75,962 research outputs found

    Safety Engineering with COTS components

    Get PDF
    Safety-critical systems are becoming more widespread, complex and reliant on software. Increasingly they are engineered through Commercial Off The Shelf (COTS) (Commercial Off The Shelf) components to alleviate the spiralling costs and development time, often in the context of complex supply chains. A parallel increased concern for safety has resulted in a variety of safety standards, with a growing consensus that a safety life cycle is needed which is fully integrated with the design and development life cycle, to ensure that safety has appropriate influence on the design decisions as system development progresses. In this article we explore the application of an integrated approach to safety engineering in which assurance drives the engineering process. The paper re- ports on the outcome of a case study on a live industrial project with a view to evaluate: its suitability for application in a real-world safety engineering setting; its benefits and limitations in counteracting some of the difficulties of safety en- gineering with COTS components across supply chains; and, its effectiveness in generating evidence which can contribute directly to the construction of safety cases

    Reliability Analysis of Complex NASA Systems with Model-Based Engineering

    Get PDF
    The emergence of model-based engineering, with Model- Based Systems Engineering (MBSE) leading the way, is transforming design and analysis methodologies. The recognized benefits to systems development include moving from document-centric information systems and document-centric project communication to a model-centric environment in which control of design changes in the life cycles is facilitated. In addition, a single source of truth about the system, that is up-to-date in all respects of the design, becomes the authoritative source of data and information about the system. This promotes consistency and efficiency in regard to integration of the system elements as the design emerges and thereby may further optimize the design. Therefore Reliability Engineers (REs) supporting NASA missions must be integrated into model-based engineering to ensure the outputs of their analyses are relevant and value-needed to the design, development, and operational processes for failure risks assessment and communication

    Measuring Confidence of Assurance Cases in Safety-Critical Domains

    Get PDF
    Evaluation of assurance cases typically requires certifiers’ domain knowledge and experience, and, as such, most software certification has been conducted manually. Given the advancement in uncertainty theories and software traceability, we envision that these technologies can synergistically be combined and leveraged to offer some degree of automation to improve the certifiers’ capability to perform software certification. To this end, we present DS4AC, a novel confidence calculation framework that 1) applies the Dempster-Shafer theory to calculate the confidence between a parent claim and its children claims; and 2) uses the vector space model to evaluate the confidence for the evidence items using traceability information. We illustrate our approach on two different applications, where safety is the key property of interest for both systems. In both cases, we use the Goal Structuring Notation to represent the respective assurance cases and provide proof of concept results that demonstrate the DS4AC framework can automate portions of the evaluation of assurance cases, thereby reducing the burden of manual certification process

    Combined automotive safety and security pattern engineering approach

    Get PDF
    Automotive systems will exhibit increased levels of automation as well as ever tighter integration with other vehicles, traffic infrastructure, and cloud services. From safety perspective, this can be perceived as boon or bane - it greatly increases complexity and uncertainty, but at the same time opens up new opportunities for realizing innovative safety functions. Moreover, cybersecurity becomes important as additional concern because attacks are now much more likely and severe. However, there is a lack of experience with security concerns in context of safety engineering in general and in automotive safety departments in particular. To address this problem, we propose a systematic pattern-based approach that interlinks safety and security patterns and provides guidance with respect to selection and combination of both types of patterns in context of system engineering. A combined safety and security pattern engineering workflow is proposed to provide systematic guidance to support non-expert engineers based on best practices. The application of the approach is shown and demonstrated by an automotive case study and different use case scenarios.EC/H2020/692474/EU/Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems/AMASSEC/H2020/737422/EU/Secure COnnected Trustable Things/SCOTTEC/H2020/732242/EU/Dependability Engineering Innovation for CPS - DEIS/DEISBMBF, 01IS16043, Collaborative Embedded Systems (CrESt

    Generation of model-based safety arguments from automatically allocated safety integrity levels

    Get PDF
    To certify safety-critical systems, assurance arguments linking evidence of safety to appropriate requirements must be constructed. However, modern safety-critical systems feature increasing complexity and integration, which render manual approaches impractical to apply. This thesis addresses this problem by introducing a model-based method, with an exemplary application based on the aerospace domain.Previous work has partially addressed this problem for slightly different applications, including verification-based, COTS, product-line and process-based assurance. Each of the approaches is applicable to a specialised case and does not deliver a solution applicable to a generic system in a top-down process. This thesis argues that such a solution is feasible and can be achieved based on the automatic allocation of safety requirements onto a system’s architecture. This automatic allocation is a recent development which combines model-based safety analysis and optimisation techniques. The proposed approach emphasises the use of model-based safety analysis, such as HiP-HOPS, to maximise the benefits towards the system development lifecycle.The thesis investigates the background and earlier work regarding construction of safety arguments, safety requirements allocation and optimisation. A method for addressing the problem of optimal safety requirements allocation is first introduced, using the Tabu Search optimisation metaheuristic. The method delivers satisfactory results that are further exploited for construction of safety arguments. Using the produced requirements allocation, an instantiation algorithm is applied onto a generic safety argument pattern, which is compliant with standards, to automatically construct an argument establishing a claim that a system’s safety requirements have been met. This argument is hierarchically decomposed and shows how system and subsystem safety requirements are satisfied by architectures and analyses at low levels of decomposition. Evaluation on two abstract case studies demonstrates the feasibility and scalability of the method and indicates good performance of the algorithms proposed. Limitations and potential areas of further investigation are identified

    Um framework para a avaliação de segurança de hardware

    Get PDF
    Orientador: Ricardo DahabDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O hardware de sistemas computacionais possui uma função crítica na segurança de sistemas operacionais e aplicativos. Além de prover funcionalidades-padrão, tal como o nível de privilégio de execução, o hardware também pode oferecer suporte a criptografia, boot seguro, execução segura, e outros. Com o fim de garantir que essas funcionalidades de segurança irão operar corretamente quando juntas dentro de um sistema, e de que o sistema é seguro como um todo, é necessário avaliar a segurança da arquitetura de todo sistema, durante o ciclo de desenvolvimento do hardware. Neste trabalho, iniciamos pela pesquisa dos diferentes tipos existentes de vulnerabilidades de hardware, e propomos uma taxonomia para classificá-los. Nossa taxonomia é capaz de classificar as vulnerabilidades de acordo com o ponto no qual elas foram inseridas, dentro do ciclo de desenvolvimento. Ela também é capaz de separar as vulnerabilidades de hardware daquelas de software que apenas se aproveitam de funcionalidades-padrão do hardware. Focando em um tipo específico de vulnerabilidade - aquelas relacionadas à arquitetura - apresentamos um método para a avaliação de sistemas de hardware utilizando a metodologia de Assurance Cases. Essa metodologia tem sido usada com sucesso para a análise de segurança física e, tanto quanto saibamos, não há notícias de seu uso para a análise de segurança de hardware. Utilizando esse método, pudemos identificar corretamente as vulnerabilidades de sistemas reais. Por fim, apresentamos uma prova de conceito de uma ferramenta para guiar e automatizar parte do processo de análise que foi proposto. A partir de uma descrição padronizada de uma arquitetura de hardware, a ferramenta aplica uma série de regras de um sistema especialista e gera um relatório de Assurance Case com as possíveis vulnerabilidades do sistema-alvo. Aplicamos a ferramenta aos sistemas estudados e pudemos identificar com sucesso as vulnerabilidades conhecidas, assim como outras possíveis vulnerabilidadesAbstract: The hardware of computer systems plays a critical role in the security of operating systems and applications. Besides providing standard features such as execution privilege levels, it may also offer support for encryption, secure execution, secure boot, and others. In order to guarantee that these security features work correctly when inside a system, and that the system is secure as a whole, it is necessary to evaluate the security of the architecture during the hardware development life-cycle. In this work, we start by exploring the different types of existing hardware vulnerabilities and propose a taxonomy for classifying them. Our taxonomy is able to classify vulnerabilities according to when they were created during the development life-cycle, as well as separating real hardware vulnerabilities from software vulnerabilities that leverage standard hardware features. Focusing on a specific type of vulnerability - the architecture-related ones, we present a method for evaluating hardware systems using the Assurance Case methodology. This methodology has been used successfully for safety analysis, and to our best knowledge there are no reports of its use for hardware security analysis. Using this method, we were able to correctly identify the vulnerabilities of real-world systems. Lastly, we present the proof-of-concept of a tool for guiding and automating part of the proposed analysis methodology. Starting from a standardized hardware architecture description, the tool applies a set of expert system rules, and generates an Assurance Case report that contains the possible security vulnerabilities of a system. We were able to apply the tool to the studied systems, and correctly identify their known vulnerabilities, as well as other possible vulnerabilitiesMestradoCiência da ComputaçãoMestre em Ciência da Computaçã
    corecore