
Measuring Confidence of Assurance Cases in

Safety-Critical Domains

Chung-Ling Lin
Western Michigan University
chung-ling.lin@wmich.edu

Wuwei Shen
Western Michigan University

wshen@wmich.edu

Betty H.C. Cheng
Michigan State University

chengb@cse.msu.edu

Abstract

Evaluation of assurance cases in the Goal Structuring
Notation typically requires certifiers’ domain knowledge and
experience, and, as such, most software certification has been
conducted manually. Given the advancement in uncertainty
theories and software traceability, we envision that these
technologies can synergistically be combined and leveraged to
offer some degree of automation to improve the certifiers’
capability to perform software certification. To this end, we
present DS4AC, a novel confidence calculation framework that
1) applies the Dempster-Shafer theory to calculate the
confidence of a claim; and 2) uses the vector space model to
evaluate the confidence for the evidence items using
traceability information. We illustrate our approach on two
different applications, where safety is the key property of
interest for both systems; and provide proof of concept results
that demonstrate the DS4AC framework can automate portions
of the evaluation of assurance cases, thereby reducing the
burden of manual certification process.

1. INTRODUCTION
Assurance cases [1] specify an argument structure linking

different artifacts from the software development process to
support assurance claims and properties, which are increasingly
used in emerging standards for demonstrating system assurance
[2, 3, 4], as well as certification [5]. Central to certification is
the evaluation of an assurance case (AC) that requires
calculating the confidence of a root claim in the AC, using a
bottom-up strategy starting with confidence evaluation of leaf
claims by evaluating their respective supporting
evidence/solution. As such, while some techniques to assist
certifiers to efficiently and effectively evaluate a system [6] ,
have been proposed, the certification process is hindered by the
volume of domain knowledge and experience needed by
certifiers. As such, most software certification, including that
used in the safety-critical sectors, has been conducted manually.
Even worse, as the complexity of software continues to grow,
ACs are exponentially increasing in size and complexity. For
example, the preliminary safety-based AC for co-operative
airport surface surveillance operations is approximately 200
pages long [7], where the size is expected to grow as more
detailed argument structures are considered. Furthermore,

manual certification is thus not only time consuming but also
error prone and expensive.

Two complementary strategies have been pursued to make
the certification process more systematic and efficient. First,
work has been done to support the systematic development of
ACs, with a specific focus on facilitating certification. For
example, safety-based AC templates have been proposed to
directly link certification requirements imposed by safety
standards (e.g., ISO26262) to elements of the AC template [8,
9]. Also, safety-based AC patterns have been developed to
leverage the common argument structure used in ACs, where
the specific argument nodes may be different from one pattern
instantiation to another, depending on the certification
requirements and system artifacts [10, 11, 12]. Second, in an
attempt to introduce automation into the certification process,
researchers have applied various mathematical/probabilistic
models to approximate the bottom-up evaluation strategy used
by a certifier [13, 14, 15, 16]. But these approaches still require
extensive human involvement due to two obstacles. One is the
confidence calculation of leaf claims. The other is how to assess
the relative contribution of sub-claims (i.e., weight distribution)
for parent claims.

This paper proposes the DS4AC framework that applies
the Dempster-Shafter (D-S) theory [15] as an approximation of
a certifier’s prior certification decisions for selected ACs and
leverages recurring AC argument structure to automate the
certification evaluation of other structurally similar ACs.
Specifically, DS4AC takes as input two assurance cases,
specified in terms of the Goal Structuring Notation (GSN) [17],
where the first AC has been certified as acceptable by the
certifier, and the objective of the DS4AC framework is to
calculate confidence of the second yet-to-be-certified AC as an
approximation of the certifier’s evaluation without requiring an
actual review. DS4AC exploits the emerging use of safety
templates and the development of safety pattern-based
techniques, and thus requires that the two assurance cases have
the same argument structure. Moreover, we also observe that
many standards documents require traceability to be established
between artifacts at different phases of a software development
lifecycle (SDLC) [2, 3, 4, 18]. Traceability information has
been successfully employed to assess the validity of
environmental assumptions for safety-critical products [19].
Thus, DS4AC assumes that the leaf claims in both assurance
cases should include assertions about the traceability
information amongst the supporting evidence (i.e.,
development artifacts).

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 6355
URI: https://hdl.handle.net/10125/64520
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

 To determine how each sub-claim can independently
contribute to the belief of its parent (in the form of a weight
distribution), DS4AC employs the D-S theory as a confidence
calculation model, where multiple sources of supporting
evidence for a given claim can be combined to determine a
degree of belief for the claim. The D-S approach comprises two
phases: a learning phase and an application phase. In the
learning phase, we assume that, since a certifier accepts a first
input AC, she acknowledges its main argument structure.
Moreover, she must have compared the AC with some other
ACs that have different system artifacts as solutions.
Specifically, when accepting the AC in Figure 1 (i), during
evaluation, she might consider another system artifact such as
a traceability check report between Sys R01 and HR4 as the new
0Sn1.1.1 solution. Accordingly, the assertion of the 0G1.7.1
leaf claim is updated to read “Sys R01 traces to HR4…” in the
new AC. Then, she must have chosen the first AC over the other
after review. As such, DS4AC generates a set of ACs, called a
training data set, where each AC has the same argument
structure as the first AC but is instantiated with different system
artifacts for the solution/evidence, as well as their
corresponding supporting leaf claims. Using the training data
set, DS4AC automatically learns a weight distribution of all
sub-claims so that the distribution has the acceptable AC ranked
higher in the training data set than most other distributions
using the D-S theory. In the application phase, DS4AC applies
the learned weight distribution to a target AC to approximate
the certifier’s decision. For the leaf claim evaluation, we take
advantage of assertions of leaf claims on the traceability
information [20, 21] and then apply information retrieval
techniques [22, 23] to deduce confidence values for leaf claims.

We apply DS4AC to two case studies: the Coupled Tanks
System [24], and the Gear Controller System [25]. Our proof of
concept results shows that DS4AC can successfully evaluate a
new AC based on an initial acceptable assurance case. In
summary, we make the following contributions in this paper:

l Calculate the confidence of an assurance case using
the D-S theory by means of automatically inferring
disjoint contributing weights from an initially-certified
assurance case that has the same structure as the
assurance case to be certified;

l Apply a General Vector Space Model (GVSM) [22] to
evaluate the confidence of a leaf claim based on its
supporting evidence nodes; and

l Illustrate the applicability of DS4AC on two cyber-
physical applications obtained from the literature.

The remainder of the paper is organized as follows. Section
II describes background material, including the Coupled Tanks
System application as illustration of the use of GSN for
specifying assurance cases, the D-S theory as a mathematical
modeling for confidence calculation between sub-claims and
parent claims, and the GVSM as an information retrieval
technique for evaluating confidence of leaf claims. Section III
presents an overview of DS4AC and some technical details for
DS4AC are given in Section IV. We demonstrate the
applicability of DS4AC using empirical data from the two case
studies to address a research question in Section V. We discuss
threats to validity in section VI and overview related work in

Section VII. Finally, we summarize and draw conclusions in
Section VIII.

2. BACKGROUND
This section provides background material used for the

remainder of the paper. We start with an overview of an
industrial-strength application, i.e., the Coupled Tanks System
as a running example. Then we briefly describe the D-S theory
and the GVSM method, two key enabling technologies used for
DS4AC.

A. Case Study: Coupled Tanks System
The Coupled Tanks Challenge Problem was initially

developed by the AFRL (Air Force Research Laboratory) to
illustrate a formal methods-based early design and analysis
process [24]. The Coupled Tanks System draws liquid from a
limitless source, temporarily stores the liquid for a process to
occur (e.g., mixing), and finally releases the liquid into a
bottomless sink. Here we consider two phases: the requirements
elicitation phase and the requirements analysis phase in [24].
The requirements elicitation phase starts with the concept of
operations (CONOPS) that denotes five high-level
requirements for the system, denoted as HR1,…, HR5, where
the AFRL team derives eight system requirements, denoted as
Sys R01,..,Sys R08, based on three aspects: the system,
controller, and environment. Then in the second phase, the
specification and analysis of requirements (SpeAR) framework
is used to develop and analyze the system requirements; this
process is part of the (requirements) analysis phase. Namely,
the system requirements are further decomposed into eight
SpeAR properties and/or requirements, denoted as
p_sys_01,..,p_sys_08, respectively. In this case, we applied the
safety pattern from Lin et al. [12] where variables in the safety
pattern are replaced by the corresponding system artifacts and
new GSN nodes are generated based on concrete artifacts.
Figure 1(i) and (ii) show the two assurance cases that make
claims about the requirements elicitation and requirement
analysis phases, respectively. To support the top claim,
rendered as a box in GSN, i.e., 0G1.1.1, both assurance cases
employ three sub-claims, i.e., 0G1.2.1, 0G1.2.2, and 0G1.2.3,
that refer to the system, environment, and controller aspects
respectively. A strategy node, rendered as a parallelogram, e.g.,
0S1.1.1, represents how a claim, e.g., 0G1.1.1, is supported by
its sub-claims, e.g., 0G1.2.x where x ∈ {1,2,3} using the
SupportedBy link, rendered as a line with a solid arrowhead.
Next, for each sub-claim 0G1.2.x, two sub-claims are further
developed to support its correctness and completeness via a
strategy node 0S1.2.1. For instance, for the child claim
“Requirements at the System Aspect are adequately elicited and
documented in the requirement document”, i.e., 0G1.2.1 in
Figure 1(i), the correctness part claims that all system
requirements at the system aspect correctly implement the high-
level requirement (CONOPS) via claim 0G1.3.1. The
completeness part asserts that all high-level requirements are
completely considered by the system requirements at the
system aspect via claim 0G1.4.1. Likewise, in the second
assurance case shown in Figure 1(ii), for the “SpeAR model
properties at the System Aspect are adequately elicited and
documented in the SpeAR model document” sub-claim 0G1.2.1,
term “SpeAR model document” replaces term “requirement

Page 6356

document” in Figure 1(i). Furthermore, each sub-claim 0G1.2.x
in Figure 1(ii) is further supported by two sub-claims in terms
of correctness and “SpeAR model properties” replaces term
“Requirements” and term completeness as its counterpart in
Figure 1(i). Finally, a leaf claim such as 0G1.7.1 is supported
by an evidence node, rendered as a circle, such as 0Sn1.1.1,
which is produced as a system artifact by the developer during
SDLC. The difference between the two assurance cases is that
0S.1.6.1 in Figure 1(i) has 5 leaf claims, while Figure 1(ii) has
8 leaf claims representing 5 CONOPS requirements and 8
system requirements respectively. But due to space, we only
show the first and last leaf claims in both cases, skipping the
middle leaf claims.

B. Enabling Technologies
We largely follow Wang et al’s formulation for the D-S

theory calculation [15]. For a claim A, a frame of discernment
Ω" is {A, A}, where A denotes logical negation of A. The mass
m() A shows the degree of belief committed to the hypothesis
that truth lies in A [15]. When applying the D-S theory,
confidence of a claim A is denoted as a 3-tuple (bel(A), dis(A),
uncer(A)) representing belief, disbelief, and uncertainty of A,
respectively. The 3-tuple of a claim is thus defined as follows:

bel A 						= m() A = g1																			
dis A 					= bel A = 	m(5 A = f1
uncer A 		= 	m() Ω1 = 1 − g1 − f1

	 									 1

A confidence model [15] consists of claims and evidence
nodes that are connected to each other via the SupportedBy link.
An argument is composed of a claim as a conclusion and the
corresponding sub-claims as predicates via its all SupportedBy
links. For instance, the top argument in Figure 1(i) consists of
claim 0G1.1.1 as a conclusion and three sub-claims 0G1.2.1,
0G1.2.2, and 0G1.2.3, as predicates. The confidence calculation
of a claim depends on the nature of the argument relating the
claim to its all sub-claims; different types of assessment

parameters are used for showing the nature of an argument. The
first assessment parameter is the type of an argument: either a
dependent or redundant argument.

A redundant argument means the contribution of one sub-
claim to support its parent claim does not depend on another
(i.e., sibling) sub-claim. For example, the argument−claim A:
“the system is acceptably safe” is supported by claim B: “the
system is passed by verification” and claim C: “the system is
passed by testing”− is redundant since two different techniques,
B and C supports A to some degree without being dependent on
the other.

A dependent argument means that the contribution of a
sub-claim for supporting its parent claim has some degree of
overlap with another sub-claim. For instance, the following
argument − claim A: “The system is acceptably safe” is
supported by claim B “the test process is sound” and claim C
“the test results are correct”	− is a dependent argument since
the test results given by C to support claim A depend on the test
process given by claim B. The second assessment parameter is
the completeness of an argument, denoted as v, referring to a
degree value between 0 and 1 and showing a scenario where its
claim as a conclusion cannot be fully derived from all its sub-
claims as predicates. For instance, for the above dependent
argument, unless the validity of the claim made by A can be
verified, we cannot completely guarantee the claim of A via any
testing approach and so v can only have a value less than 1.

Another assessment parameter relates to the degree of
correspondence of all sub-claims, denoted as co, which
collectively sum to a value between 0 and 1 to capture the
contributions of all sub-claims to their parent claim. All these
assessment parameters are based on an argument. The final
parameter is a disjoint contributing weight that differs from the
other three assessment parameters because its value is set based
on a claim instead of an argument. A disjoint contributing
weight of a claim, say A, denoted as w1, denotes a degree value

Figure 1: Two assurance cases for the Coupled Tanks System

Page 6357

between 0 and 1 showing how much the claim independently
contributes to the belief/confidence of its parent claim along the
argument.

Once the type of an argument is set, confidence of a claim
can be calculated using the D-S theory. For example, assume
the type of an argument is dependent. Then the confidence of a
claim A via the 3-tuple is given by the following formula:

	bel A 			= 		v[𝑐𝑜 gB

C

BDE

+ gBwB]
C

BDE

= g1											

								dis A 			= 	v[𝑐𝑜 [1 − (1 − fB)]
C

BDE

+ fBwB]
C

BDE

= f1

uncer A = 1 − g1 − f1																																																

						(2)

where wB (i=1,2,…,n) denotes a disjoint contributing weight of
the i-th sub-claim to support its parent claim. Likewise, the
formula for a redundant argument with n sub-claims can be
given; due to space constraints, it is omitted but can be found in
[15]. Since the number of claims in an assurance case can grow
dramatically, the research goal of this paper is to find an
appropriate value of all wB in an assurance case.

Another format of confidence of a claim represents a
certifier’s perspective about the claim, say A, using a 2-tuple
(dec(A), conf(A)), where dec denotes a certifier’s confidence
value and conf represents the confidence about the method used
by a certifier in determining the value for dec. We thus call a
dec value of a claim its trustworthiness value of the claim since
a dec value directly denotes a confidence value given by a
certifier. Since the 2-tuple and 3-tuple formats reflect two
different perspectives on the confidence of a claim (see Figure
3), a type conversion between the two formats is necessary for
different purposes. For instance, a certifier’s evaluation on a
leaf claim via a 2-tuple is converted to a 3-tuple so the D-S
theory can be carried out. Likewise, a 3-tuple of a root claim is
converted to a 2-tuple after the calculation to obtain certifier’s
evaluation. Formulas (3) and (4) show the conversions between
the 3-tuple and 2-tuple formats of confidence of a claim.
Whether an AC is acceptable or not is based on a
trustworthiness value of its root claim. Following the common
practice, we set 0.7 as a threshold value; and if a trustworthiness
value is greater than the threshold value, then the AC is deemed
as acceptable.

𝑏𝑒𝑙(𝐴) 	= 	𝑐𝑜𝑛𝑓(𝐴)×	𝑑𝑒𝑐(𝐴)
														𝑑𝑖𝑠(𝐴) 	= 	𝑐𝑜𝑛𝑓(𝐴)×	 1 − 	𝑑𝑒𝑐(𝐴) 	
		𝑢𝑛𝑐𝑒𝑟(𝐴) 	= 	1 − 	𝑏𝑒𝑙(𝐴) − 	𝑑𝑖𝑠𝑏(𝐴)	

																		(3)						

𝑐𝑜𝑛𝑓(𝑃) = 	𝑏𝑒𝑙(𝑃) + 	𝑑𝑖𝑠𝑏(𝑃)																																																																														
𝑑𝑒𝑐(𝑃) = 	𝑏𝑒𝑙(𝑃)	/	(𝑏𝑒𝑙(𝑃) + 	𝑑𝑖𝑠𝑏(𝑃)),			𝑖𝑓	𝑏𝑒𝑙(𝑃) + 	𝑑𝑖𝑠𝑏(𝑃) 	≠ 	0	
𝑑𝑒𝑐(𝑃) 	= 0, 𝑖𝑓	𝑏𝑒𝑙(𝑃) + 	𝑑𝑖𝑠𝑏(𝑃) 	= 	0																																																	

	(4)

GVSM extends the traditional VSM, an algebraic model
using vectors of identifiers to represent text documents, by
embedding WordNet’s semantic information, besides terms, in
the representation of documents. As a result, GVSM boosts text
retrieval performance after using the semantic information. We
apply the GVSM to deduce a confidence value of a leaf claim as
an approximation of a certifier’s evaluation of the leaf claim
after manually reviewing its supporting solution. Following an
information retrieval process, DS4AC first removes all stop
words, e.g., “to” in verb phrase “traces to”, in the context of a
leaf claim and then uses a subject in the claim as a query and an
object as a document to derive a confidence value for the claim.
For instance, for the leaf claim node 0G1.7.1 in Figure 1(i), Sys
R01, as the subject of the verb, is retrieved as a query and HR5,
as the object of the verb, is regarded as a document; and the
DS4AC calls the GVSM to get a similarity value, i.e., 1.0, as a
confidence value dec of claim node 0G1.7.1. As a confidence
value from the certifier’s perspective, we set 0.8 as a value for
conf for all leaf claims as confidence about the GVSM in this
paper. So, the 2-tuple (1.0,0.8) gives confidence for 0G1.7.1
from the certifier’s perspective as an approximation of a human
decision.

3. OVERVIEW OF DS4AC FRAMEWORK
This section overviews the process supported by our

DS4AC framework for calculating the confidence of ACs, the
generation of training data, and a confidence calculation model.

C. The DS4AC Framework Process
 To learn the values for disjoint contributing weights using

a certifier-deemed acceptable AC (such as Figure 1(i)) followed
by application of these weights to a second AC (such as that
shown in Figure 1(ii)), DS4AC consists of two phases (see
Figure 2):

l The Training Phase. First, denoted by ① in Figure 2,
in order to use the D-S theory, the DS4AC converts an
initial AC, termed AC1, into a confidence calculation

Figure 2 Overview of the DS4AC framework

Page 6358

model. Second, (denoted by ②) DS4AC uses the
GVSM [22] to calculate similarity values for the
confidence values for all leaf claims in a confidence
calculation model. Third, (denoted by ③) DS4AC
generates a set of ACs with the same structure as AC1
as training data. Finally, (denoted by ④) DS4AC
applies the D-S theory to find a set of values for all the
disjoint contributing weights such that AC1 is ranked
highest when compared with the other sets, to indicate
that the original AC is acceptable.

l The Application Phase. As denoted by ⑤ , DS4AC
initially translates a second assurance case, termed
AC2, into a confidence calculation model. Next, (see
⑥) DS4AC applies the disjoint contributing weights
obtained to the confidence calculation model for AC2.
DS4AC employs the D-S theory as well as the GVSM
method to deduce the confidence of the AC2.

D. Assurance Cases Generation As Training Data
Central to the training phase is the generation of training

data, i.e., a set of assurance cases with the same argument
structure as the first assurance case but with different leaf claims
and supporting solution nodes. To generate a new AC compared
with the acceptable AC, as an approximation of a certifier’s
certification process, DS4AC only modifies the object of the
verb in an assertion in a leaf claim but not its assertion structure.
For instance, 0G1.7.1 in Figure 1 (i) asserts that Sys R01 traces
to HR5, i.e., the object of the verb phrase “traces to”. So, DS4AC
replaces HR5 with HRi where i ∈ {1,2,3,4}, denoting the other
four high-level requirements (CONOPS). Thus, the
corresponding solution node is changed to a traceability check
report between Sys R01 and HRi. Likewise, claim 0G1.7.8
asserts the trace relationship between Sys R08 and HR1 and HR4
and therefore DS4AC replaces HR1 and HR4 with HRi and HRj,
respectively, where i,j ∈ {1,2,3,4,5} and (i,j)!=(1,4). Then the
solution node 0Sn1.1.8 is updated accordingly. It is noted that
DS4SC employs the GVSM to deduce a confidence value for a
leaf claim by retrieving its subject and object as a query and a
document respectively as an approximation of a certifier’s
evaluation on a leaf claim after manually reviewing a system
artifact via the corresponding supporting solution node.
Obviously, the system artifacts linked to the solutions in the ACs
are not important as an approximation of a certifier’s evaluation
during the training phase in DS4AC.

E. Confidence Calculation Model
Since an assurance case includes auxiliary information

about how an argument structure is supported (e.g., a strategy
node, justification node, and context node in an assurance case),
we only keep claims and evidence nodes in a confidence model
and abstract away the intermediate nodes. Moreover, if a claim
called c_1 is supported by only one child claim c_2 that is
further supported by child claim c_3, then we can simplify the
confidence calculation model by indicating that claim c_1 is
directly supported by child claim c_3 without including child
claim c_2. As such, the assurance case shown in Figure 1(i) is
converted to the confidence calculation model shown in Figure
4.

4. IMPLEMENTATION OF FRAMEWORK
In this section, we provide technical details on the

implementation of DS4AC.

F. Generation of a Set of Training Data.
To generate ACs based on the first AC1 DS4AC first

generates a similarity table for each leaf claim of the AC1 using
the trace information given by the leaf claim. In general, when
a leaf claim describes a trace relation between n artifacts,
DS4AC considers all combinations of the n artifacts from all
artifacts of the same type. For instance, for 0G1.7.1 which
claims “Sys R01 traces to HR5”, DS4AC considers 5 CONOPS
requirements − Sys R01 as a query can trace to HR1,
HR2,…,HR5, each of which is a document, respectively− and
then deduces five similarity values using GVSM as candidates
for new leaf claims. Likewise, for 0G1.7.8 which asserts “Sys
R08 traces to HR1 and HR4”, DS4AC considers all
combinations of two HRs out of the five HRs as documents,
each of which is traced to by SysR08. So, there are 10 similarity
values related to 0G1.7.8 using GVSM. Once similarity values
are deduced, DS4AC sorts these values in descending order,
and finally stores the best, ideal, average, and worst similarity
values in a table, termed similarity table, associated with a leaf
claim as a candidate set when generating a new assurance case.
An ideal value is the one given by the leaf claim in AC1. This
strategy is used so that no extreme training data are generated.

Figure 5 gives the algorithm creating a training data set.
The method, termed createTrainingData, takes a first assurance
case, denoted as ac, as well as the number of assurance cases to
be generated, denoted as s, as input and outputs a list of

Figure 3 D-S theory for confidence calculation Figure 4 Requirement elicitation assurance calculation model

Page 6359

assurance cases via the list TD variable which initially adds an
acceptable assurance case ac to the list at line 1. To generate
each of the remaining s-1 assurance cases (from lines 2 to 12),
the method chooses a random value (at line 3) between 1 and
the number of leaf claims in the current assurance case for
variable x so that a new assurance case, denoted as 𝑎𝑐_, has x
different leaf claims (from lines 5 to 7), each of whose
trustworthiness values is different from their counterpart in ac
by randomly selecting a value from the similarity table
associated with a leaf claim in ac (lines 9 and 10). Lastly, the
method adds 𝑎𝑐_ to TD as a generated assurance case in the
training data and set 𝑎𝑐_as a new value for ac for generation of
next assurance case if the total number of generated assurance
case is less than s-1.

G. Derivation of Disjoint Contributing Weights
When finding a best configuration of all disjoint

contributing weights for an AC, DS4AC uses a preset step value
to consider a finite number of values taken by each weight as a
candidate configuration. For instance, if a step value is set to
0.1, then framework employs the following formula (5) to find
all candidate configurations for wE , w` , and wa if there are
three sub-claims in an argument. Note that co is the degree of
correspondence of all three sub-claims.

wB

a

BDE

= 1 − 𝑐𝑜,where	wB ∈ 	0.1, 0.2, … , 0.8 				(5)

DS4AC iterates each candidate configuration and
assurance case in a training data set to ensure that the acceptable
assurance case is ranked as high as possible. To do so, method
IdentifyConfiguration as shown in Figure 6 takes the accepted
assurance case as parameter ac, and the training data as
parameter trainingData. The method starts with calling method
find_all_confs(ac) to find all possible configurations according
to the structure of ac at line 1. After initializing the variables
including the outputs from line 2 to line 4, the method checks
each configuration from c line 5. For each c, the method
retrieves each ac from trainingData, calls method
Calculate_Using_DS (..) to calculate a trustworthiness value of
ac under configuration c, and adds the value to list declist from
line 7 to line 9. Next, the method gets the rank of the accepted
AC among trainingData via calling method findRankofFirstAC
(..) at line 10. If a new rank is better than the best one via
variable best_rank, or a new rank is equal to best_rank but the
current configuration has a large dec value than the best one’s
via variable trustworthiness, then the method updates the output
variables to the current configuration, rank and trustworthiness
dec value.

There exist scenarios where sections of two assurance
cases have different structures even though they are both
derived from the same safety pattern (see the bottom of Figure
1). In this case, we skip the calculation of disjoint contributing
weights. Instead, DS4AC assigns equal weights to all disjoint
contributing weights for all children claims instead of
considering all sets of disjoint contributing weights satisfying
formula (5).

H. Confidence Calculation of Second Assurance Case
DS4AC applies the derived values of disjoint contributing

weights to the calculation model of the second assurance case

whose confidence can be automatically generated instead of
manually determined by a certifier. In this case, DS4AC calls
method Calculate_Using_DS(conf,ac) where parameter conf is
a derived set of disjoint contributing weights and the ac
parameter is a second input assurance case. A return value is a
2-tuple value where confidence of the input assurance case is
given by a trustworthiness value of the 2-tuple value.

5. EVALUATION OF FRAMEWORK
In this section, we evaluate DS4AC based on two case

studies to address the following research question:

RQ: Can the set of disjoint contributing weights generated
by the training phase be successfully used in the application
phase in terms of the Matthews Correlation Coefficient, a
popular measure of the quality of binary classification for
machine learning?

Before answering the research question, we briefly
introduce the Gear Controller System that was designed
according to the informal requirements delivered by Mecel AB
to illustrate the applicability of UPPAAL [26]. In the Gear
Controller System, there are five components, each of which
was modeled by a timed automaton according to the original
requirements from Mecel AB. Meanwhile, safety and liveness
requirements are converted from the informal description of the
system to UPPAAL queries. The UPPAAL queries are further
validated against the timed automata to ensure all safety and
liveness requirements are satisfied. In this case study, we
employ two assurance cases that claim the correct design of
timed automata and derivation of the UPPAAL queries

Figure 5 Create training data algorithm

Figure 6 Identify disjoint weights algorithm

Page 6360

respectively shown in Figure 7 (i) and (ii). For the assurance
case to claim the design of timed automata being adequate, the
assurance case starts with the top claim, i.e., “All gear controller
automatons are adequately designed in the Gear Controller
System”. For the second assurance case to claim the derivation
of UPPAAL queries are correct, we start with the top claim, i.e.,
“All gear controller UPPAAL queries are adequately derived in
the Gear Controller System”.

To support the top claim, both assurance cases employ a
strategy that targets the five components in the Gear Controller
System, i.e., the Interface, Gear Controller, Gearbox, Engine,
and Engine components. For each component, one child claim,
labelled as 0G1.2.x where x is {1,2,…,5}, is formed to ensure
the automaton for the component is adequately designed. Due
to space constraints, we only show three of the five components
in Figure 7.

For each sub-claim 0G1.2.x, two sub-claims are further
developed to support its correctness and completeness via a
strategy node 0S1.2.x. For the assurance case on automata, the
correctness child claim ensures that the automaton of a
component traces to the corresponding component description,
and the completeness child claim asserts that the component
description matches the automaton in terms of similarity. For
the assurance case on the UPPAAL queries, the correctness
child claim ensures that the UPPAAL queries related to a
specific component can trace to the related system requirements,
and the completeness child claim asserts that the system
requirements related to a component match the UPPAAL
queries in terms of similarity. At the bottom part of the two
assurance cases, both the correctness claim and the
completeness claim are supported by traceability check reports
between the related system artifacts.

Answer to RQ. We adopt the Matthews Correlation
Coefficient (MCC) [27] that, as a measure of the quality of
binary (two-class) classifications, has been regarded as a better
measure than many popular evaluation measures such as Recall,
Precision, F-Factor, and Rand Accuracy in machine learning
[28]. The MCC, calculated by Formula (6), has also been
applied in software engineering [29]. Considering true and false
positives and negatives, the MCC is essentially a correlation
coefficient between the observed and predicted binary
classifications; it returns a value between −1 and +1. A
coefficient of +1 represents a perfect prediction, 0 means no
better than random prediction, and −1 indicates total
disagreement between prediction and observation. The closer
to 1 a MCC value is, the more accurate a prediction is. In our
scenario, the MCC is employed to indicate whether the derived
set of disjoint contributing weights by DS4AC is better than a
randomly generated set.

𝑀𝐶𝐶 = hi∗	hklmi∗	mk
(hinmi)(minmk)(hknmi)(hknmk)

									(6)

To find whether a derived set of the disjoint contributing
weights from the training phase can be successfully used in the
application phase, we manually generate 100 assurance cases
with the same structure as the second assurance case. The first
criterion of the manual review is based on the average
trustworthiness value of the entire assurance case. We first set
a threshold value to be an average trustworthiness value of all

leaf claims in the 100 assurance cases. The rationale behind this
criterion is that if an average trustworthiness value is too low,
then it is impossible for the case to be accepted. Next, we select
all assurance cases whose average trustworthiness value is
greater than the threshold value for further manual review. For
the Coupled Tanks System assurance cases, there are a total of
45 assurance cases selected for manual review and the other 55
assurance cases are immediately rejected. For the second phase
of manual review, after communicating with the developers
about the system design multiple times, we find the system
aspect artifacts play an important role in the early design and
analysis process in that the system aspect, as the first step of the
process, is further decomposed into the environmental aspect
and controller aspect. Thus, we further review the 45 assurance
cases selected from the first phase. Among the 45 assurance
cases, we manually select 25 assurance cases for the acceptable
set based on the assurance structure under the first branch, i.e.
the claim 0G1.2.1 in Figure 1(ii).

For the Gear Controller System assurance cases, we employ
the same criterion for the first phase by calculating a threshold
value based on an average trustworthiness value of all leaf
claims in the 100 assurance cases. Thus, there are a total of 44
assurance cases selected for manual review and the remaining
56 assurance cases are immediately rejected due to a low
average trustworthiness value. Next, we study the five
components in the Gear Controller System and concentrate on
the gear controller artifacts since the gear controller is the main
part in this case study, as is confirmed by one of the experts

Figure 7 Assurance cases of the Gear Controller System

Page 6361

who was actively involved in the design and verification of the
case study. Based on this criterion, after reviewing the 44
assurance cases, we manually select 14 assurance cases for the
acceptable set.

Next, we calculate MCC values for both case studies by
applying the derived set of the disjoint contributing weights
from the training phase to the 100 assurance cases. First, we find
the numbers of true positives, false positives, true negatives, and
false negatives for both studies, followed by the MCC
calculation using formula (6). All the information is shown in
Table 1. From the MCC values for both case studies, we
conclude that the derived set of the disjoint contributing weights
from the training phase is closer to a perfect prediction than a
random prediction.

6. THREATS TO VALIDITY
Several potential threats to validity exist. First, in order to

address the threat that DS4AC may not be applied to the
evaluation of assurance cases in multiple safety critical domains,
we applied DS4AC to two case studies from two different
application areas, but both are the safety-critical domains where
the safety property is the main issue in both systems. While we
cannot claim that DS4AC is able to evaluate all assurance case
correctly, we are confident that the tools such as our framework
should be able to assist certifiers to review an assurance case by
reducing the burden of manual review.

Another threat to validity is to address the RQ, we manually
select the acceptable assurance cases as well as the rejected
assurance cases for both case studies. But, we had extensive
interactions with the AFRL team who worked on the Coupled
Tanks System. As for the Gear Controller System, we received
extensive feedback about the case study from one of the experts
who involved in the design and verification of the Gear
Controller System. Furthermore, it is important to note that this
type of research study is a critical precursor to building an
industrially relevant framework that can finally help certifiers
to automatically deduce confidence of an assurance case.

A third threat is the application of traceability and
information retrieval techniques to check the confidence of leaf
claims in an assurance case. Since traceability and information
retrieval techniques have been widely and successfully
employed in various phases of an SDLC [6, 30, 31, 32, 33, 34],
and integrating the traceability into an assurance case [35] has
been recently proposed. Application of traceability and
information retrieval techniques seems to be a promising
direction for certification purposes. As part of future work, we
will investigate whether the accuracy of the confidence
evaluation can be improved by adopting other techniques such
as static analysis and verification techniques.

A final threat is the application of the D-S theory to
approximate the confidence calculation performed by certifiers.

While other mathematical models can serve this purpose, the
configuration of assessment parameters in these models
remains a challenging issue. Nevertheless, our framework
should still be applicable for these models, but further studies
are needed to confirm this claim.

7. RELATED WORK
Work on confidence and assurance cases dates back to

2003 when Bloomfield and Littlewood raised a question as to
how the degree of confidence in a case can be affected [36].
Then Bloomfield et al. [37] proposed that confidence of an
assurance case can be related to the concept of safety integrity
levels (SILs) that measure the risk of dangerous failure in
safety-critical systems. However, some researchers have
directly addressed the confidence issue. For instance, Hawkins
et al. [38] proposed a new method which splits an assurance
case into two pieces of information. The first piece is the safety
argument that shows the desired safety property using evidence.
The second piece is the confidence argument showing that a
degree of confidence in the safety argument is supported by an
argument and evidence. The confidence argument is to address
uncertainties that underlie the safety argument. For simplicity,
Hawkins et al. combined a confidence argument into a safety
argument by the use of assurance claim points.

Evaluation of assurance cases is not new to the safety
critical sector. Various uncertainty theories and models have
been applied to deduce confidence of an assurance case.
Goodenough et al. [39] extended Hawkins et al.’s work by
quantifying confidence as a Baconian probability. Goodenough
et al. used a Baconian probability ratio as a pair of integers
where a number of assurance deficits (“doubts” or “defeaters”)
that have been eliminated or mitigated is the numerator-like
value while the total number of doubts identified is the
denominator-like value. The Baconian probabilities are
summed up from the pairs of leaf claims to a root claim, leading
to a confidence probability value for the entire assurance case.

Most approaches tailor a theory or model to an assurance
case in order to calculate a confidence value. For instance,
Wang et al. [15] successfully revised the Dempster-Shafer (D-
S) theory to ensure that can be used as a main calculation model
to deduce the confidence of an assurance case. However, when
performing confidence propagation, all the assessment
parameters should be provided as input including the disjoint
contributing weights of all children claims. At the same time,
the leaf claim evaluation must be done manually by domain
experts. In fact, this approach epitomizes most current research
about evaluation of an assurance case using various types of
mathematical models. For instance, Denney et al. [13] applied
the Bayesian paradigm for uncertainty modelling and
assessment. Duan et al. [14] considered the application of the
Beta distribution as Baconian Probabilities. However, all the
current approaches require human input to configure
assessment parameters such as how a child claim contributes to
the belief of its parent claim.

Support of assurance case evolution has also drawn great
interests in the research community due to the importance of
system evolution. Kokaly et al. [40] proposed the application of
model evolution, which has been widely studied by the model

TABLE 1 MCC VALUE IN APPLICATION PHASE

Page 6362

driven engineering (MDE) community to understand why
models change and how that impacts consistency of related
models. This information is used to generate a new assurance
case by reusing the current assurance case as much as possible
when a system evolves. Huang et al. [35] proposed the
establishment of traceability among assurance cases for a safety
critical system. When an artifact change is detected, properties
related to an assurance case are thus analyzed by information
retrieval techniques, refactoring crawler, identified patterns, and
static analysis tools. Once a property is violated, the
corresponding argument in the assurance case should be
updated. These approaches do not directly address confidence
evaluation of an assurance case as we do in this paper.

Acknowledgements. The research described in this paper
has been supported by funding from the Air Force Research
Laboratory under agreement numbers FA8750-19-2-007,
FA8750-16-2-0284, and FA-8750-19-2-0002; NSF Grant DBI-
0939454; and support from Ford and General Motors. The U.S.
Government is authorized to reproduce and distribute reprints
for Governmental purpose notwithstanding any copyright
notation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of Air Force Research Laboratory,
the U.S. Government, or industrial sponsors.

8. CONCLUSIONS
While software certification requires human judgement, our

results show that software certification is amenable to
automation when the D-S model is used to approximate a
certifier’s domain model and experience. We are exploiting how
the traceability and information retrieval techniques can be
combined with other static analysis and verification tools to
further improve the accuracy of the confidence achievable
within DS4AC. Lastly, we are investigating how DS4AC can
be integrated into assurance case evolution especially for
autonomous cyber physical systems.

9. REFERENCES

[1] J. Rushby, "Assurance and Assurance Cases," in Dependable Software
Systems Engineering (Marktoberdorf Summer School Lectures, 2016),
IOS Press, 2016, pp. 207-236.

[2] Organización Internacional de Normalización, ISO 26262: Road
Vehicles : Functional Safety, ISO, 2011.

[3] Food and Drug Administration (FDA), "Guidance for the Content of
Premarket Submissions for Software Contained in Medical Devices,"
2005.

[4] European Committee for Electrotechnical Standardization, "CSN EN
50129 - Railway applications - Communication, signalling and
processing systems - Safety-related electronic systems for signalling,"
2003. [Online]. Available: https://www.en-standard.eu/csn-en-50129-
railway-applications-communication-signalling-and-processing-
systems-safety-related-electronic-systems-for-signalling/. [Accessed 4
July 2018].

[5] J. Rushby, "The Interpretation and Evaluation of Assurance Cases,"
Computer Science Laboratory, SRI International, SRI-CSL-15-01,
Menlo Park, CA, 2015.

[6] L. Briand, D. Falessi, S. Nejati, M. Sabetzadeh and T. Yue,
"Traceability and SysML design slices to support safety inspections: A
controlled experiment," ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 23, no. 1, pp. 9:1-9:43, 2014.

[7] EUROCONTROL—European Organisation for the Safety of Air
Navigation, "Preliminary Safety Case for ADS-B Airport Surface
Surveillance Application, V 1.2," [Online]. Available:
https://www.eurocontrol.int/sites/default/files/publication/files/surveil
lance-cascade-preliminary-safety-case-for-airports-surface-
surveillance-applications-201111.pdf.

[8] T. Chowdhury, C.-W. Lin, B. Kim, M. Lawford, S. Shiraishi and A.
Wassyng, "Principles for Systematic Development of an Assurance
Case Template from ISO 26262," in Proceedickngs of 2017 IEEE
International Symposium on Software Reliability Engineering,
Industry Track, Toulouse, France, 2017.

[9] Y. Zhang, A Safety Argument Template for Medical Device Software,
Personal Email, 2016.

[10] E. W. Denney and G. J. Pai, "Safety Case Patterns: Theory and
Applications," NASA/TM–2015–218492, 2015.

[11] R. Hawkins, I. Habli, D. Kolovos, R. Paige and T. Kelly, "Weaving an
Assurance Case from Design: A Model-Based Approach," in Proc. of
HASE'15, Daytona Beach, FL, 2015.

[12] C.-L. Lin, W. Shen and S. Drager, "A Framework to Support
Generation and Maintenance of an Assurance Case," in IEEE
International Symposium on Software Reliability Engineering
Workshops (ISSREW), 2016.

[13] E. Denney, P. Ganesh and H. Ibrahim, "Towards Measurement of
Confidence in Safety Cases," in Proceedings of ESEM'11, Banff,
Alberta, Canada, 2011.

[14] L. Duan, S. Rayadurgam, M. Heimdahl, O. Sokolsky and I. Lee,
"Representation of Confidence in Assurance Cases Using the Beta
Distribution," in Proceedings of HASE'16, Orlando, FL,, Jan, 2016.

[15] R. Wang, J. Guiochet and G. Motet, "Confidence Assessment
Framework for Safety Arguments," in Proc. of SafeComp'17, Trento,
Italy, 2017.

[16] E. Denney and G. Pai, "Tool support for assurance case development,"
Automated Software Engineering, vol. 25, no. 3, pp. 435-499, 2018.

[17] Goal Structuring Notation Working Group, "GSN Community
Standard Version 1," 2011.

[18] RTCA, Inc., "DO-178C: SOFTWARE CONSIDERATIONS IN
AIRBORNE SYSTEMS AND EQUIPMENT," 2011.

[19] M. Rahimi, W. Xiong, J. Cleland-Huang and R. Lutz, "Diagnosing
assumption problems in safety-critical products," in Proc. of the
International Conference on Automated Software Engineering (ASE
2017), 2017.

[20] B. Ramesh and M. Jarke, "Toward reference models for requirements
traceability," IEEE transactions on software engineering, vol. 27, no.
1, pp. 58-93, 2001.

[21] J. Cleland-Huang, O. C. Z. Gotel, J. Huffman Hayes, P. Mäder and A.
Zisman, "Software traceability: trends and future directions," in Proc.
of the Future of Software Engineering (FOSE 2014), 2014.

[22] G. Tsatsaronis and V. Panagiotopoulou, "A Generalized Vector Space
Model for Text Retrieval Based on Semantic Relatedness," in Proc. of
EACL'09, 2009.

[23] T. K. Landauer, Latent Semantic Analysis, John Wiley & Sons, Ltd,
2006.

[24] K. H. Gross, A. W. Fifarek and J. A. Hoffman, "Incremental Formal
Methods Based Design Approach Demonstrated on a Coupled Tanks
Control System," in Proceedings of HASE'16, Orlando, FL,, 2016.

[25] M. Lindahl, P. Pettersson and Y. Wang , "Formal design and analysis
of a gear controller," Software Tools for Technology Transfer, vol. 3,
no. 3, pp. 353-368, 2001.

[26] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson and Y. Wang,
"UPPAAL — a tool suite for automatic verification of real-time

Page 6363

systems," in Proc. of the International Hybrid Systems Workshop,
1995.

[27] B. W. Matthews, "Comparison of the predicted and observed secondary
structure of T4 phage lysozyme," Biochimica et Biophysica Acta (BBA)
- Protein Structure, vol. 405, no. 2, pp. 44-451, 1975.

[28] D. Powers, "Evaluation: From Precision, Recall and F-Measure to
ROC, Informedness, Markedness & Correlation," Journal of Machine
Learning Technologies., vol. 2, no. 1, p. 37–63, 2011.

[29] R. Gopalakrishnan, P. Sharma, M. Mirakhorli and M. Galster, "Can
latent topics in source code predict missing architectural tactics?," in
Proc. of the 39th International Conference on Software Engineering (
ICSE), Buenos Aires, Argentina, 2017.

[30] D. Poshyvanyk, M. Gethers and A. Marcus, "Concept location using
formal concept analysis and information retrieval," ACM Transactions
on Software Engineering and Methodology , vol. 21, no. 4, pp. 23:1-
23:34, 2012.

[31] M. Mirakhorli and J. Cleland-Huang, "Detecting, Tracing, and
Monitoring Architectural Tactics in Code," IEEE Transactions on
Software Engineering, vol. 42, no. 3, pp. 205-220, 2015.

[32] X. Yang, D. Lo and X. Xia, "Combining Word Embedding with
Information Retrieval to Recommend Similar Bug Reports," in Proc.
of the International Symposium on Software Reliability Engineering
(ISSRE), 2016.

[33] J. Guo, J. Cheng and J. Cleland-Huang, "Semantically enhanced
software traceability using deep learning techniques," in Proc. of the
International Conference on Software Engineering (ICSE), Buenos
Aires, 2017.

[34] V. Arnaoudova, S. Marcus, A. Marcus and G. Antoniol, "The Use of
Text Retrieval and Natural Language Processing," in International
Conference on Software Engineering (ICSE), 2015.

[35] J. Cleland-Huang and R. Lutz, "Traceability Support For Evolving
Safety Assurance Cases," Air Force Research Laboratory’s Safe &
Secure Systems and Software Symposium (S5) 2017, Dayton, Ohio,
2017.

[36] R. Bloomfield and B. Littlewood, "Multi-Legged Arguments: The
Impact of Diversity upon Confidence," in Proc. of the International
Conference on Dependable Systems and Networks (DSN 2003), San
Francisco, 2003.

[37] R. E. Bloomfield, B. Littlewood and D. Wright, "Confidence: Its Role
in Dependability Cases for Risk Assessment," in Proc. of the
International Conference on Dependable Systems and Networks (DSN
2007), Edinburg, 2007.

[38] R. Hawkins, T. Kelly, J. Knight and P. Graydon, "A New Approach to
creating Clear Safety Arguments," in Advances in Systems Safety,
2011.

[39] J. Goodenough, C. B. Weinstock and A. Z. Klein, "Toward a theory of
assurance case confidence," CMU/Software Engineering Institute
Technical Report CMU/SEI-2012-TR-002 ESC-TR-2012-002, 2012.

[40] S. Kokaly, R. Salay, V. Cassano, T. Maibaum and M. Chechik, "A
model management approach for assurance case reuse due to system
evolution," in Proc. of the International Conference on Model Driven
Engineering Languages and Systems (MODELS' 16), 2016.

Page 6364

