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Abstract 

Evaluation of assurance cases in the Goal Structuring 
Notation typically requires certifiers’ domain knowledge and 
experience, and, as such, most software certification has been 
conducted manually. Given the advancement in uncertainty 
theories and software traceability, we envision that these 
technologies can synergistically be combined and leveraged to 
offer some degree of automation to improve the certifiers’ 
capability to perform software certification. To this end, we 
present DS4AC, a novel confidence calculation framework that 
1) applies the Dempster-Shafer theory to calculate the 
confidence of a claim; and 2) uses the vector space model to 
evaluate the confidence for the evidence items using 
traceability information. We illustrate our approach on two 
different applications, where safety is the key property of 
interest for both systems; and provide proof of concept results 
that demonstrate the DS4AC framework can automate portions 
of the evaluation of assurance cases, thereby reducing the 
burden of manual certification process.  

 

1. INTRODUCTION  
Assurance cases [1] specify an argument structure linking 

different artifacts from the software development process to 
support assurance claims and properties, which are increasingly 
used in emerging standards for demonstrating system assurance 
[2, 3, 4], as well as certification [5]. Central to certification is 
the evaluation of an assurance case (AC) that requires 
calculating the confidence of a root claim in the AC, using a 
bottom-up strategy starting with confidence evaluation of leaf 
claims by evaluating their respective supporting 
evidence/solution. As such, while some techniques to assist 
certifiers to efficiently and effectively evaluate a system [6] , 
have been proposed, the certification process is hindered by the 
volume of domain knowledge and experience needed by 
certifiers. As such, most software certification, including that 
used in the safety-critical sectors, has been conducted manually. 
Even worse, as the complexity of software continues to grow, 
ACs are exponentially increasing in size and complexity. For 
example, the preliminary safety-based AC for co-operative 
airport surface surveillance operations is approximately 200 
pages long [7], where the size is expected to grow as more 
detailed argument structures are considered. Furthermore, 

manual certification is thus not only time consuming but also 
error prone and expensive.  

Two complementary strategies have been pursued to make 
the certification process more systematic and efficient. First, 
work has been done to support the systematic development of 
ACs, with a specific focus on facilitating certification. For 
example, safety-based AC templates have been proposed to 
directly link certification requirements imposed by safety 
standards (e.g., ISO26262) to elements of the AC template [8, 
9]. Also, safety-based AC patterns have been developed to 
leverage the common argument structure used in ACs, where 
the specific argument nodes may be different from one pattern 
instantiation to another, depending on the certification 
requirements and system artifacts [10, 11, 12]. Second, in an 
attempt to introduce automation into the certification process, 
researchers have applied various mathematical/probabilistic 
models to approximate the bottom-up evaluation strategy used 
by a certifier [13, 14, 15, 16]. But these approaches still require 
extensive human involvement due to two obstacles. One is the 
confidence calculation of leaf claims. The other is how to assess 
the relative contribution of sub-claims (i.e., weight distribution) 
for parent claims. 

This paper proposes the DS4AC framework that applies 
the Dempster-Shafter (D-S) theory [15] as an approximation of 
a certifier’s prior certification decisions for selected ACs and 
leverages recurring AC argument structure to automate the 
certification evaluation of other structurally similar ACs. 
Specifically, DS4AC takes as input two assurance cases, 
specified in terms of the Goal Structuring Notation (GSN) [17], 
where the first AC has been certified as acceptable by the 
certifier, and the objective of the DS4AC framework is to 
calculate confidence of the second yet-to-be-certified AC as an 
approximation of the certifier’s evaluation without requiring an 
actual review.  DS4AC exploits the emerging use of safety 
templates and the development of safety pattern-based 
techniques, and thus requires that the two assurance cases have 
the same argument structure. Moreover, we also observe that 
many standards documents require traceability to be established 
between artifacts at different phases of a software development 
lifecycle (SDLC) [2, 3, 4, 18].  Traceability information has 
been successfully employed to assess the validity of 
environmental assumptions for safety-critical products [19]. 
Thus, DS4AC assumes that the leaf claims in both assurance 
cases should include assertions about the traceability 
information amongst the supporting evidence (i.e., 
development artifacts). 
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 To determine how each sub-claim can independently 
contribute to the belief of its parent (in the form of a weight 
distribution), DS4AC employs the D-S theory as a confidence 
calculation model, where multiple sources of supporting 
evidence for a given claim can be combined to determine a 
degree of belief for the claim. The D-S approach comprises two 
phases: a learning phase and an application phase. In the 
learning phase, we assume that, since a certifier accepts a first 
input AC, she acknowledges its main argument structure. 
Moreover, she must have compared the AC with some other 
ACs that have different system artifacts as solutions. 
Specifically, when accepting the AC in Figure 1 (i), during 
evaluation, she might consider another system artifact such as 
a traceability check report between Sys R01 and HR4 as the new 
0Sn1.1.1 solution. Accordingly, the assertion of the 0G1.7.1 
leaf claim is updated to read “Sys R01 traces to HR4…” in the 
new AC. Then, she must have chosen the first AC over the other 
after review. As such, DS4AC generates a set of ACs, called a 
training data set, where each AC has the same argument 
structure as the first AC but is instantiated with different system 
artifacts for the solution/evidence, as well as their 
corresponding supporting leaf claims. Using the training data 
set, DS4AC automatically learns a weight distribution of all 
sub-claims so that the distribution has the acceptable AC ranked 
higher in the training data set than most other distributions 
using the D-S theory. In the application phase, DS4AC applies 
the learned weight distribution to a target AC to approximate 
the certifier’s decision. For the leaf claim evaluation, we take 
advantage of assertions of leaf claims on the traceability 
information [20, 21] and then apply information retrieval 
techniques [22, 23] to deduce confidence values for leaf claims.  

We apply DS4AC to two case studies: the Coupled Tanks 
System [24], and the Gear Controller System [25]. Our proof of 
concept results shows that DS4AC can successfully evaluate a 
new AC based on an initial acceptable assurance case. In 
summary, we make the following contributions in this paper: 

l Calculate the confidence of an assurance case using 
the D-S theory by means of automatically inferring 
disjoint contributing weights from an initially-certified 
assurance case that has the same structure as the 
assurance case to be certified;  

l Apply a General Vector Space Model (GVSM) [22] to 
evaluate the confidence of a leaf claim based on its 
supporting evidence nodes; and 

l Illustrate the applicability of DS4AC on two cyber-
physical applications obtained from the literature. 

The remainder of the paper is organized as follows. Section 
II describes background material, including the Coupled Tanks 
System application as illustration of the use of GSN for 
specifying assurance cases, the D-S theory as a mathematical 
modeling for confidence calculation between sub-claims and 
parent claims, and the GVSM as an information retrieval 
technique for evaluating confidence of leaf claims. Section III 
presents an overview of DS4AC and some technical details for 
DS4AC are given in Section IV. We demonstrate the 
applicability of DS4AC using empirical data from the two case 
studies to address a research question in Section V. We discuss 
threats to validity in section VI and overview related work in 

Section VII. Finally, we summarize and draw conclusions in 
Section VIII. 

2.   BACKGROUND 
This section provides background material used for the 

remainder of the paper. We start with an overview of an 
industrial-strength application, i.e., the Coupled Tanks System 
as a running example. Then we briefly describe the D-S theory 
and the GVSM method, two key enabling technologies used for 
DS4AC.  

A. Case Study: Coupled Tanks System 
The Coupled Tanks Challenge Problem was initially 

developed by the AFRL (Air Force Research Laboratory) to 
illustrate a formal methods-based early design and analysis 
process [24]. The Coupled Tanks System draws liquid from a 
limitless source, temporarily stores the liquid for a process to 
occur (e.g., mixing), and finally releases the liquid into a 
bottomless sink. Here we consider two phases: the requirements 
elicitation phase and the requirements analysis phase in [24]. 
The requirements elicitation phase starts with the concept of 
operations (CONOPS) that denotes five high-level 
requirements for the system, denoted as HR1,…, HR5, where 
the AFRL team derives eight system requirements, denoted as 
Sys R01,..,Sys R08, based on three aspects: the system, 
controller, and environment. Then in the second phase, the 
specification and analysis of requirements (SpeAR) framework 
is used to develop and analyze the system requirements; this 
process is part of the (requirements) analysis phase. Namely, 
the system requirements are further decomposed into eight 
SpeAR properties and/or requirements, denoted as 
p_sys_01,..,p_sys_08, respectively. In this case, we applied the 
safety pattern from Lin et al. [12] where variables in the safety 
pattern are replaced by the corresponding system artifacts and 
new GSN nodes are generated based on concrete artifacts. 
Figure 1(i) and (ii) show the two assurance cases that make 
claims about the requirements elicitation and requirement 
analysis phases, respectively. To support the top claim, 
rendered as a box in GSN, i.e., 0G1.1.1, both assurance cases 
employ three sub-claims, i.e., 0G1.2.1, 0G1.2.2, and 0G1.2.3, 
that refer to the system, environment, and controller aspects 
respectively. A strategy node, rendered as a parallelogram, e.g., 
0S1.1.1, represents how a claim, e.g., 0G1.1.1, is supported by 
its sub-claims, e.g., 0G1.2.x where x ∈  {1,2,3} using the 
SupportedBy link, rendered as a line with a solid arrowhead. 
Next, for each sub-claim 0G1.2.x, two sub-claims are further 
developed to support its correctness and completeness via a 
strategy node 0S1.2.1. For instance, for the child claim 
“Requirements at the System Aspect are adequately elicited and 
documented in the requirement document”, i.e., 0G1.2.1 in 
Figure 1(i), the correctness part claims that all system 
requirements at the system aspect correctly implement the high-
level requirement (CONOPS) via claim 0G1.3.1. The 
completeness part asserts that all high-level requirements are 
completely considered by the system requirements at the 
system aspect via claim 0G1.4.1. Likewise, in the second 
assurance case shown in Figure 1(ii), for the “SpeAR model 
properties at the System Aspect are adequately elicited and 
documented in the SpeAR model document” sub-claim 0G1.2.1, 
term “SpeAR model document” replaces term “requirement 
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document” in Figure 1(i). Furthermore, each sub-claim 0G1.2.x 
in Figure 1(ii) is further supported by two sub-claims in terms 
of correctness and “SpeAR model properties” replaces term 
“Requirements” and term  completeness as its counterpart in 
Figure 1(i). Finally, a leaf claim such as 0G1.7.1 is supported 
by an evidence node, rendered as a circle, such as 0Sn1.1.1, 
which is produced as a system artifact by the developer during 
SDLC. The difference between the two assurance cases is that 
0S.1.6.1 in Figure 1(i) has 5 leaf claims, while Figure 1(ii) has 
8 leaf claims representing 5 CONOPS requirements and 8 
system requirements respectively. But due to space, we only 
show the first and last leaf claims in both cases, skipping the 
middle leaf claims.  

B.  Enabling Technologies 
We largely follow Wang et al’s formulation for the D-S 

theory calculation [15]. For a claim A, a frame of discernment 
Ω" is {A, A}, where A denotes logical negation of A. The mass 
m() A  shows the degree of belief committed to the hypothesis 
that truth lies in A [15]. When applying the D-S theory, 
confidence of a claim A is denoted as a 3-tuple (bel(A), dis(A), 
uncer(A)) representing belief, disbelief, and uncertainty of A, 
respectively. The 3-tuple of a claim is thus defined as follows: 

bel A 						= m() A = g1																			
dis A 					= bel A = 	m(5 A = f1
uncer A 		= 	m() Ω1 = 1 − g1 − f1

	 									 1  

A confidence model [15] consists of claims and evidence 
nodes that are connected to each other via the SupportedBy link. 
An argument is composed of a claim as a conclusion and the 
corresponding sub-claims as predicates via its all SupportedBy 
links. For instance, the top argument in Figure 1(i) consists of 
claim 0G1.1.1 as a conclusion and three sub-claims 0G1.2.1, 
0G1.2.2, and 0G1.2.3, as predicates. The confidence calculation 
of a claim depends on the nature of the argument relating the 
claim to its all sub-claims; different types of assessment 

parameters are used for showing the nature of an argument. The 
first assessment parameter is the type of an argument: either a 
dependent or redundant argument.  

A redundant argument means the contribution of one sub-
claim to support its parent claim does not depend on another 
(i.e., sibling) sub-claim. For example, the argument−claim A: 
“the system is acceptably safe” is supported by claim B: “the 
system is passed by verification” and claim C: “the system is 
passed by testing”− is redundant since two different techniques, 
B and C supports A to some degree without being dependent on 
the other.  

A dependent argument means that the contribution of a 
sub-claim for supporting its parent claim has some degree of 
overlap with another sub-claim. For instance, the following 
argument − claim A: “The system is acceptably safe” is 
supported by claim B “the test process is sound” and claim C 
“the test results are correct”	− is a dependent argument since 
the test results given by C to support claim A depend on the test 
process given by claim B. The second assessment parameter is 
the completeness of an argument, denoted as v, referring to a 
degree value between 0 and 1 and showing a scenario where its 
claim as a conclusion cannot be fully derived from all its sub-
claims as predicates. For instance, for the above dependent 
argument, unless the validity of the claim made by A can be 
verified, we cannot completely guarantee the claim of A via any 
testing approach and so v can only have a value less than 1.  

Another assessment parameter relates to the degree of 
correspondence of all sub-claims, denoted as co, which 
collectively sum to a value between 0 and 1 to capture the 
contributions of all sub-claims to their parent claim. All these 
assessment parameters are based on an argument. The final 
parameter is a disjoint contributing weight that differs from the 
other three assessment parameters because its value is set based 
on a claim instead of an argument. A disjoint contributing 
weight of a claim, say A, denoted as w1, denotes a degree value 

Figure 1: Two assurance cases for the Coupled Tanks System 
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between 0 and 1 showing how much the claim independently 
contributes to the belief/confidence of its parent claim along the 
argument. 

Once the type of an argument is set, confidence of a claim 
can be calculated using the D-S theory. For example, assume 
the type of an argument is dependent. Then the confidence of a 
claim A via the 3-tuple is given by the following formula: 

	bel A 			= 		v[ 𝑐𝑜 gB

C

BDE

+ gBwB]
C

BDE

= g1											

								dis A 			= 	v[ 𝑐𝑜 [1 − (1 − fB)]
C

BDE

+ fBwB]
C

BDE

= f1

uncer A = 1 − g1 − f1																																																

						(2) 

where wB (i=1,2,…,n) denotes a disjoint contributing weight of 
the i-th sub-claim to support its parent claim. Likewise, the 
formula for a redundant argument with n sub-claims can be 
given; due to space constraints, it is omitted but can be found in 
[15]. Since the number of claims in an assurance case can grow 
dramatically, the research goal of this paper is to find an 
appropriate value of all wB in an assurance case.  

Another format of confidence of a claim represents a 
certifier’s perspective about the claim, say A, using a 2-tuple 
(dec(A), conf(A)), where dec denotes a certifier’s confidence 
value and conf represents the confidence about the method used 
by a certifier in determining the value for dec. We thus call a 
dec value of a claim its trustworthiness value of the claim since 
a dec value directly denotes a confidence value given by a 
certifier. Since the 2-tuple and 3-tuple formats reflect two 
different perspectives on the confidence of a claim (see Figure 
3), a type conversion between the two formats is necessary for 
different purposes. For instance, a certifier’s evaluation on a 
leaf claim via a 2-tuple is converted to a 3-tuple so the D-S 
theory can be carried out. Likewise, a 3-tuple of a root claim is 
converted to a 2-tuple after the calculation to obtain certifier’s 
evaluation. Formulas (3) and (4) show the conversions between 
the 3-tuple and 2-tuple formats of confidence of a claim. 
Whether an AC is acceptable or not is based on a 
trustworthiness value of its root claim. Following the common 
practice, we set 0.7 as a threshold value; and if a trustworthiness 
value is greater than the threshold value, then the AC is deemed 
as acceptable.  

𝑏𝑒𝑙(𝐴) 	= 	𝑐𝑜𝑛𝑓(𝐴)×	𝑑𝑒𝑐(𝐴)
														𝑑𝑖𝑠(𝐴) 	= 	𝑐𝑜𝑛𝑓(𝐴)×	 1 − 	𝑑𝑒𝑐(𝐴) 	
		𝑢𝑛𝑐𝑒𝑟(𝐴) 	= 	1 − 	𝑏𝑒𝑙(𝐴) − 	𝑑𝑖𝑠𝑏(𝐴)	

																		(3)						 

𝑐𝑜𝑛𝑓(𝑃) = 	𝑏𝑒𝑙(𝑃) + 	𝑑𝑖𝑠𝑏(𝑃)																																																																														
𝑑𝑒𝑐(𝑃) = 	𝑏𝑒𝑙(𝑃)	/	(𝑏𝑒𝑙(𝑃) + 	𝑑𝑖𝑠𝑏(𝑃)),			𝑖𝑓	𝑏𝑒𝑙(𝑃) + 	𝑑𝑖𝑠𝑏(𝑃) 	≠ 	0	
𝑑𝑒𝑐(𝑃) 	= 0, 𝑖𝑓	𝑏𝑒𝑙(𝑃) + 	𝑑𝑖𝑠𝑏(𝑃) 	= 	0																																																	

	(4) 

GVSM extends the traditional VSM, an algebraic model 
using vectors of identifiers to represent text documents, by 
embedding WordNet’s semantic information, besides terms, in 
the representation of documents. As a result, GVSM boosts text 
retrieval performance after using the semantic information. We 
apply the GVSM to deduce a confidence value of a leaf claim as 
an approximation of a certifier’s evaluation of the leaf claim 
after manually reviewing its supporting solution. Following an 
information retrieval process, DS4AC first removes all stop 
words, e.g., “to” in verb phrase “traces to”, in the context of a 
leaf claim and then uses a subject in the claim as a query and an 
object as a document to derive a confidence value for the claim. 
For instance, for the leaf claim node 0G1.7.1 in Figure 1(i),  Sys 
R01, as the subject of the verb, is retrieved as a query and HR5, 
as the object of the verb, is regarded as a document; and the 
DS4AC calls the GVSM to get a similarity value, i.e., 1.0, as a 
confidence value dec of claim node 0G1.7.1. As a confidence 
value from the certifier’s perspective, we set 0.8 as a value for 
conf for all leaf claims as confidence about the GVSM in this 
paper. So, the 2-tuple (1.0,0.8) gives confidence for 0G1.7.1 
from the certifier’s perspective as an approximation of a human 
decision. 

3. OVERVIEW OF DS4AC FRAMEWORK 
This section overviews the process supported by our 

DS4AC framework for calculating the confidence of ACs, the 
generation of training data, and a confidence calculation model. 

C. The DS4AC Framework Process 
 To learn the values for disjoint contributing weights using 

a certifier-deemed acceptable AC (such as Figure 1(i)) followed 
by application of these weights to a second AC (such as that 
shown in Figure 1(ii)), DS4AC consists of two phases (see 
Figure 2): 

l The Training Phase. First, denoted by ①  in Figure 2, 
in order to use the D-S theory, the DS4AC converts an 
initial AC, termed AC1, into a confidence calculation 

Figure 2 Overview of the DS4AC framework 
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model. Second,  (denoted by ② ) DS4AC uses the 
GVSM [22] to calculate similarity values for the 
confidence values for all leaf claims in a confidence 
calculation model. Third, (denoted by ③ ) DS4AC 
generates a set of ACs with the same structure as AC1 
as training data. Finally, (denoted by ④ )  DS4AC 
applies the D-S theory to find a set of values for all the 
disjoint contributing weights such that AC1 is ranked 
highest when compared with the other sets, to indicate 
that the original AC is acceptable.  

l The Application Phase. As denoted by ⑤ , DS4AC 
initially translates a second assurance case, termed 
AC2, into a confidence calculation model. Next, (see 
⑥) DS4AC applies the disjoint contributing weights 
obtained to the confidence calculation model for AC2. 
DS4AC employs the D-S theory as well as the GVSM 
method to deduce the confidence of the AC2. 

D. Assurance Cases Generation As Training Data 
Central to the training phase is the generation of training 

data, i.e., a set of assurance cases with the same argument 
structure as the first assurance case but with different leaf claims 
and supporting solution nodes. To generate a new AC compared 
with the acceptable AC, as an approximation of a certifier’s 
certification process, DS4AC only modifies the object of the 
verb in an assertion in a leaf claim but not its assertion structure. 
For instance, 0G1.7.1 in Figure 1 (i) asserts that Sys R01 traces 
to HR5, i.e., the object of the verb phrase “traces to”. So, DS4AC 
replaces HR5 with HRi where i ∈ {1,2,3,4}, denoting the other 
four high-level requirements (CONOPS). Thus, the 
corresponding solution node is changed to a traceability check 
report between Sys R01 and HRi. Likewise, claim 0G1.7.8 
asserts the trace relationship between Sys R08 and HR1 and HR4 
and therefore DS4AC replaces HR1 and HR4 with HRi and HRj, 
respectively, where i,j ∈ {1,2,3,4,5} and (i,j)!=(1,4). Then the 
solution node 0Sn1.1.8 is updated accordingly. It is noted that 
DS4SC employs the GVSM to deduce a confidence value for a 
leaf claim by retrieving its subject and object as a query and a 
document respectively as an approximation of a certifier’s 
evaluation on a leaf claim after manually reviewing a system 
artifact via the corresponding supporting solution node. 
Obviously, the system artifacts linked to the solutions in the ACs 
are not important as an approximation of a certifier’s evaluation 
during the training phase in DS4AC. 

E. Confidence Calculation Model 
Since an assurance case includes auxiliary information 

about how an argument structure is supported (e.g., a strategy 
node, justification node, and context node in an assurance case), 
we only keep claims and evidence nodes in a confidence model 
and abstract away the intermediate nodes. Moreover, if a claim 
called c_1 is supported by only one child claim c_2 that is 
further supported by child claim c_3, then we can simplify the 
confidence calculation model by indicating that claim c_1 is 
directly supported by child claim c_3 without including child 
claim c_2. As such, the assurance case shown in Figure 1(i) is 
converted to the confidence calculation model shown in Figure 
4.  

4. IMPLEMENTATION OF FRAMEWORK 
In this section, we provide technical details on the 

implementation of DS4AC.  

F. Generation of a Set of Training Data. 
To generate ACs based on the first AC1 DS4AC first 

generates a similarity table for each leaf claim of the AC1 using 
the trace information given by the leaf claim. In general, when 
a leaf claim describes a trace relation between n artifacts, 
DS4AC considers all combinations of the n artifacts from all 
artifacts of the same type. For instance, for 0G1.7.1 which 
claims “Sys R01 traces to HR5”, DS4AC considers 5 CONOPS 
requirements −  Sys R01 as a query can trace to HR1, 
HR2,…,HR5, each of which is a document, respectively− and 
then deduces five similarity values using GVSM as candidates 
for new leaf claims. Likewise, for 0G1.7.8 which asserts “Sys 
R08 traces to HR1 and HR4”, DS4AC considers all 
combinations of two HRs out of the five HRs as documents, 
each of which is traced to by SysR08. So, there are 10 similarity 
values related to 0G1.7.8 using GVSM. Once similarity values 
are deduced, DS4AC sorts these values in descending order, 
and finally stores the best, ideal, average, and worst similarity 
values in a table, termed similarity table, associated with a leaf 
claim as a candidate set when generating a new assurance case. 
An ideal value is the one given by the leaf claim in AC1. This 
strategy is used so that no extreme training data are generated.  

Figure 5 gives the algorithm creating a training data set. 
The method, termed createTrainingData, takes a first assurance 
case, denoted as ac, as well as the number of assurance cases to 
be generated, denoted as s, as input and outputs a list of 

Figure 3  D-S theory for confidence calculation Figure 4 Requirement elicitation assurance calculation model 
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assurance cases via the list TD variable which initially adds an 
acceptable assurance case ac to the list at line 1. To generate 
each of the remaining s-1 assurance cases (from lines 2 to 12), 
the method chooses a random value (at line 3) between 1 and 
the number of leaf claims in the current assurance case for 
variable x so that a new assurance case, denoted as 𝑎𝑐_, has x 
different leaf claims (from lines 5 to 7), each of whose 
trustworthiness values is different from their counterpart in ac 
by randomly selecting a value from the similarity table 
associated with a leaf claim in ac (lines 9 and 10). Lastly, the 
method adds 𝑎𝑐_  to TD as a generated assurance case in the 
training data and set 𝑎𝑐_as a new value for ac for generation of 
next assurance case if the total number of generated assurance 
case is less than s-1.  

G. Derivation of Disjoint Contributing Weights 
When finding a best configuration of all disjoint 

contributing weights for an AC, DS4AC uses a preset step value 
to consider a finite number of values taken by each weight as a 
candidate configuration. For instance, if a step value is set to 
0.1, then framework employs the following formula (5) to find 
all candidate configurations for wE , w` , and wa  if there are 
three sub-claims in an argument. Note that co is the degree of 
correspondence of all three sub-claims. 

wB

a

BDE

= 1 − 𝑐𝑜,where	wB ∈ 	0.1, 0.2, … , 0.8 				(5) 

DS4AC iterates each candidate configuration and 
assurance case in a training data set to ensure that the acceptable 
assurance case is ranked as high as possible. To do so, method 
IdentifyConfiguration as shown in Figure 6 takes the accepted 
assurance case as parameter ac, and the training data as 
parameter trainingData. The method starts with calling method 
find_all_confs(ac) to find all possible configurations according 
to the structure of ac at line 1. After initializing the variables 
including the outputs from line 2 to line 4, the method checks 
each configuration from c line 5. For each c, the method 
retrieves each ac from trainingData, calls method 
Calculate_Using_DS (..) to calculate a trustworthiness value of 
ac under configuration c, and adds the value to list declist from 
line 7 to line 9. Next, the method gets the rank of the accepted 
AC among trainingData via calling method findRankofFirstAC 
(..) at line 10. If a new rank is better than the best one via 
variable best_rank, or a new rank is equal to best_rank but the 
current configuration has a large dec value than the best one’s 
via variable trustworthiness, then the method updates the output 
variables to the current configuration, rank and trustworthiness 
dec value. 

There exist scenarios where sections of two assurance 
cases have different structures even though they are both 
derived from the same safety pattern (see the bottom of Figure 
1). In this case, we skip the calculation of disjoint contributing 
weights. Instead, DS4AC assigns equal weights to all disjoint 
contributing weights for all children claims instead of 
considering all sets of disjoint contributing weights satisfying 
formula (5).  

H.  Confidence Calculation of Second Assurance Case 
DS4AC applies the derived values of disjoint contributing 

weights to the calculation model of the second assurance case 

whose confidence can be automatically generated instead of 
manually determined by a certifier. In this case, DS4AC calls 
method Calculate_Using_DS(conf,ac) where parameter conf is 
a derived set of disjoint contributing weights and the ac 
parameter is a second input assurance case. A return value is a 
2-tuple value where confidence of the input assurance case is 
given by a trustworthiness value of the 2-tuple value.  

5. EVALUATION OF FRAMEWORK 
In this section, we evaluate DS4AC based on two case 

studies to address the following research question: 

RQ: Can the set of disjoint contributing weights generated 
by the training phase be successfully used in the application 
phase in terms of the Matthews Correlation Coefficient, a 
popular measure of the quality of binary classification for 
machine learning? 

Before answering the research question, we briefly 
introduce the Gear Controller System that was designed 
according to the informal requirements delivered by Mecel AB 
to illustrate the applicability of UPPAAL [26]. In the Gear 
Controller System, there are five components, each of which 
was modeled by a timed automaton according to the original 
requirements from Mecel AB. Meanwhile, safety and liveness 
requirements are converted from the informal description of the 
system to UPPAAL queries. The UPPAAL queries are further 
validated against the timed automata to ensure all safety and 
liveness requirements are satisfied. In this case study, we 
employ two assurance cases that claim the correct design of 
timed automata and derivation of the UPPAAL queries 

Figure 5 Create training data algorithm 

Figure 6 Identify disjoint weights algorithm 
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respectively shown in Figure 7 (i) and (ii). For the assurance 
case to claim the design of timed automata being adequate, the 
assurance case starts with the top claim, i.e., “All gear controller 
automatons are adequately designed in the Gear Controller 
System”. For the second assurance case to claim the derivation 
of UPPAAL queries are correct, we start with the top claim, i.e., 
“All gear controller UPPAAL queries are adequately derived in 
the Gear Controller System”.  

To support the top claim, both assurance cases employ a 
strategy that targets the five components in the Gear Controller 
System, i.e., the Interface, Gear Controller, Gearbox, Engine, 
and Engine components. For each component, one child claim, 
labelled as 0G1.2.x where x is {1,2,…,5}, is formed to ensure 
the automaton for the component is adequately designed. Due 
to space constraints, we only show three of the five components 
in Figure 7.  

For each sub-claim 0G1.2.x, two sub-claims are further 
developed to support its correctness and completeness via a 
strategy node 0S1.2.x. For the assurance case on automata, the 
correctness child claim ensures that the automaton of a 
component traces to the corresponding component description, 
and the completeness child claim asserts that the component 
description matches the automaton in terms of similarity. For 
the assurance case on the UPPAAL queries, the correctness 
child claim ensures that the UPPAAL queries related to a 
specific component can trace to the related system requirements, 
and the completeness child claim asserts that the system 
requirements related to a component match the UPPAAL 
queries in terms of similarity. At the bottom part of the two 
assurance cases, both the correctness claim and the 
completeness claim are supported by traceability check reports 
between the related system artifacts.  

Answer to RQ. We adopt the Matthews Correlation 
Coefficient (MCC) [27] that, as a measure of the quality of 
binary (two-class) classifications, has been regarded as a better 
measure than many popular evaluation measures such as Recall, 
Precision, F-Factor, and Rand Accuracy in machine learning 
[28]. The MCC, calculated by Formula (6), has also been 
applied in software engineering [29]. Considering true and false 
positives and negatives, the MCC is essentially a correlation 
coefficient between the observed and predicted binary 
classifications; it returns a value between −1 and +1. A 
coefficient of +1 represents a perfect prediction, 0 means no 
better than random prediction, and −1 indicates total 
disagreement between prediction and observation. The closer 
to 1 a MCC value is, the more accurate a prediction is. In our 
scenario, the MCC is employed to indicate whether the derived 
set of disjoint contributing weights by DS4AC is better than a 
randomly generated set. 

𝑀𝐶𝐶 = hi∗	hklmi∗	mk
(hinmi)(minmk)(hknmi)(hknmk)

									(6)   

To find whether a derived set of the disjoint contributing 
weights from the training phase can be successfully used in the 
application phase, we manually generate 100 assurance cases 
with the same structure as the second assurance case. The first 
criterion of the manual review is based on the average 
trustworthiness value of the entire assurance case. We first set 
a threshold value to be an average trustworthiness value of all 

leaf claims in the 100 assurance cases. The rationale behind this 
criterion is that if an average trustworthiness value is too low, 
then it is impossible for the case to be accepted. Next, we select 
all assurance cases whose average trustworthiness value is 
greater than the threshold value for further manual review. For 
the Coupled Tanks System assurance cases, there are a total of 
45 assurance cases selected for manual review and the other 55 
assurance cases are immediately rejected. For the second phase 
of manual review, after communicating with the developers 
about the system design multiple times, we find the system 
aspect artifacts play an important role in the early design and 
analysis process in that the system aspect, as the first step of the 
process, is further decomposed into the environmental aspect 
and controller aspect. Thus, we further review the 45 assurance 
cases selected from the first phase. Among the 45 assurance 
cases, we manually select 25 assurance cases for the acceptable 
set based on the assurance structure under the first branch, i.e. 
the claim 0G1.2.1 in Figure 1(ii). 

For the Gear Controller System assurance cases, we employ 
the same criterion for the first phase by calculating a threshold 
value based on an average trustworthiness value of all leaf 
claims in the 100 assurance cases. Thus, there are a total of 44 
assurance cases selected for manual review and the remaining 
56 assurance cases are immediately rejected due to a low 
average trustworthiness value. Next, we study the five 
components in the Gear Controller System and concentrate on 
the gear controller artifacts since the gear controller is the main 
part in this case study, as is confirmed by one of the experts 

Figure 7 Assurance cases of the Gear Controller System 
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who was actively involved in the design and verification of the 
case study. Based on this criterion, after reviewing the 44 
assurance cases, we manually select 14 assurance cases for the 
acceptable set.  

Next, we calculate MCC values for both case studies by 
applying the derived set of the disjoint contributing weights 
from the training phase to the 100 assurance cases. First, we find 
the numbers of true positives, false positives, true negatives, and 
false negatives for both studies, followed by the MCC 
calculation using formula (6). All the information is shown in 
Table 1. From the MCC values for both case studies, we 
conclude that the derived set of the disjoint contributing weights 
from the training phase is closer to a perfect prediction than a 
random prediction. 

6. THREATS TO VALIDITY 
Several potential threats to validity exist. First, in order to 

address the threat that DS4AC may not be applied to the 
evaluation of assurance cases in multiple safety critical domains, 
we applied DS4AC to two case studies from two different 
application areas, but both are the safety-critical domains where 
the safety property is the main issue in both systems. While we 
cannot claim that DS4AC is able to evaluate all assurance case 
correctly, we are confident that the tools such as our framework 
should be able to assist certifiers to review an assurance case by 
reducing the burden of manual review. 

Another threat to validity is to address the RQ, we manually 
select the acceptable assurance cases as well as the rejected 
assurance cases for both case studies.  But, we had extensive 
interactions with the AFRL team who worked on the Coupled 
Tanks System. As for the Gear Controller System, we received 
extensive feedback about the case study from one of the experts 
who involved in the design and verification of the Gear 
Controller System. Furthermore, it is important to note that this 
type of research study is a critical precursor to building an 
industrially relevant framework that can finally help certifiers 
to automatically deduce confidence of an assurance case. 

A third threat is the application of traceability and 
information retrieval techniques to check the confidence of leaf 
claims in an assurance case. Since traceability and information 
retrieval techniques have been widely and successfully 
employed in various phases of an SDLC [6, 30, 31, 32, 33, 34], 
and integrating the traceability into an assurance case [35] has 
been recently proposed. Application of traceability and 
information retrieval techniques seems to be a promising 
direction for certification purposes. As part of future work, we 
will investigate whether the accuracy of the confidence 
evaluation can be improved by adopting other techniques such 
as static analysis and verification techniques. 

A final threat is the application of the D-S theory to 
approximate the confidence calculation performed by certifiers. 

While other mathematical models can serve this purpose, the 
configuration of assessment parameters in these models 
remains a challenging issue. Nevertheless, our framework 
should still be applicable for these models, but further studies 
are needed to confirm this claim. 

7. RELATED WORK 
Work on confidence and assurance cases dates back to 

2003 when Bloomfield and Littlewood raised a question as to 
how the degree of confidence in a case can be affected [36]. 
Then Bloomfield et al. [37] proposed that confidence of an 
assurance case can be related to the concept of safety integrity 
levels (SILs) that measure the risk of dangerous failure in 
safety-critical systems. However, some researchers have 
directly addressed the confidence issue. For instance, Hawkins 
et al. [38] proposed a new method which splits an assurance 
case into two pieces of information. The first piece is the safety 
argument that shows the desired safety property using evidence. 
The second piece is the confidence argument showing that a 
degree of confidence in the safety argument is supported by an 
argument and evidence. The confidence argument is to address 
uncertainties that underlie the safety argument. For simplicity, 
Hawkins et al. combined a confidence argument into a safety 
argument by the use of assurance claim points. 

Evaluation of assurance cases is not new to the safety 
critical sector. Various uncertainty theories and models have 
been applied to deduce confidence of an assurance case. 
Goodenough et al. [39] extended Hawkins et al.’s work by 
quantifying confidence as a Baconian probability. Goodenough 
et al. used a Baconian probability ratio as a pair of integers 
where a number of assurance deficits (“doubts” or “defeaters”) 
that have been eliminated or mitigated is the numerator-like 
value while the total number of doubts identified is the 
denominator-like value. The Baconian probabilities are 
summed up from the pairs of leaf claims to a root claim, leading 
to a confidence probability value for the entire assurance case.  

Most approaches tailor a theory or model to an assurance 
case in order to calculate a confidence value. For instance, 
Wang et al. [15] successfully revised the Dempster-Shafer (D-
S) theory to ensure that can be used as a main calculation model 
to deduce the confidence of an assurance case. However, when 
performing confidence propagation, all the assessment 
parameters should be provided as input including the disjoint 
contributing weights of all children claims. At the same time, 
the leaf claim evaluation must be done manually by domain 
experts. In fact, this approach epitomizes most current research 
about evaluation of an assurance case using various types of 
mathematical models. For instance, Denney et al. [13] applied 
the Bayesian paradigm for uncertainty modelling and 
assessment. Duan et al. [14] considered the application of the 
Beta distribution as Baconian Probabilities. However, all the 
current approaches require human input to configure 
assessment parameters such as how a child claim contributes to 
the belief of its parent claim. 

Support of assurance case evolution has also drawn great 
interests in the research community due to the importance of 
system evolution. Kokaly et al. [40] proposed the application of 
model evolution, which has been widely studied by the model 

TABLE 1 MCC VALUE IN APPLICATION PHASE 
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driven engineering (MDE) community to understand why 
models change and how that impacts consistency of related 
models. This information is used to generate a new assurance 
case by reusing the current assurance case as much as possible 
when a system evolves. Huang et al. [35] proposed the 
establishment of traceability among assurance cases for a safety 
critical system. When an artifact change is detected, properties 
related to an assurance case are thus analyzed by information 
retrieval techniques, refactoring crawler, identified patterns, and 
static analysis tools. Once a property is violated, the 
corresponding argument in the assurance case should be 
updated. These approaches do not directly address confidence 
evaluation of an assurance case as we do in this paper.  
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8. CONCLUSIONS 
While software certification requires human judgement, our 

results show that software certification is amenable to 
automation when the D-S model is used to approximate a 
certifier’s domain model and experience. We are exploiting how 
the traceability and information retrieval techniques can be 
combined with other static analysis and verification tools to 
further improve the accuracy of the confidence achievable 
within DS4AC.  Lastly, we are investigating how DS4AC can 
be integrated into assurance case evolution especially for 
autonomous cyber physical systems. 
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