V
where the radiation is entering the domain V . Here ψl = (ψl

1, ψ
l
2, ψ

l
3) is the flux

density corresponding to the field Sl, i.e. ψl is the solution of the equation

(Ω · ∇ +K)ψl = 0 (A.7)
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with the boundary condition

ψl
2(�x,E,Ω) = ψl

3(�x,E,Ω) = 0 for (�x,E,Ω) ∈ ∂V × I × S

such that Ω · ν(�x) < 0

ψl
1(�x,E,Ω) = 0, for (�x,E,Ω) ∈ (∂V \ Γl) × I × S (A.8)

such that Ω · ν(�x) < 0

ψl
1(�x,E,Ω) = ul(�x,E,Ω) for (�x,E,Ω) ∈ Γl × I × S

such that Ω · ν(�x) < 0.

We define u ∈ L2(∂V × I × S) such that

u =

L∑
l=1

ulχl, (A.9)

where χl : ∂V × I × S → R are the characteristic functions of Γl × I × S (l =
1, . . . , L). Let ψ = (ψ1, ψ2, ψ3) be the solution of problem (A.2) with the boundary
condition (A.3) where u is defined by (A.9). The solution of problem (A.2)-(A.3)
is

ψ = (

L∑
l=1

ψl
1,

L∑
l=1

ψl
2,

L∑
l=1

ψl
3), (A.10)

where ψl (l = 1, ..., L) are the solutions of (A.7)-(A.8). Now the total dose distri-
bution D(�x) from the incoming fields Sl (l = 1, ..., L) at a point �x of the patient
domain V can be obtained from the measurement integral

D(�x) =

3∑
j=2

∫
S

∫
I

κj(�x,E)ψj(�x,E,Ω)dEdΩ, (A.11)

where κj(�x,E) are known stopping power factors for electrons and positrons and

ψ is the solution of (A.4) with u =
∑L

l=1 ulχl.

Discrete finite element model for radiotherapy

For computer needs, the model presented has to be discretized, and we use the
finite element method (FEM) because the inflow boundary condition is quite easy
to handle via variational formulations.

To clarify the u-dependence of variables, we denote ψ = ψ(u) if needed. Let
F : L2(∂V × I × S) → (H3)∗ (where ∗ refers to the adjoint space, see [144] be the
operator defined by

(Fu)(v) =

∫
S

∫
I

∫
∂V

(Ω · ν)−uv1dσdEdΩ. (A.12)

Note that F (v) = (Fu)(v). Using these notations ψ = ψ(u) satisfies the variational
equation

B(ψ(u), v) = (Fu)(v), v ∈ H3. (A.13)
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LetXh be a finite dimensional subspace ofH3 and let Yh be a finite dimensional
subspace of L2(∂V × I × S). Denote a basis of Xh by {v1, ..., vN} and denote a
basis of Yh by {w1, ..., wM}. Let

ψh =

N∑
n=1

αnvn, uh =

M∑
m=1

βmwm. (A.14)

Now the FEM approximation of the variational equation (A.13) is defined as

B(ψh, v) = (Fuh)(v), v ∈ Xh. (A.15)

This leads to the system of equations

Aα = Bβ, (A.16)

where A ∈ M(N × N), B ∈ M(N × M) such that A(k, n) = B(vn, vk) and
B(k,m) = (Fwm)(vk). In addition, we have vectors α = (α1, . . . , αN )T and
β = (β1, . . . , βM )T . Equation (A.16) can be expressed in the form

(
A − B

) (
α
β

)
= 0, (A.17)

which is actually the variational equation (A.13) in its discrete form.

Parameterization of the discrete finite element model

We say that the equation (A.17) is parameterized by a matrix S ∈ M(N +M,p)
if (

A − B
)(

α
β

)
= 0 ⇔

(
α
β

)
= Sγ, γ ∈ R

p. (A.18)

Let p1, p2 be the canonical projections

p1 : R
N+M → R

N (A.19)

p2 : R
N+M → R

M . (A.20)

Denote Sjγ = pj(Sγ) (j = 1, 2). Then α = S1γ and β = S2γ. Hence we can
denote

ψ ≈ ψh =

N∑
n=1

αnvn =

N∑
n=1

(S1γ)nvn := S1γ (A.21)

and

u ≈ uh =

M∑
m=1

βmwm =

M∑
m=1

(S2γ)mwm := S2γ, (A.22)

where γ ∈ R
p. With finite elements, the matrices A and B have a full rank and

that is why we have here p = M .
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After the parameterization, the dose can be approximately solved from the
equation

D(�x) ≈ Dγ(�x) =

3∑
j=2

∫
S

∫
I

κj(�x,E)(S1γ)j(�x,E,Ω)dEdΩ. (A.23)

In optimization, γ is the vector of decision variables.
Singular value decomposition (SVD) can be used in the parameterization of

the discrete system, that is, in finding the matrix S. Parameterization makes
it possible to optimize large problems based on the finite element model. After
parameterization, the number of unknown variables is decreased from N +M to

M . Parameterization of the system
(
A − B

) (
α
β

)
= 0 is considered in more

detail in [144].



Appendix B

Case study: papermaking

In this thesis, papermaking is investigated as a case study. The methods developed
and applied in this work were tested also in the papermaking example in order to
prove their versatility and power. This case study continues the research initiated
by Prof. Hämäläinen and Dr. Madetoja et al [44, 45, 46, 87, 92].

Papermaking process is an example of an industrial process that has been
studied extensively with modeling, simulation and optimization. The basic pa-
permaking process involves two main stages: forming a pulp (i.e. a suspension
of fibres), and forming of paper sheet by spreading this suspension on a porous
forming fabric, where it is dried often under pressure. Nowadays there are four
main paper machine parts involved in papermaking process: headbox, former,
press section and drying. In addition, there can be some finishing parts such as
coating or calendering in order to improve paper surface properties. Research in
modeling of the papermaking unit-processes has been active through the years, see
[43, 49, 52, 59], for examples. Modeling the whole papermaking process requires
several modeling techniques as well as combining different unit-process models to-
gether into a large simulation model. For this purpose, a process line approach
(called also a virtual papermaking line) [87, 92] has been developed. This makes
it possible to combine unit-processes and define model-based optimization prob-
lems with numerous criteria. Thus, the interactive multiobjective optimization,
in which a user can participate in processing the solution by giving preference
information, can be used.

Interactive multiobjective optimization of papermaking

As an industrial optimization case, the papermaking optimization problem is natu-
rally multiobjective, i.e. it contains several conflicting objectives. Thus, when han-
dling multiphysical or multidisciplinary problems such as in papermaking, more
efficient and intelligent optimization procedures are needed. As stated, the unit-
processes of the paper machine have been individually modelled and optimized for
more than ten years, but there is an increasing demand to be able to handle larger
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Figure B.1: Layout of a paper machine. Courtesy of Metso Paper, Inc.

ensembles, even the whole papermaking process. This is a real challenge, because
the paper machine consists of a number of consecutive sub-ensemblies, where the
output of one unit-process is an input for the following unit-process. Figure B.1
shows an example of a paper machine construction, where the process starts from
the headbox, then continues from right to left terminating as ready paper in a roll.

In the papermaking process, there are always several requirements for the end
product that should be simultaneously achieved. These targets are often conflict-
ing; for example, by accelerating the machine speed in order to increase production
amount, the probability of web breaks may increase resulting in more downtime,
which in turn, decreases the production amount. Better runnability could be
achieved by making stronger paper from more expensive raw material, but this
affects the costs and profitability. Therefore, numerous criteria need to be taken
into account simultaneously.

Although accurate simulation of the whole paper machine is still far in the
future, a multiobjective optimisation tool, called a virtual papermaking line, has
been developed [87, 92]. It combines dissimilar unit-process models from differ-
ent disciplines, for example, mathematical formulas ranging from simple algebraic
equations to CFD models. It also includes models for moisture and heat trans-
fer, and for paper quality properties. Simplifications of computationally expensive
models are used for water removal, for instance. In other words, an accurate multi-
phase flow model of the dewatering phenomena is replaced with a statistical model
based on data produced by the accurate model. These kinds of models are use-
ful especially in optimization when tens, hundreds or even thousands simulation
model evaluations are needed.
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Figure B.2: Simulated and optimized conflicting paper quality properties.

Examples

In the following examples, the introduced interactive multiobjective optimization
tools are applied to papermaking problems as a case study. First, there is an
example of the conflicting targets of papermaking, and the problem is solved with
an interactive multiobjective optimization. After that, the trade-off information is
used to support the MCDM process of papermaking. Finally, there is an example
in which the VR environment is utilized in visualizing the Pareto optimal fronts
obtained in a papermaking study.

Example 1: Conflicting papermaking targets

The following example illustrates the advantages of multiobjective optimization
compared to trial-and-error simulations [44]. It also reveals the conflict between
two paper quality properties, formation and tensile strength ratio. Formation is a
small scale weight variation and tensile strength ratio is the machine-directional
tensile strength divided by the cross-directional strength. Both of them are to
be minimized in this example and the calculations are done by using the virtual
papermaking line [87, 92]. By doing trial-and-error simulations, a number of solu-
tions are obtained, see Figure B.2. But, by allowing a multiobjective optimization
routine to search for the decision variable values, much better solutions can be
found as they are located in the left-bottom corner of the graph (Figure B.2). The
clear advantage of using multiobjective optimization is that all the solutions it
finds are Pareto optimal, i.e. the best possible mathematical compromises.

An example of four papermaking targets is studied next. Table B.1 shows the
desired values and six Pareto optimal compromise solutions calculated with the
virtual papermaking line. When comparing the values, it can be seen that the
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Table B.1: Six Pareto optimal compromise solutions.

Tensile strength Formation Basis weight Dry solid
Target (-) (g/m2) (g/m2) (%)

Desired value 3.00 0.30 . . . 0.35 54.00 92.00

Compr.1 2.80 0.43 54.03 92.48
Compr.2 3.00 0.40 54.00 92.14
Compr.3 2.34 0.39 54.33 92.30
Compr.4 4.91 0.35 54.35 92.27
Compr.5 3.90 0.38 53.74 92.27
Compr.6 3.38 0.41 53.92 92.12
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Figure B.3: Trade-off information presented in two ways.

targets chosen are conflicting. For example, tensile strength and basis weight are
the best in Compromise 2, but e.g. formation is better in Compromise 4.

Handling even a few conflicting targets at the same time is too complex for
human mind [76] and therefore multiobjective optimization routines are needed.
Furthermore, the papermaking process can be controlled as a whole and relation-
ships between the targets can be seen.

Example 2: Trade-off information of three conflicting papermaking tar-
gets

Here the optimization of three objectives was studied: the content of paper dry
solids after pressing, formation and tensile strength ratio. Both of these quality
properties as well as dry solids content are created during the papermaking process.
Thus, several unit-process models are combined together in a virtual papermaking
line as in the previous example.

In this example, the papermaking process is studied by the help of trade-off
information [45]. This is performed because even small changes can affect many
of the processes and the decision maker wants to predict how the objectives will
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Table B.2: Trade-off rates.

Formation Tensile strength Dry solid
(g/m2) (-) (%)

Formation (g/m2) 0.1 -1.409 0.010
Tensile strength (-) -0.065 1 -0.002
Dry solid (%) 1.192 -4.265 1

behave in response to these changes. Thus, in addition to the objective function
values, also trade-off information is shown to the decision maker during the inter-
active optimization process. The total trade-off is used because the decision maker
considers that it describes better his preferences than partial trade-off: the wish
is to see what happens to the other objectives if there is an improvement in one
of the objectives by one unit.

In Figure B.3 and in Table B.2 the total trade-off information after obtaining an
interesting solution (f1: formation 0.487 g/m2, f2: tensile strength ratio 3.261 and
f3: dry solids content 50.930 %) is presented. As can be seen in the figure, it would
be profitable to try to improve tensile strength. If tensile strength is improved by
one unit, the formation and dry solids would be impaired only slightly (-0.0654 and
-0.0016, respectively), for example. For comparison, if the wish was to improve
the formation by 0.1 unit (scaled, normally one unit), this would impair tensile
strength considerably at the same time (-1.4091).

With this information presented to the decision maker, the decision maker
is able to steer the solution process in an efficient way and better paper could
be obtained by finding advantageous trade-offs. In addition, less Pareto optimal
solutions are needed to be computed because the decision maker receives a clear
picture of the conflicting targets and their behavior and trade-offs. In brief, the
optimization problem is solved more easily and faster by using this kind of decision
support aid.

Example 3: Multiple criteria decision making of papermaking using
virtual reality

In this example a papermaking optimization problem is studied, and because of
the long computational time of the simulation model, the decision maker wants
to compute as few solutions as possible. The Pareto optimal solutions computed
are visualized as 3D points in the VR, and an approximation of a Pareto optimal
front is formed with these few solutions [89].

In this example, there are four papermaking objectives and eight decision vari-
ables. The problem is formed as a model-based optimization problem and the
virtual papermaking line [87] is used in the computations. The objectives in this
example are f1 which represents paper tensile strength ratio and it is given the
desired value 3.4. The objective functions f2 and f3 are paper formation and basis
weight, which are given the desired values 0.36 g/m2 and 50.5 g/m2, respectively.
The fourth objective function f4 is evaporated water which was to be maximized.
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Figure B.4: On the left, solutions after the first step, and on the right, all

solutions after the first and the second steps. The objective functions from f1 to

f3 are presented as a 3D surface and f4 is presented as a variation in color. Note

that 3D fronts visualized in the VR are presented as 2D figures in this thesis.

The optimization process contains two separate steps. In the first step, a set of
the trade-off solutions are calculated with a genetic algorithm with scalarization by
achievement scalarizing function. Then, an approximation of the Pareto optimal
front is generated in the VR environment using these solutions. The left plot in
Fig. B.4 shows the solutions and the approximated front obtained after the first
step. The values of the objective functions f1, f2 and f3 are presented on the
axes and f4 is presented by different colors in the figure. Here, the proposed VR
environment is found to be quite an effective tool to explore the multidimensional
Pareto optimal solutions and the approximated front between them. The decision
maker observes a conflict between the first two objective functions, i.e. a good
tensile strength ratio causes a large formation value which is not desired and vice
versa. Thus, there exists a trade-off. Another observation is that a large value
of the fourth objective function comes with a large value of the third objective
function, thereby producing also a conflict between these two objective functions:
the desired value of f3 cannot be achieved at the same time as a good value of f4.
However, there are good compromise solutions between the objective functions in
the middle and front part of the approximated set. Based on these observations,
the region highlighted by an ellipse (shown in the figure, on the left) is chosen and
the optimization process is re-directed toward this region in the second step. This
preference information is obtained with the help of visualization with the VR tool,
where the decision maker could examine the existing solutions in many ways by
rotating and zooming the Pareto optimal set.

In the second step, three new solutions are calculated using the reference point
method and the gradient-based optimizer. The decision maker’s preferences, the
circled region in Fig. B.4, is utilized in defining the reference points. Unfortu-
nately, only one of the three new solutions generated is located into the preferred
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region and other two are located in that part of the solution space, which had
no solutions after the first step. The plot on the right side in Fig. B.4 shows all
the solutions, i.e. the solutions produced in the first step complemented by three
solutions produced in the second step. Two of the new solutions are interesting
from the papermaking point of view: one is located inside the preferred region
(circled in Fig. B.4) and another one is located on the right side having values
(fff = (3.78, 0.39, 50.19, 9.59)), which represents also a good compromise between
the objective functions. However, the first-mentioned solution (inside the circled
part) has objective function values fff = (3.79, 0.41, 51.02, 9.68) and thus it can be
considered to be the most satisfying compromise solution, i.e. to be the final one
selected by the decision maker.

The ability to visualize trade-off information among objective functions through
the 3D VR system makes it possible to focus on the interesting part of the solution
space. This will certainly enhance the decision making ability in computationally
demanding real-world optimization problems and reduce the number of irrelevant
solutions needed to be calculated. In addition, the better visualization technique
allows one to obtain more information about the relationships between the so-
lutions and objective functions than a simple plot of the numerical data. It is
concluded that the VR tool will help the decision makers to understand and an-
alyze the Pareto optimal fronts, and thus make it easier to identify the optimal
solution.

Conclusion

In papermaking, mathematical modeling and computer simulations can be used
to partly replace the expensive trials employed nowadays. Moreover, optimiza-
tion routines are utilized in order to improve the efficiency of the papermaking
processes. In this thesis, multiobjective process-line optimization for papermaking
was used to search for the best possible compromise between numerous contradic-
tory objectives as a case study. In addition, the decision making in papermaking
can be supported by using trade-off information and utilizing the VR environment
to make it easier to visualize the results of the optimization procedure. This kind
of simulation-based optimization can be considered as a platform to provide assis-
tance to decision makers in the papermaking industry, and one goal of this thesis
was demonstrate how these kinds of techniques utilizing multiobjective optimiza-
tion can become implemented in the pulp and paper industry in the future.
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