
Accepted: 28 November 2017

BFGS-like updates of constraint preconditioners for
sequences of KKT linear systems in quadratic programming

L. Bergamaschi1 V. De Simone2 D. di Serafino2 A. Martínez3

1Department of Civil, Environmental and
Architectural Engineering, University of
Padua, Padova, Italy
2Department of Mathematics and Physics,
University of Campania “Luigi Vanvitelli”,
Caserta, Italy
3Department of Mathematics “Tullio
Levi-Civita", University of Padua, Padova,
Italy

Correspondence
D. di Serafino, Department of
Mathematics and Physics, University of
Campania “Luigi Vanvitelli”, viale A.
Lincoln 5, 81100 Caserta, Italy.
Email: daniela.diserafino@unicampania.it

Funding information
INdAM-GNCS (Instituto Nazionale di
Alta Matematica, Gruppo Nazionale per il
Calcolo Scientifico)

Summary

We focus on efficient preconditioning techniques for sequences of
Karush-Kuhn-Tucker (KKT) linear systems arising from the interior point (IP)
solution of large convex quadratic programming problems. Constraint precon-
ditioners (CPs), although very effective in accelerating Krylov methods in the
solution of KKT systems, have a very high computational cost in some instances,
because their factorization may be the most time-consuming task at each IP
iteration. We overcome this problem by computing the CP from scratch only at
selected IP iterations and by updating the last computed CP at the remaining
iterations, via suitable low-rank modifications based on a BFGS-like formula.
This work extends the limited-memory preconditioners (LMPs) for symmetric
positive definite matrices proposed by Gratton, Sartenaer and Tshimanga in
2011, by exploiting specific features of KKT systems and CPs. We prove that
the updated preconditioners still belong to the class of exact CPs, thus allowing
the use of the conjugate gradient method. Furthermore, they have the property
of increasing the number of unit eigenvalues of the preconditioned matrix as
compared with the generally used CPs. Numerical experiments are reported,
which show the effectiveness of our updating technique when the cost for the
factorization of the CP is high.

KEYWORDS

BFGS-like updates, constraint preconditioners, interior point methods, KKT linear systems

1 INTRODUCTION

We consider the sequences of linear systems arising in the application of interior point (IP) methods to the following
convex quadratic programming (QP) problem:

minimize 1
2

xTQx + cTx,

subject to Ãx = b,
x ≥ 0,

(1)

where Q ∈ Rn×n is symmetric positive semidefinite, Ã ∈ Rm×n is full rank, and m ≤ n. At each IP iteration, a search
direction is computed by applying a Newton step to perturbed first-order optimality conditions; this leads, after some
manipulation, to a so-called Karush-Kuhn-Tucker (KKT), or saddle-point, linear system, as follows:

1

https://doi.org/10.1002/nla.2144
http://orcid.org/0000-0001-8215-0771

2 of 19 BERGAMASCHI ET AL

Hkuk = dk, (2)

where
Hk =

[
Gk AT

A 0

]
, uk =

[
u1,k
u2,k

]
, dk =

[
d1,k
d2,k

]
, (3)

A = −Ã, Gk = Q + Θk, Θk = X−1
k Zk, Xk = diag (xk), Zk = diag (zk), (4)

k identifies the IP iteration, (xk, zk) is the pair of complementary variables at that iteration, uk is the Newton step for
updating the primal variable xk and the vector of Lagrange multipliers associated with the equality constraints (see, e.g.,
other works1,2), and diag(v) denotes the diagonal matrix with diagonal entries equal to the components of v. Note that Gk
is positive definite because x k and z k have positive components, and A does not change throughout the execution of the
IP method. We focus on the case where Q and A are sparse; this often happens, for example, in large-scale problems.

It is well known that the entries ofΘk may tend either to zero or to infinity as the iterate approaches the optimal solution
of problem (1), thus making Hk severely ill conditioned (see, e.g., the work of D'Apuzzo et al.3). If the KKT systems
are solved by Krylov methods, the use of effective preconditioners is fundamental for the overall performance of the IP
methods. On the other hand, building from scratch a high-quality preconditioner for each KKT system may still require a
large computational effort, and the reuse of information coming from a preconditioner computed at a previous IP iteration
appears to be a nice alternative.

Many preconditioners have been proposed for system (2)–(4). The most successful ones exploit the block structure of
Hk, possibly together with information about the meaning and the structure of the blocks. In this work, we focus on con-
straint preconditioners (CPs), which have largely demonstrated their effectiveness in optimization and in other contexts
(see, e.g., other works3–9). A nice property of CPs is that they allow the use of the conjugate gradient (CG) algorithm,
although the matrix of the KKT system and the preconditioner are indefinite (see Section 2). The application of CPs usu-
ally requires their factorization, which may result in a high computational cost when the problem is large. Therefore,
several approximations of CPs, known as inexact CPs, have been considered, with the aim of finding a good trade-off
between cost and effectiveness.4,10–13 We note that CG generally cannot be used with inexact CPs; hence, other Krylov
solvers must be applied, such as the generalized minimal residual (GMRES) and quasi-minimal residual (QMR) methods,
or the simplified version of QMR known as SQMR.14

The idea of using a CP computed for a KKT system to obtain less expensive (inexact) CPs for subsequent KKT systems in
a given sequence has been recently investigated in other works.15–17 The procedure proposed by Bellavia et al.15 builds an
inexact CP for a KKT system at a certain IP iteration by performing a low-rank update of the factorized Schur complement
of the (1,1) block of a “seed” CP, that is, a CP computed at a previous IP iteration. The definition of the update is guided by
theoretical results on the spectrum of the preconditioned matrix. For KKT systems with nonzero (2,2) block, in the work
of Bellavia et al.,16 the previous strategy is combined with a low-cost updating technique,18,19 which is able to take into
account information discarded by the low-rank correction and expressed as a diagonal modification of the preconditioner
arising from the first update. Fisher et al.17 focused on sequences of KKT linear systems with varying off-diagonal blocks,
where the computations with these blocks are much more expensive than the computations with the (1,1) block. Inexact
CPs for the matrices of the sequence are built by applying generalizations of limited-memory quasi-Newton updates (see,
e.g., other works20,21) that act only on the off-diagonal blocks of a previously computed inexact CP of the type described
in the work of Bergamaschi et al.12

Limited-memory quasi-Newton updating techniques have been widely used to build preconditioners for sequences of
linear systems, usually with slowly varying matrices (see, e.g., other works17,22–26). However, to the best of our knowledge,
the update of CPs via quasi-Newton techniques has been considered only in the work of Fisher et al.17 In this article,
we present a preconditioner updating technique based on multiple BFGS-like corrections that is tailored for CPs. The
updated preconditioner still belongs to the class of exact CPs and hence allows the use of the CG method. Furthermore,
it has the nice property of increasing the number of unit eigenvalues of the preconditioned matrix with respect to general
CPs that are built from scratch. Our work extends the limited-memory preconditioners (LMPs) for symmetric positive
definite (SPD) matrices discussed by Gratton et al.,25 exploiting the specific features of KKT systems and CPs. We note
that, in the work of Gratton et al.,27 LMPs have been also extended to general symmetric indefinite linear systems, without
taking into account any special type of indefinite matrix (although they have been applied to KKT systems coupled with
block-diagonal preconditioners).

This paper is organized as follows. In Section 2, we briefly describe CPs for the matrix in (3) and recall their main
properties. In Section 3, we present our technique for updating CPs, providing theoretical results on the spectrum of
the corresponding preconditioned matrix. In Section 4, we specialize the previous technique to obtain practical updating

2

BERGAMASCHI ET AL 3 of 19

procedures. In Section 5, we provide some implementation details, and in Section 6, we illustrate the behavior of the
updating procedures on sequences of KKT linear systems arising in the solution of convex QP problems by an IP method.
Finally, some conclusions are given in Section 7.

Henceforth, we use the following notations: || · || denotes either the vector or the matrix 2-norm; for any symmetric
matrix M, 𝜆min(M), 𝜆max(M), and 𝜆(M) denote the minimum, the maximum, and any eigenvalue of M, respectively; 𝜅(M)
indicates the spectral condition number of M and diag (M) the diagonal matrix with the same diagonal entries as M.
Finally, I denotes the identity matrix of appropriate dimension.

2 CONSTRAINT PRECONDITIONERS

For simplicity of notation, we drop the subscript k from all the matrices and vectors in (2)–(4); hence, the KKT system
reads as follows:

Hu = d, (5)
with

H =
[

G AT

A 0

]
, u =

[
u1
u2

]
, d =

[
d1
d2

]
, G = Q + Θ. (6)

CPs for matrix H have the following form:

B =
[

E AT

A 0

]
, (7)

where E is some symmetric approximation to G. Any preconditioner of this type can be regarded as the coefficient matrix of
a KKT system associated with an optimization problem with the same constraints as the original problem, thus motivating
the name of the preconditioner. We note that E should be chosen so that B is nonsingular and is “easier to invert” than
H; furthermore, it must involve Θ in order to capture the key numerical properties of H. A common choice is

E = diag (G); (8)

a different approach consists of implicitly defining E by using a factorization of the form B = MCMT, where M and C are
specially chosen matrices.28 Here, we consider (8), which is SPD.

The spectral properties of the preconditioned matrix B−1H and the application of CG with preconditioner B to the KKT
linear system have been deeply investigated. For the sake of completeness, in the next theorem, we summarize some
theoretical results about CPs, given in other works.4,6,7

Theorem 1. Let H, G, A, B, and E be the matrices given in (6), (7), and (8), and let Z ∈ Rn×(n−m) be a matrix whose
columns span the null-space of A. Assume also that E is SPD. The following properties hold.

1. B−1H has an eigenvalue at 1 with multiplicity 2m.
2. The remaining n − m eigenvalues of B−1H are defined by the generalized eigenvalue problem, as follows:

ZTGZw = 𝜆ZTEZw. (9)

3. The eigenvalues, 𝜆, of (9) satisfy the following:

𝜆min
(

E−1G
)
≤ 𝜆 ≤ 𝜆max

(
E−1G

)
. (10)

4. If CG is applied to system (5) with preconditioner B and starting guess u(0) = [(u(0)
1)T (u(0)

2)T]T such that Au(0)
1 = d2,

then the corresponding iterates u(𝑗)
1 are the same as the ones generated by CG applied to the following:(

ZTGZ
)

u1 = ZT
(

d1 − Gu(0)
1

)
, (11)

with preconditioner ZTEZ. Thus, the component u∗
1 of the solution u∗ of system (5) is obtained in at most n − m

iterations, and the following inequality holds:

‖‖‖u(𝑗)
1 − u∗

1
‖‖‖ ≤ 2

√
𝜅

(√
𝜅 − 1√
𝜅 + 1

)𝑗 ‖‖‖u(0)
1 − u∗

1
‖‖‖ , 𝑗 = 1, … ,n − m,

where 𝜅 = 𝜅((ZTEZ)−1ZTGZ).

3

4 of 19 BERGAMASCHI ET AL

5. The directions p(j) and the residuals r (j) generated by applying CG with preconditioner B to system (5), with the same
starting guess as in item 4, take the following form:

𝑝(𝑗) =

[
Z�̄�(𝑗)1

𝑝
(𝑗)
2

]
, r(𝑗) =

[
r(𝑗)1
0

]
, (12)

where �̄�
(𝑗)
1 and r(𝑗)1 are the direction and the residual, respectively, at the jth iteration of CG applied to (11) with

preconditioner ZTEZ, and (
𝑝(𝑗)

)TH𝑝(i) =
(
�̄�
(𝑗)
1

)T
ZTGZ�̄�(i)1 . (13)

From the previous theorem, it follows that the preconditioned matrix has 2m unit eigenvalues independently of the par-
ticular choice of E; on the other hand, properties 2 and 3 show that the better E approximates G, the more the remaining
n − m eigenvalues of B−1H are clustered around 1. Furthermore, the application of CG to the KKT system (5) with pre-
conditioner B is closely related to the application of CG to system (11) with preconditioner ZTEZ. We note that property 4
does not guarantee that u(𝑗)

2 = u∗
2 after at most n−m iterations; actually, a breakdown may occur at the (n−m+ 1)st iter-

ation. However, this is a “lucky breakdown”, in the sense that u∗
2 can be easily obtained starting from the last computed

approximation of it, as shown by Lukšan et al.4 More generally, because it may happen that the 2-norm of the precondi-
tioned CG (PCG) residual may not decrease as fast as the H-norm of the PCG error*, a suitable scaling of the KKT system
matrix can be used to prevent this situation.29 In order to apply the preconditioner B, we can compute the square-root-free
Cholesky factorization of the negative Schur complement of E in B, as follows:

AE−1AT = LDLT , (14)

and then consider the block factorization, as follows:

B =
[

E AT

A 0

]
=
[

I 0
AE−1 I

] [
E 0
0 −LDLT

] [
I E−1AT

0 I

]
. (15)

Furthermore, by exploiting (15), we can easily obtain the following factorization of the inverse of B:

P = B−1 =
[

I −E−1AT

0 I

] [
E−1 0

0 −L−TD−1L−1

] [
I 0

−AE−1 I

]
. (16)

Henceforth, the inverse of a CP will be called inverse CP.
We note that the effectiveness of CPs may be hidden by the computational cost for the factorization of their Schur

complements, thus reducing the efficiency of the overall IP procedure. The updating strategy proposed in the next section
has been motivated by this issue.

3 MULTIPLE BFGS-LIKE UPDATES OF THE CP

In order to avoid the factorization (14) at a certain IP iteration k, we construct a preconditioner for the KKT system at
that iteration by updating a CP computed at an iteration i < k. As already observed, we extend to KKT systems and CPs
the preconditioner updating technique for SPD matrices presented by Gratton et al.,25 which in turn exploits ideas from
other works.20,21

In the following, we use H, B, and P defined in (6), (7), and (16), to denote the matrix of the KKT system, the associated
CP and its inverse at iteration k, respectively. Likewise, we use the following:

Ĥ =
[

Ĝ AT

A 0

]
, B̂ =

[
Ê AT

A 0

]
, P̂ = B̂−1 (17)

to denote the KKT matrix, the CP, and its inverse at iteration i (the “seed matrices”).

*It is easy to show that (e (𝑗))T He(𝑗) = (e(𝑗)1)T Ge(𝑗)1 , where e(𝑗) =

[
e(𝑗)1

e(𝑗)2

]
is the PCG error. Then, we can consider ||e(𝑗)||H =

√
(e (𝑗))THe (𝑗), which we call

H-norm although ||e (j)||H = 0 when e(𝑗)1 = 0 and e(𝑗)2 ≠ 0.

4

BERGAMASCHI ET AL 5 of 19

Let us consider a matrix, as follows:

S =
[

S1
S2

]
∈ R

(n+m)×q, q ≤ n − m (18)

with S1 ∈ Rn×q such that
rank(S1) = q, AS1 = 0. (19)

We first define a preconditioner for H by applying a BFGS-like rank-2q update to B̂, as follows:

Bu𝑝d = B̂ + HS
(

STHS
)−1STH − B̂S

(
STB̂S

)−1
STB̂, (20)

which is well defined because STB̂S = ST
1 ÊS1 and STHS = ST

1 GS1. By using the Sherman–Morrison–Woodbury inversion
formula, we get the following inverse of Bupd:

Pu𝑝d = B−1
u𝑝d = S

(
STHS

)−1ST +
(

I − S
(

STHS
)−1STH

)
P̂
(

I − HS
(

STHS
)−1ST

)
, (21)

which is analogous to the BFGS update discussed by Gratton et al.25 for SPD matrices.
In the next section, we will focus on the practical choice of the matrix S. Here, we prove some properties of the updated

preconditioner that hold regardless of the specific choice of S. To this end, we will consider either Bupd in (20) or Pupd
in (21), whereas in the implementation of the PCG iterations, we will use only Pupd, because it can be applied through a
recursive procedure requiring simple matrix-vector products (see Section 5).

We first prove that the previous rank-2q update allows the preconditioned matrix to have at least q eigenvalues equal
to 1. In order to simplify the notations, we define the following matrix:

𝒮 = SL−T
S , (22)

where LS is the lower triangular Cholesky factor of the matrix STHS.

Theorem 2. Let us consider the KKT system (5) and a seed inverse CP, P̂. Let S be the matrix defined in (18)–(19) and
Pupd the matrix in (21). Then, the columns of S are eigenvectors of PupdH with corresponding eigenvalues equal to 1.

Proof. By using 𝒮 , the matrix Pupd in (21) can be written as follows:

Pu𝑝d = 𝒮𝒮 T +
(

I − 𝒮𝒮 TH
)

P̂
(

I − H𝒮𝒮 T) . (23)

Moreover, it turns out that

𝒮𝒮 THS = SL−T
S L−1

S STHS = S
(

STHS
)−1STHS = S,

from which we get the following:

Pu𝑝dHS = 𝒮𝒮 THS +
(

I −𝒮𝒮 TH
)

P̂
(

HS − H𝒮𝒮 THS
)
= S. (24)

We also prove that the rank-2q update (20) (or, equivalently, (21)) produces a CP.

Theorem 3. The matrix Bupd given in (20) is a CP for the matrix H in (5).

Proof. We show that the update (20) involves only the (1, 1) block of B̂ and that Bupd is nonsingular; hence, the thesis
holds. Let us split 𝒮 into two blocks, as follows:

𝒮 =
[
𝒮1
𝒮2

]
, 𝒮1 ∈ R

n×q, 𝒮2 ∈ R
m×q.

From (19), it follows that A𝒮1 = 0. Then,

H𝒮𝒮 TH =
[

G𝒮1 + AT𝒮2
0

] [
𝒮 T

1 G +𝒮 T
2 A 0

]
=
[
Γ 0
0 0

]
,

where
Γ =

(
G𝒮1 + AT𝒮2

) (
𝒮 T

1 G +𝒮 T
2 A

)
.

5

6 of 19 BERGAMASCHI ET AL

Likewise, we have the following:

B̂S
(

STB̂S
)−1

STB̂ =
[
Φ 0
0 0

]
,

where
Φ =

(
ÊS1 + ATS2

)(
ST

1 ÊS1

)−1 (
ST

1 Ê + ST
2 A

)
.

It follows that

Bu𝑝d = B̂ + H𝒮𝒮 TH − B̂S
(

STB̂S
)−1

STB̂ =
[

Ê + Γ − Φ AT

A 0

]
. (25)

In order to prove that Bupd is nonsingular, we consider a matrix Z ∈ Rn×(n−m) whose columns span the null-space
of A and prove that ZT(Ê + Γ − Φ)Z is SPD (see, e.g., the work of D'Apuzzo et al.3). We observe that

ZT
(

Ê + Γ − Φ
)

Z = ZTÊZ + ZT (
G𝒮1 + AT𝒮2

) (
𝒮 T

1 G +𝒮 T
2 A

)
Z

− ZT
(

ÊS1 + ATS2

)(
ST

1 ÊS1

)−1 (
ST

1 Ê + ST
2 A

)
Z

= ZTÊZ + ZTG𝒮1𝒮 T
1 GZ − ZTÊS1

(
ST

1 ÊS1

)−1
ST

1 ÊZ (26)

= ZTEu𝑝dZ,

where we set
Eu𝑝d = Ê + G𝒮1𝒮 T

1 G − ÊS1

(
ST

1 ÊS1

)−1
ST

1 Ê. (27)

Then, by using the Sherman–Morrison–Woodbury formula, we have the following:

E−1
u𝑝d = 𝒮1𝒮 T

1 +
(

I − 𝒮1𝒮 T
1 G

)
Ê−1 (I − G𝒮1𝒮 T

1
)
, (28)

which implies that Eupd is SPD. This concludes the proof.

Now, we are able to prove a result about the unit eigenvalues of the preconditioned matrix PupdH, which, in view of
Theorem 1, are those of the following: (

ZTGZ
)

w = 𝜆
(

ZT(Ê + Γ − Φ)Z
)

w, (29)

where Z ∈ Rn×(n−m) spans the null-space of A.

Theorem 4. Let H be the matrix in (5) and Pupd the matrix in (21). Then, PupdH has an eigenvalue at 1 with multiplicity
at least 2m + q.

Proof. Because Pupd is an inverse CP, by Theorem 1 PupdH has 2m eigenvalues equal to 1, and its remaining n − m
eigenvalues are defined by the generalized eigenvalue problem (29). In order to conclude the proof, we show that this
problem has at least q eigenvalues equal to 1.

From AS1 = 0 it follows that S1 = ZW, where Z ∈ Rn×(n−m) spans the null-space of A and W ∈ R(n−m)×q.
Furthermore, by (26) and (27), the generalized eigenvalue problem (29) is equivalent to the following:

ZTGZw = 𝜆ZTEu𝑝dZw. (30)

We show that this problem has the solution pair (1,wi), where wi is any column of W.
The definition of 𝒮 (see (22)) implies that 𝒮1𝒮 T

1 GS1 = S1, and hence, we have the following:

ZTEu𝑝dZW = ZTEu𝑝dS1 = ZTÊS1 + ZTG𝒮1𝒮 T
1 GS1 − ZTÊS1

(
ST

1 ÊS1

)−1
ST

1 ÊS1

= ZTÊS1 + ZTGS1 − ZTÊS1

= ZTGS1 = ZTGZW ,

which proves that any column of W is an eigenvector of problem (30) corresponding to the eigenvalue 1.

6

BERGAMASCHI ET AL 7 of 19

The next theorem shows that the nonunit extremal eigenvalues of E−1
u𝑝dG are bounded by the extremal eigenvalues of

Ê−1G. Thus, by Theorem 1, we expect the application of Pupd to H to yield better spectral properties than the application
of P̂.

Theorem 5. Let Eupd, G, and Ê be the matrices in (27), (6), and (17), respectively. Then, any eigenvalue of Eu𝑝d
−1G

satisfies the following:

min
{
𝜆min

(
Ê−1G

)
, 1
}
≤ 𝜆

(
Eu𝑝d

−1G
)
≤ max

{
𝜆max

(
Ê−1G

)
, 1
}
.

Proof. Because Eu𝑝d
−1 has the form given in (28), where G and Ê are SPD and 𝒮1 is full rank, we can use

Theorem 3.4 in the work of Gratton et al.25 to bound the eigenvalues of Eu𝑝d
−1G in terms of the eigenvalues of Ê−1G.

Then, letting 𝜎1, 𝜎2, … 𝜎n be the eigenvalues of Ê−1G sorted in nondecreasing order, we find that the eigenvalues
𝜆1, … , 𝜆n of E−1

u𝑝dG can be divided into two groups as follows:

1. 𝜎j ≤ 𝜆j ≤ 𝜎j+q, for j ∈ {1, … ,n − q},
2. 𝜆j = 1, for j ∈ {n − q + 1, … ,n}.

This concludes the proof.

In summary, thanks to the previous theorems, we expect the updating strategy to improve P̂; on the other hand, by
Theorem 1, Pupd can be a reasonably good preconditioner as long as Ê+Γ−Φ in (25) is not too far from G. If this is not the
case, the performance of CG may deteriorate significantly and a recomputation of the CP from scratch may be more appro-
priate. Furthermore, the number q of vectors forming the matrix S must be selected, taking into account that larger values
of q can provide preconditioners that are more effective but also more expensive. Numerical experiments have shown
that in practice, q ≪ n must be considered to achieve a good trade-off between effectiveness and computational cost.

4 CHOICE OF THE MATRIX S

Now, we focus on the choice of the matrix S needed for building Pupd for the kth KKT system (2)–(3) in the sequence
under consideration. We first observe that by setting

u(0)
k = Pdk (31)

as a starting guess for PCG, where P is any inverse CP used during PCG, we have Au(0)
1,k = d2,k, and thus, the residual

r(0)k corresponding to u(0)
k takes the form specified in (12). Henceforth, we assume that the starting guess is computed as

in (31), using the preconditioner to be applied during PCG. Then, a natural choice is to set the columns of S equal to q
directions produced by the PCG algorithm applied to the KKT system at the previous IP iteration (of course, we assume
that q is smaller than the number of PCG iterations for solving that system). Thus, we build S as described next.

• BFGS-P. Let k and k − 1 identify the current and previous IP iterations. During the solution of the (k − 1)st system
Hk−1uk−1 = dk−1 by PCG, we store the first q Hk−1-conjugate directions {p(0), p(1), … , p(q−1)} after normalizing them as
𝑝(𝑗)∕

√
(𝑝(𝑗))THk−1𝑝(𝑗) (we neglect the index k − 1 in p(j) in order to simplify the notations). The matrix S used to build

Pupd for the KKT system at the kth iteration is obtained by setting its columns equal to the normalized directions.

Note that the preconditioner used for the solution of the (k−1)st KKT system can be any CP, for example, a CP computed
from scratch for the (k− 1)st system, a CP computed for a previous system, or a CP obtained by updating a given seed CP.
Note also that the suffix -P in BFGS-P refers to the fact that S is built by using PCG directions coming from the previous
KKT system.

Because we have experimentally verified that the PCG directions can rapidly lose the property of being mutually
Hk−1-orthogonal when Hk−1 is highly ill conditioned, we perform a selective reorthogonalization of the directions forming
S during their computation. More precisely, p(i) is Hk−1-reorthogonalized against p(l), with l < i, if|||(𝑝(i))THk−1𝑝

(l)||| > 𝛿, (32)

where 𝛿 is a small tolerance. Note that during the solution of Hk−1uk−1 = dk−1, the PCG algorithm uses the orthogonalized
directions as soon as they are computed.

7

8 of 19 BERGAMASCHI ET AL

We also considered other ways of selecting q directions among the ones generated by PCG at the (k − 1)st IP iteration,
for example, choosing the directions p(jt), where t = ⌊nit∕(q − 1)⌋, nit is the number of PCG iterations performed on the
(k − 1)st KKT system, and j = 0, … , q − 1 (normalization and reorthogonalization of the directions were applied too).
However, we did not observe any improvement by performing numerical experiments with this choice.

We now present a different choice of S, which deserves a detailed explanation.

• BFGS-C. We first apply q iterations of PCG to Hkuk = dk, using a seed preconditioner P̂, and collect the corresponding
normalized directions 𝑝(𝑗)∕

√
(𝑝(𝑗))THk𝑝(𝑗) as columns of S. Then, we restart PCG from the last computed iterate u(q)

k ,
with the preconditioner Pupd built by updating P̂ through S. In this case,

STHkS = I,
which implies that 𝒮 = S.

The suffix -C in BFGS-C refers to the fact that PCG directions from the current system are used to define S. As for
BFGS-P, a selective Hk-reorthogonalization of the directions is performed in the first q PCG iterations.

It is easy to show (see Appendix A) that in exact arithmetic, the BFGS-C procedure is equivalent to PCG with precondi-
tioner P̂. Thus, BFGS-C may appear completely useless. Nevertheless, it is useful in finite precision arithmetic. Freezing
the preconditioner P̂ computed at a certain IP iteration and using it in subsequent IP iterations yield directions that rapidly
and dramatically lose orthogonality. BFGS-C appears to mitigate this behavior, improving the performance of PCG.

In order to illustrate this situation, we discuss some numerical results obtained with 1 of the 35 KKT systems
arising in the solution, by an IP procedure, of the CVXQP3 convex QP problem from the CUTEst collection,30 with
dimensions n = 20, 000 and m = 15, 000 (see Section 6 for the details). We considered PCG with the following
preconditioning procedures:

• BFGS-C with q = 50 and seed CP recomputed every sixth IP iteration.
• CP recomputed from scratch every sixth IP iteration and frozen in the subsequent five iterations (henceforth, this is

referred to as FIXED preconditioning procedure).

In order to make a fair comparison, we performed a selective reorthogonalization of the first 50 directions during the
execution of PCG with FIXED preconditioning. In this case, as well as in the execution of the BFGS-C procedure, we used
𝛿 = 10−12. We also run PCG with FIXED preconditioning without any reorthogonalization. We focus on the KKT system
at the 24th IP iteration; hence, the seed preconditioner comes from the 19th IP iteration.

Figure 1 shows the following normalized scalar products:(
𝑝(𝑗)

)TH𝑝(l)‖‖𝑝(𝑗)‖‖ ‖‖H𝑝(l)‖‖ , l = 0, 25, 50, 𝑗 > l, (33)

for BFGS-C and both versions of the FIXED procedure. In the latter case, we observe a quick loss of orthogonality with
respect to the first q directions, even when the reorthogonalization procedure is applied. Conversely, BFGS-C appears to
better preserve orthogonality. As a consequence, the number of PCG iterations corresponding to BFGS-C is smaller than in
the other cases (122 iterations for BFGS-C vs. 176 and 196 for FIXED with and without reorthogonalization, respectively).

We also applied the FIXED preconditioning approach with a selective reorthogonalization of each PCG direction with
respect to the first 50 ones, and with respect to the directions of the 50 PCG iterations preceding the current one. In neither
case, we achieved a better PCG behavior than the one obtained with the BFGS-C strategy. Furthermore, these variants of
the FIXED procedure generally resulted to be less effective than the FIXED one with selective reorthogonalization of the
first q directions.

We believe that the behavior of BFGS-C preconditioning versus the different versions of the FIXED one deserves deeper
investigation. In particular, it would be interesting to analyze this behavior in light of the well-known self-correcting
properties of the BFGS method.31 However, this is beyond the scope of this paper.

Motivated by the previous observations, we consider a further preconditioning procedure.

• DOUBLE. We apply q PCG iterations to the current system Hkuk = dk by using a CP, say P(0)
u𝑝d, built with the BFGS-P

procedure, that is, by updating a seed preconditioner P̂ with the first q normalized PCG directions obtained at the
(k − 1)st IP iteration. Then, we restart PCG from the last computed iterate u(q)

k , with the following preconditioner:

Pu𝑝d = SC(SC)T +
(

I − SC(SC)THk

)
P(0)

u𝑝d

(
I − HkSC(SC)T

)
, (34)

where SC contains the normalized directions computed in the first q PCG iterations.

8

BERGAMASCHI ET AL 9 of 19

0 50 100 150 200

PCG iteration j

0 50 100 150 200

PCG iteration j

0 50 100 150 200

PCG iteration j

1e-16 1e-16

1e-12 1e-12

1e-08 1e-08

1e-04 1e-04

1e+00 1e+00

N
or

m
al

iz
ed

 s
ca

la
r

pr
od

uc
t

FIXED (no ortho)
BFGS-C
FIXED (ortho)

1e-16 1e-16

1e-12 1e-12

1e-08 1e-08

1e-04 1e-04

1e+00 1e+00

N
or

m
al

iz
ed

 s
ca

la
r

pr
od

uc
t

FIXED (no ortho)
BFGS-C
FIXED (ortho)

1e-16 1e-16

1e-12 1e-12

1e-08 1e-08

1e-04 1e-04

1e+00 1e+00

N
or

m
al

iz
ed

 s
ca

la
r

pr
od

uc
t

FIXED (no ortho)
BFGS-C
FIXED (ortho)

FIGURE 1 CVXQP3 test problem, KKT system at the 24th IP iteration: normalized scalar products (33) for BFGS-C and FIXED (the latter
with and without orthogonalization). Top: l = 0, middle: l = 25, bottom: l = 50

9

10 of 19 BERGAMASCHI ET AL

As for the previous preconditioning procedures, a selective reorthogonalization is applied to the PCG directions used
to build P(0)

u𝑝d and to those used for Pupd.

5 IMPLEMENTATION DETAILS

The preconditioning procedures described in the previous section are applied to the sequence of KKT systems as explained
next. The CP preconditioner P̂ is computed from scratch every kth IP iteration such that mod(k, s) = 0, where s is a
predefined positive integer. At IP iterations k+ 1, k+ 2, … , k+ s− 1, the preconditioner Pupd is not built explicitly, but its
application within PCG is performed as shown in Algorithm 1. Note that H refers to the matrix appearing in the definition
of Pupd for the selected procedure, that is, either Hk−1 or Hk. Of course, with the DOUBLE procedure, Algorithm 1 is used
to apply both P(0)

u𝑝d and Pupd (with P(0)
u𝑝d instead of P̂ when Pupd is considered). The algorithm assumes that

SH = HS

and the Cholesky factorization
STSH = LSLT

S (35)

have been precomputed.
Now, we compute the number of floating-point operations performed by the different preconditioning procedures. The

operation count, although not determining the actual performance of the preconditioner application phase, provides
useful information about its cost and allows a comparison among the various strategies.

Apart from step 3, the main cost of Algorithm 1 comes from the computation of the matrix-vector products involving
S or SH. Because the last m rows of SH are zero, as well as the last m components of the residual r, each of the steps 1,
2c, and 4 requires about 2qn floating-point operations, whereas step 5c requires about 2q(n + m) operations, for a total of
2q(4n + m) operations. The matrix-vector products can be efficiently computed by using BLAS 2 routines. The number
of floating-point operations for the triangular solves in steps 2a and 2b and in steps 5a and 5b is much smaller than the
previous ones, because q ≪ n is used in practice. For all the updating procedures, in the first q PCG iterations, the average
cost of the reorthogonalization per iteration is about q(n + m) floating-point operations in the worst case, that is, if all
the q conjugate directions must be reorthogonalized against all the previous ones. In the DOUBLE updating procedure,
the first q iterations have the same cost as q iterations performed with Pupd within BFGS-P, whereas in the remaining
iterations, the cost of updating the preconditioner is doubled. We also observe that Algorithm 1 is simplified when BFGS-C
is considered, because STSH = I and the triangular solves are not required. Furthermore, the computation of the columns
of SH is obtained as a by-product of the application of PCG to the current KKT system.

In Table 1, we summarize the cost per iteration of all the steps of the various updating strategies, except for step 3. We
also report the preprocessing cost required by the BFGS-P and DOUBLE variants, as described next.

TABLE 1 Cost of the various updating procedures in terms of floating-point operations:
preprocessing phase and single (kth) PCG iteration

FIXED BFGS-C BFGS-P DOUBLE

preprocessing – – q2n + 2qn q2n + 2qn
k ≤ q q(n + m) q(n + m) q(n + m) + 2q(4n + m) q(n + m) + 2q(4n + m)
k > q – 2q(4n + m) 2q(4n + m) 4q(4n + m)

Note. The cost of step 3 of Algorithm 1 is not included.

10

BERGAMASCHI ET AL 11 of 19

When S comes from the solution of the previous KKT system, the computation of SH can be carried out using the
following formula:

SH = HkSk−1 = (Hk−1 + Hk − Hk−1) Sk−1 = (SH)k−1 +
[
(Θk − Θk−1) (S1)k−1

0

]
,

where Sk−1 has as columns the normalized PCG directions computed at the (k − 1)st IP iteration, (SH)k−1 = Hk−1Sk−1
(which is a by-product of PCG applied to Hk−1uk−1 = dk−1), (S1)k−1 consists of the first n rows of Sk−1, and Θk is defined
in (4). Thus, the computation of SH requires about 2qn floating-point operations. The cost for computing STSH is about
q2n, by exploiting the symmetry of the matrix and the fact that the last m rows of SH are zero, whereas the cost of the
Cholesky factorization (35) is about q3∕3, which is small compared with q2n if q ≪ n.

6 COMPUTATIONAL RESULTS

In order to illustrate the behavior of the preconditioning procedures described in the previous sections, we show the
results obtained by applying them to the sequences of KKT systems arising in the solution of four convex QP problems.
Two of these problems (CVXQP3 and STCQP2) come from the CUTEst collection, whereas the others were obtained from
the previous ones by adding nonzero entries to the matrix A in (6), in order to increase the number of nonzero entries
of the Schur complement AE−1AT of the CP preconditioner (7) (in our experience, AE−1AT is inexpensive to factorize
for the CUTEst convex QP problems). The new problems are denoted by CVXQP3N and STCQP2N, respectively. For
each problem, the dimensions n and m, and the number of nonzero entries of A, of the CP Schur complement and of its
Cholesky factor L (see (14)) are given in Table 2. Further details on CVXQP3N and STCQP2N are given in Appendix B.

The sequences of KKT systems were obtained by running the Fortran 95 PRQP code, which implements an infeasi-
ble inexact potential reduction IP method,3,8,32 and by extracting the KKT matrices arising at each IP iteration and the
corresponding right-hand sides. Afterwards, these sequences were solved offline, by using PCG with the various precon-
ditioning procedures, implemented as explained in Section 5. The starting point for the PRQP solver was built with the
STP2 algorithm described by D'Apuzzo et al.,33 and the tolerances on the relative duality gap and the relative infeasibil-
ities were set to 10−6 and 10−7, respectively. Within PRQP, each KKT system was solved by the PCG algorithm with CP
recomputed from scratch, with an adaptive stopping criterion that relates the accuracy in the solution of the KKT system
to the quality of the current IP iterate. More precisely, the PCG iterations were stopped as soon as‖‖‖r(𝑗)‖‖‖ ≤ 𝜏, 𝜏 = min

{
max

{
𝜏1, 10−8} , 10−2 ‖‖‖r(0)‖‖‖} ,

where 𝜏1 depends on the duality gap value at the current IP iteration (see the work of Cafieri et al.34 for the details). In
the experiments reported in this section, the same stopping criterion was applied, using for each system the value of 𝜏
computed at the corresponding IP iteration. A maximum number of 600 PCG iterations was considered too, declaring a
failure if the stopping criterion was not satisfied within this number. The orthogonalization threshold 𝛿 in (32) was set to
10−12 for the FIXED and BFGS-C procedures, and to 0 for the BFGS-P and DOUBLE ones (these values of 𝛿 were chosen
by numerical experiments).

The preconditioning procedures BFGS-P, BFGS-C, and DOUBLE were applied with different values of s and q. The
value of q was dynamically defined by choosing a maximum value qmax for q and setting

q = min
{

qmax,nit𝑝rev
}
,

where nitprev is equal to the number of PCG iterations for solving the previous KKT system in the sequence. The
experiments were performed with 2 ≤ s ≤ 9 and qmax = 5, 10, 20, 50, 100; however, we report only a selection of the
results, which clearly shows the behavior of the preconditioners. In the following, we use the notations BFGS-P(s,qmax),
BFGS-C(s,qmax), and DOUBLE(s,qmax) to highlight the parameters s and qmax of the preconditioning procedures. For
example, BFGS-P(5,20) indicates that BFGS-P was used with s = 5 and qmax = 20. For comparison purposes, the FIXED

TABLE 2 Characteristics of the test problems

problem n m nz(A) nz(AE−1AT) nz(L)

CVXQP3 20,000 15,000 44,997 155,942 869,197
CVXQP3N 20,000 15,000 104,983 542,298 94,015,382
STCQP2 16,385 8,190 61,425 114,660 123,046
STCQP2N 16,385 8,190 131,026 38,427,398 141,980,157

11

12 of 19 BERGAMASCHI ET AL

TABLE 3 Results for problem CVXQP3 (number of KKT systems in the
sequence: 35)

Prec s qmax PGC iters Tf−Schur Ta-seed Tupd Ttot

RECOM – – 489 2.34 1.60 – 4.89
FIXED 2 0 755 1.20 2.26 – 4.47

2 5 752 1.19 2.24 0.03 4.50
2 10 741 1.19 2.23 0.09 4.54
2 20 733 1.19 2.23 0.17 4.63

BFGS-P 2 5 742 1.20 2.27 0.32 4.87
2 10 696 1.21 2.16 0.60 5.02
2 20 674 1.20 2.12 0.99 5.34

BFGS-C 2 5 702 1.21 2.11 0.16 4.52
2 10 700 1.20 2.15 0.28 4.67
2 20 700 1.18 2.15 0.40 4.76

DOUBLE 2 5 695 1.23 2.24 0.50 5.00
2 10 665 1.26 2.16 0.90 5.29
2 20 662 1.24 2.16 1.26 5.66

FIXED 3 0 1,051 0.80 3.07 – 5.17
3 5 1,048 0.80 3.08 0.03 5.20
3 10 1,026 0.80 3.04 0.09 5.21
3 20 1,006 0.79 3.00 0.22 5.28

BFGS-P 3 5 1,012 0.80 3.06 0.53 5.67
3 10 951 0.80 2.93 1.03 6.00
3 20 886 0.79 2.74 1.86 6.60

BFGS-C 3 5 951 0.81 2.84 0.28 5.15
3 10 931 0.80 2.83 0.50 5.34
3 20 926 0.79 2.84 0.76 5.61

DOUBLE 3 5 919 0.82 2.91 0.84 5.73
3 10 876 0.81 2.72 1.51 6.05
3 20 846 0.79 2.64 2.38 6.78

procedure, consisting of recomputing the preconditioner from scratch every sth IP iteration and of reusing it in the next
s−1 IP iterations, was applied too. We write FIXED(s,qmax) to indicate the value of s used and to emphasize that a selective
reorthogonalization of the first q PCG directions was carried out in the solution of each system, with q defined by using

TABLE 4 Results for problem CVXQP3N (number of KKT systems in the
sequence: 36)

Prec s qmax PGC iters Tf-Schur Ta-seed Tupd Ttot

RECOM – – 513 2,421.51 46.57 – 2,469.18
FIXED 6 0 3,005 403.75 258.20 – 665.58

6 20 2,931 403.83 251.26 0.28 658.92
6 50 2,724 403.77 233.85 1.05 642.02

BFGS-P 6 20 2,350 404.40 202.80 5.49 615.20
6 50 2,053 404.04 177.44 11.21 594.95

BFGS-C 6 20 2,223 403.89 193.07 2.93 602.81
6 50 2,132 404.06 185.26 5.06 597.21

DOUBLE 6 20 1,959 404.16 171.36 6.29 584.49
6 50 1,796 403.54 155.93 12.25 575.19

FIXED 8 0 3,944 337.02 339.72 – 681.33
8 20 3,871 336.91 331.36 0.30 673.04
8 50 3,613 336.96 309.58 1.23 651.95

BFGS-P 8 20 3,111 337.42 270.49 7.34 618.56
8 50 failure on system 34

BFGS-C 8 20 2,848 336.52 246.34 4.05 590.42
8 50 2,663 336.55 230.47 7.22 577.60

DOUBLE 8 20 2,489 336.85 216.70 8.20 564.42
8 50 failure on system 34

12

BERGAMASCHI ET AL 13 of 19

qmax. Note that FIXED(s, 0) corresponds to no reorthogonalization. Finally, the PCG solver was also applied with the CP
recomputed from scratch for each KKT system (this case is denoted by RECOM).

All the algorithms were implemented in Fortran 95. The resulting code, which is single threaded, was run on an Intel
Core i7-920 CPU (2.67 GhZ) with 6 GB RAM and 8 MB cache, Linux O.S. and gfortran compiler (GNU Fortran v. 4.8.4)
used with the -O4 option. The factorization of the Schur complement was performed by the MA57 routine from the HSL
Mathematical Software Library (http://www.hsl.rl.ac.uk).

In Table 3, we report some results concerning the application of the preconditioning procedures, including the FIXED
one, to CVXQP3: the cumulative number of PCG iterations (PGC iters), the execution times (in seconds) for the fac-
torization of the Schur complement needed to construct the CP from scratch (Tf-Schur), the CPU time needed for the
application of the seed preconditioner P̂ during the PCG iterations (Ta-seed), the times for the preconditioner updates
and the reorthogonalization steps (Tupd), and the total times (Ttot). The same data are shown also for the case where the
CP was recomputed from scratch for each KKT system. We do not report the remaining PCG time, which can be obtained
by the difference between the total time and the sum of Tf-Schur, Ta-seed, and Tupd.

In this case, because of the high sparsity of both the Schur complement and its Cholesky factor, the factorization
of a CP from scratch and its application are relatively cheap. Therefore, only a very modest gain can be obtained in
terms of execution time by using the updating procedures, choosing small values of qmax and s. The smallest times are
obtained with FIXED(2,0), although the smallest number of iterations corresponds to DOUBLE(2,20); using higher val-
ues of s yields an increase of the number of iterations, which is not offset by the reduction of the number of Schur
complement factorizations.

The situation changes for problem CVXQP3N, as shown in Table 4 (the reported values of s and qmax are among the
best choices). Here, the factorization of the Schur complement is rather expensive, and the recomputation of the CP from
scratch produces by far the largest execution time, even if it yields a much smaller number of PCG iterations than the
other preconditioning procedures. Furthermore, the updating procedures generally produce a significant reduction of the
number of iterations with respect to the FIXED one and hence smaller execution times. We also note that the time for
the preconditioner updates and the reorthogonalizations is a negligible part of the overall execution time. On the other

TABLE 5 Problem CVXQP3N: number of PCG iterations at IP iterations
17 to 36, for all the preconditioning procedures (the data corresponding to
the recomputation of the CP are in bold)

IPit RECOM FIXED BFGS-C BFGS-P DOUBLE

0 20 50 20 50 20 50 20 50
.........

17 13 13 13 13 13 13 13 13 13 13
18 13 30 28 28 25 25 22 22 22 22
19 14 44 40 38 36 36 34 30 31 30
20 14 70 66 61 52 52 58 46 50 46
21 14 103 102 86 75 73 76 59 67 58
22 14 145 144 124 98 92 118 86 92 76
23 14 255 254 237 179 156 208 166 161 131
24 14 391 390 375 257 216 300 259 230 178
25 14 14 14 14 14 14 14 14 14 14
26 14 30 29 29 30 30 27 27 27 27
27 13 48 44 40 38 38 41 36 37 36
28 15 75 73 68 61 61 61 48 52 48
29 15 122 115 96 81 78 103 77 77 67
30 28 216 211 195 147 138 163 137 127 111
31 28 250 248 233 172 161 195 184 155 146
32 28 366 364 352 273 239 299 267 240 209
33 27 27 27 27 27 27 27 27 27 27
34 28 57 53 52 46 46 47 – 41 –
35 28 92 88 76 67 67 77 – 61 –
36 28 184 179 159 114 110 158 – 110 –

Note. BFGS-P and DOUBLE fail at the 34th IP iteration, and the updates for the next
KKT systems are not computed.

13

14 of 19 BERGAMASCHI ET AL

hand, a failure occurs on one of the KKT systems by using BFGS-P(8,50) and DOUBLE(8,50) (more details on the failure
are given later in this section). In order to perform a deeper analysis, in Table 5, we report, for the same problem, the
number of PCG iterations obtained at selected IP iterations, with all the preconditioners. As expected, the effectiveness
of the updating procedures decreases with the distance of the current IP iteration from the one where the preconditioner
P̂ has been computed.

The PCG convergence histories for the KKT systems at the 24th and the 32nd IP iteration, with the updating procedures
and the FIXED ones for s = 8 and qmax = 50, clearly show how each procedure compares with the others in terms of
PCG iterations (see Figures 2 and 3): the best preconditioning procedure is DOUBLE, followed by BFGS-P, BFGS-C, and
then FIXED. This is a general behavior, although failures have been observed with BFGS-P and DOUBLE in cases where
BFGS-C and FIXED work.

Figure 4 displays the history of the residual norm corresponding to the failure of BFGS-P(8,50) at the 34th IP iteration.
The residual norm decreases up to about 1.9×10−6 at the 38th PCG iteration, and then, it keeps increasing, without being
able to reach the tolerance 𝜏, which is 10−6 in this case (nevertheless, a reduction of the residual norm of about 12 orders

0 100 200 300 400

PCG iteration number

1e+00

1e+02

1e+04

1e+06

1e+08

re
si

du
al

 n
or

m

FIXED (8,0)
FIXED(8,50)
BFGS-C(8,50)
DOUBLE(8,50)
BFGS-P(8,50)

FIGURE 2 Problem CVXQP3N, KKT system at the 24th IP iteration: convergence histories (residual norm vs. PCG iteration) for the
various preconditioning procedures, with s = 8 and qmax = 50. The seed preconditioner P̂ comes from the 17th IP iteration

0 100 200 300 400

PCG iteration number

1e-06

1e-04

1e-02

1e+00

1e+02

1e+04

1e+06

1e+08

re
si

du
al

 n
or

m

FIXED (8,0)
FIXED(8,50)
BFGS-C(8,50)
DOUBLE(8,50)
BFGS-P(8,50)

FIGURE 3 Problem CVXQP3N, KKT system at the 32nd IP iteration: convergence histories (residual norm vs. PCG iteration) for the
various preconditioning procedures with s = 8 and qmax = 50. The seed preconditioner P̂ comes from the 25th interior point iteration

14

BERGAMASCHI ET AL 15 of 19

0 10 20 30 40 50 60 70 80 90 100

PCG iteration number

1e-06

1e-04

1e-02

1e+00

1e+02

1e+04

1e+06

re
si

du
al

 n
or

m

FIGURE 4 Problem CVXQP3N, KKT system at the 34th IP iteration: divergence of the residual norm with BFGS-P(8,50)

TABLE 6 Results for problem STCQP2 (number of KKT systems in the
sequence: 12)

Prec s qmax PGC iters Tf-Schur Ta-seed Tupd Ttot

RECOM – – 209 0.18 0.19 – 0.73
FIXED 2 0 398 0.09 0.36 – 0.93

2 5 397 0.08 0.37 0.01 0.96
2 10 399 0.09 0.36 0.03 0.97
2 20 397 0.09 0.36 0.07 1.03

BFGS-P 2 5 387 0.09 0.32 0.13 1.03
2 10 389 0.09 0.32 0.28 1.19
2 20 383 0.09 0.32 0.52 1.44

BFGS-C 2 5 394 0.09 0.32 0.07 0.97
2 10 384 0.09 0.32 0.14 1.03
2 20 371 0.08 0.31 0.24 1.11

DOUBLE 2 5 378 0.09 0.31 0.22 1.08
2 10 374 0.09 0.32 0.46 1.29
2 20 364 0.09 0.31 0.80 1.59

of magnitude is obtained). Note that BFGS-P(8,20) is able to satisfy the stopping criterion, thus showing that using a large
number of directions coming from the previous KKT system may not be beneficial in the last IP iterations. The behavior
of the residual norm is about the same with DOUBLE(8,50).

Finally, in Tables 6 and 7, we report the results for problems STCQP2 and STCQP2N, with suitable values of s and
qmax. As is the case with CVXQP3, the extreme sparsity of the Cholesky factor of the Schur complement explains why the
updating procedures are not efficient on STCQP2. On the contrary, STCQP2N has a much denser Schur complement, and
the updating procedures significantly reduce the execution time. BFGS-C and DOUBLE are the most effective procedures,
irrespective of the value of qmax. No failure has been reported for this test case.

7 CONCLUSIONS

We have analyzed a general technique for updating CPs in the solution of sequences of KKT systems arising in IP meth-
ods for convex QP problems. Our update extends the LMPs proposed by Gratton et al.25 by exploiting specific features
of KKT systems and CPs. The updated preconditioners, computed through a rank-2q BFGS-like correction of a seed
preconditioner, still belong to the class of exact CPs and hence allow the use of the CG method. Theoretical results show

15

16 of 19 BERGAMASCHI ET AL

TABLE 7 Results for problem STCQP2N (number of KKT systems in the
sequence: 12)

Prec s qmax PGC iters Tf-Schur Ta-seed Tupd Ttot

RECOM – – 209 823.16 15.59 – 839.16
FIXED 7 0 1,977 137.55 140.64 – 280.40

7 20 1,974 137.57 140.69 0.08 280.55
7 50 1,986 137.54 141.30 0.38 281.36
7 100 1,968 137.54 140.13 0.76 280.64

BFGS-P 7 20 1,925 137.38 137.95 3.27 281.41
7 50 1,890 137.31 135.42 7.95 283.47
7 100 1,705 137.34 122.32 13.64 275.87

BFGS-C 7 20 1,866 137.42 133.68 2.06 275.31
7 50 1,758 137.53 125.93 4.51 270.02
7 100 1,593 137.50 114.16 6.58 260.14

DOUBLE 7 20 1,926 137.39 138.04 4.93 283.18
7 50 1,687 137.38 121.03 10.11 271.05
7 100 1,358 137.43 97.56 13.99 251.09

TABLE 8 Problem CVXQP3N: results obtained by applying the updating
procedures with an adaptive choice of the IP iteration where the CP is recomputed
from scratch

Prec itswitch qmax PGC iters Tf-Schur Ta-seed Tupd Ttot

BFGS-P 100 20 2,050 403.79 177.17 4.72 589.92
100 50 1,767 403.85 166.51 9.63 570.36

BFGS-C 100 20 1,960 403.98 169.42 3.33 580.74
100 50 1,957 403.85 169.26 5.55 582.85

DOUBLE 100 20 1,841 403.86 159.11 6.00 572.94
100 50 failure on system 36

BFGS-P 150 20 2,830 336.79 243.29 6.64 591.70
150 50 2,544 336.74 238.13 14.22 574.81

BFGS-C 150 20 2,579 336.79 222.17 4.65 565.54
150 50 2,645 336.74 229.33 8.41 566.06

DOUBLE 150 20 failure on system 33
150 50 2,753 269.35 237.00 20.06 532.19

that, compared with the CPs that are usually built from scratch, the updated CPs have the property of clustering q more
eigenvalues at 1. Furthermore, they provide better bounds on the nonunit eigenvalues of the preconditioned matrix than
the corresponding seed preconditioner.

Different procedures that fit the general CP updating strategy have been considered. They differ by the choice of the
matrix S used to apply the BFGS-like update to the seed preconditioner. Numerical experiments have shown that these
procedures are able to reduce the time for the solution of the sequence of KKT systems when the cost for the factorization
of the Schur complement is high. We also believe that an improvement of the updating procedures can be obtained by
using adaptive criteria to select the IP iteration where the CP has to be recomputed from scratch. As a first attempt in
this direction, we carried out further experiments where the recomputation of the CP was performed only if a maximum
number of PCG iterations, itswitch = 100, 150, had been exceeded. In Table 8, we report the results obtained on CVXQP3N.
Some time reduction can be observed with respect to the previous versions of the updating procedures; furthermore, no
failures show up with BFGS-P. On the other hand, there are two failures with DOUBLE. In our opinion, itswitch should be
dynamically defined too, taking somehow into account the behavior of PCG in previous IP iterations, with the aim of not
only reducing the execution time but also avoiding failures through an earlier recomputation of the CP. The development
of effective adaptive criteria will be considered in future work.

Among the various updating procedures, the one called BFGS-C is equivalent, in exact arithmetic, to applying PCG
with the seed preconditioner, but it appears to produce better results in finite precision arithmetic. In particular, it reduces
the loss of orthogonality of the PCG directions observed when PCG is used with the seed preconditioner. This behavior

16

BERGAMASCHI ET AL 17 of 19

deserves careful investigation and will be the subject of future work too. The extension of our updating strategy to KKT
systems where the (2, 2) block of the matrix is nonzero will be also considered.

ACKNOWLEDGEMENTS

This work was partially supported by INdAM-GNCS (Instituto Nazionale di Alta Matematica, Gruppo Nazionale per il
Calcolo Scientifico) under the Project Metodi numerici per problemi di ottimizzazione vincolata di grandi dimensioni e
applicazioni (2017). We wish to thank Serge Gratton and Valeria Simoncini for interesting discussions on the behavior of
PCG with the BFGS-C preconditioning procedure versus PCG with the FIXED one in finite precision arithmetic. We also
express our thanks to the anonymous reviewers for their careful reading of our manuscript and their useful comments,
which helped us improve the quality of our work.

ORCID

D. di Serafino http://orcid.org/0000-0001-8215-0771

REFERENCES
1. Wright SJ. Primal-dual interior-point methods. Philadelphia, PA: SIAM; 1997.
2. Gondzio J. Interior point methods 25 years later. European J Oper Res. 2012;218(3):587–601.
3. D'Apuzzo M, De Simone V, di Serafino D. On mutual impact of numerical linear algebra and large-scale optimization with focus on interior

point methods. Comput Optim Appl. 2010;45(2):283–310.
4. Lukšan L, Vlček J. Indefinitely preconditioned inexact Newton method for large sparse equality constrained nonlinear programming

problems. Numer Linear Algebra Appl. 1998;5(3):219–247.
5. Golub GH, Wathen AJ. An iteration for indefinite systems and its application to the Navier-Stokes equations. SIAM J Sci Comput.

1998;19:530–539.
6. Keller C, Gould NIM, Wathen AJ. Constraint preconditioning for indefinite linear systems. SIAM J Matrix Anal Appl. 2000;21:1300–1317.
7. Bergamaschi L, Gondzio J, Zilli G. Preconditioning indefinite systems in interior point methods for optimization. Comput Optim Appl.

2004;28(2):149–171.
8. Cafieri S, D'Apuzzo M, De Simone V, di Serafino D. On the iterative solution of KKT systems in potential reduction software for large-scale

quadratic problems. Comput Optim Appl. 2007;38(1):27–45.
9. Benzi M, Golub GH, Liesen J. Numerical solution of saddle point problems. Acta Numer. 2005;14:1–137.

10. Perugia I, Simoncini V. Block-diagonal and indefinite symmetric preconditioners for mixed finite elements formulations. Numer Linear
Algebra Appl. 2000;7:585–616.

11. Durazzi C, Ruggiero V. Indefinitely preconditioned conjugate gradient method for large sparse equality and inequality constrained
quadratic problems. Numer Linear Algebra Appl. 2003;10(8):673–688.

12. Bergamaschi L, Gondzio J, Venturin M, Zilli G. Inexact constraint preconditioners for linear systems arising in interior point methods.
Comput Optim Appl. 2007;36(2–3):137–147.

13. Sesana D, Simoncini V. Spectral analysis of inexact constraint preconditioning for symmetric saddle point matrices. Linear Algebra Appl.
2013;438(6):2683–2700.

14. Freund RW, Nachtigal NM. Software for simplified Lanczos and QMR algorithms. Appl Numer Math. 1995;19(3):319–341.
15. Bellavia S, De Simone V, di Serafino D, Morini B. Updating constraint preconditioners for KKT systems in quadratic programming via

low-rank corrections. SIAM J Optim. 2015;25(3):1787–1808.
16. Bellavia S, De Simone V, di Serafino D, Morini B. On the update of constraint preconditioners for regularized KKT systems. Comput Optim

Appl. 2016;65(2):339–360.
17. Fisher M, Gratton S, Gürol S, Trémolet Y, Vasseur X. Low rank updates in preconditioning the saddle point systems arising from data

assimilation problems. Optim Methods Softw. 2018;33(1):45–69.
18. Bellavia S, De Simone V, di Serafino D, Morini B. Efficient preconditioner updates for shifted linear systems. SIAM J Sci Comput.

2011;33(4):1785–1809.
19. Bellavia S, De Simone V, di Serafino D, Morini B. A preconditioning framework for sequences of diagonally modified linear systems arising

in optimization. SIAM J Numer Anal. 2012;50(6):3280–3302.
20. Schnabel RB. Quasi-Newton methods using multiple secant equations. Boulder, CO: Department of Computer Science, University of

Colorado; 1983. CU-CS-247-83.
21. Nash SG, Nocedal J. A numerical study of the limited memory BFGS method and the truncated-Newton method for large scale

optimization. SIAM J Optim. 1991;1(3):358–372.
22. Morales JL, Nocedal J. Automatic preconditioning by limited memory quasi-Newton updating. SIAM J Optim. 2000;10(4):1079–1096.
23. Bergamaschi L, Bru R, Martínez A, Putti M. Quasi-Newton preconditioners for the inexact Newton method. Electron Trans Numer Anal.

2006;23:76–87.

17

http://orcid.org/0000-0001-8215-0771
http://orcid.org/0000-0001-8215-0771

18 of 19 BERGAMASCHI ET AL

24. Bergamaschi L, Bru R, Martínez A. Low-rank update of preconditioners for the inexact Newton method with SPD Jacobian. Math Comput
Model. 2011;54(7–8):1863–1873.

25. Gratton S, Sartenaer A, Tshimanga J. On a class of limited memory preconditioners for large scale linear systems with multiple right-hand
sides. SIAM J Optim. 2011;21(3):912–935.

26. Gower RM, Gondzio J. Action constrained quasi-Newton methods. arXiv:1412.8045v1 [math.OC]; 2014.
27. Gratton S, Mercier S, Tardieu N, Vasseur X. Limited memory preconditioners for symmetric indefinite problems with application to

structural mechanics. Numer Linear Algebra Appl. 2016;23(5):865–887.
28. Dollar HS, Wathen AJ. Approximate factorization constraint preconditioners for saddle-point matrices. SIAM J Sci Comput.

2006;27(5):1555–1572.
29. Rozložník M, Simoncini V. Krylov subspace methods for saddle point problems with indefinite preconditioning. SIAM J Matrix Anal Appl.

2002;24(2):368–391.
30. Gould NIM, Orban D, Toint PhL. CUTEst: A constrained and unconstrained testing environment with safe threads for mathematical

optimization. Comput Optim Appl. 2015;60(3):545–557.
31. Byrd RH, Nocedal J. A tool for the analysis of quasi-Newton methods with application to unconstrained minimization. SIAM J Numer

Anal. 1989;26(3):727–739.
32. Cafieri S, D'Apuzzo M, De Simone V, di Serafino D, Toraldo G. Convergence analysis of an inexact potential reduction method for convex

quadratic programming. J Optim Theory Appl. 2007;135(3):355–366.
33. D'Apuzzo M, De Simone V, di Serafino D. Starting-point strategies for an infeasible potential reduction method. Optim Lett.

2010;4(1):131–146.
34. Cafieri S, D'Apuzzo M, De Simone V, di Serafino D. Stopping criteria for inner iterations in inexact potential reduction methods: A

computational study. Comput Optim Appl. 2007;36(2–3):165–193.
35. Nazareth L. A relationship between the BFGS and conjugate gradient algorithms and its implications for new algorithms. SIAM J Numer

Anal. 1979;16(5):794–800.

How to cite this article: Bergamaschi L, De Simone V, di Serafino D, Martínez A. BFGS-like updates of con-
straint preconditioners for sequences of KKT linear systems in quadratic programming. Numer Linear Algebra Appl.
2018;e2144. https://doi.org/10.1002/nla.2144

APPENDIX A

THEORETICAL EQUIVALENCE BETWEEN BFGS- C AND SEED PRECONDITIONING

We show that (in exact arithmetic) PCG with the BFGS-C procedure is equivalent to PCG using the seed preconditioner
of BFGS-C. For the sake of clarity, we first report the computations performed at each iteration of the PCG algorithm
applied to system (5) with any inverse CP, say, P, that approximates H−1. Letting u(0) = Pd (see the beginning of Section
4), r(0) = d − Hu(0), 𝛽(0) = 0, and p(−1) = 0, the jth PCG iteration, with j ≥ 0, can be described as follows:

𝑝(𝑗) = Pr(𝑗) + 𝛽(𝑗)𝑝(𝑗−1),

𝛼(𝑗) =
(

r(𝑗)
)TPr(𝑗)(

𝑝(𝑗)
)TH𝑝(𝑗)

,

u(𝑗+1) = u(𝑗) + 𝛼(𝑗)𝑝(𝑗),

r(𝑗+1) = r(𝑗) − 𝛼(𝑗)H𝑝(𝑗),

𝛽(𝑗+1) =
(

r(𝑗+1))TPr(𝑗+1)(
r(𝑗)

)TPr(𝑗)
.

We also recall that in the BFGS-C procedure, the PCG algorithm is restarted after the first q iterations (here numbered
from 0 to q − 1), using the last computed iterate as the starting guess and the corresponding preconditioned residual as
the starting direction.

The following result holds.

Theorem 6. The directions, residuals, and iterates generated by the BFGS-C procedure described in Section 4 are the
same as the directions, residuals, and iterates generated by the PCG algorithm with preconditioner P̂.

18

https://doi.org/10.1002/nla.2144

BERGAMASCHI ET AL 19 of 19

Proof. Let �̄�(𝑗), r̄(𝑗+1), ū(𝑗+1), �̄�(𝑗), and 𝛽(𝑗+1) be the direction, residual, iterate, and related scalars obtained at the jth
iteration of the BFGS-C procedure, and let �̃�(𝑗), r̃(𝑗+1), ũ(𝑗+1), �̃�(𝑗), and 𝛽(𝑗+1) be the corresponding vectors and scalars
at the jth iteration of the PCG algorithm with preconditioner P̂. The thesis obviously holds for j = 0, … , q − 1.

By the properties of the PCG algorithm applied to system (5) with preconditioner P̂, we have the following:(
�̃�(𝑗)

)THP̂r̃(q) = 0, 𝑗 = 0, … , q − 2, (36)

(
�̃�(q−1))THP̂r̃(q) =

(
r̃(q−1) − r̃(q)

)TP̂r̃(q)

�̃�(q−1) = −
(

r̃(q)
)TP̂r̃(q)

�̃�(q−1) ; (37)

furthermore, because the columns of the matrix S associated with the BFGS-C procedure are the normalized directions
�̃�(𝑗)∕

√
(�̃�(𝑗))TH�̃�(𝑗) with j = 0, … , q − 1, we get the following:

Pu𝑝dr̃(q) =
(

I − SSTH
)

P̂r̃(q). (38)

From (36) and (37), it follows that

SSTHP̂r(q) = −
(

r̃(q)
)TP̂r̃(q)(

�̃�(q−1)
)TH�̃�(q−1)�̃�(q−1)

�̃�(q−1) = −𝛽(q)�̃�(q−1),

and hence, by (38), we have the following:

Pu𝑝dr̃(q) = P̂r̃(q) + 𝛽(q)�̃�(q−1) = �̃�(q),
(

r̃(q)
)TPu𝑝dr̃(q) =

(
r̃(q)

)TP̂r̃(q).

This yields the following:

�̄�(q) = �̃�(q), �̄�(q) = �̃�(q), ū(q+1) = ũ(q+1), r̄(q+1) = r̃(q+1), 𝛽(q) = 𝛽(q), (39)

and
Pu𝑝dr̄(q+1) =

(
I − SSTH

)
P̂r̃(q+1) = P̂r̃(q+1). (40)

By induction, it is straightforward to prove that (39) and (40) hold also when q is replaced by j, with j > q.

Finally, we note that the previous theorem provides also an extension to KKT systems of the equivalence between the
PCG and the BFGS methods stated in the work of Nazareth35 for convex quadratic problems.

APPENDIX B

DETAILS ON PROBLEMS CVXQP3N AND STCQP2N

We provide some details on the problems CVXQP3N and STCQP2N used in the numerical experiments. Both problems
were obtained from the corresponding CUTEst problems by modifying the constraint matrix A and leaving the remaining
data unchanged.

For i = 1, … ,m, the ith row of the matrix A of CVXQP3 has nonzero entries only in the columns with indices i,
mod(4i − 1,n) + 1, and mod(5i − 1,n) + 1. In order to obtain CVXQP3N, the matrix was modified by inserting 10−5 in the
positions corresponding to the column indices mod(2i−1,n)+1, mod(3i−1,n)+1, mod(6i−1,n)+1, and mod(7i−1,n)+1.
In the case of duplicated column indices, the corresponding values were added up.

The dimension n of problem STCQP2 has the form n = 2r + 1. In our experiments, n = 16,385 = 214 + 1; we also
recall that m = 8,190. The n columns of the matrix A associated with STCQP2 can be grouped into blocks consisting of r
consecutive columns, with indices j = (k − 1)r + t, where k = 1, … , ⌊(n − 1)∕r⌋ + 1 and t = 1, … , r except for the last
block, for which t = 1, … ,mod(n − 1, r). The nonzero entries of A are only in the blocks corresponding to odd values
of k; for all these values of k, the row with index i = r(k + 1)∕2 + t, with t = 1, … , r, contains t consecutive nonzero
entries in the first t columns of the block identified by k. Problem STCQP2N was obtained by adding to A a matrix Ā of
the same size, with nonzero entries equal to 10−5 in the positions defined as follows: for each row index i = (k − 1)r + t,
with k = 1, … ,m∕r + 1 and t = 1, … , r, the positions corresponding to the column indices t, … , 2t were considered in
the ith row.

19

	BFGS-like updates of constraint preconditioners for sequences of KKT linear systems in quadratic programming
	Abstract
	Introduction
	Constraint Preconditioners
	Multiple BFGS-like updates of the CP
	Choice of the matrix S
	Implementation details
	Computational results
	Conclusions
	References

