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Introduction

In this thesis we treat problems which have connections with the study
of some geometric properties of the solutions of certain elliptic or parabolic
PDEs, such as symmetry, convexity, asymptotic behavior.

The study of the geometric properties of solutions of partial differential
equations is an important part of modern analysis; on one hand, answering
questions arising in such problems is a stimulating task from a theoretical
point of view, on the other hand, this study has several applications in fields
such as physical mathematics, engineering and so on.

For instance, it is well known that it is quite impossible to find the explicit
expression for the solution of most of differential equations, however in many
applications, it may be very helpful to deduce some symmetry results for the
solutions, since they allow to significantly simplify the problem.

In some particular situations, symmetry properties are expected by virtue
of a physical analysis of the problem. In these cases the study of the suf-
ficient and necessary conditions for the solution to have such properties is
fundamental for the consistency of the model.

In those situations it naturally arises the need to study overdetermined
problems.

A peculiar feature of this kind of problems is that, as it typically hap-
pens, for instance, in shape optimization problems, the domain becomes an
unknown variable, so that the problem can also be described in a purely geo-
metric formalism, and symmetrization arguments, comparison estimates and
geometric inequalities are fundamental tools adopted to solve these problems.

As we shall see, the first part of this work will be devoted to the study
of the geometry of convex bodies and of some problems concerning them. In
the second part we treat more directly problems concerning PDEs.

While the literature about overdetermined problems in the elliptic case
is boundless (just think of the Serrin’s problem concerning the torsion equa-
tion, see [Ser], and its several extensions), there are far fewer works dealing
with this in the parabolic case, although there are still many stimulating
questions to answer.
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In this thesis our concern is mainly addressed to evolution equations: one
important example of overdetermined problem in the parabolic case is the
following conjecture.

Klamkin’s conjecture [KI|. Consider the heat conduction problem for
a solid €2,

ur = Au in Q x (0,00).

Initially, v = 0. On the boundary u = 1. The solution to the problem
is well-known for a sphere and, as to be expected, it is radially symmet-
ric. Consequently, the equipotential surfaces do not vary with the time (the
temperature on them, of course, varies). It is conjectured for the boundary
value problem above, that the sphere is the only bounded solid having the
property of invariant equipotential surfaces. If we allow unbounded solids,
then another solution is the infinite right circular cylinder which corresponds
to the spherical solution in two-dimensions.

L. Zalcman |Za| included this problem in a list of questions about the
ball and named it the Matzoh Ball Soup problem. For the case of a bounded
solidﬂ the conjecture was given a positive answer by G. Alessandrini [AlL]:
the ball is the only bounded solid having the property of invariant equipoten-
tial surfaces.

In [MST], it is shown that, to obtain the spherical symmetry of the solid
in Klamkin’s setting, it is enough to require that the solution has only one in-
variant equipotential surface (provided this surface is a C''-regular boundary
of domain); to show this, authors proved a formula describing the asymptotic
behavior of u(z,t), for t — 07. In a subsequent series of papers, the same
authors extended their result in several directions: spherical symmetry also
holds for certain nonlinear evolution equations ([MS2, MS4, MS6l MS7]);
a hyperplane can be characterized as an invariant equipotential surface in
the case of an unbounded solid that satisfies suitable sufficient conditions
(IMS3, IMS5]); spheres, infinite cylinders and planes are characterized as
(single) invariant equipotential surfaces in R3 (JMPeS]); similar symmetry
results can also be proven in the sphere and the hyperbolic space ([MS4]).

In [AI2], G. Alessandrini re-considered Klamkin’s problem for a bounded
domain in the case in which u initially equals any function ug € L?(Q2) and
is zero on 0f2 for all times. He discovered that either ug is a Dirichlet eigen-
function or 2 is a ball. A comparable result was obtained by S. Sakaguchi
[Sak] when a homogeneous Neumann condition is in force on 9€.

In Chapter 4, we describe some results obtained in [MM3|. There it is
shown that Klamkin’s property of having invariant equipotential surfaces

'By solid we mean, according to [AIT] and [Za], a connected open set that coincides
with the interior of its closure and whose complement is connected
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characterizes a solution of the heat equation without assuming any whatso-
ever initial or boundary condition. In particular it is shown that solutions
are either isoparametri(ﬂ or split in space-time, see Theorem . The proof
of Theorem is based on the ideas exposed in [Al2] and [Sak|; the crucial
observation is the following: suppose that u(-,t) is constant on the level sets
of u(-,0), for any fixed time ¢, then u depends only on the time and on the
image of the map u(+,0), namely there exists a function 7 : R x [0, +00) such
that u(x,t) = n(u(z,0),t). The study of the properties of the function n will
lead to a classification of all possible solutions of the heat equation having
time-invariant level surfaces (Section contains all the details).

The same result extends to a class of quasi-linear parabolic partial differ-
ential equations with coefficients which are homogeneous functions of the gra-
dient variable (see Theorem . This class includes the evolution p-Laplace
equation, the normalized evolution p-Laplace equation and the (anisotropic)
evolution h-Laplace equationﬂ

Besides the Matzoh Ball Soup Problem, it is interesting to consider, as
done in [MPS], the following initial value problem

ug = Au  in RN x (0, 00), (1)
u=Xg in RY x {0},

where G is a measurable subset of RY.

In [MPS] it is established a characterization of the possible stationary
level surfaces of the solution u of . Besides the symmetric ones (spheres
and cylinders), surprisingly, a helicoid is a possible invariant equipotential
surface.

In [MPS] it is shown that if I" is an invariant equipotential surface if and
only if the density function

V(G N B(x,r))
V(B(z,r))

oz,r) = (2)

where V' denote the N-dimensional Lebesgue measure, is such that
d(z,r) =c(r), forxzel. (3)

Particularly relevant in [MPS] is the case when I' is the boundary of G.
Sets satisfying for I' = OG are called uniformly dense, or B-dense, and
a geometric analysis of their properties reveals fundamental to obtain the
characterization of the time invariant equipotential surfaces for the initial-
value problem .

The study of B-dense sets has been extended (see [ABGl, MM1l, MM?2])
to the case in which, in the definition of the density function, the euclidean

2Isoparametric functions are defined in Section
3Theese equation are defined in Section
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ball, B, is replaced by an arbitrary convex body K. In such a case these sets
are called K-dense.

In the spirit of what has been done in [MPS], the study of K-dense sets is
motivated by that of time-invariant level surfaces of solutions of the problem

ug = Apu in RY x (0, 00), ()
u=AXg in RY x {0},

where Apu = div(Dhg (Du)hi(Du)) denotes the Finsler laplacian of u gen-
erated by the support function hx of K.

This problem is more difficult than the one considered in [MPS] —and
in fact is still open— because it introduces a further possible unknown: the
convex body K. In fact, it is not clear whether a time-invariant level surface
may exists for for any choice of K. Thus, the study of K-dense sets ap-
pears to be an important testbet to gain some more insight in that problem.
Moreover, the study of K-dense sets is also an interesting question in convex
geometry, which might have connections with some problems arising in the
study of convolution bodies or floating bodies (see for instance [MRS| and

[Stal).

In [ABG] planar K-dense sets have been studied and it is proved that,
if G is a C?-regular convex body and K is C*-regular, then G is K-dense if
and only if G and K are homotetic to the same ellipse. Their proof can be
obtained by computing the Taylor expansion for » — 0 of the function 6 (x, r)
up to the third order; by imposing that every coefficient in the expansion
does not depend on z, for z € 9G, it is possible to show that K = G, up
to homotheties, and then, that a local parametrization of the boundary of
G must satisfy a certain ordinary differential equation which has solution if
and only if G is an ellipse.

In Chapter 3, we summarize all the results obtained in [MMI] and [MM2]
about K-dense sets. In [MM1], there is an alternative proof of the characteri-
zation theorem of planar K-dense sets in which all the regularity assumptions
needed in [ABG] are removed; indeed it is shown that these sets must be nec-
essarily of class C'™°. For our alternative proof only the first two coefficient
in the Taylor expansion of the density § are needed. Indeed that proof com-
bines the local information given by the study of the asymptotic behavior of
V(G N (x4 rK)), for small values of r, with some global informations pro-
vided by an affine inequality and the Minkowski’s first inequality for mixed
volume (see Theorem [3.16)).

Moreover, in [MMI], are also established some properties of K-dense sets
that hold in general dimension: in particular that N-dimensional K-dense
sets are strictly convex and C'l!-regular.



A geometrical analysis of the computations made in [ABG| allows to
calculate in every dimension the first two coefficients in the Taylor expansion
of the density function §; however, as it will be explained in Chapter 3, it
is not possible to reproduce the same proof of the characterization theorem
when N > 2; a change of perspective is needed.

This change is adopted in [MM2], where in every dimension it is proved
that, if G is K-dense, then G and K must be homothetic to the same ellipsoid
(see Theorem . To show this, it is necessary to study the asymptotic
behavior of the volume of G N (z + rK), for large values of r. Sections
and [3.5] contain all the details of the proof.

Both in the proof of Theorem [3.16]and that of Theorem [3:2T] we show that
the support function hyx and the Gauss curvature x of K satisfy a formula,
named Petty’s identity, namely it must hold that

AR = ek, (5)

where c is a positive constant.

In [Pe] it is shown that every C? convex body that satisfies is an
ellipsoid and thus we can prove our characterization, since we were able to
show that K-dense sets are sufficiently smooth.

In Chapter 2 there is a short essay about Petty’s Theorem. There. we
summarize Petty’s arguments and in Theorem we report [DM| Thm
1.1] which asserts that Petty’s identity characterizes ellipsoids without
assuming any a priori regularity assumption.

The same statement can also be found in the new edition of [Scn|, where
there is also a brief outline of the proof of Theorem based on Caffarelli’s
regularity results for the solutions of the Minkowski problem, see the Remark
after [Scn, Theorem 10.5.1].

In the last chapter of this thesis we report a comparison theorem that
we obtained in [MR] for a class of degenerate elliptic PDEs which allows to
estimate the solution (or some symmetrization of it) in terms of a sort of
fundamental (family of) solutions.

In the celebrated paper [Ta], G. Talenti established several comparison
results between the solutions of the Poisson equation with Dirichlet boundary
condition (with suitable data f and E):

—Au=fin E, u=0on JF (6)

and the solutions of the corresponding problem where f and E are replaced
by their spherical rearrangements. Precisely, he proves that if we denote by v
the solution of the problem with symmetrized data, then the rearrangement
u* of the (unique) solution u of @ is pointwise bounded by v. Moreover he
shows that the LY norm of Du is bounded, as well, by the L? norm of Dw,
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for g € (0,2]. The proof of these facts basically relies on two ingredients: the
Hardy-Littlewood-Sobolev inequality and the isoperimetric inequality (see
[AFP] and |LL] for comprehensive accounts on the subjects).

Later on, following such a scheme, many other works have been devel-
oped to prove analogous comparison results related to the solutions of PDEs
involving different kind of operators (see for instance [BBMPI, BBMP2,
BBMP3| BCMIl BCM2| |dB| [dBFP], [TL| and the references therein). A re-
curring idea in these works is, roughly speaking, the following: the operator
considered is usually linked to a sort of weighted perimeter. Thus initially it
is necessary to solve a corresponding isoperimetric problem; then the desired
comparison results can be obtained following the ideas contained in [Tal.

For example, in [BBMP2], the authors consider a class of weighted perime-
ters of the form

Pu(E) = /a _wlfa]) 1Y),

where E is a set with Lipschitz boundary and w : R — [0,00) is a non-
negative function, and prove, under suitable convexity assumptions on the
weight w, that the ball centered at the origin is the unique solution of the
mixed isoperimetric problem

min{ P, (F) : V(E) = constant}.

As a consequence they prove comparison results, analogous to those in [Tal,
for the solutions of

—div(w?Du) = f in E, u=0on JF.

In [BDR], authors proved a quantitative version of the weighted isoperi-
metric inequality considered in [BBMP1]. Their proof is achieved by means
of a sort of calibration technique. One advantage of this technique is that
it is adaptable to other kind of problems, as that of considering other kind
of functions in the weighted perimeter (e.g. Wulff-type weights, see [BE]),
or that of considering different measured spaces, as RY endowed with the
Gauss measure.

In Chapter 5, we summarize the main results contained in [MR]. There it
is considered degenerate elliptic equations with Dirichlet boundary condition
of the form

—div(w? e Du) = fe' in E, u=0onJdF

where w and V are two given functions, and it is proved analogous com-
parison results as those in [Ta]. The particular form in which is written
the measure ¢V is due to the later applications, whose main examples are
Gauss-type measures, that is V(z) = —c|z|?.
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To obtain the desired comparison result it is solved a class of mixed
isoperimetric problems of the form

min {PweV(E) : / eV = constant} .
E

In particular it is proved, by means of a calibration technique reminiscent of
that developed in [BDR], that minimizers, under suitable assumptions on V'
and w, are half-spaces.






Chapter 1

Preliminaries

In this chapter, we recall some of the important properties of convex sets
and functions that will be useful in this thesis.

Section deals with differential properties of convex functions and in-
troduces the Legendre transformation, which defines an involution playing its
role in the set of convex functions just as the polar transformation (defined
in Section does in the set of convex bodies.

Section is devoted to the study of the "smoothing" effects of the so-
called Minkowski addition. In Section [.4] mixed volumes are defined and a
number of geometric inequalities which will be used in the following chapters
are discussed.

1.1 Fundamental properties of convex functions

This section contains a very short essay about peculiar properties of con-
vex functions. In particular we are interested in the differential theory. We
refer to [Rol Part V] for a very exhaustive exposition of the topic.

A function u : Q € RNV — [~o0, +00] is said to be conver if its epigraph
epi(u) = {(z,t) € A xR : u(x) <t}

is a convex subset of RY xR, moreover  is said to be properif {u = —oco} = @
and {u = oo} # RN, w is said to be closed if its epigraph is closedﬂ In
particular, it is easy to check that a function u : @ € RY — (—o0, +00] is
convex if and only if €2 is a convex set and

u(Az + (1= A)y) < du(z) + (1 = Au(y),

!Closedness is clearly equivalent to lower semi-continuity.
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for every 0 < A <1 and every z and y € Q. The effective domain dom(u) is
the projecton of the epigraph on RY, namely

dom(u) = {x € Q : u(x) < 4+o0}.

It is well known that a convex function u is continuous and bounded in
its domain (see [Rol Chapter 10]), moreover it is locally Lipschitz continu-
ous (JRol Theorem 10.4]) in the interior of dom(u), thence, by Rademacher
Theorem (see, for instance [EG]), we can say that u is differentiable at z,
for almost every point z € dom(u). However, it is usefull to introduce a
weaker notion of differential, which coincides with the usual one for smooth
functions [

Let u be a convex function defined on a convex open domain  C RY,
the subdifferential of u, Ju, is the multi-valued map given by

ou(z) = {p e RY : u(y) > u(x) + (p,y — z), for any y € Q} . (1.1)

With the help of the terminology introduced in Section [1.2] we would say
that the graph of the affine function a(y) = u(x) + (p,y — x) is a hyperplane
supporting epi(u) at z.

In what follows we will mainly be concerned with proper closed convex
functions defined on open convex subsets of RY. One of the reasons is that
this condition ensures the existence of a non vertical tangent hyperplane to
every point of the graph. In fact we have that du(z) is a nonempty set, for
every x in the interior of dom(u), while for x ¢ dom(u), du(z) = @. A point
in which Ju # @ is said a point of subdifferentiability of u.

Since the subdifferential consists of solutions of a system of linear in-
equalities, it is always a convex set. Moreover

Lou = {(z,p) : p € Ju(x)},

the graph of the subdifferential, is a closed subset of RN x RY. The above
fact can be used to prove that wu is differentiable at = if and only if Ju is a
singleton [Rol Section 25].

Remark 1.1. For every compact subset K C Q, the set Ou(K) = UzerOu(x)
is compact. Indeed, du(K) is bounded since convex functions are locally
Lipschitz continuous, its closedness follows by that of T'.

2The definition of subdifferential can be set, of course, for non-convex functions as well,
but, as we should see, many of the "nice" properties of the subdifferential mentioned in
this section do not hold true for an arbitrary real-valued function.
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For a proper closed convex function u : Q — (—o00,400] we define the
conjugate of u, u* (in literature it is often used the alternative notation Lu,
where £ stands for the Legendre-Fenchel transformation, see |[Rol Sections
12, 26] and [Scnl, Section 1.6]), as

u*(p) = sup {(p,z) — u(z)}.
e

This function has a simple geometrical interpretation: we recall that a convex
function w is the supremum over all affine functions h < w, the epigraph of
u* consists of all pairs (p,t) such that

(z,p) =t < u(w),

for every x € Q.

The conjugate of a proper closed convex function is a convex function
itself and the Legendre-Fenchel transformation provides a one-to-one invo-
lution in the set of proper convex functions.

Remark 1.2.
(i) If © is bounded and w is bounded, then u* is finite.

(ii) The subdifferentials of v and u* are each one the inverse of one another
as multivalued maps, that is z € du*(p) if and only if p € Ju(x).

Indeed p € du(x) if and only if the function y — (p, y) —u(y) has a maximum
at x, namely u*(p) = (p,x) — u(x). Since u™* = u, then
u(x) = (p,x) — v (p),
that implies
for all ¢, namely = € Ou*(p).

In particular, if both u and u* are differentiable functions, then

Du*(Du(zx)) = x. (1.2)
In force of the above remark we can prove the following two propositions.

Proposition 1.3. Let u : RN — R be a finite convex function, then u is
differentiable if and only if u* is strictly conver.

Proof. Suppose that a non-vertical relatively open segment, say £, is con-
tained in the graph of u. Let x and p be such that (z,u(x)) € £ and p €
Ou(x), then £ is contained in the graph of the function z — u(z) — (p, z — ),
and this entails that p € du(y), for every y € ¢, that is y € Ju*(p), for every
y, and thence u* cannot be differentiable at p. O
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Proposition 1.4. Let Q be an open conver set and let u : & — R be a
convex function. Then the set

E:{pERN :p € Ou(z) Nouly), v #y € N}
has zero Lebesgue measure.

Proof. By a standard approximation method we can reduce us to consider
only bounded sets. In such a case u*(p) is finite, for every p € RY. Let
now p € E, then there exist x and y € Q, x # y, such that z € du*(p) and
y € Ou*(p), that is

EC {p e RY : u* is not differentiable at p} .

Since u* is a finite convex function, then the set on the left-hand side has
zero Lebesgue measure. O

1.2 Convex bodies, support functions and duality

Let K denote the set of convex bodies of RY, that is the set of compact
convex sets with nonempty interior, and let IC(])V be the set of convex bodies
with the origin lying in their interior.

We say that Hg(x) is a hyperplane supporting K at = if x € Hg(x)
and one of the two open half-spaces whose boundary is Hg (z) has empty
intersection with K. The boundary of K is differentiable at x if and only if
there exists only one hyperplane supporting K at x.

For x € 0K, let us denote by N (x) the normal cone of K at z, that is
the set of all vectors w such that

<w,y—a:> S 07

for every y € K.

If K is differentiable, Ng(z) contains only one ray; in such a case we
use to denote by v (z) the unit vector generating the ray Ng(x). If, for a
point x, we can find u € Nk (z) such that u € Nk (y), for any other y € 0K
we call  an exposed point of K. We say that x is an extremal point of K if
xz € K and K \ x is convex.

For K € K}Y we define the dual body (or, equivalently, polar body) K* as
K* = {xE]RN : (x,y) <1, for anyyeK}.

The reason why K™ is called the dual body is the following: K* canoni-
cally corresponds to the subset of the dual of RY consisting of the linear
applications mapping K into the unit ball.
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It is easy to check that also K* &€ IC(])V , moreover the operator *, as an

application of IC(]]V in itself, is an involution, namely K** = K.

Before establishing a link between the concept of duality for sets and the
one for functions we need to provide some further definitions.

In the following sections we will be concerned in describing the geometry
of convex bodies in a functional way. To do this, we start from the following
straightforward observation: any convex body is the intersection of all its
supporting halfspaces, so we can get every significant information about the
structure of the body by describing, for any direction w € SV, the position
of the supporting hyperplane orthogonal to w. More precisely, given K € IV
we define a function hx : SV "1 = R as

hi(w) =sup{{w,z) : 2 € K}.

We denote by hx the homogeneous (of degree one) extension to all RY of
the function hy (w), namely hg(z) = |z|hg(x/|z|), and we call it support
function of the convex body K.

The support function of a convex body is a proper convex function van-
ishing at the origin, clearly hx is not differentiable at that point (its epigraph
is a convex cone and the origin is its vertex). More precisely, the validity of
the condition (y,z) < hg(x), for every y € K and every z € RY entails that

O (0) = K.

As reminded in Section [1.1] convex functions are almost everywhere dif-
ferentiable, so one may ask whether the support function is differentiable
far from the origin. The answer is in general negative, even if we restrict
our attention to the set of smooth convex bodies. The obstruction to the
regularity of hy is the possible presence of "flat" parts in the boundary of
K in a sense that will be made more precise by the following proposition.

Proposition 1.5. Let K € KV and x € RV \ {0} . Then
Ohg(x) ={2z€ K : (x,z) = hg(x)}.

In particular, the support function hg is differentiable at x if and only
if the set defined at the right-hand side contains only one elment, say y. In
this case we have that

Dhg(z) =vy.

The above proposition can be read as follows: if no segment lies in the
intersection of the support plane orthogonal to w € S¥~! with K, then hg
is differentiable at Aw, for every A > 0, and its gradient is the point in the



6 Preliminaries

boundary of K, say y, whose outer unit normal, vk (y) equals w. A triv-
ial corollary of the above proposition is that hg is differentiable, for every
x € RV \ {0} if and only if K is strictly convex.

There are other functions that can be used to describe a convex body.
Let K € K}, we denote by || - ||x : RY — R* the function

|zl g =inf{r >0 : z € rK}

and we call it the gauge of the set K.

The gauge of K, just like the support function, is a proper convex func-
tion, homogeneous of degree one, and is not differentiable at the origin. The
best way to understand the geometrical meaning of such a function is the
following: if we denote by px(w) = sup{\ : Aw € K} the so called radial

function of K, then iz
x
e = Ty )
The above representation of the gauge of K should give a meaning to the
notation || - || x: indeed when K is centrally symmetric the gauge is a norm
and K is the corresponding unit ball. Moreover, should suggests that,
with the exception of the origin, || - |[x has the same regularity of K. In
particular || - ||k is differentiable at z if and only if the boundary of K is
differentiable at the point z/||z|| k.

There is a deeper link between support and gauge functions, which will
justify their introduction, indeed it is just a simple exercise to show that the
support function of K* is nothing else than the gauge of K, namely

2/l = hie- ().

Moreover, since we have that

hi+(z) = sup{(z,y) : hix(y) <1} =sup{(z,y) : hx(y) =1},

we can write:

hi(x) = sup (. y) .
y#£0 hk (y)
Similarly we obtain that
L,y
||| k= = sup < >
y#0 [|12]
This means that, when K is centrally symmetric, || - ||x+ = hgi is the

dual norm of || - || k.
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Combining these observations with Proposition[I.5 we infer that, in anal-
ogy to what happens to dual functions, K has differentiable boundary if and
only if K* is strictly convex. In particular, if K is differentiable at x, then

Dhg+(z) = vi(2)/hg (Vi (2)),
and vi (x)/hk(vik(x)) € OK* is an exposed point.
In the following we shall often adopt the notation hgx+ to denote the
gauge function of K and, if there is no risk of confusion, we shall drop the

subscript, simply writing h*.

The following proposition provides a strong link between duality of func-
tions representing convex sets and duality of convex sets.

Proposition 1.6. Let K be a convez body and let h and h* denote its support
and gauge function, respectively. Then

L o L,
L|=h*) ==h". 1.4
(57) =5 (1.4
Proof. The proof runs by performing a direct computation.

c Gh“) (z) = sup {(ac,y) - ;h*(y)Q} = sup sup {<x,y> - ;h*(m?}

yERN t>0 yeotK
Lo Lo
=sup sup §(z,y) = 5t° o =supq sup (z,y) - ot
t>0 yedtK t>0 | yeotk
1 1
= sup {h(x)t - t2} = —h%(2).
>0 2 2

In the fifth equality we used the fact that sup,cpx (z,y) = supyex(z,9),
and the fact that h g = thx. To get the last equality it is enough to verify
that f(t) = t2/2 is a fixed point of the Legendre transformation, namely
Lf=Ff. O

As a straightforward corollary we get that, if K is strictly convex and has
differentiable boundary, then %Dh2 and %Dh*2 regarded as maps on RY into
itself are one the inverse of the other. In particular, by recalling equation

(1.2), it holds true that
h*(z)h(Dh*(x))Dh(Dh*(z)) = x, (1.5)

where we used the fact that A and Dh are 1-homogeneous and 0-homogeneous,
respectively.
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We now consider more regular convex bodies; we say that a convex body
K is C*-regular if its boundary is a k-times continuously differentiable sub-
manifold of RY, from now on we will simply say that a convex body K is
C* instead of C*-regular.

Let K be a C? convex body; for x € 0K, let T,(K) denote the tangent
space of 0K at  and let v : 9K — SV~! be the Gauss map, that is the
application associating each point in the boundary to its outer unit normal.
v is C! and its differential, W, : Tp(K) — T, (SN 1) = T, (K), is called
the Weingarten operator. W, canonically induces a bilinear form on 7, (K)
that we call shape operator or second fundamental form and denote it by II,.
When K is strictly convex the Gauss map defines a bijection between 0K
and SN¥~!: in such a case we can always consider the shape operator as a
function of the normals and we define an application Sk by Sk (v(z)) =11,

The Weingarten operator contains important information about the shape
of the boundary. For instance, it is well known that W v - v is the curvature
of the planar curve 0K N m, where 7 is the 2-plane spanned by v(z) and a
vector v € Ty (K). Moreover W, is symmetric and positive (semi-definite),
its eigenvalues are called principal curvatures and its eigenvectors principal
directions. The determinant of W,, x(x), is called Gauss curvature, while
the trace is called mean curvature.

Remark 1.7. In Chapter 3 we will make use of the following equivalent def-
inition of the shape operator: when K is C?, the set OK is the graph of a
C?-regular convex function f over the tangent space to 9K at z. The Wein-
garten operator has a coordinate representation which coincides with the
Hessian of f (this can be easily seen by working in local coordinates and us-
ing the parametrization X : T, K — 0K given by X (y) = x+y— f(y)vk (z)).

We say that K is strongly conver (K is C2, for short) if the Gauss map is
a diffeomorphism. Evidently strongly convex bodies are also strictly convex,
and Sk (w) is positive definite everywhere.

Remark 1.8. If K is C2, then K* is C?. Indeed, since vx and VI}I are C1,
again by Proposition we have that Dhg(w) = vg'(w), so that hx is
C%(RN \ {0}), and thence K* is C2.

It is possible, for Ci bodies, to express the shape operator in terms of
the second derivatives of the support function. The following proposition
will play a role in the next chapter.

Proposition 1.9. Let K be a C_% convex body; then it holds true

D?h(z) = W, for x € RN\ {0}. (1.6)
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The above equation should be interpreted as follows: for v,w € RY one has

DQh(SL‘)U W= —Sél(x/HmH)vl ',

1
(el

1

where v’ and w' denote the projections of v and w on z+.

Proof. Set w = z/||z||; by homogeneity, we have to show that
D*h(w)v - w = S5 (w)v - w'.

Again by homogeneity
D?h(w)w = 0,

and thence one is left to show that
D?*h(w)v - w = S5 (w)v - w,

for v, w € wt.
Let o be the 0-homogeneous extension to R™ \ {0} of the inverse Gauss
map v~ 1. Remark gives that

D?h(w)v-w = DyDh-w = Dyo - w,

where D, denotes the partial derivative in the v direction. By the homo-
geneity of o and since v € T,,SV¥~!, then

Dyo(w) = (Dwy_l) (v) = S5t (W),
that concludes the proof. ]

1.3 Minkowski addition and regularity

In this section we introduce a simple operation between sets, which, nev-
ertheless, has some useful and nontrivial properties.

Given subsets of RY, A and B, we define the Minkowski addition, A+ B
as
A+B={a+b:a€A be B}.

If A and B are convex (resp. strictly convex), then A + B is convex
(resp. strictly convex); if A and B are compact, then A+ B is compact. The
set of convex bodies, KV, together with Minkowski addition in an abelian
semigroup with unit {0}.
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Let K,L € KV; there is a functional way to describe the set K + L:
indeed it is easy to show that

hK—i—L(x) :hK(a:)—i-hL(a:). (1.7)

The above equation entails that Minkowski addition fulfills the cancella-
tion rule and in particular it holds true that if K +M C L+ M, then K C L,
for any K, L, M € V.

Minkowski addition can be used to define a distance in KV, the Hausdorff
distance §, which turns KV into a complete metric space ([Scn, Theorem
1.8.3]), and for K, L € K¥ is defined by

S(K,L)y=min{\>0: K CL+ABand L C K+ AB},

where B is the unit ball.

Remark 1.10. On one hand convergence in the Hausdorff distance may be
considered a strong condition since, for instance, it implies that every point
of the limit body K is a limit of points in the converging sequence of convex
bodies K; and also that every converging sequence of points z; € K; con-
verges to a point x € K. On the other hand such a notion of convergence
is weak enough to allow some important compactness properties: as an in-
stance, the celebrated Blaschke selection theorem states that every bounded
sequence of convex bodies has a subsequence that converges to a convex body
(see [Scn, Theorem 1.8.7]).

Minkowski addition can also be used to introduce a notion of parallelism.
We say that a body L is outer parallel to a body K if, for some r > 0,
L=K+rB]|

In the following chapters we will need to investigate the regularity of the
Minkowski addition of convex bodies.

Equation suggests that K + L might share some of the properties
of the bodies K and L, however, as we noticed in the previous section, the
regularity of the support function of a set K has connections with strict
convexity properties of K itself. As we will see, a condition stronger than
strict convexity is indeed necessary to get fine results on the smoothness of
the Minkowski sum.

Nevertheless, the following proposition ensures that to get C 1’1—regularityﬁ

3Compare with Sections 4.2 and 4.3 where we will introduce the concept of anisotropic
parallelism.

4We say that a set E is C1''-regular if, for every point  in the boundary there exists a
relatively open neighborhood U, C OF that is the graph of a differentiable function whose
gradient is Lipschitz continuous.
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for the Minkowski sum it is enough to impose regularity assumptions on one
of the summands.

Proposition 1.11. Let K and L be convex bodies, suppose that K is C1,
then K + L is C1!.

The above proposition has a simple geometric interpretation: let x €
O(K + L), then x = y+ z, for some y € K and z € L. Without loss of gener-
ality we can assume that y € OK; since K is C1!-regular in a neighborhood
of y, then there exists a paraboloid touching the boundary of K from inside.
Since the set K + z is contained in K + L, then there exists a paraboloid
touching the boundary of K + L at the point y 4+ z from inside, and then
O(K + L) is Ch1 at zﬂ

As pointed out before, the sum of convex bodies is not, in general more
regular than C! provided we impose additional assumptions on the sum-
mands. In the literature there are famous counterexamples: in [Bol] it is
shown that, in the plane, the sum of C* bodies is C*¥, for k = 1,2, 3,4, but,
for every € > 0 there exists C°°-regular convex bodies K and L such that
K + L is not C**%. In general dimension things are even worse: indeed there
exist convex bodies with real analytic boundary whose sum is not C? (see

[Bo2]).

The following theorem ensures higher differentiability for the set K + L
provided that at least one of the two summands is strongly convex.

Theorem 1.12 (Krantz, Parks, [KtPa]). Let K and L be C* conver bodies
(k>2). If K is strongly convex then K + L is C* as well, and it holds true
that

Swrr(z+y) = [I+Sk(x) " SLy)] " Sp(y). (1.8)

If L is stictly convex the shape operator of K+ L as a function of the normals
s given by

Scrr(w) = [T+ S (u) " Sp(u)] ™" Sp(u). (1.9)

Proof. Step 1. Let A be a positive definite (N — 1) x (N — 1) matrix and

let B be a positive semi-definite (N — 1) x (N — 1) matrix. Let M = {z =

(o' zn) €ERYN oy > A2’ -2'}, and let N = {x ¢ RN : xy > Ba' - 2'}.
Then M + N ={z € RN :zy > Oz’ - 2'}, where

C=[I+A"'B]'B.

SCompare this remark with the proof of Theorem
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To show this we choose a point € 9(M + N); there exist y € OM and
z € ON such that x = y + z. Since M and L are differentiable, then, thanks
to (1.7), var(y) = vn(2) = var4n(x). This condition can be written as

Ay = BZ.
Since A is invertible
y = AT'BZ.
Thus .
2 = (I—i—A_lB)_ x
and

y =A"'B(I+ A_lB)i1 z.
By recalling that yy = Ay’ -y and zy = Bz’ - 2/, it is easy to compute:

ey =yN+2y=[I+A B 'Ba - 2.

Step 2. Let K and L be convex bodies satisfying the assumptions. Then
K + L is twice differentiable and (1.8 holds true.

Let x € O(K + L) and let y € 0K and z € 0L such that y+ 2z = z. Again
we have

vk (y) = vi(2) = v (). (1.10)
Without loss of generality we can then assume that x = y = z = 0 and that
vi+r(x) = —en. For € > 0 in a small enough neighborhood of the origin we
have

K CcKCK_,
where
K. ={z:any>(1+¢)Ska’-2'}

and

Kr={o:ay>(1 + &) 1Sk’ - a'}.
We can define LZ and LT in the same way getting L- C L C L.

Thanks to Step 1, the shape operators of K- + L and K + LT are
given by
(1+e) [T+ Sk(a’)SL()] " Sp()
and
(1+6) 7 [T+ S (a)) 1S (a")] " Suaff]

SWith a slight abuse of notation we write Sk and S; as functions defined on the
tangent space, this should not lead to any possibility of confusion since we are working in
a arbitrary small neighborhood of 0 and we can always use the parametrization introduced

in Remark E
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respectively.

Moreover
K +L; CK+LCKI+LT,

at least in a small neighborhood of the origin.
In particular, for 2’ small enough, if we denote by (z') the convex
function such that (2/, o(z")) € (K + L), it holds true that

(1+¢)! [(I+S;{15L)_1 SL] o2 < () (1.11)

<(1+e) |(T+S5'80) 7 S| o - (1.12)

The above equation gives the twice differentiability of ¢ at the point
2 =0.

Conclusion. Taking the limit for ¢ — 07 we get that the shape operator
of K + L is actually given by (I.8). When K and L are C*-regular then Sg
and Sy, and thus Sk are C*=2 and thence K + L is Ck—regular.

Equation (1.9) is then a straightforward consequence of ((1.8) and (1.10]).
O

1.4 Mixed volumes and affine inequalities

To start with, let us say that a geometric analysis of convex bodies can
be carried out by studying inequalities involving some suitable functionals
on ICV. Their study has become a key topic in convex analysis: on one hand
it has deeply increased our knowledge of the geometry of convex bodies and
it allowed to solve a number of long-standing problems, on the other hand
it has several applications in very many fields of modern analysis.

In the first part of this section we will see how, combining the concept of
volume and Minkowski addition, it is possible to introduce some function-
als on convex bodies whose study gave rise to one of the most elegant and
inspiring theory in convex geometry: the so called Brunn-Minkowski Theory.

Let V(-) denote the N-dimensional Lebesgue measure, and let K and L
be convex bodies. The following is the celebrated Brunn-Minkowski inequal-
ity asserting that the 1-homogeneous volume V/V is a concave functional
on KCN:

V(A= NEK +AL)YN > 1 = WWVE)YN Av (@)Y, Nelo,1], (1.13)
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with equality if and only if K and L are homothetic, that is, if and only if
K =z +tL, for some z € RY and t > 0.

The above inequality can be extended to bounded measurable sets. It
has connections with a large number of other geometrical and functional in-
equalities. Its history, proof, and applications can be found in the survey by
R. Gardner |Gal.

The following theorem, obtained by Minkowski in R? in [Mi3] is a gen-
eralization of Steiner Formula ([Ste]).

Theorem 1.13 (Minkowski). Let K1,...,K; € KN and let g(A1,...,\i) =
V()\lKl + ...+ )\ZKl), then

g = Z Z )\jl--')\jNV(Kjl,...,KjN).
N=1

=l
In particular, g is a homogeneous polynomial of degree N.

The coeflicients of g are called mized volumes.

Mixed volumes are important tools which can be used to investigate the
intrinsic geometry of convex bodies. Here we summarize their main proper-
ties. We refer to [Scnl Chapter 5] or [S-Y] and the references therein for an
interesting and complete dissertation on the topic.

Mixed volumes are positive and symmetric functionals that are linear in
each argument, continuous with respect to the Hausdorff convergence (since
is so Minkowski addition and the volume functional), and, clearly, it holds
that V(K,...,K) =V (K).

Moreover, they are increasing in each component, in the sense that, for
any choice of convex bodies K1, ..., K;, we have that

V(K,Ky,...,K;) <V(L,Ky,...,K;),

whenever K C L.

If we restrict the class of competing arguments in the definition of mixed
volumes we find other interesting functionals.

An important instance is the mixed volume

1 K+¢eL)-V(K
Vi(K. L) = V(K. K, .. K, L) = 1im LB FED) ZVIE)

1.14
N e—0+ € ( )

In some sense, for any fixed L, Vi (-, L) is a perimeter functional on V.
Indeed, when L is the unit ball, B, NV (K, B) turns out to be the (euclidean)
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perimeter P(K) of K. For general convex bodies K and L, Vi(K, L) repre-
sent an anisotripic perimeter having the following integral representationm

1
Vi(K,L) = — / he(vi(z)) dHN " ().
N Jox
Remark 1.14. When K is Cf_—regular the change of variable u = v (z) gives

1 hr(u)

K, L
Vil )= N Jonv-1 kg () 7

where ¢ is the Hausdorff measure on the unit sphere and we recall that kx is
the Gauss curvature of K. The above equation suggests that it is possible
to use mixed volumes to get continuous and linear functionals on C(SN=1).
Indeed, for each support function hj, one could set

Fi(hr) = Vi(K, L).

It is possible to show that Fx can be (uniquely) extended as a linear and
continuous functional on C(S™V~!) and then, thanks to Riesz representation
theorem, to get a Radon measure g such that

Vi(K, L) :/ hy dpg.
SN-1

Such a measure is called the area measure of K (compare this approach to
the one explained in Section [2.2]).

From (|1.13) it easily follows an isoperimetric-type inequality for convex
bodies. We start by setting A = ¢/(1 —¢) in (1.14)); we obtain

V(1 =XNK+AL)— (1 -=XM)VV((1-)NK)

NVi(K,L) = lim

A—=0t )\(1 )\)N_l

o V(- )K+)\Lz\ (1- NA)V(K) (1.15)
A—=0t

_ gim VU= NEHAL) = VIE) | vy k.
A—=0t A

Let g as in Theorem and set f(A) = g(1 — A, ). We have that

pon V(E)THWYN V(1 - MK + AL) — V(K)
e X '
Thanks to we get that
—1+1/N
7(0) = YE T (v, ) - NV ().

N

"Compare with the Wulff problem, see, for instance [Mal, Chapter 20].
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Equation ([1.13)) imply that f is a concave function in the A-variable, in
particular f/(0) > f(1) — f(0), namely

2|~

Vi(K, L) > V(K)¥TV(L) (1.16)

Equality cases can be easily characterized from those of the Brunn-
Minkowski inequality: more precisely equality holds in if and only
if K and L are homothetic.

The above inequality is the so-called Minkowski’s first inequality and it
is a special instance of the Aleksandrov-Fenchel inequality (see [Scnl, Chapter
7]). When L = B it reduces to the classic isoperimetric inequality for convex
bodies, stating that

1 -

V(B) ~ p(B)'~
Here P denotes the perimeter of K, since P(K) = NVi(K, B) as already

observed.

V(K) _ P(K)NT:1

The affine surface area of a C’_%_ convex body is defined as

N
QUK) = / k(u)” N+ido.
SN-1
The affine isoperimetric inequality states that

QRN < NNV (KN, (1.17)

and equality holds if and only if K is an ellipsoid.
In [Pe] (1.17) has been extended and proved for all convex bodies which
possess a positive and continuous curvature function (for its definition, see

Section .
In Chapter 3, we will need the following stronger version of (|1.17)):
Q)N < NNV (RO)NV(K7), (1.18)

and equality holds if and only if K is an ellipsoid, see [Hu, Lemma 3.7] or

[Lu3ff

8There, this equality condition is proved only for C? bodies, but, as for the affine
isoperimetric inequality, it is possible to show that holds true for bodies admitting
a continuous and positive curvature function. The equality condition found in those papers
is that there exists a positive constant ¢, such that the curvature function fx defined in
Section satisfies fx = ch;{N ~!. In Chapter 2 we show how, without assuming any a
priori regularity assumption, it is possible to use such a condition to characterize ellipsoids.
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To understand the reason why is stronger than we must
introduce yet another affine inequality, the Blaschke-Santalo inequality
below.

By generalizing the definition given in Section we say that the polar
of a convex body K with respect to a point p is the set

K, = {:UERN (x,y—p) <1, for allyeK}.
One can show that there exists a unique point, pg, such that
V(K ) =min{V(K}) : pe RV} (1.19)

pr is the so-called Santalo point of K. The Blaschke-Santalo inequality then
states the following estimate for the volume of the polar set K :

V(K)V(K;.) < wi, (1.20)

and equality holds if and only if K (and thus K ) is an ellipsoid.
Clearly, plugging (|1.20) into (1.18]) immediately gives ([1.17]).






Chapter 2

Petty’s Identity

This chapter is entirely dedicated to the study of a formula, the so-called
Petty’s identity, which characterizes ellipsoids among convex bodies.

In Section [2.1] we provide a proof of Petty’s theorem for smooth convex
bodies and, in Section 2.2 we define the so-called area measure, that we use
to get a weaker notion of Gauss curvature which gives rise to an alternative
formulation of Petty’s identity. In Section [2.4] we prove Petty’s theorem
without assuming any a priori regularity assumption; to do this, we exploit
the regularity theory for Aleksandrov solutions to the Monge-Ampére equa-
tion summarized in Section 2.3

2.1 Petty’s theorem

As stressed in Section[I.4] affine inequalities play a very important role in
the study of the geometry of convex bodies and they also find applications
in several different fields (e.g. ordinary and partial differential equation,
functional analysis).

In [Pe] Petty treated three closely related affine problems, namely the
Blaschke-Santald inequality, the affine isoperimetric inequality and the geo-
minimal surface area inequality, and he characterized ellipsoids as the only
extremal bodies for these inequalities.

In order to establish this characterization, he proved that if K c RV is
an extremal convex body for these inequalities, then necessarily there must
exist a positive constant cx such that

fr(w) =ck hI}N_l(w), (2.1)

for every w € SV, Here hy is the support function defined in Section
and fx is a continuous and positive function called curvature function of K

19
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(see Section for the rigorous definition of this function and some more
comments on this equation).

Petty was then able to show that implies that K is an ellipsoid if
N = 2. If N > 3 he obtained the same result only under the assumption
that K is a C2-regular convex body or that K is a body of revolution. In any
case this was sufficient to prove that extremal sets for the above mentioned
problems are ellipsoids, since symmetrization techniques allow to reduce to
the case of axially symmetric sets.

It is however an interesting question to understand to which extent
characterizes ellipsoids without assuming any a priori regularity assumption
on K, see for instance [Lu| on this issue. In [DM] it is shown that every
convex body satisfying is actually an ellipsoid. That result is reported
in Section Theorem [2.10]

Besides its own interest, Theorem will benefit those problems in
which extremal bodies with unknown a priori regularity, are characterized
by , let alone it can provide new shorter proofs of results in which
appears. As examples let us quote [MRS| [Stal MMIl [MM2| concerning, re-
spectively, convolution bodies, floating bodies, and the so-called K-dense sets
which are treated in detail in the next chapter.

We now state Petty’s theorem.

Theorem 2.1 ([Pe]). Let K be a C?-regular convex body and suppose that
there exists a constant cx > 0 such that

k(w) = exhi T (w), (2.2)

SN—I

for every w € . Then K 1is an ellispoid.

Remark 2.2. Here k is the determinant of the shape operator of K. Since K
satisfies equation , it follows that the shape operator is positive definite
everywhere, and then K is C_%. In particular, K is also strictly convex and
we can always think Sk, and thence k, as functions of the normals, thus

giving sense to equation ([2.2)).
The following proposition is the main step for the proof of Theorem 2.1}

Proposition 2.3. Let K a Ci—regular convex body. Then
1
det [DQ (2h2) (w)] = WV (Ww)k(w) 7L (2.3)
Proof. First, we have that

p? <;h2> (@) = Dh(w) ® Dh(w) + h(w)Dh(w).



2.1 Petty’s theorem 21

We can choose a coordinate system in which ey = w, and ey, ...,eny_1 are
the eigenvectors of Sk (w). In such coordinates, by recalling Proposition
we know that D?h is a diagonal matrix and its diagonal entries are given
by: (DQh)MN =0, (DQh)m. =k; ! fori=1,...,N—1, where k; is the i-th
principal curvature of 0K at Dh(w).

Let now M be the N x N matrix such that M Dh = ey and Me; = ¢;
for every i = 1,..., N — 1. Notice that, by homogeneity, we have that

Dh-ey = h(eN) > 0,

that means that M exists and it is an isomorphism. Moreover the columns
M? of M can be explicitly computed: in fact, for i = 1,...,N — 1 M’ = ¢;

and N1
1 —~ Dh ¢
MY = - “e;.
Dh-eNeN ;Dh-ejvel

In particular, we get that det M = (Dh-ex)~! = h(eny) ™t

Straightforward but tedious computations give that M (Dh ® Dh + hDQh)
is the same matrix as hD?h except the N-th row, which is Dh. Being thus
M (Dh ® Dh + hD2h) a triangular matrix, its determinant is the product
of the diagonal elements, namely

_ hNIDh ey

2
det [M (Dh ® Dh+ hD?h)] P
Thus, finally

N RN+1
det [Dh ® Dh + hD*h] = ——det (M) =

K
O

Proposition [2.3] together with Remark [2.2] yield the following corollary.
Corollary 2.4. Let K be a C? convex body satisfying [2.2]). Then, for every
x € RN\ {0} the support function h satisfies the following equation:

1
det §D2h2(:p) =c. (2.4)

Equation (2.4]) is a Monge-Ampére equation. We refer to Section and
the references therein for a short summary of the main properties of its so-
lutions.

To prove Theorem [2.1] Petty relied on regularity results for the Monge-
Ampére equation and in particular, thanks to [Po2, Chapter 5, Theorem 5|,
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he was able to show that & is analytic in RY \ {0} and then, thanks to B,
to conclude that D%h? is a constant matrix.

In Section [2.4] we closely follow Petty’s strategy. By an approximation
procedure we show that if a convex set K satisfies , then its support
function still satisfies in the Aleksandrov sense.

By relying on standard techniques one can then show that any Aleksan-
drov solution of is smooth and hence, by applying classical results due
to Pogorelov [Poll [Po2l [Po3|, a quadratic polynomial.

2.2 Curvature functions

There are several almost equivalent ways to introduce the concept of sur-
face area measure and curvature functions leading to interesting geometrical
interpretations. Here we follow the ideas of Aleksandrov [Alek].

We can associate a convex body K with a measure ux supported on
the unit sphere, called the surface area measure, with the property that,
for every Borel set A C SV~ jx(A) is the (N — 1)-dimensional Hausdorff
measure of the set of the points in the boundary of K whose normal cone
has nonempty intersection with A. More precisely, if for x € K, we define
a possibly multivalued map by setting

NK(:U):{WESN_I:w-(y—x)go for all y € K},

then
i (A) = HN (N L (4)).

This definition coincides with the one suggested in Remark by virtue
of [Scnl, Theorem 4.2.3].

It is possible to show (see [Scn2, Proposition 4.10]) that such a measure
is continuous in the K-variable with respect to the Hausdorff convergence.
Namely,

lim pduk, = / pdu, (2.5)
SN-1

) SN-1

for every p € C(SV~1), whenever §(K;, K) — 0, as defined in Section

When K is C2, as observed in Remark the surface area measure
is absolutely continuous with respect to the Hausdorff measure N1 SV—1
and its density is given by £~! (as usual, when dealing with Ci bodies we
denote, with a slight abuse of notation, by x the Gauss curvature as a func-
tion of the normals).
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A convex body K is said to possess a curvature function provided there
exists a positive and continuous function fr : S~' — R such that

e = SN sV

Conversely, given a positive and continuous function f : S¥~1 — R,
Minkowski’s existence and uniqueness theorem (see [CY], Mill, [Mi2] [Ni| [Po2])
asserts that, provided f fulfills the necessary condition

/S wf@) T w) =0, (2.6)

then there exists a unique (up to translation) convex body K whose curva-
ture function equals f.

Let us go back for a moment to Equation ({2.1]) and notice that, while the
left-hand side of is invariant under translations of K, the right-hand is
affected by translations. However, we shall now show that, for the Santalo
point pg, h;{]l[ ;[1( is a curvature function. It is well-known that the polar
reciprocal of a convex body with respect to its Santaldo point has its center
of mass at the origin (see [Sanl|), this implies that

/ o (w) dHY " (w) = 0,
SN—1

where pg+ denotes the radial function of the convex set K .

We note that hg_pi(w) = pr= (w)~L, for any for w € SN=1: then h;ﬁ;}i
satisfies condition and hence, by Minkowski’s Theorem, for every K €
ICN, there exists a body K’ such that frr = h;ﬁ;}i

From these considerations we note that, if we define a map A, from the
set of convex bodies whose Santald point is at the origin, that associates to
each convex body K the solution of the Minkoski problem with data hl_{N -1
then K is a solution of if and only if its image A(K) is a dilation of K.

We refer the reader to [Lu| for more details.

2.3 Aleksandrov solutions of the Monge-Ampére equa-
tion

In this section we recall the notion of Aleksandrov solutions of the Monge-
Ampeére equation and we summarize the properties that we will need in the
sequel (see [DF, [Gu| for a more detailed exposition).

The following theorem is an easy consequence of Remark [I.T] and Propo-

sition L[4l
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Theorem 2.5. [Gu, Theorem 1,2] Let u be a convex function defined on a
convex open domain Q C RN, then the family

M={E CQ : 0u(E) is Lebesque measurable}

is a o-algebra containing all the Borel subsets of ). Moreover,

vu(A) = V(9u(A)) = V(| du(x)) (2.7)

z€EA

defines a measure which is finite on compact subsets of Q0. We call v, the
Monge-Ampére measure of u.

Note that if w € C?, the change of variable formula gives that dv, =
det D?udxz. We then call u an Alezandrov solution of the equation

det D*u = f (2.8)

provided v, = f dx. Among the various properties of Aleksandrov solutions
we are going to use one that concerns their stability under uniform limit (see
[Gu, Lemma 1.2.3] for a proof).

Lemma 2.6. Ifuy are conver functions defined on an open set ) and up, — u

uniformly, then
*

Vi, — Vy

as Radon measures in ), that is

/gpduuk — /cpdyu for every o € CO(Q).

By relying on the uniqueness of the Aleksandrov solutions to the Dirichlet
problem for the Monge-Ampére equation, [Gu, Corollary 1.4.7], and on their
stability under uniform limits, one can prove the following classical theorem.
For the sake of completeness, we sketch the main steps of its proof (see also
IDEL Section 2] for a more detailed account).

Theorem 2.7. Let u be a strictly convex function defined on a conver set
Q and satisfying
v, = fdx i €.

If f € C°(Q) and A < f < A for some A\, A > 0, then u € C*> (), for every
open set Q' such that its closure is compact and is contained in ).

Proof. Fix g € ¥, p € du(xg), and consider the section of u at height ¢
defined by

S(z,p,t) ={y€Q: uly) <u(x)+p-(y—2z)+t}.
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Since w is strictly convex we can choose ¢ > 0 small enough so that the
closure of S(xg,p,t) is compact and contained in . Then we consider a
sequence of smooth uniformly convex sets S;, converging to S(z,p,t) and
we apply classical continuity methods in order find a function v; € C*°(S;)
solving the problem

det D?v; = f * o, in 5;
V; = 0 on 681,

where g, is a sequence of mollifying kernels (see [DE, Theorem 2.11] and
[GT, Chapter 17]). We apply to v; Pogorelov estimates (see for instance
[DE, Theorem 2.12]|) to infer that

’D2vi| < C in S($0>p7t/2) C S($Oap7t)a

for some constant C' independent on i € N. Since S; — S(x0,p,t) and u(z) =
u(zo) +p-x+ton dS(xp,p,t), by stability and uniqueness of weak solutions
we deduce that v;+u(zo)+p-x+t — u uniformly as i — oo; hence |D?u| < C
in S(xg,p,t/2). This makes the Monge-Ampére equation uniformly elliptic
and hence Evans-Krylov’s theorem and Schauder’s theory imply that u €
C*>(S(xo,p,t/4)) (see |GT) Chapter 17]). By the arbitrariness of xy we
obtain that u € C*(), as desired. O

By a well-known example, strict convexity of u is necessary in order to
prove the above theorem. The following result, due to Caffarelli, implies
that the obstruction to strict convexity can only arise from the boundary
behavior. In particular every entire solution has to be strictly convex. We
recall that z is an extremal point of a convex set K if z € K and K \ {z} is
convex.

Theorem 2.8 ([Cal). Let 2 be an open convex set, and let u be a convexr
function such that
Adr <y, <Adzx

for some A\, A > 0. For every x € Q and p € du(x), if the set

Pop={y€Q:uly) =u@)+p-(y—2)}
contains more than one point, then it has no extremal points in 2.
An easy corollary of Theorem [2.8]is the following:

Corollary 2.9. Let u: RN — R be a convex function such that
Adz <y, < Adzx (2.9)

for some A\, A > 0. Then u is strictly convez.
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Proof. Let us assume by contradiction that for some zg € RY and py €
Ou(xo) the set I'y, p, contains more than one point; then according to The-
orem it must contain a line. Up to subtracting a linear function and to
change the coordinates, we can then assume that « > 0 and v = 0 on the
line

(={zeRY :z=(x1,0,...,0)}.

This easily implies that Ju(R™) C e{ and hence that v, = 0, contradicting

(2-9)- O

2.4 A proof of Petty’s theorem under natural reg-
ularity assumptions

In this section we prove the following extension of Petty’s theorem,

Theorem 2.10 ([DM]). Let K be a convex body which possesses a curvature
function fr; if equation (2.1)) is satisfied for some positive constant cy, then
K is an ellipsoid.

The argument is based on an approximation procedure that shows that,
for a convex body satisfying , h3./2 is an Aleksandrov solution of .
Consequently, we can apply Corollary 2.9 and Theorem [2.7] to show that
h% is smooth and hence the classical Pogorelov’s argument can be applied.
Theorem will be a consequence of the following result.

Theorem 2.11. Let K be a convex body that possesses a curvature function
fr and let hy be its support function. Then

det D? (;;&) — fx (i)h%“(i) dz on RN (2.10)

|| |z]
in the Aleksandrov sense.

In order to prove Theorem [2.11] we need to approximate, in the Hausdorff
topology, a convex body with C_%_ bodies, for which we know that holds
true at least in RV \ {0}, thanks to Proposition

We know from an old theorem by Minkowski that convex sets with ana-
lytic boundary are dense in V. Several years later Schmuckenschliger (see
[Sc]) gave a simpler proof of that theorem and showed that one can explic-
itly write down the relevant approximating sequence under further additional
properties.

Theorem 2.12 (|Sc|). Let K be a convexr body. There exists an increasing
sequence {K;}ien such that
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o K, and K have real analytic boundaries;
e The Gauss curvature of both K and K* is strictly positive;
o )(K;yK)— 0 asi— co.

Proof of Theorem[2.11. We divide the proof in three steps.

e Step 1: Equation (2.10) - holds true if K € C’2 Let K € C'_Q‘_, then, by
Remark. hi € C2(RN \ {0}). Thus Prop051t10n ylelds

12,92 RN+ N
det 2D hi(z) = (, ‘> (‘ ’> for every x € R™ \ {0}.

In particular, by the change of variable formula, if we denote by v the
Monge-Ampére measure of h%{ we have that

o= i ()i () o

in the sense of the Radon measures on RY \ {0}. Moreover, since h% is
homogeneous of degree two, it is differentiable at 0 and 9h% (0) = {0}. By
recalling the definition of the Monge-Ampére measure , we then see that
for every Borel set A C R™

vic(A) = v (A\{0}) + v ({0})
= v (A\{0}) + V({0}) = v (A\{0}).

Hence (2.12)) is valid (as equality between measures) also in R,

e Step 2: Equation (2.10) is closed in the topology of Hausdorff distance.
Let K, K; i = 1,2,..., be convex bodies such that §(K, K;) — 0 as
i — 00; then hy, — h K un1formly on SV~ and h2 h2 locally uniformly

in RY. According to Lemma E 2.6]it is enough to show that

= Jri (m) Nfl(m) fK(mQ NH(m)dﬂ” (2.11)

as Radon measures in RY. To this end, let ¢ € CO(RY) and note that for
every ¢ € [0,+00) the function S¥~! 3 w + p(pw) is continuous. Since
hk, = hg uniformly on S*~! and

[ [T [ clownti @hi)in ),

an application of Lebesgue Dominated Convergence Theorem (recall that ¢
is compactly supported) shows that will be a consequence of the fact
that .

Frc (w) dHN T = fre(w) dHN
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as Radon measures on S™V~!. This convergence however follows from (2.5)),
that is from the continuity of curvature measures under the Hausdorff con-

vergence, ([2.5)).

e Step 3: Conclusion. If K is a convex body admitting a curvature function
we can apply Theorem to approximate it with a sequence of convex
bodies K; € C2; by Step 1 the conclusion of the Theorem holds true for K
and hence by Step 2 also for K. O

Proof of Theorem[2.10, According to Theorem if K is a convex body
satisfying ([2.1)), then

1
det §D2h2 =cigdx on RY

in the Aleksandrov sense. By Corollary h%( is strictly convex and by
Theorem h%( € C°(R"). By applying the classical Pogorelov argument
(see [Gu, Theorem 4.3.1] for a proof), h%(x) = Az -z for some positive
symmetric matrix A, which immediately implies that K is an ellipsoid. [



Chapter 3

Characterization of ellipsoids
as K-dense sets

In this chapter we provide a characterization of ellipsoids of RY as K-
dense sets, i.e. domains which satisfy an identity involving the volume of
the intersection with a given convex body K.

In Section [3.1] we start investigating some basic properties of K-dense
sets, in particular we show that they are strictly convex and C:1.

In Section we study the asymptotic behavior, for small values of the
parameter r, of the volume of G N By (z,7), where G is the K-dense set and
By (z,7) is the K-ball centered at x with radius r. We deduce a symmetry
property for the set K and an equation involving a weighted mean curvature
of G (where the weights depend on some moment of inertia of K) which, at
least in the planar case, is enough to deduce that K-dense sets are ellipsoids.

The proof of this characterization is given in Section separately from
that in general dimension.

The proof of the characterization in general dimension is given in Sections
and [3.5] In Section we study the volume of G N B (x,r) for "large"
K-balls, in order to show that K-dense bodies are strongly convex. This
information allows us to use Theorem and infer a strong symmetry
result for K-dense sets, that leads us to conclude, in Section that they
must be ellipsoids.

3.1 Properties of K-dense sets

Let K € KV and G be a measurable subset of RY with positive Lebesgue
measure V(G). For each fixed r > 0, we define a density function

29
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S : RY x (0,00) — R as follows:

ViGN (z+71K))
V(rK)
We say that G is uniformly K-dense, or K-dense for short, if there is a
function ¢ : (0,00) — (0, 00) such that

Or(x,r) = , x €RY, (3.1)

dr(x,r) =c(r) for every (z,7) € dG x (0,00), (3.2)

where OG denotes the topological boundary of the set G.

As remarked in the introduction, when K is the euclidean unit ball B
of RV, K-dense domains have been studied in [MPS] in connection with the
so-called stationary isothermic surfaces — the time-invariant level surfaces
of solutions of the heat equation. There, it is shown that the only B-dense
sets with finite volume of RY are balls; moreover, it observed in that, if F is
an ellipsoid, then bounded E-dense domains must be ellipsoids homothetic
to E.

As already said, in this chapter we show that if G is K-dense, then the
only possibility is that K (and hence G) is an ellipsoid (see Theorem .

Here we study some general properties of K-dense sets that will be useful
to understand the proof of Theorem [3.21

Given a measure p on R* and set ¢(t) = u([0,t)), we define a function
f? :RY — R as follows:

£9(a) = /G o(lly - ) dy = /G ol —yl-)dy:  (33)

f? is thus the convolution of the characteristic function X and the compo-
sition of ¢ with the gauge of —K defined in Section [I.2]

If © is a Borel and locally finite measure, we can use the layer-cake
representation theorem (see |[LL] for instance) in order to write:

+oo
@) = [ VG s =l > thdu
+oo
=, V(G \ Bg(z,t)) dp,
where B (x,r) is the interior of the set x + rK.

If G is K-dense, the last integral does not depend on z, for z € J9G.
Conversely, if f?(x) is constant on G for every choice of the measure p, then
for each given r > 0 we can set u = J, (the Dirac’s delta measure centered
at r) in and obtain that f®(z) = V(G \ Bx(z,r)). When G has finite
measure, the assumption on f¢ and the fact that r is arbitrary imply that
G must be K-dense. Thus, we can state the following characterization.
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Theorem 3.1. Let G be a boundeaﬂ measurable subset of RN of positive
volume. Then the following conditions are equivalent:

(i) G is K-dense;

(ii) for every Borel, locally finite measure  on R, the function f® defined
in (3.3) does not depend on z, for x € 0G.

The following lemma is instrumental to prove the convexity of G; its
proof is straightforward.

Lemma 3.2. Let the function ¢(t) = p([0,t)) be convex, increasing and
non-constant, and let f® be the function defined in (3.3). Then:

(i) f? is convex and hence, in particular, continuous;
(i) f¢ is coercive, that is f® — +oo as |z| — oo.

Theorem 3.3 ([MMI1]). Let G be a bounded K -dense set; then G is strictly
convez.

Moreover, if the function ¢(t) = u([0,t)) is convex and strictly increasing,
then G is a reqular level set for f9.

Proof. First, we show that, if ¢ satisfies the assumptions, then f¢ cannot be
constant on a segment whose middle point belongs to G.

By contradiction, let z and y be the endpoints of a segment on which f¢
is constant and suppose the midpoint %(1‘ +y) € G; then

/G{<Z>(HZ —zlx)/2+ ¢z = ylx)/2 = ¢ (|2 = (x + ) /2l )} dz = 0.
Since the integrand is always non-negative, we get that

26 (llz = (z +y)/2ll k) = ¢(llz — zllx) + ¢(llz — Yl x)

for every z € G, since both ¢ and || - || are continuou Thus, if we choose
z = 2(z +y) we get a contradiction.

Now we observe that there exists a segment in the convex hull of 0G
whose middle point belongs to G. Indeed, consider a line, say ¢, containing at
least three points of G, say x, y and z, with y E]xz[lﬂ then, being G bounded,
OG intersects every connected component £\]zz[ and thus every point of |z z|

Tt is possible to replace this assumption by asking that V(G) < co; however, it turns
out that there not exists any unbounded K-dense set of finite measure.

2This is clear when G is connected. Otherwise, it is sufficient that, for each = € G,
every neighborhood of = has intersection with G of positive measure. This is guaranteed
by the fact that G is K-dense.

3We denote by |zz[ the relatively open segment from z to z.
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belongs to the convex hull of 9G; if € > 0 is such that [y — e,y + €] C|z, 2|
then also [y —¢, y+¢] is contained in the convex hull of OG, and y, its middle
point, belongs to G.

Therefore, we can claim that the function f¢ does not reach its minimum
on the boundary of G, otherwise f¢ would be constant on the convex hull of
OG and, in particular, on [y — ¢,y + €], that is impossible.

Hence, there exists a positive number s such that the set A where f¢ < s
is open, bounded and convex; also, 0G C 0A = {x € RN : f9(z) = s}.

Since G is bounded, it is contained in the convex hull of G, and thence
in the convex hull of 94, A. Thus G C A. It is also possible to check
that A C G. Indeed, suppose by contradiction that there exists a point
x € G\ A; in particular x ¢ OG, then every open segment between and z
and JA must have empty intersection with G, otherwise it would contain
also a point belonging to G and this contradicts the fact that 0G C 0A.
But if every open segment between and x and 0 A does not intersect G, then
G is contained in the complementary of A, and, since G € A, then we would
have that G C 0A, that contradicts the fact that V(G) > 0.

We than have that A C G C A, and, in particular, that G is convex and
hence strictly convex.

O

The following statement is straightforward but, as it will be clear, it will
play an important role in the proof of Theorem which is fundamental in
our further analysis.

Corollary 3.4. Let G be a K-dense body; then the function
— —
v maxly — ol
is constant on 0G.
Proof. Let x and z € G and suppose by contradiction that
di = max ly —zllx < max ly — 2l = da.
Then G\ Bk (z,d1) # @ and hence V(G \ Bk (z,d1)) > 0, being G a body
and Bg(z,d1) open; thus,

V(GNBg(z,di)) =V(G)
=V(G\ Bg(z,d1)) + V(GN Bg(z,d1)) > V(GN Bk(z,d1)).

We now study the regularity of K-dense sets.

Theorem 3.5 ([MMI]). Let G be a K-dense body; then OG is of class C1:*
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Proof. Set f = f® with ¢(t) = t. By Theorem it is sufficient to show
that f € CbL.

Consider the incremental ratio of f at x in a canonical direction e; :

Hote) = f@) _ [ Jeozbtelonole oz,
t o t '

Since ||-||-k is almost everywhere differentiable and its gradient is a bounded
map over RV, by the dominated convergence theorem, we obtain that the
partial derivative 0y, f(z) exists and equals

0 0
/Gaxin—zH_Kdz—/RN Xg(a:—z)a—%HzH_Kdz,

and the second factor in the integrand is bounded almost everywhere by a
constant, say, L. Thus, for z,y € RY, we obtain the estimate:

e f(@) =0 S W] < L [ |Aalo—2) ~ Xaly -2 d <
LHY(0G) e~ .

since G is convex and bounded.
Therefore, f is differentiable and has Lipschitz continuous partial deriva-
tives. O]

Since the function || - ||g has the same regularity as 0K at all points
of RV except the origin, then if 0K € C™! for some integer m, by the
same arguments used in the proof of Theorem we can easily prove the
following result.

Theorem 3.6. Let G be a bounded K-dense set, and let 0K € C™! for
some integer m. Then 0G € C™ b1,

Corollary 3.7. Let G be a bounded K -dense set. If the class of homothetical
1mages of K contains G, then 0G € C°.

Proof. We show that G € C™! for every m € N by induction on m. The
base step is exhibited in Theorem the inductive step is the subject of
Theorem [3.6 O

The following result shows that, surprisingly, at least when K is centrally
symmetric, the existence of a K-dense set implies some regularity of K itself.

Theorem 3.8 ([MMI]). Let K be a convex body symmetric with respect to
the origin of RN, and let G be a K -dense body. Then it holds that

(a) K =G — G, up to homotheties;
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(b) K is strictly convex;

(c) OK and OG are respectively C*'-smooth and C**-smooth.

Proof. (a) Without loss of generality, thanks to Corollary let us suppose
that

max ||y — z||xk =1, for every z € 0G.

yeG

We have that
1Y = ]_
max lylx =1,

and hence G — x C K for every x € 0G. It follows that G — G C K.

Indeed, if z € G — G, then z = & — y for some points z,y € G; since G
is convex, there are points x1 and x9 in G and a number 0 < A\ < 1 such
that x = Az; + (1 — A\)z2. Hence,

z=Ay—z1)+ (1= N)(y — x2).

Since K is convex and contains both y — x; and y — x2, we get that z € K.

Viceversa, let  be an exposed point of K and let u € SV~! be such
that H, is the supporting hyperplane which intersects K only at the point
x.

Next, choose y € OG such that the unit normal to G at y, vg(y),
coincides with u (it exists since we already know that G is smooth and
strictly convex). Also, pick a point z € JG that maximizes the K-distance
from y, that is, such that ||y — z||[x = 1. Note that y — 2z € (G — 2) N 0K
and, since G — z C K, we get the following reverse inclusion for the normal
cones:

Nig(y—2) NSVt C{-ve_.(y — 2)} = {~vc(¥)} = {u}.

Hence, our choice of x and u allows us to write x = y — z. Thus, G — G con-
tains all the exposed points of 0K, and being G — G a convex set it contains
the convex hull of them. It is easy to show that a convex body is the closure
of the convex hull of its exposed points, thence G — G 2O K.

(b) It follows from (a) and Theorem [3.3]

(c) From (a) and Theorem it follows that 0K is C1'-smooth, since
the Minkowski sum of C1! sets is C!, see Theorem Theorem then
implies that G is C*!'-smooth. O

Remark 3.9. In the next section, we will prove the central symmetry of K,
so that the above theorem will be a substantial progress for the proof of
Theorem Indeed, Theorem suggests that a step toward a proof of
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our characterization should be to show that G is centrally symmetric as well.
As a matter of fact, once we get the symmetry of G we immediately deduce

that K = G and, in force of Corollary 3.7, that G (and 0K) is C*°-smooth.

3.2 Asymptotics as r — 07 and symmetry

In [ABG] a proof of Theorem is given in the planar case under
suitable regularity assumptions. There, by calculating for a fixed x € G, the
Taylor expansion of the function dx in asr — 0 up to the third order,
it is proved that the radial function of K satisfies an ordinary differential
equation which is fulfilled only by ellipses.

It seems difficult to extend the analysis employed in [ABG] to the case
N > 3 for several reasons. The most apparent one is that, in general di-
mension, it is very difficult to compute the higher-order terms in the Taylor
expansion of d(z,r). Nevertheless, the asymptotic analysis as r tends to 0
will give us some useful geometric informations about K-dense bodies.

We first settle on a convenient notation. Given a unit vector u € SV,
we write HF = {z € RV : (z,u) > 0} and H, = HY,.

Theorem 3.10 ([MMI]). Let G and K be convex bodies and suppose that
0G is differentiable at x. Then

' V(KN H;(x))
do(z) = T1_1>f(1)1+ Ok (x,1) = W
In particular, if G is K-dense, then
1
V(KNH,) = 5 V(K) forallueSN-1 (3.5)
Proof. For r > 0 we have:
_N G — X
r o VGN(z+rK))=V " NK)|. (3.6)

. D . G—=x .
Since 0G is differentiable at x, as r decreases to 0, —— N K increases
T

to H;r(x) N K. The first claim of the theorem then follows from the monotone
convergence theorem.

Now, suppose that G is K-dense. Since G is strictly convex differentiable
and bounded, then the Gauss map, vg(x) is a bijection. Hence, for every
u € SV~ there exist z,2” € G such that u = v(z) = —v(2').
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Since G is K-dense, then the quantity V(K N Hj(x)) does not depend on

x, for x € OG. Thus, our choice of # and z’ enables us to write that

V(KN Hy,) = V(K N Hy) = VKN H]).

Since V(K N H;(x)) +V(KNH

v(z

)) = V(K), then we find that

1
V(KN Hy,) =5 V(EK).

O

Remark 3.11. When N = 2, it is not difficult to show that implies that
K is centrally symmetric, see [MMI]; indeed, that is also true for N > 3,
by a non-trivial result of Schneider [Scnl]. Then, as already stressed in
Remark [3.9 the conclusion of Theorem [3.8] is valid; more precisely we have
the following corollary.

Corollary 3.12. Let G be a K-dense body, then G € C*1.

The emphasis given to this observation is justified by the fact that the
twice differentiability of G allows us to compute the second term in the
Taylor expansion of dg, in the following theorem we will show that ¢ can be
written as

Sk (z,7) = do(w) — 01 (z)r +o(r) as r— 07, (3.7)
and we compute 01 (z).
Theorem 3.13 (|[MMI]). Let G be a convex body with C?-smooth boundary,
let € OG and denote by k1(x),...,kn—1(x) the principal curvatures of 0G

at x© with respect to the inward normal unit vector.
Then, we have the formula:

N-1
5[{(([, T‘) — 50((6) 1
1 =— i i(x), 3.8
0t r 2wm2ﬂm@M@> (3:8)
where the coefficients m; are given by
mi(x):/ (€ ef(x)2dHN L i=1,...,N —1; (3.9)
KNH, (4

here, again, H, denotes the hyperplane {(y,v) = 0}.
Therefore, (3.7) holds.

Proof. We choose a coordinate system {ej,...,enx_1,v} around the point
x € 0G such that e;, for i = 1,..., N — 1, is the ¢-th principal direction of
0G at z and v = v(z) is the normal.
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§r}.
K

Also, in these same coordinates, G can be locally parametrized by a
convex function 1) € C? and, clearly, 1(0) = 0 and D1(0) = 0. Furthermore,

In these coordinates Bg (z,r) can be written as

N-1

Bi(z,r) = {:U+ ZzieiJery:zE]RN,
i=1

N-1

E Z2i€; + 2NV

=1

our choice of the axes eq,..., ey allow us to write that
Nl
=3 > wl@)z? + ol ),
i=1
for 2/ = (z1,...,2nv_1) € RV~! in a sufficiently small neighborhood of 0.

We need to estimate the measure of the remainder set
R(z,r) = Bg(x, 1“)ﬁH+ \ G;

for sufficiently small r > 0, R(z,7) can be written as

Sr,ngNSw(z’),z’EV},

N—-1 N-1
T+ E Z2i€; — ZNV E 2i€; — ZNV
i=1 i=1

where V is some neighborhood of 0 in RV~

K

Next, we make the following change of variables: z; = r§;, for ¢ =
1,...,N — 1 and 2y = r%&y; since || - || is positively homogeneous, we
get that

V(R(z,7)) = VTV (S,),

where S, is the set

N—1
Z giei +rény

=1

{g eRY: derly,

< 17 OSEN < 1/1(7“51’---277"§N—1)}.
T

K

Now, if we define the set

Z é‘zez

SoZ{fGRN

1N71
. . 2
<1,O§§N<§Zm(x) Z}

K =1
we easily check that

sscU(N )N U s)cs

r>0 0<t<r r>0 0<t<r
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Since V(Sp) = V(Sp), the smoothness assumptions on G give the sufficient
uniform boundedness to infer that

V(R(z,r))

lim
PN+1

r—0t

= V(Sp).

By the definition of Sy, V(Sp) is easily computed as

Vs = [ 3T mngie= 33 mini)

that implies the desired formula (3.8)).

Corollary 3.14. Let G be K-dense, then there exists a constant ¢ > 0 such

that
N-1

> mi(x) ki(z) = cV(K), x€dG, (3.10)

=1

Proof. The fact that the right-hand side of does not depend on z for
x € 0G clearly follows from and . Since K is a convex body, then
the m;(x)’s are all positive; if ¢ were zero, then all the curvatures would be
zero for every x € OG and this is impossible, since G is a convex body. [

3.3 Characterization of ellipses in the two-dimensional
case

In this section we provide a proof of the characterization theorem (The-
orem for planar K-dense sets. We give it separately from that of
Theorem [3.:21 mainly because the planar proof is very different from that
for the case N > 3 and that given in [ABG|, and the techniques used here
may be of some interest. We also stress the fact that, besides dropping the
smoothness assumptions needed in [ABG], our proof only needs the point-
wise information given by . However, it should be noticed that the
proof of [ABG| works even if we restrict the validity of to small values
of the parameter 7.

We start analyzing Equation (3.9). The only moment of inertia m = m;y
can be easily computed and, by setting u = v(x), re-defined as a function on
St as
px ()3, ue S (3.11)
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where px denotes, as usual, the radial function of K and @ is the unit vector
obtained from u by a clockwise rotation of 90 degrees.

In the following theorem we show how, by exploiting (i3.8]), one can get
the central symmetry of G.

Theorem 3.15 ([MMI]). Let K C R? be a convex body. If G C R? is
a K-dense body, then G and K are homothetic and both 0K and 0G are

C*®-smooth.

Proof. Ci—regularity easily follows from Corollary m
Plugging (3.11]) into (3.8)), and in view of the geometric meaning of the

curvature function, can be written as
px (1) = cV(K) fa(u), ue S, (3.12)

where ¢ is some positive constant. Also, being K centrally symmetric,
pi (=) = pi (@) and hence fo(—u) = fo(u) for every u € S!; this means
that also G is centrally symmetric.

Thus, by Remark and Theorem [3.8) K and G differ by a homothety
and both K and dG are C*°-smooth in force of Corollary [3.7] O

Before giving the proof of Theorem we recall that in two dimensions
the Minkowski’s first inequality for mixed volumes (|1.16]) writes

V(K,G) > V(K)V(G), (3.13)
and the affine inequality ((1.18) reduces to

QK)} <8V(K)?V(K*), (3.14)

where the affine area is given by

QK) = s fre(w)?? du. (3.15)

As remarked in Section [I.4] the sign of equality holds if and only if K is
an ellipse.

We are now ready to prove the following

Theorem 3.16 ([MMI]). Let K C R? be a conver body and let G be a
bounded measurable set in R?.

If G is K-dense, then K and G are ellipses that differ from one another
by a homothety.
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Proof. In view of Theorem [3.15] we know that G and K have smooth bound-
aries and only differ by a homothety; without loss of generality, we shall

assume that G = K. Thus, (3.12)) reads:
p (1) = cV(K) fx(u), ue S (3.16)

Our goal is to show that (3.16]) leads inequality (3.14]) into an equality;
then we shall conclude that K is an ellipse.

By a well-known formula, we then compute:

2V(K) = /Sl pic(u)?du = / pr (00)2du =
V()P / fre ()3 du = [V ()PP Q(K),
Sl

that gives:
LK)
8V (K)

On the other hand, (3.16]) also gives:

C

I N

1 . 1 B
VKK = 5 [ gt () du = 5 | S0 =

V)™ /S i du =,

here we denoted by K* the body obtained by rotating the set K* of 90
degrees and we have used that hg+ = 1/pk.

Therefore, by applying (3.13)) and (3.14) successively, we obtain that

=V(K)V(K") >

that is inequality (3.14]) holds with the sign of equality. This concludes the
proof.
O

3.4 Asymptotics as r — 1 and strong convexity

So far, we are not able to reproduce the argument used in the proof of
Theorem [3.16] in general dimension.
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To succeed in our purpose we change strategy: we give up the asymptotic
expansion for 7 — 07 in favor of an expansion like

N+1 1

V@GN (z+1K))=V(G) + W) (rg—1)"3 +o ((rG - r)NT+) (3.17)
as r — 1, where
rg=inf{r >0:GCx+rK}, x€0G.

We recall that, thanks to Corollary [3.4] ¢ is independent on z € 9G; since
our problem is invariant with respect to dilations of K, we shall assume,
again, that rg = 1.

As we will see in Theorem the expression for W (x) involves the
support function of K and the shape operators of both K and G. The
crucial step is to prove the symmetry of G; to do this, we will need to write
the shape operator of K in terms of that of G.

In force of Remark Theorem [3.8| holds true and thence K = G —G.
Thus, our aim is now to show that K-dense bodies are strongly convex;
then, by Theorem [1.12] we will gain the necessary regularity of K that gives
a meaning to with K = G and L = —@G.

The study of the asymptotic behavior of V/(G\(z+rK)) asr — 1~ carried
out in Lemma will show that K-dense bodies are strongly convex (see
Corollary . However, before starting our analysis, we must consider
that, if we want to express V(G \ (x +rK)) in terms of the shape operator of
O0G at some point T € JG, it is important to make sure that G shares with
the boundary of x + K only one point, since the shape operator carries only
local information about the boundary.

Remark 3.17. We observe that this is not always the case: indeed, consider
the Releaux triangleﬁ as the set G and let x denote one of its vertices; then,
K =G — G isaball and GN (x + K) is one of the arcs constituting the
triangle’s boundary; hence, so to speak, G \ (z + rK) can not be localized
around any point of 0G.

Notice that such a G is strictly convex, but 0G is not differentiable at all
points. Likewise, if we consider differentiable bodies which are not strictly
convex, we can still provide an example of the same phenomenon: in fact,
it is enough to set G = B + @), where B is the unit ball and @ is the unit
square (see figure 3.1).

The following lemma shows that we can get the desired result, if we

assume that G is both differentiable and strictly convex.

Lemma 3.18. Let G be a strictly conver body with differentiable boundary
and set K = G — G, then for each x € 0G the set O(x + K) NG consists of
only one point T € OG characterized by vk (T — x) = —vg(x).

4As is well-known, the Releaux triangle is the simplest example of a body of constant
width different from the disk.
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a N

z+ K

- J

Iz+K)NG z+K)NG
(a) (b)

Figure 3.1: In case (a) G is a Releaux triangle and x is one of the vertices,
in case (b) G is the sum of a square and a ball.

Proof. Let z € 0KN(G—=x) and let u = vk (z). Clearly z+x € dG and, since
G — z is contained in K and touches K at z from inside, then vg(z+z) = u.
Since K = G — G, we have

ha(u) + hg(—u) = hig(u) = (z,u) = (z + z,u) + (x, —u)
= hag(u) + (z, —u).

Thus, hg(—u) = (x,—u), that is vg(z) = —u. It is then enough to set
T =z+x.

Now, suppose that there exists another point 2z’ such that 2/ € K N
(G — ) and set v/ = v (2'); by the same argument as above, we get that
vg(xz) = —u/, and hence u = «’. Since K is strictly convex (being G so), we
finally find z = 2/. O

Lemma 3.19. Let G be a strictly convex body with boundary of class C* and
let K =G —G. Forxz € 0G and T € 0G such that u = vq(T) = —vg(x), It
holds:

(1) if kg(u) =0, then

lim inf VG\ (@ —]\t:;K) = +00;
r—1- (1—r) 2
(i1) if kg(u) > 0, then
N+1
K) 272 wn_ =
lim sup VIGA (@ j\,:: ) < P WN- ka(u) hK(U)%(l + A)¥7
r—1- (1 — T‘)T N+1

where A is the maximal principal curvature of 0G at x.
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Proof. First, notice that, by the above lemma, our choice of z and T ensures
that {z} = 0(z + K) N G. Without loss of generality, we can always assume
that T = 0 and that u = (0,0,...,—1); then, in a neighborhood of Z, G
can be parametrized by

o = 5 (Sa(w) y.y) + olly?) as lyl =0, (315)

where y = (y1,...,yn—1) ranges in the tangent space to 0G at Z.

(i) Set e = 1 —r. Let €, be an infinitesimal sequence of positive numbers
such that

lim inf VG (= —;LK)) = lim V(N(i?),
r—1- (1 _ ’I”)T n—oo snT

where G,, := G\ (z + (1 — &,)K); then (3.18) suggests that, by possibly
extracting a subsequence from &,, we can fit in G,, the set E,, bounded by
the paraboloid

1 1,
yn = 2<SG(U) YY) + - |y

and the hyperplane &, b (u) v+ u' supporting the set z + (1 —¢,) K at the
point whose outer unit normal coincides with u. In our coordinates,

B = {(ouw) 3 {Sa () .9) + - o> < yn < en hic ()

and E, C G,.
Thus, by Fubini’s theorem and some calculations, we get:

V(G > V() /Oé‘nhK(u) N1 ({y : <[SG(u) " :LI} Y y) < t} dt =

2
N1
WN—1 /E" hc (u) L 2wy_16n” hK(u)T+1
1/2 - 1/2
det [ S50 4 L] 770 (N 1) det | S50 4 L 7]
Therefore,
1—-¢)K _ N+l
lim inf VIGA (= —]\Z(l £)K) = lim ¢, * V(G,) >
e—0t e 2 n—00

N+1

2wn_1hg(u) 2

lim

TN+ 1)\/det [Sofd 4 11)

= +OO,

since det Sg(u) = kg(u) = 0.

(ii) We shall obtain the desired inequality by observing that the domain
G\ (x + (1 —¢)K) can be contained in the region F;; bounded by two



44 Characterization of ellipsoids as K-dense sets

paraboloids: one outside G and tangent to G at T, the other one tangent
to the boundary of x + (1 — ) K from inside. In order to show it, we as-
sume as before that 7 = 0 and u = —ex and, moreover, that Sg(u) = I
(this can be done since the affine tranformation Sg(u) is invertible, being
det Sg(u) = kg(u) > 0): the desired formula will then be obtained by mul-
tiplying the right-hand side of by the factor kg (u).

We proceed to contruct F. 5. We choose any number A > 0 such that
AT > Sg(—u)P} that is such that A > A. Since xg(u) > 0, Theorem and
the following remark imply that 0K is twice differentiable at T — x; moreover

equation ((1.9) turns into

A

Sic(w) < 15

I
hence,

A
Sk (u) < AT NI—2) I

For € > 0 sufficiently small, we define F 5 as

o A
Fs= PP <yny <eh — T Jy—ex.)?},
o= { ) s S0P S < ) + gl - el
where ¢ is chosen in the interval (m, 1) and z, is the projection of z
on the tangent space to G at T; in this way,

G\(z+(1—-¢)K) C F.p.

Indeed, equation guarantees that the above inclusion holds, at least
inside a small neighborhood of Z; however, by Lemma [3.18], we know that
G\ (z + (1 —¢)K) is contained in a ball B, around T whose radius r = r(¢)
tends to 0 as € — 0.

By using the rescaling (y,yn) = (Ve &, €&n), we obtain that V(F,s) =

N+1

e 2 V(F.s), where

5 A
£,5={(£,£N):2£|2§£N§h;<(u)+2 |£—\@x*|2},

21+ N1 -¢)

and it is easy to show that V(F_. ;) — V(F] ;).
By a straightforward computation of V/(Fj 5), we get that

+1 +1

1-e)K _ 272 T2

N4 CAYCES I L) BTSN 15l
£—0 e N+1 - (5 %)T

5By A > B we mean that the matrix A — B is positive definite.
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and minimizing the right-hand side of this formula for A\/(1 + X) < ¢ < 1
and A > A then gives:

VG\ e+ (L= cK)) _ vy | vy s

. N-1
lim sup z

e—0 g% T N+1

1+ A)

(3.19)
0

Corollary 3.20. If G is K-dense, then 0K is of class C? and every point
of G is a point of strong convexity. The latter conditions and the fact that
K =G — G allow us to write, thanks to Theorem

Skc(u) = [I + Sa(u) ' Sa(—u)] ™" Sa(—u). (3.20)

Proof. Since G is K-dense, then the limits in items (i) and (ii) in Lemma
do not depend on the particular point x € 0G; in other words, they
must be constant functions on dG. Since G is a convex body and 0G is
of class C2, then kg is not identically zero; hence, the limit in item (ii) of
Lemma is a finite constant. As a consequence, item (i) of the same
lemma implies that kg > 0 (and hence S > 0) on dG. Formula is
then a straightforward consequence of Theorem O

3.5 Simmetry of G and characterization of ellip-
soids

In this section we prove the following characterization theorem.

Theorem 3.21 ([MM2]). Let K C RN be a conver body and assume that
there is a set G C RN of finite positive measure such that (3.2)) holds.
Then, both K and G must be homothetic to the same ellipsoid.

We start by explicitly computing the coefficient W (z) of formula (3.17]).

Theorem 3.22 ([MM2]). Let G be a strongly convex body with boundary of
class C? and set K = G — G. Chose x, u and T as in Lemma ' then

oy Y@\ (@ +rK)) 2wyt hic(u)
L N+1 -
o (1) (IV 1) det | Sg) — Sx

}1/2'

Proof. Again we set ¢ = 1 — r. We begin by showing that
N+1

V(G\(.’L‘—i—(l—E)K)) < 2WN_1 ]’LK(U) 2

lim sup NI

e—0+ € 2 N (N + 1) det [SG2(U) _ SKZ(“)

. (3.21)
}1/2
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As in the proof of Lemma [3.19] without loss of generality, we can set
u= —eyny and T = 0.

We recall that 0 = 7 € 9(z + K), thus —z € 0K and —(1 —¢)x €
I((1 — e)K); namely ex € 9(x + (1 — ¢)K) and wu is the unit normal to
O(z + (1 —¢)K) at that point.

By a scaling argument, we know that

Sk (u)

1—¢’

Sx-i—(l—a)K(u) =

Notice that formula (3.20|) implies that Sg(u) > Sk (u); hence, we can
choose w € N such that

Sa(u) — Sk (u)

1 >

31~

(3.22)

In order to get an estimate from above for V(G \ (z + (1 — ¢)K)) we
construct a set C; ,, containing G \ (z+ (1 —¢)K). In fact, for n > n we set

Sa(u 1
G2( )—I)y,y><yzv<
n

ehg(u) + <[2*?f£12) 4 711[] (y —exy), (y — Ex*))},

Cen = {()

where z, denotes the projection of z on u'; C. n is the region bounded by
two paraboloids, one touching JG at T from below, the other one touching
d(z + (1 —¢)K) at ex from above and, for € small enough, we have:

G\(z+(1—-¢e)K) C Ccp.

Also, condition (3.22)) guarantees that

Se(w) I _ Sk I
2 n>2(1—e€)+n>07

for € small enough, thus forcing C; ,, to be bounded.

The usual change of variables (y, yn) = (Ve &, e€n) gives that V(Ce ;) =
N+1

e 2 V(CL,), where

Sa(u)
2

Cl,={(&EN): <[ — H £,6) < En < hg(u)+

Sk (u)
2(1—¢)

{

| ——

i Tﬂ (6~ Vem.). (€~ Vez.)).
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Since clearly V(C{,) — V(Cj,,) as € — 0, a straightforward computa-
tion gives:

lim sup VIG\ (@ t,ﬁ — oK) < V(C(/),n) =

e—0t ISP

- (3.23)
(N +1) det [SGTW_SKTw_gI]Q

Since (3.23)) holds for all n large enough, (3.21)) follows at once by taking
the limit for n — oo.

The converse inequality,

N4t
lim inf V(G\ (33 -f];+(11 —8)K)) > 2WN_1 hK(u) 2 7
e—0t e 32

1
(N + 1) det {—SGQ(“) — Sx(w)) 2

is proved by using the same strategy used for (3.21]): we choose 7 such that
1
S > =
alu) > —

and then we construct, for n > 7 and ¢ small, a set D ,, C G\ (z+(1—¢)K):

Den = {(y,yn) : <<SG(U) + ;I> Y. y) <yn <

2
Q?fﬁug) B :LI] (y —exs), (y — ex4)) }-

< ehiclu) + (|

As before, the usual rescaling gives

N41
1-¢g)K 2WN_ 2
lim n V(G'\(CL‘J;LE1 9K)) wy -1 g (u) 2 .
e—0 e 2 (N i 1) det [SG2(u) . SKQ(u) i %I] 2
Again, we conclude by taking the limit for n — oo. O

Corollary 3.23. Let G be a K-dense body, then (3.17) holds with the coef-
ficient W (x) given by

Qo1 hic(u) 2
2
W(z)=— wy-1 KB 7 with u = v(T). (3.24)
Sa(u Sk (u
(N +1) det | Sc(®) _ Skl )]
Moreover, the function defined by
N+1
3 Nt1
u K(u) 2 , ue st (3.25)

N[

det[Sq(u) — Sk (u)]

15 constant.
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Proof. Corollary [3.20] ensures that G satisfies the assumptions of Theorem
3.22, Since V(GN(z+7r K)) =V (G)-V(G\(z+7 K)), then for the function
given in (3.24)) the following equality holds

W) = — i YEVEHTE) V@D +rK) - V()
r—1- (1 _ T)T r—1- (1 _ T)T

(3.26)
hence (3.17). Observe that W|ss has to be constant, by formula (3.26))
and the K-density assumption. Finally, since G is strictly convex, the last
assertion follows from the suriectivity of the Gauss map. O

Now, we are going to show that if G is K-dense, then G and K must be
equal up to homotheties.

Proposition 3.24. Let G be a K-dense body, then kg(u) = kg(—u).

Proof. Let u € SN~!and L = L, be a linear map of RY in itself, which lealves

unchanged the unit vector u and whose restriction to u' equals Sg(u)~2.
First, notice that, as an easy consequence of (3.2)), the set LG is LK-
dense, so that Corollary holds for this set; in particular, (3.25)) implies:

N+1 1
hig(—u) 2 {det[Sra(—u) = Spr(—u)]} 72 =
N+1 1

hLK(u) 2 {det[SLg(u) — SLK(U)]} 2, (327)

Secondly, we know that K is centrally symmetric, and so must be LK; then,

Sri(u) = Spi(—u) and hpg(u) = hpg(—u). Hence, by (3.27):
det[SLg(—u) — SLK(’LL)] = det[SLg(u) — SLK(U)] (328)

As we shall see, this condition together with equation (1.9)) is enough to
prove that
det[Sra(u)] = det[SLa(—u)].

Indeed, by plugging into (3.28) we get
det (SLG(—u) — [I+ Spa(w) ™ Spa(—u)] ™ SLg(—u)> _
det <SLg(u) — [T+ Spe(w) ™ Spa(—u)] " SLg(—u)) . (3.29)
furthermore, our chioice of the affine transformation L ensures that
Sra(u) =1,

and
_1

Sra(—u) = Sa(u)"2Sa(—u)Sa(u)” 2.

N|=

(3.30)
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Equation (3.29)) then turns into

det (Sra(~u) = [I + Spa(-w)] " Sra(-u)) =
det (1 — [T+ Spa(—u)] " SLg(—u)) . (3.31)
by multiplying both sides of (3.31)) by det[/ + Srg(—u)] and using Binet’s

identity, we get
det[SLg(—u)2] =1.

Hence (3.30)) yields det[Sq(u)] = det[Sq(—u)], that is kg(u) = Kg(—u).
O

Corollary 3.25. Let G be K-dense. Then G is symmetric and K = 2G.

Proof. The two bodies G — G and 2G have the same Gaussian curvature as
a function on SV~1; thus, they only differ by a translation. O

The following theorem together with Petty’s characterization of ellipsoids
complete the proof of Theorem [3.21

Theorem 3.26 ([MM2|). Let G be a K-dense set. Then, for every x € 0G
it holds that

i LGN+ rE)) 2Mwn-1 hK(“)%l with u = v(z)
ol (1—p) st (N + 1) det[Se(u)]2

and {T} = 0G N (v + K).

In particular, there exists a positive constant ¢ such that
ka(u) = chg(W)NTL for every we SN7L.

Therefore, G must be an ellipsoid.






Chapter 4

Stationary isothermic surfaces

In this chapter we study the solutions of some evolution equations that
have Klamikin’s property of having invariant level surfaces.

In Section we characterize all the solutions of the heat equation that
have all their (spatial) equipotential surfaces which do not vary with the
time (see Theorem [4.1)). In particular we show that such solutions are either
isoparametric or split in space-time. We then extend that result to a class
of quasi-linear parabolic equations (see Theorem [4.5).

In Section [4.2] we study the geometry of the level sets of K-isoparametric
functions.

In Section [4.3] we start investigating the properties of the solutions of the
h-Laplace evolution equation with only one invariant equipotential surface.
We study the asymptotic behavior of the solutions of a family of elliptic
problems which have, at least in the linear case, a strong connection with
the solutions of the heat equation.

4.1 The Matzoh Ball Soup Problem

Let © be a domain and let u be the solution of the following initial-
Dirichlet problem

up=Au in Q x (0,00)
u=0 in Qx {0} (4.1)
u=1 on 0N x (0,00)

It is well known that, if € is the euclidean ball, then the solution of (4.1
is radially symmetric. Consequently, its level surfaces do not vary with the
time, since all of them are concentric spheres.

51
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In this section we completely characterize all the solutions of the heat
equation

up = Au in Q x (0,00), (4.2)

having the Klamkin’s property of time-invariant level surfaces (Theorem |4.1]).
Then we extend our analysis to a class of quasi-linear evolution equation
(Theorem [4.5)). All these results can be found in the recent paper [MM3].

Theorem 4.1 ([MM3]). Let Q C RY be a domain and let u be a solution of
equation (4.2))

Assume that there exists a number T > 0 such that, for everyt > 7, u(-,t)
is constant on the level surfaces of u(-,7) and Du(-,7) # 0 in §.
Then one of the following occurrences holds:

(1) the function ¢ = u(-,7) (and hence u) is isoparametric, that is there
ezist two real-valued functions f and g such that ¢ is a solution of the
following system of equations:

[Dl? = f(p) and Ap=g(p) in
(ii) there exist two real numbers A,y such that
u(z,t) = e Mo(2) + . (2,1) € @ x [1,00),

where

Aprx+Agr=0 in &
(iii) there exists a real number «y such that
u(:):,t) =7t+ w(:r), (:U?t) € x [7—7 00)7

where
Aw =~ in .

Proof. As originally observed in [All], the assumption on the level surfaces
of u implies that, if we set p(z) = u(z,7), then there exist a number 7" > 7
and a function n : R x [1,T) — R, with

n(s,7)=s, s€R, (4.3)

such that
u(z,t) = nle(z), t) (4.4)
for every (z,t) € Q x [r,T); thus, ([4.2) gives that

Nss(0,1) [ Dol* + ms(0,t) Ap = ny(p, ) in Q x [1,T).



4.1 The Matzoh Ball Soup Problem 53

By differentiating in ¢ this identity, we obtain that ¢ must satisfy in 2 the
following system of equations:

ns(,t) Ap + nss(0, 1) [ Dl =m0, 1), (4.5)
st (0, 8) A + nsst (0, 1) [Dp|® = mye (0, 1),

for t € [7,T).

Notice that the necessary smoothness of the function 1 can be proved
by a standard finite difference argument: in fact, one can prove that, since
Dy # 0, then n € C*(I x [1,T)), where I = (infq ¢, supq ¢) and ns > 0
on I x [1,T) (see [All, Lemma 1], [AI2l Lemma 2.1] or [Sakl, Lemma 2.1] for
details).

As observed in [Sak], for the system , it is enough to consider the
alternative cases in which the determinant

D(37 t) = NsTsst — MNstlss

is zero or not zero. In fact, if D(s,t) # 0 at some (s,t) € I x [1,T"), then
D # 0 in an open neighborhood, say U x V. C I x [1,T), of (s,t); then
implies that

[Dyf? = f(p) and Ay = g(p)

at least in a subdomain ' of Q, and the expressions of f and g are given by
the formulas

f= NsTtt — st g= MtNsst — NttTss
NsTsst — nstnss, TsTsst — MstT]ss ’
clearly, f and g are analytic functions. Thus u(+,¢) (and hence ¢) is isopara-
metric in an open subdomain of 2; by using the classification result for
isoparametric functions by Levi-Civita and Segre and the analiticity of ¢,
we can then conclude that the function ¢ is isoparametric in the whole €.
Otherwise, we have D =0 in [ x [7,T"). Thus, since
82
0s0t
we have that logns(s,t) splits up into the sum of a function of s plus a

function of ¢; (4.3) then implies that 7s(s,t) only depends on ¢, and hence it
is easy to conclude that

log(ns) = (778)_2 (NsMsst — MstMss) = 0 in I x [1,T),

n(s,t) = a(t)s+b(t), (s,t)elx[r,T),
for some smooth functions a and b such that
a(t) =1 and b(7)=0.
Now, we now know that

u(z,t) = a(t) p(x) + b(t)
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is a solution of (4.2]), thus (4.5 can be written as a linear system of equations:

& (1) o(x) — alt) Ap = —H(1),
d"(t) p(x) — a/(t) Ap = —1'(1). (4.6)

The determinant of this system must be zero, otherwise ¢ would be constant
(in fact, it would be that ¢(z) is a function of ¢); thus,

a(t)d"(t) —d' (t)> =0 for t € [r,00), a(r) = 1.

All solutions of this problem can be written as a(t) = e *¢=7) for A € R
and, by going back to (4.6]), we obtain that

Ap(z) + Ap(a) =¥ (1) XD =,
for some constant «. Since b(7) = 0, we have:

1— e*)\(tfﬂ')

b(t) =~ 3 if A\#£20 and b(t)=~(t—7) if A=0.

Therefore, we have obtained:

ulir, 1) = e o) — /A £ /A i A A0,
u(z,t) = p(z) +y(t—71) if A=0.

In conclusion, by setting ¢y = e*"[p —v/A] and u = v/ for A # 0, we
get case (ii), while setting w = ¢ — 7 for A = 0 yields case (iii).
O

Remark 4.2. The proof of Theorem [£.] relies on and completes those con-
tained in [AI2] and [Sak|: there, option (iii) and the fact that initial and
boundary conditions are unnecessary were overlooked.

Remark 4.3. For the sake of simplicity, in Theorem we assumed that
Du # 0 in the whole €, in order to be able to deduce the necessary regularity
for n. Here, we will show how that assumption can be removed.

The only possible obstruction to the regularity of 5 is the presence of
level sets of ¢ whose points are all critical. Indeed 7 is always smooth in the
t variable and is smooth in the s variable, for every semi-regular value s of ¢
(i.e. a value that is the image of at least one regular point). For every open
subset of € of regular points for ¢ corresponding to a semiregular value of
©, the above theorem still holds true even if we remove the assumption on
the gradient of the solution wu.

We now show that, in any case, the classification holds true globally in
Q. For simplicity we assume that there exists only one critical level set.

Let then s be a value in the range of ¢ such that Dy(z) = 0, for every
r€pl(s)andset QT ={x € Q : p(z) > s}, and @~ ={x € Q : () <
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s}. Clearly the above classification holds true separately in Q% and in Q.
Being cases (i), (ii) and (iii) closed relations involving continuous functions,
if the same case occours both in QT and Q. then it holds in the whole
domain Q. Thus, we are left with all the cases in which in QO and Q~ the
solution assumes two different representations of those given in Theorem

We proceed by direct ispection. If case (i) occurs in QF or in 27, as it
has been already remarked, then ¢ extends to an isoparametric function in
an open domain containing €.

We then have only to study the case in which instances (ii) and (iii) are

in force in Q= and QT respectively; by contradiction, we shall see that it is
not possible to have a critical level set. In fact, up to sum a constant, we
can assume without loss of generality that s # 0. As shown in [Al2] Lemma
2.2|, the presence of a critical level set implies that Ap(x) = 0, for every
z € QF N Q~. Then, according to the previous computations, we get that
0 = Ap(z) = A\p(z), and, being A # 0, we have that ¢(x) = 0 and thence
s = 0, that is a contradiction.
Remark 4.4. Isoparametric functions are well-known in the literature; ac-
cordingly, their level surfaces are called isoparametric surfaces and can also
be characterized as those surfaces whose principal curvatures are all con-
stant. The classical results of T. Levi-Civita |[Le| and B. Segre [Se| classify
isoparametric functions in RY by their level surfaces: they can be either
concentric spheres, co-axial spherical cylinders (that is cartesian products of
an M-dimensional sphere by an (N — M — 1)-dimensional euclidean space,
0 < M < N —2), or parallel hyperplanes (affine spaces of co-dimension 1).
By using this fact, one can conclude fairly easily that, in Klamkin’s setting,
that is when (i) of Theorem [4.1 holds and w is constant on 02, then the pos-
sible shapes of a domain €2 can be one of the following: a ball, its exterior or
a spherical annulus; a spherical cylinder, its exterior or a cylindrical annu-
lus; a half-space or an infinite strip (see [Al2] for the solid case). Analogous
results can be drawn in the case we impose on u a homogeneous Neumann
condition (see [Sak]),

uy, =0 on 0N x (0,00). (4.7)

Thus, a caloric function that has invariant equipotential surfaces enjoys
some splitting property in space-time, since it is always separable (either with
respect to addition or to multiplication). We point out that this behaviour
is not restricted to the case of the heat equation, since it also occurs for
other linear evolution equations, such as the wave equation, the Schrédinger
equation or any partial differential equation connected to the heat equation
by some integral transform.

In the last part of this section we show that a similar behaviour holds for

the following class of quasi-linear evolution equations:

ug=Qu in Q x (0,00), (4.8)
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where the operator
N

ij=1
is elliptic and the coefficients a;;(§) are sufficiently smooth a-homogeneous
functions of ¢ € RN, a > —1, that is such that

aij(0 &) = 0%a;;(€) for every € €RY, 0 >0 and i,j=1,...,N; (4.10)
Important instances of are the evolution p-Laplace equation,
uy = div{|Dul[P"? Du} in Q x (0,00); (4.11)
the normalized evolution p-Laplace equation,
ug = |Dul*> Pdiv{|Du[P"2 Du} in Q x (0,00); (4.12)
the (anisotropic) evolution h-Laplace equation,
up = Apu in Q x (0,00); (4.13)
here,
Apu = div{h(Du) Dh(Du)} (4.14)

is the so-called anisotropic h-laplacian, or Finsler laplacian, where h is the
support function of a C’_2F convex body (for more detail see Section ).

Before stating the theorem characterizing all possible solutions of
we define a generalized gradient operator:

N
Gu = Z aij(Du) Uy, Uy, - (4.15)
ig—1
Theorem 4.5. [MM3] Let Q C RN be a domain and let u € C1((0, 00); C2(2))
be a solution of equation (4.8]),

up=Qu in Q x (0,00),

where the operator Q, given in , is elliptic with coefficients a;;(§) that
satisfy .

Assume that there exists a T > 0 such that, for every t > 7, u(-,t) is
constant on the level surfaces of u(-,7) and Du(-,7) # 0 in .

Then the there exists a countable set of values a1 < as < ...a; < ...,
such that

Q= U ¢ ([ai, aita])
€N

and, for every subdomain ' C o~ ([a;, a;11]) one of the following cases
occurs:
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(i) there exist two real-valued functions f and g such that ¢ = u(-,7) is a
solution of the following system of equations:

Go = fp) and Qp=g(p) in
(ii) there exist two real numbers A,y such that

u(z,t) =14+ X (t— T)]_I/O‘qb/\(x) +p, (z,t) € Q x[r,00),

with \
Q¢A+a¢>\ =0 in @,
if a #0;
u(z,t) = ef)‘(th)QS)\(a:) +u, (z,t) € Q x[r,00),
with
Q¢)\ +)\¢)\ =0 in Q/,
if a =0;

(1ii) there exists a real number ~y such that
u(z,t) =7 (t—7)+wz), (2,t)€Q x[r,00),

where
Quw=+ in Q.

Proof. The proof runs similarly to that of Theorem We still begin
by setting ¢(x) = w(z,7) and u(z,t) = n(p(z),t), where n satisfies (4.3)).
Since Du # 0 equation is uniformly parabolic, by standard parabolic
regularity (see, for instance |[LU]), we have the necessary regularity to give
sense to the following computations.
By arguing as in the proof of Theorem {4.1] we obtain the system of
equations:
(e, 7) Qo +&s(p, 7) G = i, 7)), (4.16)
ft(‘/’v T) Q‘:D + fst((pa T) g‘p = Utt(% 7—)7 .

where & = (1)t

At this point, the proof is slightly different from that of Theorem If
there exists (s,t) such that D(s,t) = & — &s & # 0, then D(u(z,t),t) #0
forz e V ={ze€Q:u(x,t) € (s—0d,s+0)} for some § > 0. By setting

Es Mt — &t G= Est Mt — s Mt
ggst_€s§t7 gfst_gsgt’

case (i) holds true for the function wu(-,t). The same fact holds true for ¢,
since u(z,t) = n(e(x),t) and hence ¢ and u(x,t) share the same level sets;

f=
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thus, there exist functions f and g such that Gy = f(p) and Qp = g(¢) in
.

Now, we define J as the closure of the complement in the image of w of
the closure of the set {s : D(s,t) # 0, for some t}; J is a countable union
of disjoint intervals. Let [p,q] C J; in Q' = ¢~ 1([p, q]), we get

2

5a5; 1086 = (O (€& —&&) =0 in [p.q] x [ T),
&(s,7)=1 for se€[p,q

As before, we obtain
n(s,t) = a(t) s +b(t),

with a(7) =1 and b(7) = 0. Proceeding as before with u(x,t) = a(t) p(z) +
b(t) gives the system:

a'(t) p(x) —a(t)**! Qp = /(1)

a’(t) p(x) — (a4 1) a(t)"a'(t) Qp = —b"(2).

The determinant of this system must be zero, otherwise ¢ would be

constant; thus, a must satisfy the problem

(4.17)

a®tad” —(a+1)a%d)* =0 in [1,T), a(r)=1.
The solutions of this problem are for ¢ € [, T)

at) =1+ A(t—7)]"Y* if a#0,
a(t) =e M7 q =0,

for some A\ € R, and going back to the first equation in (4.17)) gives
A
Qo + — plw) = V'(?) a(t)~ @) =4 if a0,
Qp+Ap(x)=V{t)alt) ' =~ if a=0.
Thus, we have that

b(t) = % (1-[1+A(t—7)]V) if a0,

1— = (t—7)
b(t) =~ e/\ if a=0,
for A # 0,
b(t) =~ (t—7),

for A =0 and any o > 0.

Therefore, (ii) follows when A # 0, by setting ¢ = ¢ — ya/A and p =
~ya /X for a # 0 and ¢y = ¢ — /X and p = v/a for a = 05 (iii) follows when
A =0, by choosing w = ¢.

0l



4.2 K-isoparametric functions 59

4.2 K-isoparametric functions

The analysis performed in the study of the heat equation suggests that
case (i) of Theorem should entail some symmetry result for the domain,
at least when suitable initial and boundary conditions are given. However it
seems difficult even to imagine, given an arbitrary operator of the form ,
the shape of the level surfaces of functions ¢ for which case (i) of Theorem
occurs.

In the special case when the differential operator defined in is given
by it is possible to give a catalog of all possible level surfaces of such
functions.

Let K be a C_% convex body; by setting
Lo
H =W, (4.18)

the system of equations that appears in item (i) of Theorem can be
conveniently re-written as

DH(Dyp) - Dy = f(p) in Q, (4.19)
App =g(p) in Q. (4.20)

We also notice that, since H is 2-homogeneous, by Euler’s identity (4.19)
can be re-written as

2 H(Dyp) = f(¢) in Q. (4.21)

We shall say that a function ¢ is K-isoparametric if it is a solution of
(4.19)-(4.20); accordingly, its level surfaces will be called K -isoparametric
surfaces.

Theorem 4.6 (K-isoparametric functions). Let K C RN be a convex body
of class 0_2‘_ and let h denote its support function.
Let ¢ € C? be a K -isoparametric function. Then its level surfaces are of
the form
Dh(SM)y x RN=1=M " pr=o0,...,N — 1. (4.22)

Remark 4.7. Equation should be interpreted as follows: Dh(SM) is an
M-dimensional submanifold of Dh(SV¥~!) = 9K and the vector-valued func-
tion ¢ : Dh(SM) x RN=1=M _ RN defined by (Dh(v),y) = Dh(v) + j(y),
where j is the natural inclusion of RV=1=M in RN defines an embedding
and its image coincides, up to homoteties, with a level surface of ¢.

The proof of the Theorem relies on the results obtained in [GM] and
[HLMG], which generalize the classical ones of Levi-Civita and Segre ([Le],
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[Se]). In this new setting, the metric defined on the submanifolds (the level
sets of the function ) is given by an anisotropic (non constant) operator.
In [GM], the authors prove a classification theorem for hypersurfaces with
constant anisotropic principal curvatures; the proof is mainly based on a
Cartan-type identity which forces the K-isoparametric surface to admit at
most two different values for principal curvatures.

Proof. Let ¢(x) be a regular value of the function ¢, ¥ the level surface
{y € Q: p(y) = p(z)} and let T,,(X) be the tangent space to X at . We
also introduce the K-anisotropic Weingarten operator,

D D?
W = D%h <9"> el (4.23)
D¢l ) | Dl
and the K-anisotropic mean curvature,
1 Dy - [D?H(D D?p| D
h(Dy) [ Dl

We differentiate (4.19) and (4.21]) and obtain the identities (by the square
brackets, we denote matrices):
[D*H(Dy))[D?g] D + [D*¢] DH(Dy) = f'(¢) D,
2[D*¢] DH(Dy) = f'(¢) Dy, (4.25)
[D*H (D)) [D*¢] Dy = [D*¢] DH(Dep).
After straightforward computations, from the definition (4.24)), the iden-
tities (4.20)), (4.21) and (4.25)) imply that
!/
— 2
= 9@ = fe)/
fe)

)

that means that M is constant on 3.
We are now going to show that M is actually the trace of the K-
anisotropic Weingarten operator; to do this we prove the following identity

D2H(Dyp(x)) D¢ (x)
W(z) = on T(X); (4.26)
h(Dg(x)) !
in other words, we show that the two matrices coincide as bilinear forms on

T.(%).
In fact, (4.18) and the homogeneities of h, DH and D?H imply that

[D*h(v)][D%¢] _ [D*H(v)][D*¢]  [DH(v)® DH(v)][D%g] _

1Dl ~ h(v) Dyl h(v)? | D]
[D2H(Dg)][D*p] _ [DH(Dg) @ DH(Dy)|[D*¢]

h(Dy) h(Dyp)?
_ [D’H(Dy)|[D?¢] 1 () [DH(Dy) ® Dy
h(Dy) 29 T (D
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where, in the last equality, we used the second identity in . The desired
formula is then obtained by noticing that 7,(X) lies in the kernel of
[DH(Dp(z)) ® Dp(x)], being orthogonal to Dy(x).

Notice that M only depends on the geometry of the level surface; indeed,
v(z) = Dp(z)/|De(x)| is the normal unit vector to ¥ at x and the restriction
of —[D?p(z)]/|Dp(x)| to Tx(X) is the shape operator of ¥.

Now, we claim that there exist a relatively compact neighborhood U, C ¥
of x and a number ¢ > 0 such that, for any y € U,, it holds that

oy +7DH(Dp(y))) = p(z + 7 DH(Dyp(x))), (4.27)

for every 0 < 7 < 4.

Without loss of generality we can assume that f(¢) = 1; indeed, since
Y is a regular level surface for ¢, then f(¢) > 0; by taking ¢ = F(¢) with
F such that (F')? = f, it is easy to show that ¢ is another isoparametric
function, with the same level surfaces of ¢, and such that H (D) = 1.

To prove our claim, we first have to show that the integral curves of
DH(Dy) are geodesics. Let U, C 3 be a relatively compact neighborhood
of  (of course, Dy does not vanish on U,). For every y € Uy, let v,(7) be
the solution of the Cauchy problem

Yy(T) = DH(Dp(7,(7))), 7(0) =y,

and let § be such that, for every y € U, v, remains regular on [0,6]. Then
we have that

e(y /Dsovy Vylo)do =

)
/ Dip(y(0)) - DH(Dp(7y(0))) dor = 2 /0 H(p(y(0))) do = 25,

where we used Euler identity for H and the fact that we are assuming that
f=1
Moreover, we compute that
Yy (1) = [D*H(Dp(y (1))[D*0 (7 (1))] 7y (7) =
[D? H (D (v (T)NID*¢ (7 (7))] DH (Dip(y(7))) =

= 5 (el (M) [D*H(Dg(yy ()] Dl (7)) =0,

where we used (4.25)) and the fact that we are assuming that f = 1.
Thus,
YW(T) =y +7DH(Dy(y)) for 0 <7 <4,

and hence

oy +7DH(Dyp(y))) —p(y) =26 for 0 <7 <4,
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which means that (4.27)) holds.
Therefore, we have proved that, for every 7 € [0,6), the surfaces

Sr={y:o(y) = o(1(7)}

are parallel with respect to the anisotropic metric induced by K; also, every
Y. has constant K-anisotropic mean curvature.
Thus, follows the results [GM| Theorem 2.1] and |[GM| Theorem
1.1] recalled in remark
O

4.3 Anisotropic Matzoh Ball Soup Problem

As already stressed, in [MSI] it is stidued the following initial-Dirichlet
problem
w=Au in Q
u=0 in Qx {0} (4.28)
u=1 on 08 x (0,400).

Under the assumption of the existence of a sufficiently smooth subdomain
G, such that u(x,t) = c(t), for every x € G, it is shown that:

(i) 09 and OG are parallel,
(ii) both  and G must be balls.

The arguments exploited to prove this result are widely different from
those used in [AI2] and [Sak|. Indeed, to prove (i), it is studied the asymptotic
behavior of u(x,t), as t — 0. More precisely it is considered the function

Wix,s) = 8/000 u(z, t)e ™ dt, (4.29)

and it is proved that s~'log W (x,s) converges to the function dist(z, d82),
uniformly on Q, as s — 0o (see also [Va]). Then, since OG is a level set of
u, for any ¢t > 0, it must also be a level set of W, for any s > 0, and thus a
level set for the function dist(z, 09).

Notice that, the functions W (-, s) are solutions of the following family of
elliptic problems.

W=1 on Of). (4.30)

Moreover G is a level set for every solution of (4.30)).

{AW:sW in Q
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It would be interesting to extend the result of [MS1] to the the anisotropic
case, that is when the usual Laplace operator is replaced by the h-Laplace
operator. In this section we study the behavior of the solutions of the family
of elliptic problems given by

{ eApuf =u in Q (4.31)

ut =1 on 0f),

for ¢ — 0. In particular we shall prove that, if there exists a surface I" which
is a level set of every uf, then I' has to be parallel to the boundary of 2 in
the anisotropic sense (see Theorem [4.10)).

It is important to stress that, in this case, if we apply the transformation
given by to the solutions of the h-Laplace evolution equation, we will
not find a solution of ; however we consider this problem an important
preliminary step to solve the corresponding overdetermined parabolic prob-
lem, and it might help to understand if (and how) some of the techniques
adopted in the linear case can be extended to treat this kind of operator.

Throughout this section we consider an open and bounded convex subset
Qof RN, a C_% convex body K, and we denote H = h%(.
Let u® be a solution of (4.31)); by setting

v® =elnuf, (4.32)

we obtain a solution of the following equation.

e\ e _ :
{ H(Dv®) —eApp* =1 in Q (4.33)

& =0 on 0f)

The following lemma provides some fundamental bounds for such solu-
tions.

Lemma 4.8. Let v® be a solution of (4.33)), then 0 < v® < sup,cq distx (x, 0Q),
where distg (x,0) = infycon |z — yl|lk, and H(Dv*(x)) < 1, for every
v € 0.

Proof. Let di(x) = distx (x,00), d is a viscosity solution of

{ H(Dv)=1 in Q (4.34)

v=20 on Of).

It is easy to check that, since €2 is a convex set, di is a concave function, and
then Agdg < 0. This means that dg is a viscosity supersolution of .
Thus v® — d cannot have any local maximum inside Q (see, for instance,
[CIL]), namely v¢ < dg, for every x in 2. Analogously the constant function
0, being a viscosity subsolution of , is a lower bound for v®.



64 Stationary isothermic surfaces

We are left to show the equiboundedness of the gradients of v® on the
boundary of Q. Since v is constant on 02, then

H(Dv*(x)) = (8,0°)* H(v),

where v is the normal unit to 02 at z. The considerations above will lead
to conclude that |0,v%| < |0,dk|, and then H(Dv®) < H(Ddg) = 1. O

Lemma 4.9. Let {v°}c~o be the family of solutions of (4.33), then there
exists a subsequence {v°" }pen, €n — 0 as n — oo, that converges uniformly
in the the closure of Q.

Proof. We have already shown that the functions v* are equibounded, we are
now going to show that their gradient are equibounded as well. The desired
result will follow thanks to Ascoli-Arzela’s theorem.

We set ¢°(x) = H(Dv®) + av®, a > 0. Suppose now, by contradiction
that, for every k > 0, there exist ¢ and zj such that H(Dv®(zy)) > k.
Since the functions v® are equibounded in the closure of 2, and H(Dv*) are
equibounded on 0f), then, when k is sufficiently large, we can always assume
that ¢k reach its maximum inside 2. We are going to show that this leads
to a contradiction.

We first compute the gradient and the hessian of 1, we get
Oi° = O HOpv" + adv”, (4.35)

and
8ij¢€ = BkHakijve + aleakjvealiUE + Ozaijvs. (4.36)

Differentiating with respect to = the first equation in (4.33) we get
O;HOjpv® — ¢ [8ile81kv€8ijv€ + @-jHakijvE] = 0. (4.37)
We now suppose, by contradiction, that there exists zo € {2 such that
Ve (o) > (), for every x € Q. We will have D¢ (z0) = 0, and Dy () <
0. At x = x¢ it holds true that
— adpv® + EailealkUEBijvs + 85¢jH8kijU€ = 0. (4.38)
By multiplying (4.38)) by 0 H (Dv®) and by taking the sum over k, we obtain
— O HORv® + 6akHailealkveaijvs + €akHainakijva =0. (4.39)
We now study every summand; by Euler’s laws we have that

—aO,HOpv® = —2aH.
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Since O HOjv¢ = —adjv®, then
O H 01 HOpv° = —a0i HOop®,
then, again by using Euler’s law
0iH 0351 H 0y,v° 0;5v° = 0.

Finally, by recalling we have that

0iH 03 HOyijv° = 03 H0i0)° — 03 H Oy H Oy jv° 00" — alApv°.
Going back to (4.39)) we find that

—2aH + €0;; HO;j9)° — €04 H O H Ok jv° 00" — ac Apv® = 0.

We now observe that, at * = x¢ we will have 9;;H0;;4° < 0, since it is
the trace of the product of a positive matrix and a negative semi-definite
matrix. Moreover 0;;H Oy HO),;v°0;;0° > 0, since is the trace of a square of
a symmetric matrix. By recalling we can infer that

0< —2aH + aH — «a,
that is impossible since a > 0. O

We are now going to prove the following

Theorem 4.10. Let u® be solutions of (4.31)) and let " C Q be a level surface
of ut, for every e > 0. Then T' is parallel to 02, namely di (x) is constant
on I'.

Proof. Let v® be defined by ; I’ is a level surface for every v*. By
Lemmas [4.8] and [£.9] we know that v converges uniformly to a function v
that is a viscosity solution of (see again [CIL]). Since admits
only one solution (see [BC]|), then v = dk.

For every 0 > 0 there exists a € > 0 such that |[v°(x) — dg(z)| < 4, for
every = € (0. Then, for z and y in I' we can compute

|di () — die (y)| < [o°(2) = dre ()] + [0 (y) — dr (y)] < 20,

namely dx is constant on I. O






Chapter 5

A comparison result for the
solutions of degenerate elliptic
equations

In this last chapter we establish some comparison results between the
solutions of a family of degenerate elliptic equations of the form

—div(w?e"Du) = fe¥ in E, u=0on JF, (5.1)

and the solutions of the corresponding problem where the data f and the
domain FE are replaced by their right rearrangement.

Section contains the main definitions concerning the concept of rear-
rangement and symmetrization.

In Section we solve a family of mixed isoperimetric problems of the
form

min {PweV(E) : / eV = constant} ,
E

and, in Section [5.3] we use the fact that half-spaces are the only minimizers
for such problems to prove our main result, Theorem

5.1 Symmetrization and rearrangement inequalities

In this section we introduce the main definitions and properties about
the concept of symmetrization and rearrangement we shall make use of. For
the definition and main properties of the spherical rearrangement we refer to

[LLL Chapter 3].

67
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Let u be a finite Radon measure on RY, a right rearrangement with
respect to p is defined, for any Borel set A, as

R = {(z1,2) e Rx RV 1 oy > 4},
where t4 = inf {t : p(A) = p({(z1,2’) e R x RV~ : 2y > t}) }. Notice that

if du = fdx, for some positive and measurable function f, then the value of
t is uniquely determined.

Given a non-negative Borel function f : RY — [0, +00), we call right in-
creasing rearrangement of f the function f** given by

+oo
rrw = [ Xy @

As an aside we notice that the right increasing rearrangement of the charac-
teristic function of a Borel set A coincides with the characteristic function of
R'y. Clearly f*! is non-negative, increasing with respect to the first variable
r1, and constant on the sets {(z1,2') € R x R¥N=1 : 2y = ¢}, for t € R.
Moreover f and f** share the same distribution function, namely

pp(t) = p({f > t}) = p({f™" > t}) = ppeu(t).

We furthermore define f** : Rt — RT as the smallest decreasing function
satisfying f**(us(t)) > t; in other words

fH(s) =inf{t >0 : pue(t) < s}.

It is useful to bear in mind that {s: f*(s) >t} = [0, us(t)], so that by the
Layer-Cake Representation Theorem we have

u({zr>1}) %
/0 [*H(s)ds = /t pr(s)ds = /{x1>t} M (z) dx. (5.2)

We conclude this section by proving the Hardy-Littlewood rearrangement
inequality related to the right symmetrization.

Lemma 5.1 (Hardy-Littlewood rearrangement inequality). Let f and g be
non-negative Borel functions from RN to R. Then for any non-negative Borel

measure u we han@
/ fgdu S/ fHgtdp.
RN RN
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Proof. We have

/RN fng:/RN/o /0 Xy o1y (1) X > sy () dt ds dp(r)
:/o / / X(>13n{g>s} (@) du(x) dt ds

:/O/ W({f > 10 {g > s}) dt ds

< /0 / u({f > 1)), nllg > s})) dt ds

- /0 / min(u({f* > t}), u({g™ > s})) dtds

= [ [T utrr s oot s syaas= [ g

where we used the fact that {f** > ¢} and {g** > s} are half-spaces of the
form {(x1,2') € R x RN=1: 2y > r} for some 7 € R and so

min(p({f™ > t}), u({g™ > s})) = p({S* > 1} 0 {g™ > s}).

O
Remark. Setting g = X4 in Lemma and thanks to (5.2)) we get
n(A)
/ fdz < fH(x)de = / f(s) ds. (5.3)
A RY 0

5.2 A class of weighted Gauss-type isoperimetric
inequalities

Given a measurable function V : RN — R we denote by p[V] the abso-

lutely continuous measure whose density equals €V, that is, for any measur-
able set £ c RN

WVI(E) = [
E
in what follows, with the scope of simplifying the notation, and if there is
no risk of confusion, we will drop the dependence of V', writing p instead of
u[V]. Moreover we will often adopt the notation z = (x1,2') € R x RV~!
and denote by R4 instead of Rfflm the right rearrangement of A with respect
to the measure p[V].
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Given a Borel weight function w : R — [0, +00] we define, for any open
set A with Lipschitz boundary, the following weighted perimeter:

P,v(A) = /BA w(zy)e’ @ dHN T (z).

In the following proposition we show that, under suitable conditions on w
and V, the half-spaces of the form {(z1,2’) : 1 > t} are the only minimizers
of the weighted perimeter among the sets of fixed volume with respect to the
measure u[V].

Proposition 5.2 (JMR]). Let A C RY be a set with Lipschitz boundary.
Suppose that w: R — RY and V : RN = R are C'-reqular functions satisfy-
ing the following assumptions:

(i) 1(A) = p(Ra) < +oc,

(ii) the function 01V (x) depends only on x1 and g(x) := —w'(x1)—w(x1)01V (x)
18 a non-negative decreasing function on the real line.

Then
P,v(A) > Pyv(Ra). (5.4)

Proof. We start by noticing that if P,y (A) = 400 there is nothing to prove.
Hence we can suppose that

Pw7v(A) < +00. (55)

Let e; = (1,0,...,0) € RY and consider the vector field —ejw(z1)e" ). Tts
divergence is given by

div(—eyw(zy)e” (z)) = (—w'(z1) — w(z)AV (z))eV® = g(z)eV @,

By an application of the Divergence theorem we have
/ g(x)du(x) = / div(—eyw(z1)e¥ @) dz
A A
_ / w(@)e" @ wa(a), —e)dHY 1 z)  (5.6)
0A
S/ w(wy)e” DdH (x) = Puy (A).
0A

Let t4 be a real number such that the right half-space R4 = {(z1,2') :
x1 > ta} satisfies u(R4) = u(A). Then, since the outer normal of R4 is the
constant vector field —ej, the inequality in turns into an equality if we
replace A with R4. Notice that by condition (i7) and we have

Puv(Ra) = /

gdu +/ gdu < g(ta)u(A) + Py v (A).
Ra\A RANA
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Thanks to assumption (z) and (5.5)) such quantities are finite and so we get

Puv(A) = Puy(Ra) > /A g(@)dp(z) - / o) du(z).

Ra

Since, by definition, p(A) = p(Ra) < +oo again by condition (i) we obtain
p(A\ Ra) = p(Ra\ A) < +o0. Thus

/A o(e)du(z) - /R olx)n(r) = /A L S@e) ~ /R | Stz)

— [ o)~ gttaen)dn() — [ (o) — gltacr))duta).
A\R4

Ra\A
(5.7)
Since every x € A\ Ry (respectively z € Ry \ A) satisfies (z,e1) < ta
(respectively (z,e1) > ta), by condition (i1) we deduce

Poy(A) — Py (Ra) > /

19(x) — gltaen)|du(z) + / 9(@) — gltae)|duz)
A\R,4

Ra\A

- / lg(2) — gltaen)|dp > 0,
AAR»H

(5.8)
where AARy = (A\ Ra) U (Ra \ A) stands for the symmetric difference
between A and R4. This concludes the proof. O

Remark 5.3 (Necessity of the assumptions). We stress that the integrability
condition (7) is necessary to formulas and (and thus to our proof)
to work.

Concerning condition (#7), we note that it is needed just for technical reasons.
Nonetheless we stress that our proof offers a slightly stronger inequality
than . Indeed the right-hand side of may be seen as a modulus of
continuity of the L! distance between A and R4. Thus it would be interesting
to understand how much our hypotheses are far from optimality (compare
also with [BDRl Remark 2.3|).

Remark 5.4 (Equality cases). An inspection of the proof of Proposition
and in particular of inequality , shows that if w > 0, then we have
equality in only if A is equal to the half space R4, up to set of zero
N-dimensional Lebesgue measure. On the other hand, if the set {w = 0}
has positive Lebesgue measure, we can not expect any kind of uniqueness
for the equality cases of such an inequality.

Example. A non-trivial example fulfilling condition (i) of Proposition
is the following

V(zy,2') = —c(zy|z| + |2')?), w(z) = e 41,
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with a, ¢ > 0 constants satisfying a®> — 2c¢ > 0. To prove this fact we initially
observe that if x1 # 0 such a condition is equivalent to require that

w”(@1) + V{'(z1)w(z1) + V{(z1)w'(z1) > 0 (5.9)
which turns out to be equivalent, in our example, to
a? — 2¢ + 2ac|x1| > 0.

Then, since —w'(x1) — w(x1)01V (x1) is continuous in x; = 0, condition (i7)
is satisfied everywhere.

To transform inequality into a well posed isoperimetric problem, it
would be more advisable to eliminate the integrability hypothesis (i) in
Proposition by requiring that the measure u(R™) < +oo. This fact,
together with ordinary differential inequality required in assumption (%), is
seldom satisfied.

Hence, to get other instances of functions which fulfill inequality
together with the integrability property (i) of Proposition it is worth
restricting our attention to the half-space

RY = {(21,2/) e R x RN . 2y > 0}.

As an immediate corollary of Proposition [5.2] we get that the solution of the
problem

min { P,y (A) : A C RY, u(A)=c, 94 Lipschitz } (5.10)

is given by R. = {1 > t.} where t. is such that u(R.) = c.

Remark 5.5. Notice that the non-mixed Gauss case, w constant and V(x) =
—c|x|?, is not covered by our hypotheses.

Nevertheless in this case examples of functions w which satisfy the hy-
potheses of Proposition are given by w(t) = t~* with a > 1 or w(t) =
b+ e ™ with a,b > 0 such that a? — 2¢(1 + b) > 0 (as can be easily seen
reasoning as in the previous example). In the latter case at least if b = 0 we
have that 2)

where e; = (1,0,...,0) € RV, which can be rephrased as the fact that the
solutions of the isoperimetric problem in the half-space Rﬂ\_f with (suitable)
mixed Gaussian conditions

weV = ¢a°/(40) exp <—c ‘a: + e12g
C

min { Py, , (E) : 75,0(E) = constant, E C RJI, OF Lipschitz}
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are right-half spaces. Here we denoted by 7, the normal distribution whose

covariance matrix is old and whose mean vector 7 is given by n = —5-eq. If
b # 0 the unique change is that the perimeter is weighted by means of the
sum of two Gaussian measures. We recall that similar problems related to

the Gauss measure are considered in [BBMP3, BCMI|, [dBl, [dBFP [TL.

Notice that we defined the perimeter P,y only for sets with Lipschitz
boundary, but for our later applications it will be useful to have a definition of
perimeter which comprehends also less regular subsets of RY. A measurable
set A is said to have locally finite (Euclidean) perimeter (we refer to [Mal
for a complete overview on the subject) if there exists a vector-valued Radon
measure v4 called Gauss—Green measure of the set A such that, for every
T € CHRYN;RY), it holds true that

/divT:/ (T, dva).
A RN

The perimeter of A is defined in terms of the total variation of the Gauss—
Green measure of A as P(A) = |v4|(RY). For any set A of locally finite
perimeter we then define the weighted perimeter P,y by

Py (A) = we" |va|(RY).

Since when A has Lipschitz boundary |v4| = HY~1LJA, the above definition
is coherent with the one given at the beginning of this section on such sets.

Theorem 5.6. [MRE] Let w and V non-negative and C*-regular functions
satisfying condition (ii) of Proposition . Suppose moreover that M(Rf) <
400; then the problem

min { P, v(A4) : A C RY, w(A) = c}
admits a solution, and this solution coincides with the one of ({5.10)).

Proof. Let A be a measurable set of locally finite perimeter and suppose,
by contraddiction, that P, v (A) < P,y (Ra). We start by noticing that
P, v(Ra) < 400, indeed, recalling (5.6) we have that

Py (Ra) = /R o) dyu(z) < g(O)u(A).

By [Ma, Theorem II.2.8] we can find a sequence of sets A,, with smooth
boundary such that X4, — X4 in LL (RY) and |va,| —* |val, where —*
indicates the weak™ convergence of Radon measures. Since M(Rf ) < 400,
we also have that

Xa, = Xa in LYRY, ) (5.11)
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v

and, since we" is a continuous function

lim weV|VAn|:/ weY |v4l. (5.12)
RN RN

n—oo

Thanks to (5.12)) and Proposition we get
Pw,V(A) = nhﬁnolo Pw,V(An) > nhﬁnolo Pw,V(RAn)'

We are left to show that lim, o Py v (Ra,) = Py v(Ra), but

|Pu,v(Ra) = Puyv(Ra,)| < g(0)|u(A) — p(An)l,

and we can conclude thanks to (5.11) and the fact that u(RY) < +00. O

5.3 A comparison result for the solutions of some
degenerate elliptic equations

In this section we consider sets £ C RJX and we define du = €' dux,
Rp = {z1 > tg} where tg € R is such that u(Rg) = p(F) and f* = f** the
right rearrangement of a function f with respect to pu. In what follows we
consider problems of the form

{ —div(w?eVDu) = fe¥ inE (5.13)

u=20 on OF

which must be intended in weak sense. Precisely, a solution of (5.13)) is a
function u € H}(eV',w?eV, E), defined as the closure of C§°(E) with respect
to the norm

1/2
||U”H3(eV,w2eV,E) = </ ugevdx—i-/ |Du|2wevdm> ,
E E

and which satisfies
/ (Du, D$)w?e" dx = / foeV dx (5.14)
E E
for any ¢ € H}(e", w?e", E).
The main scope of this section is to prove a priori estimates for the
solutions of problem ([5.13]). For this reason we shall always consider that

a solution wu exists. Clearly this requirement depends on the choice of w,
V and f. General instances of such functions for which the existence of
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a solution for problem is guaranteed, can be found in [Tt] (see also
[dB, TL, BBMP3, [dBFP]). Here we limit ourselves to state that most of
the examples considered in Remark as the mized-Gaussian case V() =
—clx|?, w(t) = b+ e % with a? — 2¢(1 + b) > 0 and b strictly positive, are
covered by the cases considered in [Tt], whenever f € L?(E,e").

Theorem 5.7 ([MR]). Suppose that the set E C RY = {(z1,2') : 1 > 0}

and the functions w : [0,4+00] — (0,400] and V : RN — R satisfy the
hypotheses of Proposition[5.3. Consider the two problems

—div(w?eVDu) = fe" inE
{ u=20 on OF (5.15)
and (w2 eV Do) v
—div(w® e’ Dv) = f*e" in Rp
{ v=0 on ORE (5.16)

where 0 < f € LQ(Rf,u). Then the problem (5.16) has as solution the one

variable function v(z) given by

o((2#)) = v(z) = / ({(R)}) 0 ( [ re d&) ds,  (517)

where
h(m) = w(@1(m)) / W(@1(m), ') dat, (5.18)

RN-1

being ®(t) = p({x1 > t}). Moreover, for any solution u of the problem

(5.15), we have

u*(z) < wv(z), (5.19)

and, for any q € (0,2],
/ | Du|tw? dp §/ | Dv|%w? dp (5.20)
E Rg
Proof. Let us suppose for the moment that the function v given in ([5.17)) is

a solution for the problem ({5.16)). To prove (5.19) and ([5.20)) we consider the
functions ¢y, defined as

sign (u) if jul >t+h
on(w) = ¢ HemEm ) it ju| € [t,t+ h)
0 if |u| <,

where 0 < t < esssuplu| and h > 0. Notice that, for every h > 0, ¢

is an admissible test function, since the solution u belongs to the space
Hi(eV,w?eV,E). Then (5.14)) turns into

1 1
7 / (Du, Du)w? dp = h/ f (u—tu)d,u,—i—/ fsign (u) dp.
{ulelt,t-+h)} (uleltt+h)} |ul {Jul>t+h}
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Taking the limit for A — 0, we get

d

= ” 1t}|Du|2w2d,u:/ fdu. (5.21)
u|>

{lul>t}

Let us analyze the left-hand side of equation (5.21). We claim that the
following inequality holds true for almost every t¢:

2
-4 | Du|w dp
d/ | Duf?w? dy > (i kS ) : (5.22)
dt J w1 — i, (t)

where p1,,(t) is the distribution function of u introduced in the Section
Indeed p,(t) is a decreasing function and thence it is derivable for almost
every t, thanks to the Holder inequality we get

d 1
- |Du|w dp = lim — | Dulw dp
dt Jiju/>t) h=0 h Jicju|<t+h

1/2 . 1/2
< lim / | Dul*w? dp / — dp
h—0 ( {t<|u|<t+h} {t<|u|<t+h} h?
. 1/2 ) 1/2
= lim / | Dul*w? du / 1dp
h—0 (h {t<|u|<t+h} h {t<|u|<t+h}

1/2

d/ 2 9 ' 1/2
=|-= |Dul"w” dp — e (1)
< At J{ju)>t} ( )

By the Co-Area formula and the fact that w is strictly positive and C!, we
easily get that the set {u > t} is a set of locally finite (Euclidean) perimeter.
Thus, thanks to Proposition [5.2] and Theorem [5.6] we get

d %
-2 Duwdi= | wdp=Pay({lul > 1)) = Puy({u” > 1))
{lul>t} {|ul=t}
(5.23)
We introduce the function
O(t) = p({x1 > t}). (5.24)

We recall that the weight function w is constant on the boundary of the
super level sets of u*, so that the perimeter of {u* > t} can be written as

Pov({u" > t}) = w(r) / (o) da.

RN-1

Moreover 7 € R satisfies p,(t) = ®(7) that is 7 = ® 1 (1, (¢)) (notice that
® is a strictly decreasing function and thus invertible) so that we can write
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the previous formula as

Py ({u" > t}) = w(® (1 (t)))/ (@7 (1)), @) da” = hlps (1))

RN-1
(5.25)
Plugging (5.23)) in (5.22]), and recalling (5.25)) we get that
d (= (t))?
- / | Dul*w? dp > M (5.26)
At J{jul>1y s (t)

We pass now to estimate the right-hand side of (5.21)): equation (5.3)) with
A = {|u| > t} turns into

Hoqy* (t)
[ orans [ pau= [T peds G
{lul>t} {lu*[>t} 0
Combining (5.27)) and (5.26)) we get
(Jy=r @ £2(s)ds) e () _
P2 (11 (£)) =

Reasoning analogously for the function v, we easily see that, since v is con-
stant on every set {x; = t} and since v = v*, ([5.28]) holds for v as an equality.
Consider now the real function

1. (5.28)

_ for f(s)ds

F(r) = 05

and let G be a primitive of F. Since F' > 0, we have that G is increasing.
Moreover by our previous analysis we have that

F (s ()i (8) < —1 = Fla (D)) (0).

We recall that here p.(t) denotes the derivative almost everywhere of the
function g+ (t). Moreover ¢ — G(ju,+(t)) is a monotone non-increasing func-
tion which satisfies the chain rule in any point of differentiability of =, so
that, by [AFP, Corollary 3.29]|, we get that

it (1)) < Glua-(0)) + / Fle (e (r)dr. (5.29)

On the other hand, being 1, (t) an absolutely continuous function (since v is
a C! with positive derivative one variable function) we have

Gj1u(t)) = G- (0)) + /0 F(juo(r) i (7) d, (5.30)
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so that, since G(uy(0)) = Gy (0)), we get that G(pu+(t)) < G(u(t)).
This implies that g, (t) < p,(t) for any ¢ and hence that v* < v, since u*
and v depends only on z; and are increasing functions of such a variable.

We pass now to the proof of . Using the Hélder inequality and
reasoning as before we obtain, for 0 < ¢ < 2,

d 1
—— |Du|fw? dp = lim — / | Du|fw? dp
dt Jiju>t h=0 I Ji<juj<t+h

1 a/2 1 1—q/2
< lim / | Dul?w? dp / du
h=0 \ I J {p<ju|<t+n} h Jit<iul<t+n}

J q/2
- (—dt [ pupe? du> (il (1)) 9/2,
{lu|>t}

Recalling ((5.21]) and (5.27) we have

/"u*(t)
—% | Dul*w® dp < / f*(s) ds,
{Ju|>t} 0
thus
d o (1) a/2
e < [ reas) e eay
ul>
Combining (5.31)) and (5.28)) we finally get
d , 1 :u'u*(t) " 1
5 | Dt < (e ) (B @) [T s
{Ju[>t} 0

By integrating on both side between 0 and +o0, we get

q

u|9w? OO— ! X -1 s (0 *(s)ds
/E'D | duﬁ/o (—ple (1)) (hmu 1)) /0 7 >d> dt.

We perform the change of variables r = p,+(t), so that the above equation

turns into
w(E) T q
/\Du|qwqdu§/ (h(r)_l/ f*(s)ds) dr.
E 0 0

By a straightforward inspection of those steps we notice that v satisfies

q

qwq _ [e'e) o 1 ,U«u(t) " s 5 )
/R Do i = /0 (i (1)) (hmv(t)) /0 7 >d> d;
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By performing the change of variables r = p,(t) we find

wRE) T q
q,,,9 — —1 * )
/RE | Dv|%w? dp /0 <h(7") /0 1*(s) ds) dr

Since u(E) = pu(Rg) we get the desired result.
We are left to prove that the function v given by (5.17) is a solution of

problem (5.16)). We start by noticing that equation (5.28) suggests how to
derive (5.17)): indeed, as we pointed out, any solution v of ((5.16)) such that

v = v* satisfies ®
v * d
MML@) = _1.
h2(y(t))

By integrating both sides between 0 and r we obtain
ro[Ho(t) px d
/ f072 i Zpl (1) dt = -
0 h2 (o (t))

so that, by performing the change of variables m = u,(t), we get

/N(RE) f(;n f*(s) ds
o (T) h?(m)

dm=r

which is equivalent to

w(Re) [T £%(g) d
v(z, 7)) :/ wdm,
u{z1>z} h (m)

that is (5.17). Notice that v is strictly decreasing and belongs to Cllo’i(RE).
Indeed, recalling (5.18)) one can explicitly compute

v fH{I1>Z} f*(s) ds
D ! — e / — _ 0
v(z,2") 6182(2,2) ele(Z) o Ve
where e; = (1,0,...,0) € RY. Since f* is a decreasing and locally integrable

function, then f* € L (R); thus, being z — u({z1 > 2}) Clregular,
we get that [jf {w1>2} f*(s)ds is a locally Lipschitz function. Moreover the
denominator is locally Lipschitz as well, and locally bounded away from
zero. Hence we have that Dv is locally Lipschitz. Thus, recalling that 0,V
depends only on the first variable x; it is possible to explicitly compute the
divergence of w?Dv e and check that it satisfies . This concludes the

proof of the theorem. O
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