58 research outputs found

    Rapport de prospective sur l'interopérabilité dans le monde du Cloud et du SaaS

    Get PDF
    Ce document présente une solution pour la configuration et le déploiement d'applications dans un environnement de cloud computing. La solution permet de : (1) découpler l'applicatif à déployer de l'environnement dans lequel il sera déployer, (2) spécifier les besoins de l'applicatif nécessaires à son bon déploiement, (3) spécifier les caractéristiques des offres d'hébergement, (4) permettre le calcul de la correspondance entre les besoins et les offres d'hébergement, (5) générer le script qui permet de déployer un applicatif sur une offre d'hébergement. Cette solution est mise en oeuvre dans l'outil Saloon dont les fonctionnalités sont présentées dans ce livrable. Saloon utilise des techniques de lignes de produits logiciels, d'ontologies et de modèles de caractéristiques pour atteindre les cinq objectifs énoncés ci-dessus

    Self-managed Workflows for Cyber-physical Systems

    Get PDF
    Workflows are a well-established concept for describing business logics and processes in web-based applications and enterprise application integration scenarios on an abstract implementation-agnostic level. Applying Business Process Management (BPM) technologies to increase autonomy and automate sequences of activities in Cyber-physical Systems (CPS) promises various advantages including a higher flexibility and simplified programming, a more efficient resource usage, and an easier integration and orchestration of CPS devices. However, traditional BPM notations and engines have not been designed to be used in the context of CPS, which raises new research questions occurring with the close coupling of the virtual and physical worlds. Among these challenges are the interaction with complex compounds of heterogeneous sensors, actuators, things and humans; the detection and handling of errors in the physical world; and the synchronization of the cyber-physical process execution models. Novel factors related to the interaction with the physical world including real world obstacles, inconsistencies and inaccuracies may jeopardize the successful execution of workflows in CPS and may lead to unanticipated situations. This thesis investigates properties and requirements of CPS relevant for the introduction of BPM technologies into cyber-physical domains. We discuss existing BPM systems and related work regarding the integration of sensors and actuators into workflows, the development of a Workflow Management System (WfMS) for CPS, and the synchronization of the virtual and physical process execution as part of self-* capabilities for WfMSes. Based on the identified research gap, we present concepts and prototypes regarding the development of a CPS WFMS w.r.t. all phases of the BPM lifecycle. First, we introduce a CPS workflow notation that supports the modelling of the interaction of complex sensors, actuators, humans, dynamic services and WfMSes on the business process level. In addition, the effects of the workflow execution can be specified in the form of goals defining success and error criteria for the execution of individual process steps. Along with that, we introduce the notion of Cyber-physical Consistency. Following, we present a system architecture for a corresponding WfMS (PROtEUS) to execute the modelled processes-also in distributed execution settings and with a focus on interactive process management. Subsequently, the integration of a cyber-physical feedback loop to increase resilience of the process execution at runtime is discussed. Within this MAPE-K loop, sensor and context data are related to the effects of the process execution, deviations from expected behaviour are detected, and compensations are planned and executed. The execution of this feedback loop can be scaled depending on the required level of precision and consistency. Our implementation of the MAPE-K loop proves to be a general framework for adding self-* capabilities to WfMSes. The evaluation of our concepts within a smart home case study shows expected behaviour, reasonable execution times, reduced error rates and high coverage of the identified requirements, which makes our CPS~WfMS a suitable system for introducing workflows on top of systems, devices, things and applications of CPS.:1. Introduction 15 1.1. Motivation 15 1.2. Research Issues 17 1.3. Scope & Contributions 19 1.4. Structure of the Thesis 20 2. Workflows and Cyber-physical Systems 21 2.1. Introduction 21 2.2. Two Motivating Examples 21 2.3. Business Process Management and Workflow Technologies 23 2.4. Cyber-physical Systems 31 2.5. Workflows in CPS 38 2.6. Requirements 42 3. Related Work 45 3.1. Introduction 45 3.2. Existing BPM Systems in Industry and Academia 45 3.3. Modelling of CPS Workflows 49 3.4. CPS Workflow Systems 53 3.5. Cyber-physical Synchronization 58 3.6. Self-* for BPM Systems 63 3.7. Retrofitting Frameworks for WfMSes 69 3.8. Conclusion & Deficits 71 4. Modelling of Cyber-physical Workflows with Consistency Style Sheets 75 4.1. Introduction 75 4.2. Workflow Metamodel 76 4.3. Knowledge Base 87 4.4. Dynamic Services 92 4.5. CPS-related Workflow Effects 94 4.6. Cyber-physical Consistency 100 4.7. Consistency Style Sheets 105 4.8. Tools for Modelling of CPS Workflows 106 4.9. Compatibility with Existing Business Process Notations 111 5. Architecture of a WfMS for Distributed CPS Workflows 115 5.1. Introduction 115 5.2. PROtEUS Process Execution System 116 5.3. Internet of Things Middleware 124 5.4. Dynamic Service Selection via Semantic Access Layer 125 5.5. Process Distribution 126 5.6. Ubiquitous Human Interaction 130 5.7. Towards a CPS WfMS Reference Architecture for Other Domains 137 6. Scalable Execution of Self-managed CPS Workflows 141 6.1. Introduction 141 6.2. MAPE-K Control Loops for Autonomous Workflows 141 6.3. Feedback Loop for Cyber-physical Consistency 148 6.4. Feedback Loop for Distributed Workflows 152 6.5. Consistency Levels, Scalability and Scalable Consistency 157 6.6. Self-managed Workflows 158 6.7. Adaptations and Meta-adaptations 159 6.8. Multiple Feedback Loops and Process Instances 160 6.9. Transactions and ACID for CPS Workflows 161 6.10. Runtime View on Cyber-physical Synchronization for Workflows 162 6.11. Applicability of Workflow Feedback Loops to other CPS Domains 164 6.12. A Retrofitting Framework for Self-managed CPS WfMSes 165 7. Evaluation 171 7.1. Introduction 171 7.2. Hardware and Software 171 7.3. PROtEUS Base System 174 7.4. PROtEUS with Feedback Service 182 7.5. Feedback Service with Legacy WfMSes 213 7.6. Qualitative Discussion of Requirements and Additional CPS Aspects 217 7.7. Comparison with Related Work 232 7.8. Conclusion 234 8. Summary and Future Work 237 8.1. Summary and Conclusion 237 8.2. Advances of this Thesis 240 8.3. Contributions to the Research Area 242 8.4. Relevance 243 8.5. Open Questions 245 8.6. Future Work 247 Bibliography 249 Acronyms 277 List of Figures 281 List of Tables 285 List of Listings 287 Appendices 28

    Self-organising, self-managing frameworks and strategies

    Get PDF
    A novel, general framework that can be used for constructing a self-organising and self-managing system is introduced. This framework is independent of the application domain. It embodies directed evolution, can be parameterised with different strategies, and supports both local and global goals. This framework is then used to apply the principles of self-organisation and self-management to resource management within the CloudLightning architecture

    Extending Dynamic Software Product Lines with Temporal Constraints

    Get PDF
    International audienceDue to the number of cloud providers, as well as the extensive collection of services, cloud computing provides very flexible environments, where resources and services can be provisioned and released on demand. However, reconfiguration and adaptation mechanisms in cloud environments are very heterogeneous and often exhibit complex constraints. For example, when reconfiguring a cloud system, a set of available services may be dependent on previous choices, or there may be alternative ways of adapting the system, with different impacts on performance, costs or reconfiguration time. Cloud computing systems exhibit high levels of variability, making dynamic software product lines (DSPLs) a promising approach for managing them. However, in DSPL approaches, verification is often limited to verifying conformance to a variability model, but this is insufficient to verify complex reconfiguration constraints that exist in cloud computing systems. In this paper, we propose the use of temporal constraints and reconfiguration operations to model a DSPL's reconfiguration lifecycle. We demonstrate how these concepts can be used to model the variability of cloud systems, and we use our approach to identify reconfigurations that meet given criteria

    Self-healing and SDN: bridging the gap

    Get PDF
    Achieving high programmability has become an essential aim of network research due to the ever-increasing internet traffic. Software-Defined Network (SDN) is an emerging architecture aimed to address this need. However, maintaining accurate knowledge of the network after a failure is one of the largest challenges in the SDN. Motivated by this reality, this paper focuses on the use of self-healing properties to boost the SDN robustness. This approach, unlike traditional schemes, is not based on proactively configuring multiple (and memory-intensive) backup paths in each switch or performing a reactive and time-consuming routing computation at the controller level. Instead, the control paths are quickly recovered by local switch actions and subsequently optimized by global controller knowledge. Obtained results show that the proposed approach recovers the control topology effectively in terms of time and message load over a wide range of generated networks. Consequently, scalability issues of traditional fault recovery strategies are avoided.Postprint (published version

    Une approche basée sur les lignes de produits logiciels pour la configuration et adaptation des environments multi-nuages

    Get PDF
    Cloud computing is characterized by a model in which computing resources are delivered as services in a pay-as-you-go manner, which eliminates the need for upfront investments, reducing the time to market and opportunity costs. Despite its benefits, cloud computing brought new concerns about provider dependence and data confidentiality, which further led to a growing trend on consuming resources from multiple clouds. However, building multi-cloud systems is still very challenging and time consuming due to the heterogeneity across cloud providers' offerings and the high-variability in the configuration of cloud providers. This variability is expressed by the large number of available services and the many different ways in which they can be combined and configured. In order to ensure correct setup of a multi-cloud environment, developers must be aware of service offerings and configuration options from multiple cloud providers.To tackle this problem, this thesis proposes a software product line-based approach for managing the variability in cloud environments in order to automate the setup and adaptation of multi-cloud environments. The contributions of this thesis enable to automatically generate a configuration or reconfiguration plan for a multi-cloud environment from a description of its requirements. The conducted experiments aim to assess the impact of the approach on the automated analysis of feature models and the feasibility of the approach to automate the setup and adaptation of multi-cloud environments.Le cloud computing est caractérisé par un modèle dans lequel les ressources informatiques sont fournies en tant qu'un service d'utilité, ce qui élimine le besoin de grands investissements initiaux. Malgré ses avantages, le cloud computing a suscité de nouvelles inquiétudes concernant la dépendance des fournisseurs et la confidentialité des données, ce qui a conduit à l'émergence des approches multi-cloud. Cependant, la construction de systèmes multi-cloud est toujours difficile en raison de l'hétérogénéité entre les offres des fournisseurs de cloud et de la grande variabilité dans la configuration des fournisseurs de cloud. Cette variabilité est caractérisé par le grand nombre de services disponibles et les nombreuses façons différentes de les combiner et de les configurer. Afin de garantir la configuration correcte d'un environnement multi-cloud, les développeurs doivent connaître les offres de services et les options de configuration de plusieurs fournisseurs de cloud.Pour traiter ce problème, cette thèse propose une approche basée sur les lignes de produits logiciels pour gérer la variabilité dans les cloud afin d'automatiser la configuration et l'adaptation des environnements multi-cloud. Les contributions de cette thèse permettent de générer automatiquement un plan de configuration ou de reconfiguration pour un environnement multi-cloud à partir d'une description de ses exigences. Les expérimentations menées visent à évaluer l'impact de l'approche sur l'analyse automatisée des modèles de caractéristiques et la faisabilité de l'approche pour automatiser la configuration et l'adaptation des environnements multi-nuages

    Specifying Semantic Interoperability between Heterogeneous Cloud Resources with the FCLOUDS Formal Language

    Get PDF
    International audienceWith the advent of cloud computing, different cloud providers with heterogeneous services and Application Programming Interfaces (APIs) have emerged. Hence, building an interop-erable multi-cloud system becomes a complex task. Our idea is to design FCLOUDS framework to achieve semantic interoperability in multi-clouds, i.e., to identify the common concepts between cloud APIs and to reason over them. In this paper, we propose to take advantage of the Open Cloud Computing Interface (OCCI) standard and the Alloy formal specification language to define the FCLOUDS language, which is a formal language for specifying heterogeneous cloud APIs. To do so, we formalize OCCI concepts and operational semantics, then we identify and validate five properties (consistency, sequentiality, reversibility, idempotence and safety) that denote their characteristics. To demonstrate the effectiveness of our cloud formal language, we present thirteen case studies where we formally specify infrastructure, platform, Internet of Things (IoT) and transverse cloud concerns. Thanks to the Alloy analyzer, we verify that these heterogeneous APIs uphold the properties of FCLOUDS and also validate their own specific properties. Then, thanks to formal transformation rules and equivalence properties, we draw a precise alignment between our case studies, which promotes semantic interoperability in a multi-cloud system

    Self-management for large-scale distributed systems

    Get PDF
    Autonomic computing aims at making computing systems self-managing by using autonomic managers in order to reduce obstacles caused by management complexity. This thesis presents results of research on self-management for large-scale distributed systems. This research was motivated by the increasing complexity of computing systems and their management. In the first part, we present our platform, called Niche, for programming self-managing component-based distributed applications. In our work on Niche, we have faced and addressed the following four challenges in achieving self-management in a dynamic environment characterized by volatile resources and high churn: resource discovery, robust and efficient sensing and actuation, management bottleneck, and scale. We present results of our research on addressing the above challenges. Niche implements the autonomic computing architecture, proposed by IBM, in a fully decentralized way. Niche supports a network-transparent view of the system architecture simplifying the design of distributed self-management. Niche provides a concise and expressive API for self-management. The implementation of the platform relies on the scalability and robustness of structured overlay networks. We proceed by presenting a methodology for designing the management part of a distributed self-managing application. We define design steps that include partitioning of management functions and orchestration of multiple autonomic managers. In the second part, we discuss robustness of management and data consistency, which are necessary in a distributed system. Dealing with the effect of churn on management increases the complexity of the management logic and thus makes its development time consuming and error prone. We propose the abstraction of Robust Management Elements, which are able to heal themselves under continuous churn. Our approach is based on replicating a management element using finite state machine replication with a reconfigurable replica set. Our algorithm automates the reconfiguration (migration) of the replica set in order to tolerate continuous churn. For data consistency, we propose a majority-based distributed key-value store supporting multiple consistency levels that is based on a peer-to-peer network. The store enables the tradeoff between high availability and data consistency. Using majority allows avoiding potential drawbacks of a master-based consistency control, namely, a single-point of failure and a potential performance bottleneck. In the third part, we investigate self-management for Cloud-based storage systems with the focus on elasticity control using elements of control theory and machine learning. We have conducted research on a number of different designs of an elasticity controller, including a State-Space feedback controller and a controller that combines feedback and feedforward control. We describe our experience in designing an elasticity controller for a Cloud-based key-value store using state-space model that enables to trade-off performance for cost. We describe the steps in designing an elasticity controller. We continue by presenting the design and evaluation of ElastMan, an elasticity controller for Cloud-based elastic key-value stores that combines feedforward and feedback control

    Self-organized cyber-physical conveyor system using multi-agent systems

    Get PDF
    The adoption of industrial cyber-physical systems is facing several challenges, with artificial intelligence and self-organization techniques assuming critical aspects to be considered in the deployment of such solutions to support the dynamic evolution and adaptation to condition changes. This paper describes the implementation of a modular, flexible and self-organized cyber-physical conveyor system build up with different individual modular and intelligent transfer modules. For this purpose, multi-agent systems are used to distribute intelligence among transfer modules supporting pluggability and modularity, complemented with self-organization capabilities to achieve a truly self-reconfigurable system. Furthermore, Internet of Things and Artificial Intelligence technologies are used to enable the real-time monitoring of the system, aiming the detection and prevention of anomalies in advance, and to enable the protection from possible external threats.info:eu-repo/semantics/publishedVersio
    • …
    corecore