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Resumo

O hardware de sistemas computacionais possui uma função crítica na segurança de siste-
mas operacionais e aplicativos. Além de prover funcionalidades-padrão, tal como o nível
de privilégio de execução, o hardware também pode oferecer suporte a criptografia, boot
seguro, execução segura, e outros.
Com o fim de garantir que essas funcionalidades de segurança irão operar corretamente
quando juntas dentro de um sistema, e de que o sistema é seguro como um todo, é necessá-
rio avaliar a segurança da arquitetura de todo sistema, durante o ciclo de desenvolvimento
do hardware.
Neste trabalho, iniciamos pela pesquisa dos diferentes tipos existentes de vulnerabilidades
de hardware, e propomos uma taxonomia para classificá-los. Nossa taxonomia é capaz
de classificar as vulnerabilidades de acordo com o ponto no qual elas foram inseridas,
dentro do ciclo de desenvolvimento. Ela também é capaz de separar as vulnerabilidades
de hardware daquelas de software que apenas se aproveitam de funcionalidades-padrão do
hardware.

Focando em um tipo específico de vulnerabilidade - aquelas relacionadas à arquitetura
- apresentamos um método para a avaliação de sistemas de hardware utilizando a meto-
dologia de Assurance Cases. Essa metodologia tem sido usada com sucesso para a análise
de segurança física e, tanto quanto saibamos, não há notícias de seu uso para a análise
de segurança de hardware. Utilizando esse método, pudemos identificar corretamente as
vulnerabilidades de sistemas reais.
Por fim, apresentamos uma prova de conceito de uma ferramenta para guiar e automatizar
parte do processo de análise que foi proposto. A partir de uma descrição padronizada
de uma arquitetura de hardware, a ferramenta aplica uma série de regras de um sistema
especialista e gera um relatório de Assurance Case com as possíveis vulnerabilidades do
sistema-alvo. Aplicamos a ferramenta aos sistemas estudados e pudemos identificar com
sucesso as vulnerabilidades conhecidas, assim como outras possíveis vulnerabilidades.



Abstract

The hardware of computer systems plays a critical role in the security of operating sys-
tems and applications. Besides providing standard features such as execution privilege
levels, it may also offer support for encryption, secure execution, secure boot, and others.
In order to guarantee that these security features work correctly when inside a system,
and that the system is secure as a whole, it is necessary to evaluate the security of the
architecture during the hardware development life-cycle.
In this work, we start by exploring the different types of existing hardware vulnerabilities
and propose a taxonomy for classifying them. Our taxonomy is able to classify vulnera-
bilities according to when they were created during the development life-cycle, as well as
separating real hardware vulnerabilities from software vulnerabilities that leverage stan-
dard hardware features.
Focusing on a specific type of vulnerability - the architecture-related ones, we present a
method for evaluating hardware systems using the Assurance Case methodology. This
methodology has been used successfully for safety analysis, and to our best knowledge
there are no reports of its use for hardware security analysis. Using this method, we were
able to correctly identify the vulnerabilities of real-world systems.
Lastly, we present the proof-of-concept of a tool for guiding and automating part of the
proposed analysis methodology. Starting from a standardized hardware architecture de-
scription, the tool applies a set of expert system rules, and generates an Assurance Case
report that contains the possible security vulnerabilities of a system. We were able to
apply the tool to the studied systems, and correctly identify their known vulnerabilities,
as well as other possible vulnerabilities.
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Chapter 1

Introduction

Compared to software, computer hardware has received less attention from both security
researchers and practitioners. One of the possible reasons for this is that most hardware
products are designed and manufactured by a small number of companies, who hold the
responsibility for both checking and correcting security issues. Thus, the broader research
community would not have as much information about hardware development, compared
to what it has about software.

Another possible reason is that, although hardware complexity and performance has
been steadily increasing to accommodate more demanding software applications, hard-
ware architectures might still be less complex than the software that they run, and that
performance issues are still the primary concern during hardware development.

However, with the ongoing demand for new features and integration, hardware ar-
chitectures will continue to become increasingly complex. As an example, the average
number of system-on-chip (SoC) IP cores is increasing at a rate of 20% per year, and was
estimated to be around 100 per chip in 2014.

Besides increasing the necessary effort to verify that a system is functional, there has
been an increasing pressure to verify that the interaction between its subsystems will not
undermine the security of the system as a whole. And although the methods and tools
for system functionality verification are relatively well established and ever developing,
the same cannot be said about security verification.

Like other types of products, computing hardware products go through a develop-
ment life-cycle that includes architecture/design and implementation phases [2]. In each
phase, security vulnerabilities may arise. Fixing security vulnerabilities during the archi-
tecture/design phase is usually much less costly than doing so once its implementation
has started. Likewise, fixing vulnerabilities while the product is still in pre-silicon valida-
tion is much less costly than when it is post-silicon1. It therefore makes economical sense
to evaluate the product from the security standpoint during the architecture review or
pre-silicon validation [3].

Currently, most of the security evaluation of hardware architectures is manual and
ad-hoc. Evaluators try to form a mental model of the system by going through (natural
language-based) product architecture/design specifications, and/or by interacting with

1In many cases, solving a hardware issue after production may be even impossible

13



CHAPTER 1. INTRODUCTION 14

product architects and designers. The goal is to extract an abstract model of the system
that contains only the security-relevant aspects of the system. They then try to identify
security issues in this abstract model, based on their security expertise. The output of
such a process is usually a list of vulnerabilities found, or an informal statement that no
issues have been found. The main problems with this approach are:

• the extraction of the abstract model is a very time-consuming process that is re-
peated every time an evaluator analyses a new system;

• the requirements on security evaluators are very demanding since their knowledge
of security and hardware must be comprehensive and deep;

• the resulting abstract model is not documented, which prevents it from being re-
used, shared, or reviewed;

• because the evaluation process is largely informal, it is not straightforward to de-
termine how complete an evaluation is, and consequently, how secure or vulnerable
the design is.

Another important aspect is that the very definition of hardware vulnerability is not
as straightforward as the definition of “classical” software vulnerabilities, such as buffer
overflow. From the computer user point of view, a hardware vulnerability may arise from
the improper use of hardware features, such as the PXE Ethernet boot. For software
developers, a hardware vulnerability can exist when malicious code makes non-standard
use of hardware features (this in fact is a common understanding in CVE bug descriptions).
Finally, low-level hardware designers may consider that such vulnerability only exists when
there is a privilege access control bug in a microprocessor’s RTL code, for example.

1.1 Objectives
This work’s primary objective is to develop a framework for hardware security evaluation
during the architecture review or pre-silicon validation phase. From this objective we
derived a methodology with four key results that were necessary to achieve our objective:

1. the definition of hardware vulnerability, and the development of a taxonomy for the
classification of hardware vulnerabilities;

2. the development of an abstract framework for modeling security aspects of hardware
architectures;

3. the development of a language for expressing security requirements and algorithms
for evaluating them;

4. the development of a proof-of-concept tool to showcase and evaluate the framework.
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1.2 State-of-the-art
The literature on general hardware security is not as abundant as that on software security.
Furthermore, the literature about hardware security validation during architecture review
and pre-silicon phases is even more scarce.

Potlapally’s model checking

One of very few and possibly the most relevant work on hardware security during the
architecture review and pre-silicon phases is a paper by Potlapally [2], in which the au-
thor uses a formal approach for hardware validation employing a high-level formal model
of the hardware (DESIGN) developed in the TLA+ language. The attacker model (AD-
VERSARY) was also formally described, and the system was evaluated against a given
security goal (SECURITY PROPERTY):

((DESIGN _ ADV ERSARY ) => SECURITY PROPERTY )

If the model checker finds a counterexample for the logical condition, it will output
it and show that the system does not hold the security property. If it does not find
a counterexample, the property can be considered a theorem, and the system is secure
against the given adversary model.

The system was tested against a known vulnerability in one of the early versions of
the Intel Core CPU. The vulnerability allowed an attacker to override a series of protec-
tion mechanisms and successfully modify the contents of the SMM (System Management
Mode) memory. This attack will be latter described in Chapter 2, and was first presented
by Loïc Duflot [4]. The result from this test was that the system was able to successfully
detect the vulnerability from both a TLA+ model of the CPU subsystem and from the
CPU RTL code.

Potlapally’s approach is fairly similar to ours, since it relies on an evaluation of an
architecture model versus an attacker model. The main difference is that it uses formal
models. As advantages, we can consider that the checker was able to identify a relatively
complex attack (SMM cache), and that it can potentially be fully automated after the
formal models are coded. As disadvantages, the formal models are not easy to maintain
and require intricate manual work that is prone to errors. It is not clear whether this
system was able to find the other vulnerabilities that also affected the SMM subsystem.

Gallo’s Fortuna framework

Fortuna[5] is a framework for the security analysis of computing systems. It is aimed at
helping developers during the conception and implementation phases of secure systems,
but can also serve as a post-design validation tool. It is an agent-oriented methodology,
in the sense that the system modeling and analysis is built according to assumptions on
how an agent (in this case, an attacker) will act upon the characteristics of the system.

The framework consists of two phases. First, the system is modelled as a graph,
according to some specific rules and properties. As an example, the cryptographic token
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architecture depicted in Figure 1.1 is modelled as the graph shown in Figures 1.2 and 1.3.

Figure 1.1: Sample cryptographic token architecture.

In the representation of Figure 1.1, the external box represents the physically protected
(i.e. tamper resistant or evident) space of the device. The internal box contains the token’s
microcontroller and other security-sensitive components.

Figure 1.2: Fortuna-modelled graph of the sample token.

The graph in Figure 1.2 is the result of the modeling of the original architecture
according to the Fortuna methodology. It was considered that the private key was the
target of the attacker (agent).

Figure 1.3: Fortuna-modelled graph of the sample token, containing the protection rela-
tionship between various nodes.

The second graph, represented in Figure 1.3 was derived from the first, but also con-
sidering the protection relationship between the various elements. As an example, we note
that the private key security depends on the elements “crypto lib”, “key management”, and
“IC die”.
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These graphs allow a qualitative analysis of the whole architecture. It is possible to
visualize, for instance, if the security-critical elements are protected by multiple layers of
security mechanisms, or if they are subject to a single point of failure.

The second phase of Fortuna consists of adding the probability of attack for each node
of the system model, resulting in a weighted graph. These probabilities may represent a
measurement of how likely it is to find a new security bug in a software component, or how
likely it is to successfully penetrate through a tamper resistant hardware module. After
the probabilities are added, the most likely (or easiest) path of attack can be calculated,
as well as how likely or easy it would be to successfully attack the system.

Although Fortuna is aimed at a similar problem, it is not suitable for use in our work
due the following reasons:

• Since Fortuna relies on probabilities that are estimated from low-level design statis-
tics (number of lines of code, etc), we would not be able to have a model only from
public datasheet information;

• it is difficult to model only the target subsystem and isolate the rest of the system.
To model a secure memory region, for instance, it would be necessary to model all
CPU subsystems, requiring a possibly unacceptable amount of workload.

Secure Tropos

Secure Tropos [6] is an extension of Tropos [7], which is an agent-oriented software
development methodology. The Secure Tropos methodology could be applied to hardware
security evaluation in a way similar to the Fortuna framework, but would have the same
modeling complexity problem.

Jasper’s Security Path Verification App

Jasper’s Security Path Verification App [8] is a commercially available tool for formal
security analysis of RTL code. The tool is based on a form of taint analysis, but there is
no public information about its internal workings. This tool is able to detect conditions
that would result in the leakage of protected registers or cryptographic keys. The user
can specify the memory regions of the protected data, and the regions where this data
can and cannot be transferred to.

The analysis of the current methods for the evaluation of hardware security indicates
that there is in fact a need for new methods of evaluation. The existing tools either rely
on extensive work of security analysts, or do not provide the depth of analysis that is
needed for a complete evaluation.

Literature on the Assurance Case methodology for hardware security

This work relies on the use of the Assurance Case methodology for hardware security
evaluation. Extensive bibliographic review showed no previous report of usage of this
methodology for this specific use. There are, though, some related work regarding the use
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of tools to automate part of the development of Assurance Cases, which is also a topic of
this work.

Rushby [9] presented a tool to provide assistance to formal verification of the argument
structure of assurance cases using the Prototype Verification System (PVS) language [10].

AdvoCATE [11] is a toolset developed by Denney et al. to support the automated
construction and assessment of safety cases. Although it does not automatically generate
assurance cases, it is able to merge auto-generated safety case fragments from other tools
such as the AUTOCERT [12] formal verification tool.

In 2013, Denney et al. [13] also described a method for the formal description of safety
case patterns. The formal description was then used to enable the automatic instantiation
of the pattern in a safety case.

1.3 Summary of contributions
We studied various types of hardware vulnerabilities and created a taxonomy for their
classification. Our taxonomy has some novel aspects: it allows the mapping of the type
of vulnerability to the design phase of the hardware, and also allows a clear distinction
between real hardware vulnerabilities and firmware or driver bugs.

After developing the taxonomy, we focused on a specific type of vulnerability - the
architecture-related ones - and developed a new method for modeling and verifying the
involved hardware architectures. The method for verifying the hardware architectures is
based on the Assurance Case methodology, and is the subject of a paper [14] accepted
in the ARES 2015 Conference (International Conference on Availability, Reliability and
Security).

This resulting method was used to create a proof-of-concept tool to analyze real-world
systems. We were able to detect most of the hardware vulnerabilities that were stud-
ied, including all of the architecture-related ones. We also detected some other possible
vulnerabilities, but did not further investigate whether they existed in real-world systems.

The proof-of-concept tool was summarized in a paper that is going to be submitted to
the HOST symposium (IEEE International Symposium on Hardware-Oriented Security
and Trust).

1.4 Document organization
Chapter 2 describes real-world hardware attacks and vulnerabilities, and allows a deeper
understanding of the involved problems and challenges. Chapter 3 presents the tools and
methodologies that are used in our work. Chapter 4 describes a hardware vulnerability
taxonomy that we created and that allows the definition and characterization of hardware
problems. We also propose a new method for modeling hardware architectures. Chapter 5
presents a method for analyzing the security of hardware architectures, along with a
method for automating part of the analysis process. Chapter 6 concludes the work, and
gives a summary of the results and lessons learned during our research.



Chapter 2

Hardware attacks

In this chapter we present some of the hardware attacks that were studied during this
work. They are important for understanding the hardware vulnerability problem, along
with various types of vulnerabilities. For every attack, there is at least one associated
vulnerability, which is classified into the vulnerability taxonomy that is presented in Chap-
ter 4.

2.1 System Management Mode (SMM) Attacks
System Management Mode (SMM) is a x86 processor mode that is used to execute
firmware for the control and management of critical features of modern motherboards,
such as fan speed control and battery management. These critical, real-time functions,
cannot rely on the responsiveness of the OS, since a malfunction can result in physical
hazards to the system and even the user. If SMM did not exist, motherboard vendors
would probably have to add a dedicated microcontroller to control these critical real-time
functions. And in fact, SMM mode makes the CPU resemble a microcontroller, in the
sense that SMM code runs in 16-bit mode, with unrestricted access to the system memory
and I/O.

In our case study we assume an architecture consisting of the Intel Core 2 CPU and
a Q35 express chipset. This chipset is composed of a northbridge and a southbridge, as
shown in Figure 2.1. More information on SMM can be found on the IA-32 and Intel 64
Software Developer’s Manual [1].

SMRAM and SMBASE

The System Management RAM (SMRAM) is a special region in memory that stores code
and data of the SMM firmware. The SMM region typically resides in one of three standard
address regions for SMM code, but it can also occupy other addresses ranges. The base
address of the SMRAM is stored in the SMBASE register inside the CPU (thus, only the
CPU knows where SMM code actually resides during runtime).

The chipset’s northbridge provides a mechanism to block access to the SMRAM mem-
ory region after it is loaded by the BIOS. This mechanism is controlled by 3 bits of a
register inside the Northbridge, as shown in Figure 2.2. It is the BIOS’ responsibility to
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Figure 2.1: Typical northbridge/southbridge chipset architecture.

properly configure these registers before the OS starts execution. It is important to note
that this mechanism only blocks access to the 3 standard address regions for SMM code.

2.1.1 First attack - SMM remap attack

Attack Explanation

This attack was presented by Loïc Duflot [4], and consists of a way to bypass hardware
security mechanisms in order to write to the SMRAM protected memory region. It is a
very good case of how the interaction between different subsystems can result in a security
vulnerability.

The attack consists of using the memory remapping mechanism to bypass the SM-
RAM protection that is provided by the chipset. The memory remap feature was created
in order to recover physical memory regions that would otherwise be wasted, due to con-
flicts with system reserved address (e.g. I/O devices, video card memory). The memory
remapping is done entirely within the chipset, according to its register settings. Once these
registers are programmed by the CPU, the address translation is completely transparent
to the processor, and works independently of other address translations mechanisms (e.g.
MMU).

The remapping address translation table is configured by registers inside the north-
bridge. The problem is that the northbridge also checks and blocks accesses to specific
address regions, such as the SMRAM address range. Thus, if the protected address check
is done before the memory remapping occurs, an unauthorized access may take place,
since the access may be remapped from an allowed address to a protected address. This
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Figure 2.2: Details of the SMRAM protection register inside the Intel Q35 Chipset (ex-
cerpt from the IA-32 and Intel 64 Software Developer’s Manual [1].

is the case with the Q35 chipset, as reported by the attack described in Duflot et al. [15].
Figure 2.3 shows how the chipset control access to SMRAM memory. The 3 stan-

dard SMRAM memory regions have their access blocked, unless the CPU asserts the
SMM_MODE signal, indicating that it has entered SMM mode.

If an attacker is able to gain kernel mode privileges, he can use the memory remap
feature to remap a non-blocked memory region to the SMRAM memory region, as depicted
in Figure 2.4. Then, it would be possible to access the SMRAM contents, eventually
gaining access to a more privileged mode of execution (i.e. SMM mode).

Associated vulnerability

This attack explores the fact that the SMRAM protection mechanism did not take into
consideration other features of the memory control subsystem. We can consider that
the underlying vulnerability of this attack is that the memory remap address translation
was done after the SMRAM memory address check, allowing the SMRAM protection
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Figure 2.3: SMRAM memory protection mechanism.

mechanism to be bypassed.
Since the vulnerability arises from the interaction between these two subsystems, is

classified as (1.a.ii) Incompatibility between the security mechanisms of subsystems.

2.1.2 Second attack - SMM attack using cache memory

This attack was also presented by Duflot [4], and is another method for exploiting the
SMM subsystem.

Attack Explanation

The attack consists of writing to SMRAM code when it is inside the CPU cache memory,
effectively bypassing the SMRAM protection of the chipset. Although there are various
details that need to be taken into consideration in order to have a successful attack, the
attack is based in setting the SMRAM memory range as a write-back cacheable in the
MTRR registers.

The MTRR registers control how different memory regions are cached inside the CPU.
The write-back cache policy, for instance, consists of processing memory-write operations
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Figure 2.4: SMRAM memory protection mechanism bypassed by memory remapping.

first inside the cache memory, and only writing them to external memory when the cache
line is flushed.

If the SMRAM memory is cached with the write-back policy, all write operations to
its data will occur entirely within the CPU, and the chipset does not "know" that the
SMRAM code is being modified. The SMRAM code will eventually be flushed from cache
and written back to external memory, and the chipset will be able to block the write
operation. The problem is that the attacker could already have used the SMM privilege
to modify the SMRAM base address (SMBASE) to a another memory region, and filled
it with malicious code.

This attack would allow a program executing in ring-0 to bypass the hardware security
mechanisms that protect the SMRAM (System Management RAM) against writing. Since
the code executing in SMRAM has a higher privilege than ring-0 code, it can be considered
a privilege escalation attack.



CHAPTER 2. HARDWARE ATTACKS 24

Figure 2.5: Illustration of the SMRAM cache attack.

Associated vulnerability

We can consider that the attack is the result of incoherence between CPU and chipset
security mechanisms. While the chipset properly implemented its SMRAM write protec-
tion mechanisms, it was not considered the fact that the CPU could write to the SMRAM
contents without generating write operations to the chipset.

In order to fix this vulnerability, more recent CPUs have specific registers to control
the SMRAM cache policy (the System Management Range Registers - SMRR). If set
properly, then the SMRAM region cannot be set to have a Write Back cache policy, and
this attack cannot be carried out.

Since the vulnerability arises from the interaction between these two subsystems, it is
classified as (1.a.ii) Incompatibility between the security mechanisms of subsystems.

2.2 MSI and SIPI attack
Attack Explanation (first part - MSI)

This attack was presented by ITL [16], and consists of a clever way of using the PCIe
bus protocol to bypass the Intel VT-d security mechanisms that were present in older
systems.

The attack works by using a driver in a virtualized driver domain (a VM that has



CHAPTER 2. HARDWARE ATTACKS 25

direct access to various hardware devices) to execute specific PCIe bus transactions that
induce the generation of interrupt in the hypervisor, as depicted in Figure 2.6.

Figure 2.6: Hypervisor exploit overview.

Introduction to Intel VT-d

Intel VT-d [17] (Virtualization Technology for Directed I/O) is a set of hardware
features that were created to increase the performance and security in virtualized envi-
ronments. It allows guest systems to have direct access to PCI devices, without overhead
from the hypervisor. It provides the following features:

• I/O device assignment - Allows the hypervisor to assign I/O devices to guest ma-
chines.

• DMA remapping - Supports address remapping for device DMA data transfers.

• Interrupt remapping - Provides routing and isolation of device interrupts to specific
guest machines.

• Reliability features - Reports and records errors that may otherwise corrupt memory
or break guest machine isolation.

Using a standard data packet to generate an interrupt

The mechanism that allows the generation of the PCIe interrupt is called Message
Signaled Interrupt. Instead of using specific physical pins to signal interrupts, modern
PCI peripherals generate interrupts by sending special packets of data in the standard
PCIe communication channel. In order to generate an interrupt, the device has to send
a packet in the format given in Figure 2.7. This packet is the same packet that would be
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Figure 2.7: MSI packet format.

generated if the device were to write to an address starting with 0xFEEh.
If a malicious program can induce a device to write to this address range (i.e. starting

with 0xFEEh), an interrupt will be generated. As most devices have some kind of DMA
controller, it can be relatively easy to program such a controller to write to this address
and thus generate an interrupt from outside of the driver domain VM. This is what this
attack does, in this specific case using a network card, and using a scatter-gather DMA
controller from the card chipset.

As these interrupts are generated by the PCI cards, they cannot be blocked by the
standard VT-d security mechanisms. These interrupts can be carefully crafted by the
guest machine in order to force the host to execute malicious code with hypervisor privi-
leges, as shown in the second part of the attack.

Figure 2.8: Example of a data transfer that causes an MSI, when scatter-gather DMA is
properly configured to enable the attack.

Attack Explanation (second part - SIPI)

Generating an interrupt on the hypervisor domain is the first part of the attack. The
second part of the attack deals with how to gain privilege benefits from this interrupt.
The original paper suggests three ways to exploit these interrupts, and we will focus on
the more interesting way from the hardware perspective, which is through the generation
of a SIPI interrupt.

A SIPI is a Start-up Inter Processor Interrupt, which is an interrupt that is used
during the initialization process of a multi-core system. When this interrupt occurs, the
affected CPU starts to execute code at an address specified by the interrupt, in the range
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(0x000000 to 0xFF0000). The architecture documentation manual [18] states that the
SIPI interrupts can only be generated from a CPU, by writing to registers in the local
APIC (LAPIC). It should not be possible to generate this interrupt from PCI cards or
other bus devices. Figure 2.9 contains the LAPIC register description from the original
architecture manual [18]. The SIPI interrupt is generated when the Delivery Mode field
is set to 110b.

Analyzing the MSI packet format that generates interrupts from the PCI bus, the
attacker noticed that it had a resemblance with the LAPIC register. Specifically, the
delivery field contained the same number of bits, and the allowed values matched those
from the LAPIC register, with the exception that the SIPI value (110b) was marked as
"reserved". The attacker then tried to generate an interrupt from a PCI device, using
the MSI packet with the 110b value in the Delivery Mode field, and a SIPI interrupt was
generated.

Combining the two steps of this attack, it would be possible for an attacker to execute
any code in the 0-1MB region of memory, with hypervisor privileges.

Figure 2.9: Interrupt Command Register (ICR) from Intel SDM.

Countermeasures

There is a hardware mechanism called Interrupt Remapping that can protect the system
against this attack. This mechanism is part of the VT-d specification, and has to be
supported by the CPU and operating system. This feature was not implemented in the
early VT-d systems, but it implemented in the current Intel CPUs. Thus, the attack
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Figure 2.10: Summary of the MSI and SIPI attack.

should not work on the newer architectures, as long as the operating system correctly
configures the Interrupt Remapping feature.

Vulnerability classification

This attack explores two distinct vulnerabilities: the interrupt generation from a standard
PCIe packet that is processed as a MSI packet, and the generation of a SIPI interrupt
from a PCI device.

The first vulnerability is classified as a (1.a.i) Architectural flaw of a single subsystem
of the involved PCI peripheral, since it should not allow the issuing of data packets that
have the same syntax as MSI packets.

The second vulnerability is classified as a (1.b) Architecture implementation of the MSI
packet processor, since it was not implemented as specified in the architecture manual [18].

2.3 GART privilege escalation
This attack was presented by Loïc Duflot in 2007 [19]. It consists of using the AGP Graph-
ics Aperture mechanism to bypass security mechanisms, allowing processes to access any
physical memory location. In the same work, Duflot also described a similar attack that
used the USB Host Controller to allow privilege escalation. Although this later attack
is based in a different hardware mechanism, both attacks operate on the same principle,
which is the exploit of an insecure interaction between two hardware subsystems.

Attack Explanation

The GART mechanism is a feature to allow memory locations to be remapped according
to a translation table. It was useful to remap memory from an AGP video card into the
physical RAM memory ranges, increasing transfer speeds. It is implemented inside the
chipset northbridge, and is programmed by standard PCI configuration registers.
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The attack consists of a process with access to the GART configuration registers to
remap the video buffer memory to a specific privileged memory region, such as kernel
memory. Then, it would be able to write to this memory using standard video API calls.
Since standard processes do not have access to video memory, this attack would have to
exploit video card drivers or video API calls.

If the IOMMU system is not properly configured, this attack could also be used for a
virtual machine to have access to any memory location on its host platform.

Vulnerability classification

This vulnerability is classified as (1.b):Incompatibility between the security mechanisms
of subsystems, because it results from a unplanned interaction between the GART and
MMU memory protection mechanisms.

2.4 Pentium FOOF bug
This bug was published in a 1998 edition of the Dr. Dobbs Journal [20]. FOOF is
the shorthand of the hexadecimal encoding of an instruction that caused the halt of
the affected Pentium processors. Recovery was only possible after the assertion of the
processor reset signal pin.

Since the instruction could be executed by any process with user privileges, this bug
could be effectively used as means for a denial-of-service attack.

Attack Explanation

F00F is the shorthand of f0 0f c7 c8, which is the hexadecimal encoding of the lock
CMPXCHG8B EAX instruction. The CMPXCHG8B instruction is used to compare the
value in the EDX and EAX registers with an 8-byte value at some memory location. In
this example a 4-byte register is used as the destination operand, which is not big enough
to store the 8-byte result. The original Dr. Dobbs article provides a detailed explanation
of the bug:

“When any x86 processor from the 80186 and beyond encounters an invalid
instruction, the processor is supposed to generate an invalid opcode exception.
In Intel vernacular, the undefined opcode exception is known as a "#UD.” This
handler usually signals an error condition and terminates the errant program.
When this mechanism works, the errant program can’t harm the computer
system. Should this mechanism fail, however, the errant program can bring
down the entire computer. If the computer is a network server or ISP, then
the errant program can bring down the entire network. That’s what can, in
fact, happen when the Pentium encounters the “F00F” bug, which maps to
a LOCK CMPXCHG8B EAX instruction. CMPXCHG8B compares 64-bit
memory contents with the contents in EDX and EAX. One of the operands
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must be memory, and the other (implied) operand is EDX:EAX. It is possible
to construct an instruction encoding that doesn’t map to a memory operand.
Since the non-memory form of this instruction is invalid, a compiler or as-
sembler will not generate this code. Instead, assembly-language programmers
must construct it by hand.

Such an illegal encoding should generate the requisite #UD. As you’d expect,
a CMPXCHG8B EAX instruction generates a #UD. However, when this il-
legal encoding is prepended with a LOCK prefix, the processor fails to work
correctly. Using the LOCK prefix on this form of CMPXCHG8B is illegal in
and of itself. LOCK prefixes are only allowed on memory-based read-modify-
write instructions. Hence a LOCK prefix on the register-based CMPXCHG8B
EAX instruction should also generate an invalid opcode exception. Instead,
the Pentium locks up and freezes the entire computer when it encounters this
instruction. This bug is especially nasty, because any user can construct a
program with this instruction, and upload it to a network computer, or incor-
porate it within an ActiveX applet. Once the program is run on the network,
the network server crashes. The only possible recovery comes by hitting the
big red switch. Suppose you download an ActiveX applet that contains this
code. As soon as the code executes, your computer freezes up.

“When the processor encounters the instruction F0 0F C7 C8 (or anything
from F0 0F C7 C8..CF), the F00F bug occurs. The processor recognizes that
an invalid opcode has occurred and tries to dispatch the #UD handler. Be-
cause of the LOCK prefix, the processor is confused. When the processor
issues the bus reads to get the #UD handler vector address, the processor
erroneously asserts the LOCK# signal. The LOCK# signal can only be as-
serted for read-modify-write instructions that modify memory. When the bus
is locked, a locked memory read must be followed by a locked memory write,
lest unpredictable results may occur. But in this case, the LOCK# signal
remains asserted for the two consecutive memory reads required to retrieve
the #UD vector address. The processor never issues any intervening locked
write, and then hangs itself.”

Vulnerability classification

From this explanation, we can assume that the problem is within the CPU itself, and
does not depend on other systems or software. Thus, it is classified as an Architecture
Implementation type of vulnerability.



Chapter 3

Tools

In this chapter we present the tools that are used in our methodology.

3.1 Assurance Cases
The Assurance Case framework originated from a generalization of the Safety Case frame-
work [21], which was created to ensure that mission-critical systems (in aerospace, nuclear
power, defense, and other industries) were adequately designed. Assurance cases can re-
late to any aspect of a system, such as reliability, availability, and security. An assurance
case about the security of a given system can be referred to as a security assurance case,
or just as a security case.

According to the original definition [22], a Safety Case is:

“A documented body of evidence that provides a convincing and valid ar-
gument that a system is adequately safe for a given application in a given
environment.”

According to Suleiman et al. [23], the major benefits of Safety Cases are:

• Making the implicit explicit:

– easier to review the arguments, question the evidence and challenge the ade-
quacy of the reasoning presented;

– creating greater transparency in the overall assurance process;

• aiding communication among stakeholders;

• integrating and assessing evidence sources;

• aiding safety management and governance.

Similarly, an Assurance Case is a documented body of evidence that a system holds a
given claim. Quoting from NATO’s Allied Engineering Publication #67 (AEP-67) [24]:

31
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“System assurance is the justified confidence that the system functions as
intended and is free of exploitable vulnerabilities, either intentionally or un-
intentionally designed or inserted as part of the system at any time during
the life cycle. This ideal of no exploitable vulnerabilities is usually unachiev-
able in practice, so programmes1 must perform risk management to reduce the
probability and impact of vulnerabilities to acceptable levels.

The Assurance Case is the enabling mechanism to show that the system will
meet its prioritized requirements[. . . ] It is a means to identify all the assurance
claims, and from those claims (formally) trace through to their supporting
arguments, and from those arguments to the supporting evidence.”

As the name suggests, Assurance Cases share commonalities with legal cases. They
both consist of a group of structured, objective evidence that supports a given claim. As
with legal cases, the evidence can be compiled into a text document. However, Assurance
Cases can also be graphically represented using standardized notations such as GSN (Goal
Structuring Notation) [25] or ASCAD [22].

An example of an Assurance Case structured in GSN (Goal Structuring Notation) is
shown in Figure 3.1. The goal at the top of the figure is called the topmost goal. The
reasoning that is used to unfold the topmost goal into sub-goals is called a strategy. In the
GSN notation, the strategy can be annotated between a claim and its sub-claim. There
is also the concept of justification (for a strategy) that can be also annotated besides the
strategy.

For each sub-goal, it is necessary to provide and describe a solution, which is by its
turn supported by evidence. Typically, evidence consists of reported measurements, tests
or statistical data. Thus, a finished Assurance Case should have supporting evidence for
all aspects related to the topmost goal.

A graphical Assurance Case may also have a textual counterpart, or may be developed
entirely in textual form. Figure 3.2 contains a simple textual Assurance Case relating to
the security of a subsystem (SMM) that exists in several Intel Core CPUs.

3.1.1 Assurance Case definition and use

Formally, an Assurance Case can be defined as a tree in which:

• the root node contains the topmost (i.e. higher level) claim that has to be assured;

• the inner nodes contain sub-claims that need to be true, in order to assure that the
topmost claim is true;

• each claim (parent) has to be supported by either other claims or evidence (childs);

• the Assurance Case is said to be complete (and the system, secure) if all the tree
leaves are composed of evidence that support their corresponding parent nodes
(claims).

1A set of related measures or activities with a particular long-term aim: e.g. the British nuclear power
programme
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Figure 3.1: Sample Assurance Case represented in the Goal Structuring Notation (GSN).

An Assurance Case starts with the statement of a topmost claim. This claim represents
the ultimate security or safety goal that is expected or desired from the system. The
topmost claim is supported by a series of sub-claims, which are in turn supported by
evidence. Other than claims and evidence, an Assurance Case may also contain Strategies,
Assumptions, and Justifications. We present the details of each of these elements, as well
as the best practices for creating them.

Claims or goals

The topmost claim should provide a clear statement about what is expected from the
system. It should not be a complex or a conditional statement. An acceptable topmost
claim for a hardware security assurance case could be, for example, "The system’s hard-
ware is acceptably secure". If there are some aspects of the system that cannot be assured
according to the topmost claim, they will eventually appear as unsupported sub-claims
(i.e. sub-claims that do not have supporting evidence).
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Claim: SMM code cannot be modified after boot.

Context: By modified we mean that the SMM code cannot be modified and then executed with SMM
privileges, except if the modification is made by the original SMM code.

Strategy: Analyze system architecture and include hardware components that can store and modify
SMM code.

Subclaim 1: SMM code residing in DRAM cannot be modified if the CPU is not in SMM mode.

Subclaim 1.1: After boot process, chipset only allows access to SMRAM memory region if CPU is in
SMM mode.

Argument 1.1.1: During boot process, chipset registers are correctly set to secure SMRAM.
Evidence 1.1.1: Intel IA-32 Architecture Manual: SMRAM D_LCK bit is set to 1 by BIOS.

Argument 1.1.2: Both D_OPEN and D_CLOSE must not be set to 1 at the same time.
Evidence 1.1.2: Intel IA-32 Architecture Manual: BIOS correctly sets D_OPEN and D_CLOSE
before setting D_LCK.

Figure 3.2: Example of Assurance Case in the textual form. This example relates to the
security of a subsystem (SMM) that exists in various Intel Core CPUs.

The sub-claims that follow the topmost claim should be declared as statements that
can be classified as true or false, such as "The interrupt system is secure". They have
to support the topmost claim, and will be naturally more detailed and technical. When
there is no evidence to directly support a given sub-claim, more sub-claims should be
created down the hierarchy.

Evidence

The evidence is any type of information or reasoning that can support a given sub-claim.
As an example, they can consist of reference to test reports, documentation, and source
code. There should be not doubt that the evidence is sufficient to support the sub-claim.

Strategy

The strategy is an optional field that describes the reasoning used to create sub-claims
from a given claim. By making the strategy explicit, it can be easier for a reader to
understand and to eventually find faults in the used reasoning.

Assumption

This is an optional note that describes high level assumptions that are necessary for the
correctness of the assurance case, but that are not under the control of the design team.
An assumption can be related to any other elements, such as strategies or evidence.

Justification

The justification element is optional, and can provide a detailed explanation of why a
given strategy was chosen or why a claim was created.
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3.2 Expert systems
As the name suggests, an expert system is designed to reproduce the diagnostics and
decisions of a human expert. It is typically implemented as an inference engine that pro-
cesses information from a knowledge base. The inference engine is responsible for making
all the reasoning, using the data and applying the rules programmed in the knowledge
base. In this way, expert systems can be programmed just by coding the knowledge base
according to information provided by a human expert. The inference engine can then
process this knowledge base and output the decisions or diagnostics about the input, as
shown in Figure 3.3.

Figure 3.3: Expert systems general architecture.

Expert systems were used in our work as a tool to automate part of the Assurance
Case (AC) generation process. The automation process also contributed to solving part
of the following weaknesses in the AC methodology:

• Management of argument patterns: argument patterns are templates that can be
used to provide guidance and speed up the process of building Assurance Cases.
As the number of different patterns is increased, the effort necessary to find which
pattern should be used and when it should be used also increases. An expert system
can automatically find the patterns that are applicable to a given assurance case.

• Statement of patterns and goals: the statements in a standard AC should be clear
and well defined, but they do not need to necessarily follow a specific syntax. Al-
though this can have a positive impact allowing more flexibility, it also makes it
difficult to represent the AC as a structured set of knowledge. On the other hand,
if we represent the statements in a way that is close to the way that data and
rules are represented in an expert system, the resulting AC will have a structured
representation that could be further machine-processed.

3.2.1 CLIPS

CLIPS [26] is a an acronym of "C Language Integrated Production System", and consists
of a software tool designed to build expert systems. It is an open source project with ports
to various platforms, and it is believed that it is one of the most used expert system tools.
The software consists of an interpreter of the CLIPS object oriented language interpreter,
together with an IDE for coding and debugging.
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The CLIPS language is roughly equivalent to the Prolog language, in the sense that
both are used in the context of AI, Expert Systems and Language Processing. For this
specific application in AC, the CLIPS language seems to be a better fit, specially because
of its way of describing facts and rules, as well as its native support for object orientation.
An example of a CLIPS program is shown in Figure 3.4.

; CLIPS fact definition
(assert (animal-is duck))

; rule example: if the "animal-is duck" fact is present,
; "quack" is printed
(defrule duck
(animal-is duck)
=>
(printout t "quack" crlf))

Figure 3.4: A CLIPS language program.

3.3 yEd
yEd is a general-purpose software for drawing diagrams. In this work we use yEd to draw
Assurance Case patterns and hardware architectures. It was chosen because it is a free
software that is capable of saving diagrams in the GraphML format.

The GraphML format is an XML-based format to save graphs. It is useful to transfer
graph information between different software platforms. Figure 3.5 contains a sample
GraphML XML description, and Figure 3.6 shows its corresponding graph in the graphical
form.

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">

<graph id="G" edgedefault="undirected">
<node id="n0"/>
<node id="n1"/>
<edge id="e1" source="n0" target="n1"/>

</graph>
</graphml>

Figure 3.5: Sample graph described in the GraphML format.
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Figure 3.6: Corresponding graph from sample GraphML description.



Chapter 4

Hardware modeling framework

In this chapter, we start by presenting a taxonomy for classifying hardware vulnerabilities.
Then, we select a specific type of vulnerability to focus our work on. Finally, we present
a method for modeling hardware architectures that will enable us to analyze systems
against this type of vulnerability.

4.1 Hardware vulnerabilities taxonomies

4.1.1 Literature Review

To the best of our knowledge, there is no vulnerability taxonomy that comprehensively
addresses hardware-involved vulnerabilities. A good vulnerability classification could pro-
vide to security analysts information such as statistical data about vulnerability frequency,
trends, incident correlations, and assessment of countermeasures effectiveness.

Furthermore, a taxonomy could allow an instant view of where and when the vulner-
ability was created during the design phase. This is our primary concern for a taxonomy,
since we want to identify and study those that were created before the pre-silicon valida-
tion process.

Classification schemes are usually linked to the concept of taxonomy. Quoting from
Gregio’s PhD thesis[27]:

“... a number of taxonomies have been proposed to cover diverse computer
security topics. For example, the works of Aslam[28], Krsul[29] and Landwehr
address system vulnerabilities and attacks[30]. ... The Neumann-Parker tax-
onomy addresses intrusions, whereas other taxonomies related to intrusion or
threats to computer security are summarized by Lindqvist and Jonsson[31]
... Many are the requirements [32] that a taxonomy has to meet in order
to accomplish its goal, i.e. to be clear, adaptive and applicable. Howard
and Longstaff[33] and Amoroso[34] mention important properties of good tax-
onomies, which are listed as follows:

• mutually exclusive, to assure that a sample fits into only one category;
• exhaustive (or complete), so that the predefined categories include

all possibilities of the subject under analysis;
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• unambiguous, to eliminate uncertainty and to allow the taxonomy ap-
plication to be a clear process;

• repeatable, so that others can repeat the taxonomic process and get the
same results;

• acceptable and useful, to allow it to be used by the community, serving
as a reference and source of knowledge in the field.

In addition, Bishop states that a taxonomy requires well defined terms, so that
there is no confusion about the meaning of a term[35]. Another interesting
property of a taxonomy is that it should be comprehensible, i.e. either a field’s
expert or a merely interested person are able to understand it[31]. Therefore,
a taxonomy should provide the discernment ability to its “users”. Thus, it is
possible to clearly discern which features segregate the analyzed samples into
distinguished classes and which are the features that make given classes to be
closer to each other.”

Previous attempts to classify hardware attacks have been made, most of them focus-
ing exclusively on physical or electrical attacks, such as chip micro-probing, analysis of
electromagnetic emanations, and counterfeiting attacks[36].

A broader taxonomy that includes an extensive range of software attacks, including the
ones that involve hardware, is maintained by the CWE, but it is focused on the software
aspect of the attacks, and there are no specific categories for classifying hardware attacks.

Forristal [37] presented a “starting taxonomy” focused on hardware-involved software
attacks. In order to qualify as a hardware-involved software attack, the following charac-
teristics must be present:

• originate in a low-privilege system component;

• leverage or depend upon a hardware operation;

• achieve a vulnerability in a higher-privileged software layer or a peer in the current
software layer.

Forristal also presented various specific attack scenarios which could be considered sub-
categories of hardware-involved software attacks. Although relevant in trying to classify
defects, neither Abraham’s nor Forristal’s proposals represent good taxonomies according
to Amoroso, Howard & Longstaff, Bishop, and Lindqvist & Jonsson. We believe, how-
ever, that fulfilling every “good taxonomy” requirement for hardware issues may not be
feasible, as exemplified by the fact that, in spite of many attempts, there is still none for
software[27].

Potlapally [2] presented a classification of hardware attacks into 4 types:

1. Active adversarial manipulation of hardware control signals.

2. Security gap in interaction of multiple platform features.

3. Insecure platform initialization by boot-up firmware.
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4. Ability of untrusted or lesser privileged entities to maliciously influence hardware
operation.

These types are able to classify most of the hardware-involvement vulnerabilities, but
are not very helpful in our scenario, where the taxonomy should be able to pinpoint
when and where the vulnerability was created. As an example, an insecure platform
initialization could be caused by a firmware bug, but could also be the result of a problem
with the chipset architecture.

4.1.2 Hardware vulnerability taxonomy

Since publicly available hardware-related vulnerabilities are scarce, and thus insufficient
for statistical purposes, we focused our attention on the “usefulness” criterion. As our
final objective is to evaluate security, our classification scheme pays special attention to
vulnerability root causes.

Although previous works contribute new ideas for the classification of hardware-
involved software attacks, they lack specific aspects that are important for our research
goal. Namely, they do not differentiate attacks that arise from (i) hardware architectural
problems and (ii) software misuse of sound architectures.

This fact led us to analyze hardware-involved software attacks to isolate the ones
that were caused by architectural problems. We found that there were relatively few
attacks that exploit architectural problems, but this led us to useful insights about how
to differentiate them. In the following, “H” ("hardware-only") represents case (i) above,
while “S/H” ("Software with Hardware involvement") represents case (ii):

• Scope: an H attack can be exploited in multiple platforms and operating systems
(wherever the same chip/chipset is used), while S/H attacks can be carried only on
specific applications or platforms;

• Countermeasures: an H problem is potentially much more difficult to correct (e.g.
requires silicon or ROM revision) while S/H can be corrected by software (or
firmware, in the worst case);

• Accountability: the hardware manufacturer is probably the sole responsible for H
problems, while the S/H attacks may involve multiple vendors;

• Documentation: an H attack can be elaborated by learning the (public) documented
features and details of a given architecture and then trying to find security holes.
A S/H typically involves learning from binary code disassembling or other types of
analysis that intend to discover undocumented aspects of a software.

More specifically we also found that:

• Detection: it should be possible to detect H attacks by the careful analysis of an ar-
chitecture specification by vulnerability extrapolation, probabilistic analysis and/or
formal methods; which method is the most promising is an open subject;
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• Frequency: H attacks seems to be relatively rare. The majority of attacks published
as “hardware attacks” are in fact S/H attacks;

• Complexity: At least one of the H attacks (SMM attack) does not rely on hardware
bugs or undocumented features. They rather exploit specific and non-obvious inter-
actions between various parts of the system, e.g., CPU and northbridge, CPU and
PCIe bus;

• Definition: From a hardware engineer point of view, it seems to be very difficult to
know whether a given unintended system operation can lead to a security breach,
since it may be necessary to combine multiple unintended operations from various
components in order to have a security breach. Since any unintended system op-
eration could possibly lead to a security breach, it would be safer to define any
unintended system operation as an attack.

From this analysis (H and S/H) it became clear that all vulnerabilities could be clearly
classified between one of these two classes, and would help us to address the vulnerabilities
that we were interested in. Thus, we created the "Hardware architecture design" class for
the H vulnerabilities, and "Hardware misuse" for the S/H ones. 1.

Inside the category of architectural problems (H), we also found that there are two
very distinctive types of attacks: the ones caused by the interaction between various parts
of a system and the ones that are caused by a specific “defect” in a component. Thus,
the former attacks are classified as “Incompatibility between the security mechanisms of
subsystems", and the later as “Architectural flaw of a single subsystem".

The distinction between hardware problems (H) and hardware-involved problems (S/H)
is very meaningful for the analysis of the vulnerabilities, but brings the following chal-
lenges to the creation of a taxonomy:

• there are relatively fewer hardware-involved attacks, compared to software-only at-
tacks. With fewer attack samples, it is hard to group vulnerabilities together into
categories and being complete;

• it is relatively difficult to define how to describe a hardware-involved attack: opposed
to most of the software-only attacks (e.g. buffer-overflow, SQL injection), hardware-
involved attacks tend to be relatively more intricate, and have a strong dependency
on the system architecture. Taking too much detail into account may force the
taxonomy to have too many categories, limiting its usefulness for gaining insight
into the attacks;

• small variations of a given vulnerability may cause drastic changes in its classification
in a taxonomy when the “deterministic” requirement is mandatory. However, if
this requirement is dropped, the methods of vulnerability extrapolation, specially
regarding the combination of root causes, could be used to group issues by similarity.

1The grouping proposed by Forristal are in fact all subclasses of S/H (or "Hardware misuse") class of
vulnerabilities
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Still, we were able to create a taxonomy that is satisfactory for our purposes, since it
differentiates the main classes of attacks and incorporates root-cause information, which
we expect to be useful towards our objective.

Our proposed hardware vulnerability taxonomy

1. Hardware architecture:

(a) Hardware architecture design: Vulnerabilities that are arise from a inse-
cure protocol or hardware architecture design;

i. Architectural flaw of a single subsystem: vulnerabilities that arise
from a security problem from a single module. It does not depend or is
interfered by other modules;

ii. Incompatibility between the security mechanisms of subsystems:
vulnerabilities that arise from the interaction between various modules or
subsystems;

(b) Architecture implementation: Vulnerabilities that arise from flawed im-
plementation of a secure hardware architecture.

2. Hardware misuse: vulnerabilities that arise from the misuse of hardware features
by the system software or firmware. From our literature study, this is where most
of the hardware-involved attacks reside. Most CVE-listed hardware attacks relates
to vulnerabilities that allow an attacker to leverage a hardware feature to gain
privileged access to some system resource, but that could be avoided by the correct
implementation of drivers or other software;

Although it is not the primary focus of our work, we further classified the Architecture
implementation vulnerabilities:

1. Architecture implementation

(a) Inadvertent:

i. System description bug: hardware bugs inserted during high-level sys-
tem description (e.g Verilog);

ii. System synthesis bug: hardware bugs inserted during circuitry synthe-
sis (RTL/GDS);

(b) Intentional:

i. Malicious: backdoors inserted by a third party;
ii. Test or recovery modes: non-documented manufacturer test modes

that allow a privileged access to a system resource.

Table 4.1 shows some of the studied attacks classified under our proposed taxonomy.
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Attack Exploited vulnerabil-
ity

Classification

SMM Memory
(cache)

Interaction between
cache write-back
mechanism and
chipset

Incompatibility be-
tween the security
mechanisms of sub-
systems

Q35 memory
remapping
(VM)

Interaction between
chipset memory
remaping and CPU
MMU

Incompatibility be-
tween the security
mechanisms of sub-
systems

Q35 memory
remapping
(AMT)
MSI/SIPI Abuse of the PCI bus

protocol
Architectural flaw of a
single subsystem

UHCI USB
Pentium FOOF Architecture imple-

mentation

Table 4.1: Classification of some studied attacks under our proposed taxonomy.

Taxonomy and design phases

The types of vulnerabilities of the proposed taxonomy can be mapped to hardware design
phases, from the architecture design phase up to the integration with firmware and drivers.
Figure 4.1 shows how each type correlates with a specific design phase. The design phases
that are shown represent a high-level view of the design process, and can be summarized
as follows:

• Architecture design: the design of an architecture that satisfy the product desired
specifications, resulting in a series of text documents, block diagrams, and reports;

• Front-end design: the RTL coding (in Verilog or VHDL, for instance) and of the
specified architecture. Also includes the high-level synthesis of the design;

• Back-end design: encompasses the activities involved in the low-level synthesis and
layout of the chip, such as floorplanning, placement, routing, and physical verifica-
tion;

• Firmware/driver: the coding of the firmware and drivers that are necessary for the
use of the chip. This is not strictly a hardware design phase, but is an activity with
close involvement with the hardware, and is typically carried out by the hardware
manufacturer.

Although the mapping between the taxonomy and design phases is not perfect, it can
be used to pinpoint the most probable source of origin for any given vulnerability.



CHAPTER 4. HARDWARE MODELING FRAMEWORK 44

Architecture"
design"

•  Hardware"architecture"design"
•  Architectural"flaw"of"a"single"subsystem"
•  Incompa7bility"between"the"security"mechanisms"of"subsystems"

FrontCend"
design"

•  Architecture"implementa7on"
•  Inadvertent:"System"descrip7on"bug"

BackCend"
design"

•  Architecture"implementa7on"
•  System"synthesis"bug"

Firmware/
driver"

•  Hardware"misuse"

•  Architecture"implementa7on"
•  Malicious:"backCdoors"
•  Test"or"recovery"modes"

Figure 4.1: Taxonomy and design phases.

4.2 Methodology for Modeling Hardware Architectures
After developing the hardware vulnerability taxonomy, we focused on the "Hardware
architecture design: Incompatibility between the security mechanisms of subsystems"
type of vulnerabilities, since it is the type of vulnerability that is most relevant during
the architecture review phase.

In order to allow a more structured and automated analysis of the involved subsystems,
we created a way to model the hardware architecture. The main desired characteristics
of this model were:

• incorporates all possible security aspects of each subsystem, so that an automated
analysis would be possible;

• it is easy to transcribe from the architecture manuals: since the modeling phase is
a manual procedure, it should be as intuitive as possible, and also easy to check;

• does not use hardware source files (e.g. Verilog, RTL); this is one of the premises of
this work

4.2.1 Literature Review

We did a literature review of the existing methods and proposals for the modeling of
hardware architectures, and analyzed if they could be used for our purpose of hardware
security evaluation.

UMLsec [38] presents a UML profile and a method to evaluate the security of general
systems, but it is targeted at another case scenario. Some of its most important stereo-
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Stereotype Base Class
Internet Link
Encrypted Link
LAN Link
Secure links Subsystem
Secrecy Dependency
Integrity Dependency
High Dependency
Secure dependency Subsystem
Critical Object Subsystem secrecy

Table 4.2: List of various UMLsec stereotypes.

types [39] are shown in Table 4.2. Thus, it lacks sufficient support for describing hardware
with the necessary detail level.

Embedded UML [40] is another UML profile for the specification and analysis of
real-time software and hardware systems, but also lacks support for detailed hardware
description.

SysML [41] is probably the best known and most used system modeling language,
and can also be used to model hardware-only systems. However, we found it to be not
optimized for the description of hardware architectures in our scenario. The resulting
diagrams would be fairly complex and difficult to visualize. We also would have to extend
it, in order to represent some of the security-related aspects of the architecture.

Taha et al. [42] presented an open framework for detailed hardware modeling, which
is a part of the OMG standard for Modeling and Analysis of Real-Time and Embedded
systems (MARTE). This framework consists of a set of UML extensions to allow the
description of physical and logical properties of a hardware design, but is more oriented
to embedded system design, and suffers from the same complexity issues of SysML.

Harmless [43] is a hardware architecture description language dedicated to real-time
embedded system simulation, and can be used to model and simulate real-time systems
down to the instruction set and the micro-architecture level. It does not have a specific
focus on security aspects of the underlying architecture, and is not meant to model a
whole system besides the CPU core.

The Fortuna framework was developed by our research group (Gallo et al.[44]) for the
very purpose of analyzing hardware and software architectures. Although the Fortuna
framework is able to provide a meaningful model of a given system, it still requires a
relatively large amount of manual work. Mainly, we still do not have an automated way
of calculating the probabilities that the framework requires for its quantitative analysis.

We evaluated the Fortuna framework for the same hardware architecture and vulnera-
bilities that we used in the toy case (SMRAM memory). In our analysis we did not model
the entire system, since the workload would have been substantially greater than for the
Assurance Case framework. Our conclusions about the Fortuna framework are:

• since Fortuna relies on probabilities that are estimated from low-level design statis-
tics (number of kloc, etc), we would not be able to have a model only from public
datasheet information;
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• it is difficult to model only the target subsystem and isolate the rest of the system.
To model the SMRAM, in this specific case, would require modeling other CPU
subsystems, contributing to the increase in workload.

4.2.2 Our hardware modeling approach

Our model is similar to a hardware block diagram, and tries to mimic the way that hard-
ware diagrams are represented in standard documentation, such as datasheets. Figure 4.2
depicts a typical diagram. In these diagrams, each subsystem is represented by different
boxes, with arrows representing data buses that connect devices with each other. Devices
can also have logical partitions inside the same hardware subsystem (e.g. bootloader
memory regions), and they can also be represented by different boxes. Each box can
represent different types of entities (i.e physical or logical), which could be confusing for
some types of analysis. For security validation, though, this mix is necessary in order to
better represent the underlying system.

Figure 4.2: Intel i7 platform diagram.

Our modeling framework uses the same general format of the datasheet diagrams, but
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Device type Description
peripheral An unknown peripheral that can be attached to the system
timer System timer
rtc Real Time Clock
bus Data bus
bus-controller Device that configures the mode of operation of a data bus
cpu Processing unit
interrupt-
controller

Interrupt controller

bus-device Generic peripheral
dma-controller DMA controller
rtc Real-time clock
memory Physical memory
memory-region Memory region inside physical memory clock
io-controller Inputs/outputs to external world

Table 4.3: List of possible device types for HW architecture description.

has a structured and well-defined way of describing devices types and capabilities. In this
way, the resulting diagram is still familiar and easy to understand for hardware designers,
but contains enough structured information to enable a manual or automated security
analysis.

Our hardware representation consists of interconnected blocks, similar to the one de-
picted in Figure 4.3.

Figure 4.3: Hardware description block.

The device field is used to inform the reference name of the device represented by
the block (e.g. SATA-controller).

The devicetype field is used to describe the device type. It contains the keyword
type, followed by another keyword that describes the device type (e.g. bus-controller).
The list of valid types is presented in Table 4.3.

The attributes field describes the capabilities and other attributes of the device.
A device can have one or many items in this field, and they should be described using
specific keywords. Examples of keywords are read-mem (the device can issue memory
read requests), generate-interrupts (the device can generate interrupts), store-data

-non-volatile (the device can store non-volatile data in itself).The list of valid attributes
is presented in Table 4.4.

Figure 4.4 shows part of a hardware architecture with various node types.
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Figure 4.4: Hardware architecture description nodes.

Attribute Description
store-data-
volatile

Device that has the capability of storing data that is lost after
system powerdown (e.g. registers, DRAM)

privileged-mem Memory region that stores keys, CSPs, or privileged code and
data

data-transfer Device is able to transfer data from one external device to
another external device

cache Cache memory
configurable Device has configuration capabilities via registers
read-mem Device is able to issue memory reads
write-mem Device is able to issue memory writes
initiate-IO Device is able to initiate I/O transfers
mem-remap Device can act as a bus bridge with memory remapping ca-

pabilities
store-data-non-
volatile

Device that has the capability of storing data that is not lost
after system powerdown (e.g. NVRAM, SSD)

bus-master Device can take control of a bus
generate-
interrupts

Device can issue interrupt requests

executable-code Device contains executable code (e.g. BIOS, BIOS extensions)
user-interface Device has interface to user controled I/O (e.g. keyboard

interface, ethernet)

Table 4.4: List of possible device attributes for HW architecture description.



Chapter 5

Security Analysis Framework

In the previous chapter we proposed a method for modeling the characteristics of the
hardware architecture. In this chapter, we present a method for systematically analyzing
the security of resulting hardware models, followed by a method for automating part of
the analysis process.

5.1 Assurance Case applied to Hardware Security
Considering that hardware vulnerabilities are generally difficult and expensive to patch,
it is easy to understand why hardware functionality validation is a very rigorous process.
The same rigour exists in the safety analysis of critical systems that may pose a life risk
to its users. Since the Assurance Case methodology has already been successfully used
for safety analysis (in its more restrict Safety Case variant), it has a potential for other
types of rigorous analysis such as the hardware architecture security validation.

There is not much information about previous use of assurance case for hardware
systems, but there has been some use of it in the software industry [25][45]. However, it
still is not a widespread practice. In fact, it is not clear whether the necessary work to
build and maintain an Assurance Case pays off in the long term. Software can be very
complex and fast evolving, meaning that developing a case tends to be very expensive
and has to be updated very often. Besides that, there is a large interdependency between
software modules that would require the Assurance Case to be built for the entire system
including the OS, drivers, etc.

However, we believe that hardware systems share more commonalities with the safety
case. Besides being less complex than software, hardware is also easier to modularize. In
fact, most hardware is designed and separated into modules that are physically isolated,
with a well defined inter-communication interface (i.e. there is no way for a subverted
module to bypass its communication interface and subvert another module that is phys-
ically separated). Hence, unlike software components, these modules can be separately
analyzed.

Table 5.1 summarizes this comparison between the characteristics of safety systems
with hardware and software systems. In this table, locality is defined by how distinct
subsystems can be isolated. Physical systems are bound by the physical laws that apply

49



CHAPTER 5. SECURITY ANALYSIS FRAMEWORK 50

Software security Hardware security Mechanical sys-
tems (safety)

Adversary The adversary applies
a set of coordinated
actions to attack the
system.

The adversary applies
a set of coordinated
actions to attack the
system

No adversary - the
system is stressed in
an uncoordinated way.

Complexity Highest (e.g. MS
Windows XP had 11M
lines of code [46])

Higher (e.g. LEON3
SoC has 600k lines of
code [47])

High

Locality Low Medium High
Cost of
patches

Lower Higher Higher

Table 5.1: Comparison of software, hardware, and safety systems.

to the mechanics of the components. Hardware systems have electrical interconnects that
limit the ways in which one subsystem can influence and communicate with another.
Software systems can have logical separation between subsystems, but, unless they are
hardware-enforced, a security breach can give a subsystem the possibility of influencing
potentially any other subsystem.

From our understanding of the hardware security validation problem, we expect the
following benefits from the use of the Assurance Case methodology:

• Build a well documented security analysis that can be re-used, shared, and reviewed.

• Establish a well defined evaluation process with an indication of the analysis com-
pleteness.

• Allow the evaluation work to be split between different teams.

Since a complete assurance case should contain all the conditions (i.e. evidence)
necessary to the security of a system, we also consider that it can be used to guide
the generation of test cases for a system. Thus, the methodology can be used both during
pre-silicon and post-silicon validation.

In the next session we demonstrate how the methodology can be applied to security
analysis during the architecture review phase of a CPU design.

5.1.1 Example of an Assurance Case applied to hardware

In this example we show how Assurance Cases can be used in a real-world architecture
analysis. The case was built using the D-Case editor [48], which is an Eclipse-based tool
to build dependability cases using GSN (Goal Structuring Notation). D-Case has evolved
to support argument patterns and integration with other dependability analysis tools, but
for this case we are using it to develop a security-related case using GSN.

We analyzed the System Management Mode (SMM) subsystem of the Intel CPU
architecture, from the point of view of an architecture review analyst. SMM is the system
management mode of most modern Intel CPUs. It allows the computer’s BIOS to control



CHAPTER 5. SECURITY ANALYSIS FRAMEWORK 51

Goal:G_1

Malicious code can not be executed
with SMM privileges.

Goal:G_2

The only code that executes with SMM
privileges is the code loaded into
SMRAM by the BIOS during boot.

Goal:G_3

Malicious code can not be inserted into
BIOS.

Undeveloped:U_1

Figure 5.1: SMM Assurance Case - Step 1.

system variables such as fan speed control, independently from the operating system. For
this reason, SMM code runs at a higher privilege than the OS itself.

This architecture was chosen because it is relatively simple and had two known vul-
nerabilities [4]. The target architecture refers to the first-generation Intel Core processor
with the Q35 chipset, which can be considered obsolete but is still valid for this exercise.

The first known vulnerability is that the CPU only restricts SMM memory access from
external memory read/write operations. And yet, once inside the CPU cache, the SMM
code could be overwritten, effectively bypassing the restriction mechanism [49].

The second vulnerability is that the memory which stores the SMM code had its access
restricted by the CPU. However, the external chipset was able to remap that memory to
a unrestricted address, overriding the CPU protection mechanism [50].

In order to facilitate the readability and explanation, the analysis was divided into
four distinct steps that are shown in Figures 5.1 to 5.4. Note that the D-Case editor
already inserts a unique identifier to each element (e.g. “G1"), so that it may be later
referenced in a textual version of the case, or used by other tools.

We already had previous knowledge of the SMM system, and it took approximately
20 hours to build this case, using 483 pages of architecture documentation. Most of the
effort was spent in the search for specific information in the architecture manuals, but we
consider that the time was used in an efficient way; instead of browsing through the man-
uals searching for possible vulnerabilities (as in the standard manual analysis process),
we had a clear goal of searching for evidence to support our case.

SMM Assurance Case - Step 1 (Figure 5.1).

The analysis process starts by stating the global desired system security property that we
are interested to assure. In our case, it is the security of the SMM system: we want to
assure that malicious code cannot run with SMM privileges. This is stated in goal G1.

It is important to note that this goal is described with a negative sentence. This is
due to the nature of the security assurance problem: since there are many ways in which
an attacker may try to compromise the system, we have to systematically list and analyze



CHAPTER 5. SECURITY ANALYSIS FRAMEWORK 52

each of these potential ways. This is different from standard requirement specifications,
where most features are listed as positive sentences (e.g. “The SMM system must control
fan speed").

The topmost goal is then supported by two sub-goals, where one of them, G3, is not
developed in our case. This means that we do not have evidence to support it. In this
case, the responsible party for this specific goal would be the BIOS vendor. This undevel-
oped goal would be useful for communicating to all BIOS vendors what is expected from
the BIOS code in order to guarantee the SMM system security.

Goal:G_2

The only code that executes with SMM privileges is
the code loaded into SMRAM by the BIOS during boot.

Goal:G_4

Non-SMM code can not be executed
with SMM privileges.

Goal:G_5

Non-SMM code cannot be executed
while CPU is in SMM mode.

Goal:G_6

Interrupt handling code can not be
executed with SMM privileges while
CPU is in SMM mode.

Evidence:E_1

Interrupts are disabled and
NMI are treated as instructed
by the architecture manual.

Goal:G_7

The CPU executes the SMM code
loaded by BIOS with SMM privilege.

Goal:G_8

SMM code that is fetched and executed
from the CPU cache can not be
modified before or during execution.

Justification:J_1

Code always is
executed from cache
memory.

Strategy:S_1

List all memory locations where SMM code could be
stored and modified before being fetched.

Figure 5.2: SMM Assurance Case - Step 2.

SMM Assurance Case - Step 2 (Figure 5.2).

In this step we expand goal G2 from the previous step. Two sub-goals are derived, G4

and G7. G4 is developed into G5, which is itself developed into G6. While it would be
possible to state a single goal that would encompass G4, G5, and G6, we prefer to keep
them separate, so that their relationship is explicit. This makes it easier for a reviewer to
detect possible inconsistencies or wrong assumptions.

Goal G6 is supported by our first evidence, E1, which is, in our example, a fictional
check that our system correctly disable interrupts in a certain way that is required by the
architecture reference manual. In a real-world scenario, this evidence could be linked to
the associated interrupt-disabling code, and to the architecture manual paragraphs that
state this need. In such a way, it becomes explicit that a possible SMM vulnerability may
arise if that code is eventually disabled for some reason.
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The other sub-goal from G2, G7, is developed into G8, followed by a strategy box S1.
The strategy does not state a goal by itself, but only states the strategy that was used
to develop the following sub-goals in step 3. Justification J1 is a note that makes explicit
why goal G8 was developed in a specific way.

Strategy:S_1

List all memory locations where SMM code could be
stored and modified before being fetched.

Goal:G_9

External memory locations from where SMRAM
code is fetched can not be modified.

Goal:G_10

SMM code in cache can not be modified and
then executed with SMM privileges.

Strategy:S_2

List all devices that can write to memory.

Goal:G_11

Main CPU can not write to
SMRAM memory.

Goal:G_12

Chipset DMA controller
(DMAC) cannot execute
transfers to SMRAM
memory.

Goal:G_13

PCI bus-mastering devices
cannot write to SMRAM
memory.

Goal:G_14

Northbridge Management
Engine microcontroller
cannot write to SMRAM
memory.

Undeveloped:U_2 Undeveloped:U_3 Undeveloped:U_4Goal:G_18

Chipset blocks access to
SMRAM address range.

Undeveloped:U_5

Figure 5.3: SMM Assurance Case - Step 3.

SMM Assurance Case - Step 3 (Figure 5.3).

In step 3, we show how strategy S1 was used to derive sub-goals from goal G8. In this step,
we ran into a series of undeveloped goals that are directly related to possible vulnerabilities
of the hardware architecture.

For U2, U3, and U4, we did not have the necessary documentation to provide an
evidence. Thus, they can be considered as possible unknown vulnerabilities that affect
this system. Since uncovering new vulnerabilities was not the primary objective of this
work, they were not further investigated.

For the undeveloped claim U5, there is a known attack that overwrites the SMM code
after it is cached inside the processor [49]. This is the first vulnerability that we were able
to detect during the case’s development.
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Goal:G_18

Chipset blocks access to SMRAM address range.

Goal:G_19

Other memory regions cannot be
remapped to SMRAM memory.

Goal:G_20

SMRAM address range is correctly
configured by BIOS.

Goal:G_21

SMRAM address range cannot be
modified.

Evidence:E_3

SMRAM address is
correctly configured by
BIOS.

Evidence:E_4

D_LCK bit locks SMRAM
address and is correctly
set by BIOS before boot.

Undeveloped:U_6

Figure 5.4: SMM Assurance Case - Step 4.

SMM Assurance Case - Step 4 (Figure 5.4)

Step 4 continues the analysis of goal G18 from step 3, and ultimately results in the unde-
veloped claim U6.

This claim refers to the vulnerability that is described in Rutkowska [50], which is
the memory remapping mechanism exploit to overwrite SMM code. Thus, we found the
second known vulnerability that affected the SMM subsystem.

Goal:G_1

Malicious code cannot be executed in
the Management Engine.

Goal:G_2

Signed malicious code cannot be
inserted into flash mem.

Goal:G_3

The only code that executes in the ME
is vendor-signed code that is loaded
from the designed flash memory.

Evidence:E_1

Codesign key is securely
managed by the vendor.

Goal:G_4

ME code that is fetched and
executed from flash cannot be
modified before or during
execution.

Goal:G_5

Non-signed code cannot be
executed in the ME.

Evidence:E_2

ME ROM verifies signature of
code residing in flash mem
before booting from it.

Strategy:S_1

List all memory locations
and include memory remap
if applicable; list cache mem.

Figure 5.5: ME Assurance Case - Step 1.
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ME Assurance Case - Step 1 (Figure 5.5).

In this assurance case, our goal is to guarantee that malicious code cannot be executed
in the Management Engine microcontroller.

We start by asserting that malicious code cannot be executed in the ME (G1), and
then expand it by claiming that malicious code cannot be signed and stored into the
flash memory (G2), and that the only code that is executed is the signed code from flash
memory (G3). For G2, we generate an evidence from the assumption that the vendors
correctly store and manage their code-signing private keys.

Strategy:S_1

List all memory locations
and include memory remap
if applicable; list cache mem

Goal:G_6

Flash from where ME code
is fetched or executed
cannot be modified prior to
execution.

Goal:G_7

System RAM that is
reserved for ME
microcontroller cannot be
modified.

Goal:G_8

ME microcontroller does not
execute from cache mem.

Evidence:E_3

Flash can only be
written by chipset,
which has hardware
mem write control.

Evidence:E_4

ME microcontroller does
not have cache mem.

Strategy:S_2

List all devices that can
write to these memory
locations.

Goal:G_10

Main CPU cannot write to ME
RAM.

Goal:G_11

Chipset DMA controller (DMAC)
cannot configure transfers to ME
RAM.

Goal:G_12

PCI bus-mastering devices
cannot write to ME RAM.

Goal:G_9

ME microcontroller can not
be remapped to a non-
protected region.

Undeveloped:U_1

Undeveloped:U_2 Undeveloped:U_3 Undeveloped:U_4

Figure 5.6: ME Assurance Case - Step 2.

ME Assurance Case - Step 2 (Figure 5.6).

In this step we develop the S1 strategy, listing all memory locations from where the ME
code can be fetched. This is a strategy similar to the one that was used in the previous
example, where the SMM code had to be protected in a similar way.

From the sub-claims that follow, we have that G6 and G8 have supporting evidence.
However, we did not find evidence in our documentation for G9 and all the sub-claims
that follow G7. As in the SMM analysis, the lack of evidence may be just lack of proper
documentation or be an indication of a real vulnerability.

For claim G9, we know that there is a published attack [51] about the use of the
memory remapping mechanism to exploit the ME system. For the other undeveloped
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claims, we were unable to find any published attacks that could exploit these possible
vulnerabilities.

An important note is that the ME documentation that is publicly available does not
provide much detail about its architecture—it is more focused on programming models
for software developers. While we were able to understand the basic architecture and
develop this case, we are not sure that all the important hardware aspects of the system
were captured.

Figure 5.7: Assurance case pattern for memory protection.

5.1.2 Use of Assurance Case Argument Patterns

There are two important issues with Assurance Cases. The first is that it is very important
to use the right strategies to develop the top level claim. An inexperienced analyst could
miss important points during the case development, and end with an incomplete analysis.
The other issue is that the case development tends to be a very time-consuming task,
specially when the strategies have to be created from scratch.

To alleviate these two problems, we resort to the concept of Assurance Case argument
patterns. Patterns are constructions similar to templates that can be used to provide
guidance and speed up the process of building Assurance Cases. Ideally, these patterns
should be created by experts, and then be used by less experienced analysts to build more
solid Assurance Cases. There is already support for creating and applying argument
patterns in some of the available tools [52][53].



CHAPTER 5. SECURITY ANALYSIS FRAMEWORK 57

As an example, we extracted an argument pattern from strategies that were used in
the presented SMM and ME assurance cases. The pattern in Figure 5.7 states necessary
conditions to guarantee that a certain memory location cannot be overwritten. It could
be used to inform the security analyst some important details that have to be taken into
account. For instance, in our example it is critical to know that memory contents can
also be stored and modified in the cache memory without necessarily being modified in
the external memory. This information is embedded in the argument pattern, and would
be useful for analysis of similar systems.

5.2 “ACBuilder" - a tool for automated hardware secu-
rity evaluation

ACBuilder is an application that we developed to guide part of the process of hardware
architecture analysis, according to the proposed methodology. It is able to guide a security
analyst through the development of the security assurance case, while also providing a
certain degree of automation. It uses the following information as input:

• the target hardware architecture to be analyzed - described according to the method
in Section 4.2.

• a top-level assurance case template - containing all the security goals that the system
has to reach;

• a set of rules for the evaluation of possible security issues - one rule for each security
claim.

As an output, it generates a text-based assurance case containing the necessary con-
ditions and evidence that has to be collected in order to reach the security goals defined
in the assurance case template.

In order to finish the analysis process, the security analyst must search and gather this
required evidence, typically found in architecture manuals, and complete the assurance
case.

Figure 5.8 shows an overview of the security analysis process with the help of the
ACBuilder software.

5.2.1 Implementation

ACBuilder was implemented in Python version 2.7.5 and validated in the Linux platform.
It uses the PyCLIPS version 1.0.7 module as a CLIPS engine.

The modeling of hardware architecture is done in the yEd graphical editor. yEd has
native support for UML diagrams that can be directly used to model hardware architec-
tures. The resulting model can be saved in the GraphML format, which is an open-source
format that can be read and parsed by the ACBuilder application.

The top-level assurance case template is also drawn on the yED graphical editor and
saved in the GraphML format.
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Figure 5.8: Overview of the security analysis process with the ACBuilder software.

The expert system rules can be edited using any text editor. The rules can be tested
and simulated using any CLIPS interpreter. We used the CLIPS IDE version 6.3 for
OS X.

The next subsections describe further details of the implementation, and how exter-
nal software is used for the description of the hardware architecture and assurance case
template.

5.2.2 Hardware modeling in CLIPS

In order to automate part of the analysis process using the CLIPS system, it is neces-
sary to represent the hardware architecture description as proposed in Section 4.2 into a
representation that can be parsed by a CLIPS program.

Describing components and the relationships between components is a straightforward
task in the CLIPS language. Since they are part of the input to the expert system, they
have to be described as facts. We use the following fact template to describe each com-
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ponent:
(component (name < device >) (type < devicetype >) (can-do < devicemethods >)
(connected-to < listofadjacentconnecteddevices >)

Figure 5.9 shows part of a real-world architecture, and Figure 5.10 shows how it is
represented as CLIPS facts.

Figure 5.9: Sample hardware architecture to be converted to CLIPS facts.

In our implementation, the ACBuilder software is able to convert a hardware descrip-
tion in a graphML file into a corresponding set of CLIPS facts. The graphML file is
obtained by saving a graph drawn in the yED software.

Describing Assurance Case Claims in CLIPS

The CLIPS language has a template element that is similar to structures in the C language.
We used this language construction to describe the claims of an AC, forcing them to follow
a structured notation. The code below is a sample of how a strategy may be described.

The above code defines a simple template that can be used to define a strategy to
support a given claim in an assurance case. Basically, it defines that an aspect (“type”
slot) of something (“name” slot) shall have a given attribute (“attribute” slot).

In this simple example, there would be only two aspects of the device (“memory”
or “executes”), and two attributes (“is-read-only” and “only-intended-code”). This would
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(component (name DRAM) (type memory )(can-do store-data-volatile data-transfer)(connected-to DRAM-controller Ring-0-mem SMRAM ))

(component (name CPU) (type cpu )(can-do execute-code read-mem write-mem initiate-IO)(connected-to PCI-bus-0 Cache-controller ))

(component (name Cache-controller) (type memory-controller)(can-do configurable read-mem write-mem initiate-IO)(connected-to
DRAM-controller cache-memory CPU ))

(component (name PCI-bus-0) (type bus )(can-do data-transfer)(connected-to DRAM-controller SPI-controller CPU USB-controller ))

(component (name USB-controller) (type bus-controller )(can-do read-mem write-mem bus-master dma-controller debug-port)
(connected-to PCI-bus-0 ))

(component (name SMRAM) (type mem-region )(can-do store-data-volatile privileged-mem)(connected-to DRAM ))

(component (name Ring-0-mem) (type mem-region )(can-do store-data-volatile privileged-mem)(connected-to DRAM ))

(component (name cache-memory) (type memory )(can-do store-data-volatile cache )(connected-to Cache-controller ))

(component (name SPI-controller) (type bus-controller)(can-do read-mem write-mem bus-master)(connected-to PCI-bus-0 flash-mem ))

(component (name flash-mem) (type memory)(can-do non-volatile)(connected-to ME-code ME-data SPI-controller ))

(component (name ME-code) (type mem-region )(can-do store-data-non-volatile protected)(connected-to flash-mem ))

(component (name ME-data) (type mem-region )(can-do store-data-non-volatile protected )(connected-to flash-mem ))

(component (name DRAM-controller) (type bus-controller )(can-do addr-remap data-transfer)(connected-to Cache-controller DRAM PCI-bus-0 ))

Figure 5.10: CLIPS facts describing the sample architecture.

force the user to describe the claim using a standard syntax, and this would enable the
expert system to automatically find applicable templates or sub-claims. If necessary, the
user could combine various claims and connect them using logical operators.

Using CLIPS to suggest patterns and goals

Once a claim is described by using the template as described in the previous example, the
CLIPS system can search if there are any rules that can be applied. These rules can either
generate new sub claims, patterns or strategies. In order to be effective, these rules have
to be created by a human expert, who will take into account not only the basic security
principles, but also the aspects of the underlying system architecture.

The code in Figure 5.11 shows a rule that is activated when a claim is made that a
processing system has to run only some intended code.

The security validation process using ACBuilder

There are five steps for the use of ACBuilder to run a hardware security validation:

1. Modeling the hardware architecture

2. Creating or customizing the Assurance Case Pattern

3. Creating or customizing the Expert System rules

4. Generating the Assurance Case

5. Collecting evidence
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(reset)
(defglobal ?*index* = 0)

(deftemplate edge (slot from) (slot to) (slot cost))
(deftemplate cheapest\_paths (slot start) (slot stop))
(deftemplate path (multislot nodes) (slot cost))

(deftemplate component (slot name) (multislot type)(multislot can-do)(multislot connected-to))

(deftemplate writes-to (slot name))

(defrule extend\_path
(path (nodes $?n ?y) (cost ?w))
(component (name ?z)(connected-to $?a ?y $?b)(can-do $?c write-mem|data-transfer $?d))
(test (and (neq ?z ?y)
(not (member ?z $?n))))
=>
(assert (path (nodes $?n ?y ?z) (cost (+ ?w 1)))))

(defrule cheapest\_paths
(declare (salience -10))
(path (nodes $?n ?x) (cost ?w))
(component (name ?x)(type ~bus)(can-do $?c bus-master $?d))

=>
(bind ?*index* (+ ?*index* 1))

(printout t crlf "=========== " crlf)
(printout t crlf "Evidence " ?*index* crlf crlf)
(printout t "Possible attack: \"" ?x "\" writes the \"" (nth$ 1 ?n) "\" privileged memory region using
the following path: " crlf )

(printout t "Path: " (implode$ $?n) " " ?x crlf)
(printout t "Solution (evidence): \"" ?x "\" cannot write the \"" (nth$ 1 ?n) "\" privileged memory
region."crlf )
(printout t crlf "Evidence description: " crlf))

(defrule test-privileged-mem-write
(component (name ?x)(can-do $?a privileged-mem $?b))
=>

(assert (writes-to (name ?x))))

(defrule initial\_path
(writes-to (name ?x))
=>
(assert (path (nodes ?x) (cost 0))))

(load-facts arch.clp)

Figure 5.11: CLIPS rule to detect possible secure vulnerabilities regarding execution of
code from non-secure sources.

Step 1 - Modeling the hardware architecture

The first step is to model the target hardware architecture. The modeling is done with
the yEd graphical editor, using the built-in UML nodes. Each node should describe one
of the following architecture elements:

• hardware device or peripheral (e.g. CPU, SATA controller)

• data bus (e.g. PCI, SMBus)

• logical device (e.g. memory region)
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The node title field should contain the reference of the device (e.g. SATA-controller).
The title should not contain white spaces.

The attribute field should contain the keyword type, followed by another keyword
that describes the device type (e.g. bus-controller). The list of accepted keywords is
presented in table 4.3.

The methods field should contain the capabilities and other attributes of the device.
A device can have one or many items in this field, and they should be described using
specific keywords. Examples of keywords are read-mem (the device can issue memory read
requests), generate-interrupts (the device can generate interrupts), store-data-non-

volatile (the device can store non-volatile data in itself). Figure 5.12 shows part of a
hardware architecture with various node types.

Figure 5.12: Hardware architecture description nodes.

Step 2 - Creating or customizing the Assurance Case Pattern

In order to execute the architecture automated analysis it is necessary to have an input
Assurance Case pattern. This pattern contains the security aspects and rules that will be
applied to the target architecture.

Similarly to the hardware architecture description, the Assurance Case pattern is
composed of a graph of UML nodes.

The Assurance Case pattern contains a GSN (Goal Structuring Notation) structure
representing the goals (claims) and solutions (evidence) to support the security objectives.
The goal and sub-goals were created to provide coverage to the studied hardware attacks,
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and the solutions (graph leaves) are associated with expert system rules that are applied
to analyze the target architecture.

For each node, there is a title which should contain the identification of the goal or
solution (e.g. MEM-READ). The title should not contain white spaces.

Figure 5.13: Assurance Case pattern.

The attribute field should contain the file name of the associated rule (in CLIPS
language notation). Note that only the graph leaves (i.e. solutions) should contain a
valid file name. The goals and sub-goals are not evaluated by the expert system, and
should contain the none keyword. The list of provided rules keywords is presented in the
Appendix.

The methods field should contain a description of the goal, sub-goal, or solution.
Figure 5.13 shows part of an architecture description with various node types.

Step 3 - Creating and customizing the Expert System rules

The expert system rules are used to generate the necessary arguments to support each of
the goals stated in the assurance case pattern from Step 2. A sample rule is presented in
Figure 5.11.

The rules have to be coded in the CLIPS language, and will be evaluated according
to the Assurance Case Pattern from step 2. It will receive a description of the hardware
architecture of step 1, in the format of CLIPS facts. Each architecture element is described
as a CLIPS fact, as according to the syntax below:

(component (name <device name>) (type <device type>) (can-do

<attribute 0> <attribute 1> ... ) (connected-to <connected device

0> <connected device 1> ... ))

Figure 5.10 shows a sample architecture description that is provided for the CLIPS
rule program.
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Step 4 - Generating the Assurance Case

In this step, the assurance case pattern is applied to the target hardware architecture. This
is done by the ACBuilder Python program. The ACBuilder program has the following
syntax:

ACbuilder <assurance case pattern> <target architecture>

Both the assurance case and the target architectures must be encoded in the GraphML
format. In our example case, the command is:

ACBuilder.py hw_template1.graphml uml_test.graphml

This command will generate the output shown in Figure 5.14.

===============================
Goal: Special memory address ranges are protected against write operations
originating from unauthorized bus devices
Id: MEM_WRITE
Rule file: mem-write.txt

===========

Evidence 1

Possible attack: "USB-controller" writes the "SMRAM" privileged
memory region using the following path:
Path: SMRAM DRAM DRAM-controller Cache-controller CPU PCI-bus-0 USB-controller
Solution (evidence): "USB-controller" cannot write the "SMRAM" privileged memory region.

Evidence description:

===========

Evidence 2

Possible attack: "SPI-controller" writes the "SMRAM" privileged memory
region using the following path:
Path: SMRAM DRAM DRAM-controller Cache-controller CPU PCI-bus-0 SPI-controller
Solution (evidence): "SPI-controller" cannot write the "SMRAM" privileged memory region.

Evidence description:

Figure 5.14: Sample Assurance Case that is the output of the ACBuilder analysis.

The output starts with a header that references which sub-goal of the Assurance Case
pattern is being analyzed. It includes the CLIPS rule file name and the assurance case ID
for the sub-goal. The next lines contain the possible vulnerabilities that were found by the
rule, and which conditions ("solution") are necessary for it not to occur. The last field,
"Evidence description: " is a placeholder for the evidence description. It may contain
logical arguments, references to the architecture manual, or any other type of evidence.

Step 5 - Collecting evidence

The last step is to manually analyze the resulting assurance case, and collect the necessary
evidence to support the goals and sub-goals. After all evidence is collected, the assurance
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case for the target system is complete. Eventually there will be a lack of evidence to
support all the sub-goals. This means that the architecture may be vulnerable to the
corresponding attacks. For our example, the first required evidence can be supported by
a fact that is found in the architecture manual, as shown in Figure 5.15.

Evidence 1

Possible attack: "USB-controller" writes the "SMRAM" privileged
memory region using the following path:
Path: SMRAM DRAM DRAM-controller Cache-controller CPU PCI-bus-0 USB-controller
Solution (evidence): "USB-controller" cannot write the "SMRAM" privileged memory region.

Evidence description:

Document: core-i7-800-i5-700-desktop-datasheet-vol-2, p 289

"5.5.5 SMM Space Decode and Transaction Handling
Only the processor is allowed to access SMM space. PCI Express and DMI Interface originated
transactions are not allowed to SMM space."

Figure 5.15: Sample Assurance Case evidence that has to be provided by the security
analyst.

5.3 Methodology validation
In order to test the effectiveness of the methodology and the ACBuilder software, we
ran our analysis methodology using the ACBuilder tool on an Intel Core i7-800 platform.
We chose this CPU because we knew beforehand some vulnerabilities that affected this
platform, and would be able to test whether our methodology would be able to find them.

Following the ACBuilder workflow, we initially described the architecture using the
yEd software, resulting in the diagram depicted in Figure 5.16. We then applied the
Assurance Case pattern from Figure 5.7, which incorporated the following analysis rules:

• MEM_READ/MEM_WRITE: checks whether a bus device can read/write to priv-
ileged memory regions.

• CACHE: checks whether privileged memory regions retains its access control policy
even when stored in cache memory.

• MEM_REMAP: checks whether privileged memory cannot be remapped into non-
privileged memory regions.

Table 5.2 summarizes how each of the known vulnerabilities were discovered by each
of these rules.

Our tests showed that the system would be able to guide a security analyst towards
the detection of most of the studied known vulnerabilities. In particular, it was most
effective for HW-only architectural vulnerabilities.

We can now list the following strengths and weaknesses perceived in our system. They
regard specifically to our proposed workflow and the use of the ACBuilder software:
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Vulnerability Type Associated rule Effectiveness
Code execution in
SMM mode from
cache [4, 49]

HW CACHE Detects

Q35 memory
remapping: code
execution in SMM
mode and Xen
hypervisor memory
writing [54]

HW-based MEM_REMAP Detects

Intel Management
Engine host mem-
ory writing [51]

HW CACHE,
MEM_READ and
MEM_WRITE

Detects

MSI attacks: SIPI
interrupt trig-
gering, syscall
injection and #AC
exception injection
[16]

HW/SW - -

SINIT code execu-
tion hijacking [55]

SW - -

PXE preboot code
execution [56]

SW - -

Table 5.2: How the sample rules detect the known vulnerabilities.

• Strengths:

– using previous knowledge from known vulnerabilities, it is able to correctly
identify similar vulnerabilities;

– the hardware architecture description is relatively fast and simple, using the
adapted UML diagrams;

– most of the hardware description and rules can be reused for similar architec-
tures.

• Weaknesses:

– difficulty in modeling some of the architectural features, such as the Intel TXT
or the PCI bus protocol (e.g., required for the MSI attacks);

– lack of a custom graphical interface for editing the HW architecture and as-
surance case template; the user has to remember or manually check for all
keywords.
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Figure 5.16: Architecture diagram illustrating the topology and complexity of the Core
i7-800 hardware model.



Chapter 6

Conclusions

In this work we studied the hardware security analysis problem, together with various
types of hardware vulnerabilities. Hardware attacks were presented, so that the associated
vulnerabilities could be better understood.

We discovered that some of the hardware attacks were in fact originated from software
problems that allowed standard hardware features to be used in favor of the attackers.

One of the causes of this misnaming problem might be the general lack of existing
literature about hardware attacks and hardware security analysis. During our work, we
could only find a few papers and web pages that effectively dove into the specifics of a
real hardware attack. The most popular vulnerability publications, such as the CVE, only
gave a brief description of the attack, in a way that it was not possible to pinpoint the
real cause of the attack (hardware vs software).

The effects of wrongly classifying a software attack as a hardware attack can be many.
First of all, there is a possible unfair damage to the public image of the affected hardware
devices and vendors. Secondly, users and developers might be led to believe that every
platform that uses the affected hardware is vulnerable to the attack. And worst of all,
they might believe that systems with other types of hardware will not be affected by this
vulnerability, when in fact they will.

We developed a taxonomy which allows for hardware vulnerabilities classification ac-
cording to their type, and also for the identification of which design or production phase
they were originated. Thus, this taxonomy can be used to correctly attribute the respon-
sibility for a given vulnerability, either to hardware designers, IC manufacturers, software
developers or other relevant entities. Our taxonomy also provided a clear separation of
real hardware vulnerabilities from the hardware-involved vulnerabilities that originate
from software problems, which are caused by the violation of security premises of the
hardware.

Focusing on a specific type of vulnerabilities, i.e., architectural, we developed a method-
ology for the analysis of hardware architecture during the design phase, using the Assur-
ance Case methodology. In this methodology, the security of the system is assured by a
set of security goals and supporting evidence, all in a well-defined document structure.

We were able to build Assurance Cases for real-world hardware system architectures.
In our examples we showed how three known vulnerabilities could be detected during the
analysis process. We also found other possible unknown vulnerabilities that may affect

68
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the same subsystem. Besides allowing for a deep analysis of the target architecture, there
were also the benefits of guiding the analysis process and providing documentation that
can be shared and peer-reviewed, which are two major drawbacks of the standard security
evaluation process.

Lastly, we developed a tool to facilitate and automate part of the proposed security
analysis methodology. Our initial tests show that the tool would be able to guide a
security analyst towards the detection of most of the studied known vulnerabilities. In
particular, it was most effective for architectural vulnerabilities, as expected.

For future work, the methodology could be applied and tested on a wider range of
hardware architectures (e.g. ARM-based systems), and be fine-tuned to accommodate
other types of hardware components and technologies. Examples of such technologies are
Intel’s SGX [57], TXT [58], and ARM’s TrustZone [59]. Capturing the security aspects
of components such as TPMs or smartcards can also be challenging, since they have a
large number of security-related features that were not present in the systems that we
analyzed.

The methodology can also be improved to capture the description of hardware at-
tributes from VHDL or Verilog source code, as well as capturing hardware components
connections from circuit schematics. The number and variety of ACBuilder’s expert sys-
tem rules can also be expanded, allowing it to also detect hardware aspects that could
give rise to hardware-involved vulnerabilities (i.e. software attacks that leverage standard
hardware features), which constitute the majority of hardware-related attacks.
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