32 research outputs found

    Approximating Convex Shapes With Respect to Symmetric Difference Under Homotheties

    Get PDF
    The symmetric difference is a robust operator for measuring the error of approximating one shape by another. Given two convex shapes P and C, we study the problem of minimizing the volume of their symmetric difference under all possible scalings and translations of C. We prove that the problem can be solved by convex programming. We also present a combinatorial algorithm for convex polygons in the plane that runs in O((m+n) log^3(m+n)) expected time, where n and m denote the number of vertices of P and C, respectively

    Probabilistic Matching of Planar Regions

    Get PDF
    We analyze a probabilistic algorithm for matching shapes modeled by planar regions under translations and rigid motions (rotation and translation). Given shapes AA and BB, the algorithm computes a transformation tt such that with high probability the area of overlap of t(A)t(A) and BB is close to maximal. In the case of polygons, we give a time bound that does not depend significantly on the number of vertices

    Outer Billiards, Arithmetic Graphs, and the Octagon

    Full text link
    Outer Billiards is a geometrically inspired dynamical system based on a convex shape in the plane. When the shape is a polygon, the system has a combinatorial flavor. In the polygonal case, there is a natural acceleration of the map, a first return map to a certain strip in the plane. The arithmetic graph is a geometric encoding of the symbolic dynamics of this first return map. In the case of the regular octagon, the case we study, the arithmetic graphs associated to periodic orbits are polygonal paths in R^8. We are interested in the asymptotic shapes of these polygonal paths, as the period tends to infinity. We show that the rescaled limit of essentially any sequence of these graphs converges to a fractal curve that simultaneously projects one way onto a variant of the Koch snowflake and another way onto a variant of the Sierpinski carpet. In a sense, this gives a complete description of the asymptotic behavior of the symbolic dynamics of the first return map. What makes all our proofs work is an efficient (and basically well known) renormalization scheme for the dynamics.Comment: 86 pages, mildly computer-aided proof. My java program http://www.math.brown.edu/~res/Java/OctoMap2/Main.html illustrates essentially all the ideas in the paper in an interactive and well-documented way. This is the second version. The only difference from the first version is that I simplified the proof of Main Theorem, Statement 2, at the end of Ch.

    Approximate Riemannian manifolds by polyhedra

    Full text link
    This is a study on approximating a Riemannian manifold by polyhedra. Our scope is understanding Tullio Regge's [52] article in the restricted Riemannian frame. We give a proof of the Regge theorem along lines close to its original intuition: one can approximate a compact domain of a Riemannian manifold by polyhedra in such a way that the integral of the scalar curvature is approximated by a corresponding polyhedral curvature

    Iterating evolutes and involutes

    Get PDF
    This paper concerns iterations of two classical geometric constructions, the evolutes and involutes of plane curves, and their discretizations: evolutes and involutes of plane polygons. In the continuous case, our main result is that the iterated involutes of closed locally convex curves with rotation number one (possibly, with cusps) converge to their curvature centers (Steiner points), and their limit shapes are hypocycloids, generically, astroids. As a consequence, among such curves only the hypocycloids are homothetic to their evolutes. The bulk of the paper concerns two kinds of discretizations of these constructions: the curves are replaced by polygons, and the evolutes are formed by the circumcenters of the triples of consecutive vertices ( PP - evolutes), or by the incenters of the triples of consecutive sides ( AA -evolutes). For equiangular polygons, the theory is parallel to the continuous case: we define discrete hypocycloids (equiangular polygons whose sides are tangent to hypocycloids) and a discrete Steiner point. The space of polygons is a vector bundle over the space of the side directions; our main result here is that both kinds of evolutes define vector bundle morphisms. In the case of PP -evolutes, the induced map of the base is 4-periodic, and the dynamics reduces to the linear maps on the fibers. We prove that the spectra of these linear maps are symmetric with respect to the origin. The asymptotic dynamics of linear maps is determined by their eigenvalues with the maximum modulus, and we show that all types of behavior can occur: in particular, hyperbolic, when this eigenvalue is real, and elliptic, when it is complex. We also study PP - and AA -involutes and prove that the side directions of iterated AA -involutes of polygons with odd number of sides behave ergodically; this generalizes well-known results concerning iterations of the construction of the pedal triangle. In addition to the theoretical study, we performed numerous computer experiments; some of the observations remain unexplained

    Some problems in convex analysis across geometry and PDEs

    Get PDF
    corecore