7 research outputs found

    Some Preconditioning Techniques for Saddle Point Problems

    Get PDF
    Saddle point problems arise frequently in many applications in science and engineering, including constrained optimization, mixed finite element formulations of partial differential equations, circuit analysis, and so forth. Indeed the formulation of most problems with constraints gives rise to saddle point systems. This paper provides a concise overview of iterative approaches for the solution of such systems which are of particular importance in the context of large scale computation. In particular we describe some of the most useful preconditioning techniques for Krylov subspace solvers applied to saddle point problems, including block and constrained preconditioners.\ud \ud The work of Michele Benzi was supported in part by the National Science Foundation grant DMS-0511336

    Updating constraint preconditioners for KKT systems in quadratic programming via low-rank corrections

    Get PDF
    This work focuses on the iterative solution of sequences of KKT linear systems arising in interior point methods applied to large convex quadratic programming problems. This task is the computational core of the interior point procedure and an efficient preconditioning strategy is crucial for the efficiency of the overall method. Constraint preconditioners are very effective in this context; nevertheless, their computation may be very expensive for large-scale problems, and resorting to approximations of them may be convenient. Here we propose a procedure for building inexact constraint preconditioners by updating a "seed" constraint preconditioner computed for a KKT matrix at a previous interior point iteration. These updates are obtained through low-rank corrections of the Schur complement of the (1,1) block of the seed preconditioner. The updated preconditioners are analyzed both theoretically and computationally. The results obtained show that our updating procedure, coupled with an adaptive strategy for determining whether to reinitialize or update the preconditioner, can enhance the performance of interior point methods on large problems.Comment: 22 page

    BFGS-like updates of constraint preconditioners for sequences of KKT linear systems in quadratic programming

    Get PDF
    We focus on efficient preconditioning techniques for sequences of KKT linear systems arising from the interior point solution of large convex quadratic programming problems. Constraint Preconditioners~(CPs), though very effective in accelerating Krylov methods in the solution of KKT systems, have a very high computational cost in some instances, because their factorization may be the most time-consuming task at each interior point iteration. We overcome this problem by computing the CP from scratch only at selected interior point iterations and by updating the last computed CP at the remaining iterations, via suitable low-rank modifications based on a BFGS-like formula. This work extends the limited-memory preconditioners for symmetric positive definite matrices proposed by Gratton, Sartenaer and Tshimanga in [SIAM J. Optim. 2011; 21(3):912--935, by exploiting specific features of KKT systems and CPs. We prove that the updated preconditioners still belong to the class of exact CPs, thus allowing the use of the conjugate gradient method. Furthermore, they have the property of increasing the number of unit eigenvalues of the preconditioned matrix as compared to generally used CPs. Numerical experiments are reported, which show the effectiveness of our updating technique when the cost for the factorization of the CP is high
    corecore