
This version is available at https://doi.org/10.14279/depositonce-9868

This work is licensed under a CC BY-NC-ND 4.0 License (Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International). For
more information see https://creativecommons.org/licenses/by-nc-nd/4.0/.

Terms of Use

Martin, H., Ma, Z., Schmittner, C., Winkler, B., Krammer, M., Schneider, D., Amorim, T., Macher, G., &
Kreiner, C. (2020). Combined automotive safety and security pattern engineering approach. Reliability
Engineering & System Safety, 198, 106773. https://doi.org/10.1016/j.ress.2019.106773

Helmut Martin, Z. Ma, Christoph Schmittner, Bernhard Winkler, Martin
Krammer, Daniel Schneider, Tiago Amorim, Georg Macher, Christian
Kreiner

Combined automotive safety and security
pattern engineering approach

Accepted manuscript (Postprint)Journal article |

Combined Automotive Safety and Security Pattern
Engineering Approach

H. Martin1, Z. Ma2, Ch. Schmittner3, B. Winkler1, M. Krammer1, D.
Schneider4, T. Amorim5, G. Macher6, Ch. Kreiner6

Graz and Vienna, Austria - Kaiserslautern and Berlin, Germany

Abstract

Automotive systems will exhibit increased levels of automation as well as ever

tighter integration with other vehicles, traffic infrastructure, and cloud services.

From safety perspective, this can be perceived as boon or bane - it greatly

increases complexity and uncertainty, but at the same time opens up new op-

portunities for realizing innovative safety functions. Moreover, cybersecurity

becomes important as additional concern because attacks are now much more

likely and severe. However, there is a lack of experience with security concerns

in context of safety engineering in general and in automotive safety departments

in particular. To address this problem, we propose a systematic pattern-based

approach that interlinks safety and security patterns and provides guidance with

respect to selection and combination of both types of patterns in context of sys-

tem engineering. A combined safety and security pattern engineering workflow is

proposed to provide systematic guidance to support non-expert engineers based

on best practices. The application of the approach is shown and demonstrated

by an automotive case study and different use case scenarios.

Keywords: ISO 26262, SAE J3061, Engineering workflow, Safety pattern,

Security pattern, Automotive

1Virtual Vehicle Research Center
2AVL List GmbH
3Austrian Institute of Technology GmbH
4Fraunhofer IESE
5Technische Universität Berlin
6Graz University of Technology

Preprint submitted to Journal of LATEX Templates October 7, 2019

This is the Accepted Manuscript of: Martin, H.; Ma, Z.; Schmittner, C.; Winkler, B.; Krammer, M.; Schneider,
D.; Amorim, T.; Macher, G.; Kreiner, C. (2020). Combined automotive safety and security pattern engineering
approach. Reliability Engineering & System Safety, 198, 106773. https://doi.org/10.1016/j.ress.2019.106773

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License, https://creativecommons.org/licenses/by-nc-nd/4.0/.

1. Introduction

Future applications in the automotive domain will be highly connected.

They will rely on interacting functionalities exchanging data via various net-

working channels, and storing or receiving their operational data in or from the

cloud. On the one hand, there is an enormous potential in these new types5

of cyber-physical system (CPS) applications and services, which are bound to

revolutionize the automotive domain, as we know it today. On the other hand,

ensuring safety and security of next generation automotive systems is a signifi-

cant and comprehensive challenge that needs to be addressed before promising

visions can become reality and an economic and societal success story. Today,10

practitioners in the automotive domain are well experienced to deal with safety

aspects during the development of regular automotive systems, because a safety

standard has been available since 2011. However, there is a lack of knowledge on

how to handle related security aspects, which strongly gain importance given the

trend towards CPS. The required security knowledge is either just non-existent,15

or, maybe even more often, distributed over different organizational units in a

company and thus not easily accessible. Furthermore, there is no automotive

specific security standard available at the moment.

Given the tight interconnection and the mutual impact of safety and security

aspects, there is a need for a combined engineering approach enabling safety20

and security co-engineering. Moreover, given the present lack of experience in

safety and security co-engineering, we think that providing additional guidance

to engineers would be highly beneficial.

The safety domain has collected valuable experience in using model-based

approaches for safety analysis [1] and integration of safety engineering with25

systems engineering by using a shared model as common viewpoint [2]. We

extend this towards security and show how model-based engineering can support

system, safety and security engineering.

In this paper, we specifically focus on the proper and due consideration of

2

the security aspect within the safety engineering life cycle, which is one particu-30

larly urgent problem related to the aforementioned challenge. Consequently, we

propose a systematic pattern-based and ISO 26262-oriented approach for safety

and security co-engineering in the automotive domain. Through the use of pat-

terns, we aim to close the security knowledge gap by harvesting its manifold

benefits: conservation and reuse of design knowledge, best practices and tested35

solutions, reuse of architectural artifacts enabled by abstraction, cross-domain

exchange of solution concepts, etc. Apart from the systematic interlinking of

safety and security patterns, we elaborate how these patterns can be specified

and maintained.

This paper is based on the conference paper “Systematic Pattern Approach40

for Safety and Security Co-engineering in the Automotive Domain” from Amorim

et. al [3] presented at the main track of SafeComp20177 in Trento/Italy. The

figures in the methodology part and in the battery use case are taken from

that publication. For this journal paper we provide more details regarding the

pattern description and more insight regarding the co-engineering methodology.45

Furthermore, we extended the application of the methodology on the battery

management system case study regarding support of pattern engineering by

further use case scenarios and emphasizing Model-based Systems Engineering

(MBSE).

2. Background and Related Work50

This section provides an overview about architectural patterns in general,

safety patterns, security patterns, safety and security co-engineering, and cur-

rent relevant automotive guidance for safety and cybersecurity.

2.1. Relevant Automotive Guidance for Safety and Cybersecurity

ISO 26262 (“Road vehicles− Functional safety”) [4] is an automotive domain-55

specific safety standard. It provides a structured and generic approach for the

7http://safecomp17.fbk.eu/

3

complete safety life cycle of an automotive E/E system including design, devel-

opment, production, service processes, and decommissioning. ISO 26262 recom-

mends requirements and techniques for system, software, and hardware design

to achieve functional safety for E/E systems. An Automotive Safety Integrity60

Level (ASIL) is used as a central metric for determination of development efforts

required for the entire safety life cycle. For instance, the usage of established de-

sign patterns is recommended for all ASIL levels for each sub-phase of software

development, as described in Subsection 4.4.7 in Part 6 of ISO 26262. Concern-

ing security, the first edition, released in 2011, does not consider it explicitly65

neither there is any support or guidance. The second edition ISO 26262 (released

by end of 2018) contains only some guidance where an interaction between safety

and security may occur from a safety perspective. Part 4 & 6 for system and

software engineering point for the requirement and architecture consolidation

to the need to coordinate safety and security requirements. In addition Part 270

for the safety management requires communication channels between functional

safety and disciplines related to functional safety like cybersecurity. We present

here an approach which uses model-based engineering and patterns to formalize

the interaction between safety and security for the system design and show an

approach to address the new requirements regarding interaction.75

SAE J3061 [5] is a cybersecurity process framework for secure development

life cycle tailored to the automotive domain by using a corresponding V-Model,

as defined in ISO 26262. In SAE J3061, safety and security interaction points

were defined to coordinate the two engineering processes. In 2017 development

of ISO/SAE 21434 (“Road vehicles − Cybersecurity engineering”) [6] has been80

started as a joint project between ISO and SAE. The goal is to develop a cyber-

security engineering standard for road vehicles that includes requirements for

cybersecurity process and a common language for communicating and manag-

ing cybersecurity risk among stakeholders based on ISO 26262 and SAE J3061.

It is planned to include similar guidance for the interaction between safety and85

cybersecurity from a cybersecurity perspective.

4

2.2. Safety and Security Co-Analysis and Co-Engineering

Safety and security aspect must be considered in a holistic way due to tighter

interactions between safety and security in automotive CPS. In this paper, safety

& security co-analysis refers to methods and techniques that can be used to iden-90

tify safety hazards and security threats in a joint approach. Co-analysis includes

activities in the early stage of the development life cycle, e.g. in the require-

ments engineering as well as the design phase. Safety & security co-engineering

refers to engineering activities that consider both safety and security and their

interactions in the development life cycle like trade-off analysis or shared testing,95

verification and validation. Furthermore, co-engineering considers all phases of

the life cycle, in which co-analysis is an integral part.

In the context of automotive domain, existing analysis method Hazard Anal-

ysis and Risk Management (HARA), which is standardized in ISO 26262 for

safety, can be extended with Threat Analysis and Risk Assessment (TARA)100

method, as mentioned in SAE J3061 to identify cybersecurity risks [7]. Other

proposals include Failure Mode and Vulnerability Effect Analysis (FMVEA) [8]

and Security Aware Hazard Analysis and Risk Assessment (SAHARA) [9] that

aim at combining both safety and security analysis in parallel. A safety and

security co-engineering approach should include all engineering activities in the105

automotive system development life cycle according to relevant standards such

as ISO 26262 and SAE J3061 based on the V-Model [10]. There are different

approaches, partially supported by projects, to address and define a framework

for co-engineering. One major approach is based on work done in SESAMO8

on interaction points, which is currently refined in the AQUAS9 project. The110

generic concept of interaction points is similar to our approach, defining points

in the system engineering life cycle where engineering teams from different do-

mains need to interact in order to build a system [11]. A systematic pattern

based interaction between safety and security can be considered as a interaction

8http://sesamo-project.eu
9https://aquas-project.eu

5

point or, in the term of iterative refinement, an interaction cycle. Besides inter-115

action point based co-engineering approaches there are also other approaches,

like for example the approach which is developed in the AMASS10 project,

which aims at a complete replacement of established development processes by

an co-engineering process.

2.3. Architectural Patterns120

Patterns are used to collect and organize solutions for similar problems with

a general and universal solution. A well-known and proven solution for a specific

problem is generalized so that it can be reused for similar recurring problems in

other projects. Alexander describes the concept of using architecture patterns

to solve similar problems in different projects [12]. The concept of patterns is125

used in many different domains including hardware and software. A good and

very well-known reference is the book by Gamma et al. [13] (also known as the

Gang of Four), which had a significant impact on making the pattern approach

popular for software development. The book includes some general background

and concepts as well as a collection of concrete patterns for object-oriented130

software design.

The state-of-the-art provides a few dozen safety architecture patterns [14][15],

with some being just a variation of simpler ones. Armoush introduced in his

PhD thesis [14] new safety patterns and provides a collection of existing safety

patterns and a characterization of the main pattern representation attributes for135

embedded systems patterns (e.g. Name, Type, ID, Abstract, Context, Problem,

Structure,). These patterns are mostly based on the work of Douglas [16][17] for

hardware patterns and on Pullum [18] for software fault tolerance techniques

brought into pattern notation for software patterns. Safety patterns usually

include some kind of hardware redundancy, multiple channels with voters, or140

sanity checks [15]. They can address software or hardware issues and they allow

systems to remain fully functional or to bring them to a safe state. Describing

10https://www.amass-ecsel.eu

6

existing patterns, but the ones used in the presented case study, is out of the

scope of this work.

Security engineering is an iterative and incremental process. Security pat-145

terns can be seen as the essence of sound security designs and best practices

from an existing body of knowledge that can be used to solve security problems

in new scenarios. During the security engineering process, security patterns

can be used in requirements analysis and design to eliminate security flaws and

provide additional information for security validation.150

Security patterns have attracted the attention of both academic researchers

and industry [19]. The main focus of existing work is on the construction (includ-

ing representation, classification, and organization) and application of security

patterns. Security patterns are represented as textual templates or combined

with UML models, in a hierarchically layered architecture or in a search-able155

pattern library. Security patterns have been proposed for requirements engineer-

ing, software system design such as web services, and Service-Oriented Architec-

tures [20]. Open Security Architecture is a community-based online repository

of security control patterns based on the ISO 27000 information security stan-

dard family for enterprise IT systems, in which patterns are represented as text160

and graphical architecture designs in a consistent template. In recent years,

security patterns have also been proposed for CPS [21].

2.4. Model-based Systems Engineering

Model-Based Systems Engineering (MBSE) is an efficient approach to spec-

ify, design and analsze complex systems. Estefan et. al [22] provide an overview165

of MBSE methodologies and cover a collection of related processes, methods,

and tools used to support the discipline of systems engineering and the role of

the system modeling language SysML in that context. SysML is a semi-formal,

general purpose modeling language. It is based on Unified Modeling Language

(UML), constructed for systems engineering applications and is standardized170

7

by OMG11 [23]. SysML concepts concern requirements, structural modeling,

and behavioral constructs. New diagrams include a requirement diagram and

a parametric diagram and adjustments of UML activity, class, and composite

structure diagrams. The three main diagram types of SysML are requirement di-

agram, block definition diagrams and internal block diagrams. The requirement175

diagram provides cross cutting relationships between requirements and system

models; the structural diagrams are block definition diagrams, internal block di-

agrams, package diagrams, and parametric diagrams; the behavioral diagrams

are use case, state machine, activity diagrams, and sequence diagrams. [24]. We

use in our approach the block definition diagram for the modeling of the system180

and the patterns. Model-based approaches are increasingly used for safety, this

starts from safety analysis based on system models to the integration of safety

artifacts into the system modeling [25]. Benefits of such an approach are the

consistency between models, since there is only one system model with different

views. There is also an ongoing development to extend Model-Based Systems185

Engineering towards security [26].

3. Methodology

Although patterns address specific problems, the context in which a pattern

is applied influences how it should be applied. Therefore, practitioners require

systematic guidance when using patterns to tackle safety and security problems,190

i.e. more than just a catalog of patterns is needed. We thus propose a model-

based safety and security pattern engineering workflow that aims at combining

the two engineering processes for pattern identification and design and allows

for the necessary interaction and balancing of safety and security concerns.

In addition, in order to support the described process in an optimal way, we195

introduce some specific extensions to the description of both types of pattern.

These extensions focus on the links between the two engineering domains and

11http://www.omg.org/

8

are thus a means to bridge the gap and come closer to a real co-engineering

approach to support analysis and argumentation.

3.1. Pattern Description200

With respect to safety pattern, extensions have been proposed to support

engineers in adapting their assurance case argumentations after a pattern has

been applied. Argumentation fragments, specified in Goal Structuring Notation

(GSN), could, for instance, be provided specifically for each pattern [27, 15] .

For the presented approach we build on these safety pattern with argumen-205

tation guidance and propose to use something similar for security. However, in

order to better support the interaction between safety and security and to fos-

ter co-engineering, we further enrich the descriptions with pointers to respective

safety or security weak points related to the pattern and suggest application of

corresponding analyses to investigate these issues and generate evidences for the210

argumentation. In general, patterns act as a central base of knowledge, which

should be maintained based on the lessons learned during their application. On

the one hand positive examples and scenarios can be referred and on the other

hand negative examples, where the use of a pattern raised new and unwanted

issues, should be documented as well.215

Each pattern contains a general pattern description, which covers pattern

name, pattern type, context, problem, forces solution, graphical representation.

A generic pattern template is shown in Figure A.9.

The safety pattern adopts the generic template, correspondingly describes the220

safety content and additionally augments it with respect to security aspects.

Key constituents of the safety pattern are:

• GSN fragment of safety pattern [15]

• General security implications (e.g. typical security properties that might

interact with the pattern)225

• Guidance wrt. security analysis (e.g. in a voter pattern, a promising

attack vector might be going through the voter, thus analysis of the voter

9

is recommended)

• GSN fragment of security implications [27]: The GSN fragment reflects the

bullets above in a generic way, so that the integration of these security con-230

siderations into the argumentation is simplified/guided to a certain extent.

We design the security pattern to follow the same approach as the safety pat-

tern, they adopt the generic template, describe the security content as well as

additional information regarding potential safety implications. Key constituents235

of the security pattern are:

• GSN fragment of security pattern

• General safety implications (e.g. typical safety properties that might inter-

act with the pattern such as hard real time requirements and encryption)

• Guidance wrt. safety analysis (e.g. introducing additional HW compo-240

nents in a functional path additional random HW failure have to be taken

into account)

• GSN fragment of safety implication: The GSN fragment of the pattern

reflects the bullets above in a generic way, so that the integration of the

security pattern (as well as auxiliary safety analyses / evidences) is sim-245

plified/guided to a certain extent.

Appendix A of this paper provides examples of a safety pattern (see Figure A.10)

and security pattern (see Figure A.11).

3.2. Generic Combined Pattern-based Engineering Workflow

The Generic Combined Pattern-based Engineering Workflow is the approach250

proposed in this paper to guide engineers selecting and applying safety and se-

curity patterns to develop safe and secure systems/products. This workflow is

meant to be used in unison (and tightly integrated) with the usual safety and

security engineering approaches. It therefore does not substitute established ap-

proaches but rather enhances them with further tasks. The approach is suitable255

to be used with existing patterns. The workflow can take place at the different

10

Figure 1: Generic combined pattern-based engineering workflow

development phases of the V-Model in framework of ISO 26262 [4] where design

and specification are involved: concept phase, system level, hardware level and

software level.

For example during the system design the Functional and Technical Concept260

are fully developed and both are used as input for the workflow.

The workflow is divided into three main phases happening one after the

other in a waterfall fashion (cf. Figure 1): Safety Pattern Engineering, Security

Pattern Engineering, and Safety and Security Co-Engineering Loop. In the first

two phases specific teams are involved: Safety Pattern Engineering is performed265

by systems and safety engineers, and Security Pattern Engineering is performed

by systems and security engineers.

The output of the workflow is then consumed by the next phases of the V-

Model, namely Product Development: Hardware level and Software level.

270

The rationale for this is that the approach explicitly focuses on security for

safety (i.e., safety concerns are the main engineering drivers) and that security

should start working when the first safety architecture is almost defined.

In general, further changes in the architecture might open new vulnerability

11

Figure 2: Safety pattern engineering and security pattern engineering tasks

points or might not be properly covered by mechanisms already implemented.275

However, it has to be taken into account that security measures can influence

system properties that can alter safety.

For this reason, we introduce the Safety and Security Co-Engineering Loop,

the third phase of the workflow. In this phase all involved disciplines (systems,

safety, and security engineers) work together in a joint approach. The loop280

prevents safety-motivated changes from creating unforeseen vulnerabilities and

security-motivated changes from jeopardizing safety characteristics of the sys-

tem. Each of these three phases will be described in the next subsection to

provide a more detailed overview of the approach.

3.3. Safety Pattern Engineering285

Safety Pattern Engineering involves safety-related tasks and is composed of

three main tasks Perform Safety Analysis, Select Safety Pattern, Apply/Instantiate

Safety Pattern (cf. Figure 2), which will be described in the following para-

graphs.

Perform Safety Analysis. As described above, patterns are used to tackle spe-290

cific problems; therefore, we need to have a good understanding of the system

and the context in order to select and apply patterns appropriately. The work-

flow starts with established safety engineering approaches and techniques that

need to be carried out until Safety Requirements (Functional or Technical) are

12

available (i.e. Hazard and Risk analysis, FMEA and FTA to break down higher295

level to lower level requirements).

Select Safety Pattern. The decision about which pattern best fits a specific sys-

tem should be analysed taking into account the problem to be addressed (typi-

cally ensuring identified Safety Requirements) and the context of the system. In

the proposed pattern template, particularly the information regarding pattern300

type, context, problem, forces and solution are now to be considered. Besides,

there are a few trade-offs that one additionally needs to take into consideration

when choosing an architectural pattern, such as costs (hardware, development

effort) or standardization. Current state-of-the-art [14, 16, 17] provides many

patterns with detailed information about the impact in the system in the view305

of different dimensions (e.g. Cost, Reliability, Safety, Security), but some work

is obviously required to create a comprehensive pattern catalogue that is fully

in line with the templates proposed in this article. At any rate, there might

always be cases that no pattern is suitable for the discovered problems and the

engineer needs to come up with an ad-hoc solution.310

Apply/Instantiate Safety Pattern. Instantiating an architectural pattern for a

system typically implies certain adjustments to tailor the pattern towards the

existing system architecture and the problem to solve. In contrast, using the

pattern as-is is usually not possible, because they have been developed out of

context and must thus be application and context agnostic. However, the pat-315

terns we propose (as described above and illustrated in the Appendix) provide

comprehensive guidance regarding the activities to be performed as well as aux-

iliary material such as argumentation fragments to support the engineers in the

best possible way. In addition, our safety pattern provide guidance with respect

to security implications, highlighting potential weak points and providing corre-320

sponding analysis support as well as argumentation support in form of a security

related GSN fragment. In summary, the pattern instantiation does not only re-

sult in a revised system architecture (now including the elements modeled by

the pattern) but also in an augmented safety and security argumentation bol-

13

stered by corresponding analyses. The updated system architecture as well as325

the augmented analyses and argumentations are the prerequisites for the next

task.

3.4. Security Pattern Engineering

In the previous phase, the architecture was updated with safety measures,

the safety argumentation has been advanced and security implications of the330

safety measures have been analysed. In the Security Pattern Engineering phase,

the architecture will be further analysed with regard to security vulnerabilities.

Corresponding pointers might be given directly by the descriptions (security

analysis and security-related GSN fragments) of the safety pattern selected in

the safety pattern engineering phase. Open weak points are to be addressed by335

applicable security patterns. The output of this phase will be a secure architec-

ture.

Perform Security Analysis. In this step, Security Engineering is performed on

the existing system context such as functional requirements, results of Safety

Engineering, and intermediate architectural design of the system, including the340

safety patterns. Established Security Engineering methods and techniques such

as attack surface analysis, attack trees, and threat modeling can be used to

identify vulnerabilities and threats. The results of this task leads to security

measures that either mitigate potential threats or reduce the risks to an ac-

ceptable level. Special attention is given to vulnerabilities introduced by safety345

patterns.

Select Security Pattern. The security engineers should give priority to the se-

lection of re-usable security solutions from well-established security patterns for

mitigating the security risks. If multiple security patterns are available, the se-

lection of a security pattern is then a design decision that optimizes cost-benefit.350

Similar to the selection of safety patterns, if no security pattern is available, an

ad-hoc solution is applied.

14

Apply/Instantiate Security Pattern. In this step, the instantiated security pat-

tern is incorporated into the existing system architecture design while taking

into consideration context of the system. The structure of the pattern and the355

instantiation approach is thereby similar to the safety pattern. In particular, be-

yond guidance regarding the application of the security pattern and correspond-

ing security argumentation support, there are also pointers regarding potential

safety implications which might play a role in the subsequent co-engineering

loop.360

3.5. Safety and Security Co-Engineering Loop

After the initial two phases of the Pattern Engineering Workflow, the Safety

and Security Co-Engineering Loop starts. The identified patterns cover safety

and security measures defined by specific requirements. Each safety and security

measure should pass through the co-engineering loop to approve their adequate365

co-existence. Guidance with respect to the interrelationships is given by the

pattern descriptions.

In this phase, lightweight versions of safety pattern engineering and security

pattern engineering take place one after the other until no extra modification is

required in the architecture. The fact that they are performed as a lightweight370

version means that the focus is on checking those aspects that experienced alter-

ation and their respective influence on the overall system. The loop starts with

the safety pattern engineering task requiring safety engineers to analyse how

the newly added security patterns might impact the system safety. Some secu-

rity architecture strategy might impair, for example, the communication time375

between components, causing a command to arrive late. Also in this task, the

results of the first security pattern engineering phase help the safety engineers

to identify further points of failure that could be caused by an attack. The ini-

tial safety pattern might require some modification to add extra safety. On the

other hand, if the newly proposed safety mechanisms imply new vulnerabilities380

or changes in the attack surface, the security engineers should detect, assess,

and propose new solutions. This is what happens during the security pattern

15

engineering performed in the lightweight version. This goes on like a cycle and

stops when the system fulfills the desired safety and security requirements. Up-

dating supporting documentation and updating the architecture are also tasks385

to be performed.

In the co-engineering loop iterative activities have been defined, which are

described in the following and shown in a flow diagram in Figure 3 (Sx...Stepx,

D...Decision):

(S1.) Safety Impact Analysis. After successful instantiation of the security pat-390

tern in the architecture, a safety impact analysis has to be performed. This

analysis should check what happens if the introduced security measures may

have any safety impact. But it is not only the safety failure of the security

measure, it is also the possibility that the presence of that security measure

modifies the way the failures of any other elements of the architecture propa-395

gate in a modified manner, i.e. a complete safety analysis of failure modes of

new/modified elements as well as redo safety analysis of other existing elements

regarding any impact on existing failure modes.

(S1.D) Decision: Is there an impact of Security on Safety?

(S1.D.a) Answer NO - Safe and Secure Concept available400

(S1.D.b) Answer: YES - Continue to with Co-Analysis

(S2.) Co-Analysis. Perform Co-Analysis for safety and security aspects by

methods, such as SAHARA or FMVEA for identification of effected elements

regarding new failure modes (safety) or new vulnerabilities (security).

(S3.) Harmonization. Joint engineering team elaborates and defines safety and405

security measures based on available patterns.

(S3.D) Decision: Is harmonization successful without any side-effect between

safety and security measures?

(S3.D.a) Answer: YES - A possible solution has been elaborated. All safety

and security requirements are covered without any contradiction (”freedom of410

16

Figure 3: Flow chart of co-engineering loop iteration

interference”). Safe and Secure Concept is available. → Continue to (S5.)

Argumentation.

(S3.D.b) Answer: NO - Proposals for different solutions are available. →

Continue to (S4.) Trade-Off.

(S4.) Trade-Off. Joint engineering team has to prioritize which aspect is more415

relevant and a trade-off between safety and security measures have to be chosen.

The trade-off can be supported by specific safety and security pattern, where a

different pattern may be chosen to handle that issue and a compromise has to

be achieved.

(S5.) Argumentation. The final activity of the loop will be Argumentation. In420

that task the safe and secure concept will be available and all rationals will

be collected to compile the final safe and secure argument of the elaborated

concept, that provides a piece to the Assurance Case.

4. Automotive Case Study

In the following section, the Combined Pattern-based Engineering Workflow425

is applied to an automotive case study, namely Electrified Hybrid Powertrain

17

Figure 4: [Left]: Automotive Battery Use Case | [Right]: Architecture with the safety pattern

applied

Battery Management System.

4.1. Use Case Description

Our automotive use case example of a connected electrified hybrid pow-

ertrain is a combination of one or more electric motor(s) and a conventional430

internal combustion engine, which is currently the most common variant of

hybrid powertrains. The variety of powertrain configuration options increases

the complexity of the powertrain itself as well as the required control systems,

which include software functions and electronic control units. With the inte-

gration of connectivity features, further novel vehicle functionalities and new435

business models can be discovered. Therefore, we focus on an integral part of

every connected hybrid powertrain, the battery management system (BMS),

and its functionalities related to the connection to the external world; in this

case especially the connections with the charging unit. In this section, we inves-

tigate a specific use case scenario of the connected hybrid powertrain: charging440

of the battery system by connecting it with an external charging unit. Figure 4

[Left] shows the most relevant elements: battery (including all battery modules),

BMS, CAN communication, charging interface, and external charging unit.

18

4.2. Application of the Approach

In this subsection, we apply the Combined Pattern-based Engineering Work-445

flow presented in the previous subsection in the use case scenario in an early

development phase called ”concept phase”.

The described approach to cover safety activities is based on the functional

safety standard ISO 26262 and in particular the parameters (e.g. severity, ex-

posure, controllability) used in HARA are taken from ISO 26262-part3, which450

covers the concept phase.

For security ISO/SAE 21434 [6] is still in development and SAE J3061 was

pushed back to work in progress. We use threat modeling as a well established

security analysis method for the automotive domain [28], [29], [30]. In order to

support a consistent engineering workflow we utilize a threat modeling add-in455

for Enterprise Architect (EA) [31] 12. In this approach a model of the system

is evaluated based on a formal description of threats to determine threats ap-

plicable to the analysed system. Different levels of the add-in are available.

Furthermore, the MBSE tool EA provides good user support and possibilities

for a built-in pattern mechanism. EA defines patterns as a group of collabo-460

rating objects or classes that can be abstracted from a general set of modeling

scenarios. Therefore, patterns are considered as an excellent means of achieving

re-use and building in robustness. However, pattern modeling inherently intro-

duces front-loading principles. A library of patterns needs to be built first, in

order to provide the engineer with a sufficient list of options to choose from.465

4.2.1. Safety Pattern Engineering

Perform Safety Analysis. We describe in the following a small summary of

the results of this task up to the level of Functional Safety Requirements:

Hazard: Wrong estimation of charging status.470

Comment: The battery of electric vehicles can be very dangerous in case of

12www.sparxsystems.eu

19

overcharging, even causing explosions. If the charging status of a battery is esti-

mated wrongly, extra energy might be supplied, leading to a hazardous situation.

Operational situation: Parking475

Comment: The hazard will only happen while charging, and this can only be

performed while the car is parked. This hazard might also occur while driving

when architectures with regenerative systems are considered.

Hazard classification: Severity: 3 — Exposure: 4 — Controllability: 2480

Resulting hazard ASIL: [C]

Safety goal: Estimate correct status of cycle while charging.

Safe state: “HV Battery disconnected” AND “Driver alerted”.

Functional Safety requirement: Detect failures and errors from BMS.

485

Select Safety Pattern. The results from Safety Engineering describe two pos-

sible safe states for the system that are compliant with the Safety goal. The

Disconnect HV battery measure would cut off the power supply, the source of

the hazard. The Alert driver measure would issue a warning to the driver.

The car will be in parking mode if the hazard occurs (operational situation:490

Parking); therefore, full functionality in case of fault occurrence is not required.

We should apply to the architecture a pattern that helps fulfilling the Func-

tional Safety Requirement Detect Failure and errors from BMS. We selected the

Monitor- Actuator Pattern [16] (cf. Figure 4 [Right]) which provides heteroge-

neous redundancy. This pattern adds to the architecture a monitoring channel495

that detects possible faults and triggers the primary channel to enter its fail-safe

state. The Monitor-Actuator Pattern is suitable to systems with low availability

requirements and addresses the problem of finding an appropriate mechanism

for detecting failures or errors without incurring higher costs.

Apply/Instantiate Safety Pattern. The Monitor-Actuator Pattern was instanti-500

ated as depicted in Figure 4. Only changes to the BMS component were made.

20

Figure 5: Threat modeling of architecture (Tool: Enterprise Architect 14 with ThreatGet

Plugin [31])

4.2.2. Security Pattern Engineering

Perform Security Analysis. In this context, Security Engineering follows

the initial definition of a safety pattern to identify potential security threats and

vulnerabilities in the design, and to assess the risks in order to find appropriate505

countermeasures and apply corresponding security patterns. In this example,

we use the threat modeling methodology [32], in which a system is modeled in

a Data Flow Diagram (DFD). When modeling the functional blocks from the

safety pattern (cf. Figure 4) in a DFD, a few transitions and extrapolations

occur.510

First, since threat modeling assumes that attacks happen when data flow

from one process (i.e., a software component that takes input and either pro-

duces output or performs an action) to another, the logic signal flows in the

safety pattern need to be translated into directional data flows according to

the software architecture implementing this safety logic. Therefore, additional515

components are added such as the CAN bus process, which represents the com-

munication bus in the in-car system. Second, the trust boundaries need to

be defined in the DFD in order to identify attacks originating from data flows

across trust boundaries. As a result, the Charging Interface (CI) is split into two

21

parts: an in-car CI and the corresponding interface at the charging station. The520

interface on the charging station is modeled as an external interactor outside

the In-car system trust boundary. There can be different levels of trust bound-

aries. In this case, we assume that attacks can only originate from outside the

In-car system boundary. Third, at the system level, security has an influence on

components beyond the scope of the safety pattern. Since the communication525

between the primary and monitor channel and the CI goes through the CAN

bus, and the powertrain unit is connected to the same bus, the security of the

CI also influences the security of the powertrain unit. Thus even though the

two safety modules cannot be attacked directly due to the unidirectional data

flows, there are risks that an attacker might use the system charging function530

to attack the powertrain unit. Figure 5 shows the modeled architecture in DFD

using the free cyber-security modelling addin for Enterprise Architect [31].

Asset: BMS software and its related functions and messages on the CAN

bus are the main assets

Threat: Attack CAN bus through in-car CI535

Comment: The communications from the external CI to the CAN bus is re-

sponsible for establishing and maintaining communications for charging control.

An attacker can use the in-car CI as an entry point by compromising the exter-

nal CI or tampering with the communications between the interfaces to inject

malicious content into the CAN bus.540

Impact: Safety impact of the identified threats on the assets.

Comment: The safety analysis defines the initial scope of the security analysis.

The impact analysis links the results from safety and security analysis. Table 1

gives an example of the outcome of the security impact analysis. The co-analysis

provides grounds for detailed security engineering requirements on the system.545

Security requirements: The security requirements are related to authenti-

cation, authorization, non-repudiation, accountability, data integrity, confiden-

tiality, privacy, and availability, which need to be further allocated to system

and component level during the design. In this example, we skip the assessment

of severity of the impact so we consider all safety impacts when deriving the550

22

Table 1: Security impact analysis

Asset Security impact Safety Impact

BMS soft-

ware

Integrity of BMS soft-

ware

Overcharging battery

system

CAN bus

communica-

tion

Availability of CAN

messages to their in-

tended ECUs

Disturbing ECU func-

tioning on the power-

train system

security requirements.

Select Security Pattern. During security design, other factors beside require-

ments such as available solutions, performance and cost need to be taken into

consideration. Since current CAN does not support encrypted and authenti-

cated communication, one possible solution is to add a security gateway between555

the external unit and the internal CAN bus as shown in Figure 6. The secu-

rity gateway is the application of the security pattern “firewall” that is placed

between an unprotected internal network and untrusted external entities when

communication to the outside is inevitable (see Figure A.11). The firewall pat-

tern is a basic security measure that controls incoming and outgoing network560

connections between a protected and an untrusted network. It provides net-

work access control that restricts which hosts can be accessed on the internal

network. Note that other security patterns can be applied as well. For example,

we might apply the ”security proxy” pattern, in which an entity on the com-

munication path between the charging station and the BMS software will not565

only translate different communication protocols (e.g. Ethernet to CAN), but

also authenticate the charging station and verify the validity of the communi-

cation. As a repeatable solution, the security gateway is not limited to the CI.

It can be applied to any communication between the CAN bus and untrusted

external devices. In general, the gateway controls the network access to the570

internal ECUs according to predefined security policies and can also inspect

23

Figure 6: Security Gateway as a security pattern (Tool: Enterprise Architect 14 with Threat-

Get Plugin [31])

packet content to detect intrusion attempts and anomalies. In this way, it adds

security protection and segments the system without fundamentally changing

the existing in-car system architecture.

Select/Instantiate Security Pattern. In Figure 6, we see the altered architecture575

with the Security Gateway module.

4.2.3. Safety and Security Co-Engineering Loop

Beyond the many benefits, a security gateway might introduce latency into

the communication or block critical messages due to false-positives, which is a

subject of safety impact analysis.580

Safety Impact Analysis. With the inputs from previous tasks we perform a

HAZard and Operability Study (HAZOP) analysis to identify potential anoma-

lies in the provision of the service controlling the CI (cf. Table 2). The focus is

thus on the changes performed to the architecture by the security engineers.

Based on the analysis we identified failure modes Omission and Late as585

potential causes of a hazard (cf. Table 2). Other potential failure modes are

not relevant for this scenario. As input from the Security Pattern Engineering

phase, we get the information that the Security Gateway adds a small latency

to the communication between the CI and the BMS. This small delay can cause

a minor amount of extra charging in the battery which is not a source of hazard590

and need no further investigation in the safety and security co-engineering loop.

24

Figure 7: Architecture after the first iteration of safety and security co-engineering

Table 2: HAZOP Guideword analysis of the architecture

Guideword Possible causes Possible consequences

Commission - -

Omission Gateway blocks message to

stop charging - Message gets

corrupted

Charging Interface keeps pro-

viding energy to battery

Early - -

Late Additional processing time

slows down reaction time of

components

Late disconnection of battery

Value High - -

Value Low - -

25

From the input received from the previous phase, we also discovered that

the safety functions on the CI will not suffice in the case of a hacker attack.

This need a further investigation by performing a Safety and Security Analysis.

Safety and Security Co-Analysis. The two-stage SAHARA method then com-595

bines the outcome of the security analysis with the outcomes of the safety anal-

ysis. The SAHARA method applies a key concept of the HARA approach, the

definition of ASILs, to the STRIDE analysis outcomes. Security threats that

might lead to a violation of safety goals can be handed over to HARA for fur-

ther safety analysis. This helps to improve completeness of safety analysis in600

terms of the safety requirement of analysis of ’foreseeable misuse’, in this case

hazardous events initiated due to security attacks. For the battery system it

can be seen that security hazard are aiming a overloading of the battery because

the CI keeps providing energy to the battery.

Harmonize. To tackle this issue a CI fail-safe device connected to the Monitor605

channel was integrated (cf. Figure 7). Of course, one obvious drawback in

this solution is the extra cost incurred due to extra hardware and installation.

The changes in the architecture neither create new vulnerabilities nor jeopardize

the current mechanisms already in place. Furthermore, additional requirements

can be added to the Security Gateway in the security concept, specifying that610

firewall rules shall not block critical messages in charging process, which can be

implemented and tested in the development phase.

Trade-Off. After finalization of the safety and security pattern engineering ac-

tivities, the design can be reviewed to check whether all applied patterns can

co-exist and whether there is no unwanted influence. While there is a direct615

review of the design with the applied patterns after each iteration, a final check

can ensure the soundness of the design. In [33] we presented a quantitative

methodology for security risk assessment by combining FMVEA and SAHARA

methods with the FAIR method. This enables the analysis of security and

failure event chains, as well as a coordinated risk management for safety and620

26

security features. In this case, it was decided to add the Security Gateway as an

additional component in the system, to not only ensure that safety pattern and

the security pattern do not interfere with each other, but also to support the

maintainability of the security solution. Updates to the gateway do not impact

the safety pattern directly.625

Argumentation. During the task argumentation the safety and security concept

is finally available and all argument fragments through the overall workflow

are consolidated: GSN argumentation fragments of the chosen patterns (e.g.

security pattern for firewall in Figure A.11), co-analysis results, and evidences

of the elaborated safety and security measures from harmonization and/or trade-630

off. The joint assurance case contains the combined safety and security case.

4.2.4. Modeling of the System

For the item definition of the system we used the block definition diagram

(bdd) of SysML. The blocks, their hierarchy and multiplicities (e.g. exactly one

module consists of at least one cell) are defined based on the use case description635

and requirements (cf. Figure 8 [Top]). Furthermore, all input and output ports

are defined as known so far. This item definition is compliant to ISO 26262 and

subject to further safety and security analyses.

4.2.5. Modeling Patterns

In a similar way, patterns are modeled. Patterns may contain UML classes640

(or blocks in SysML, as equivalent) and their relationships (cf. Figure 8 [Bot-

tom]). The diagram is saved as a pattern and stored in a separate XML file

format and stored in the pattern repository. A specific save dialog offers sev-

eral options (e.g. specification of name, file-name, and category). The classes

of the patterns may be replaced with classes from your system model during645

the integration later on, which needs to be enabled by ticking the boxes in the

corresponding columns (create/merge/instance/type). To give an example, the

merge option replaces an existing model element with an element defined in

27

Figure 8: [Top]: Item Definition in SysML | [Bottom]: Creation of Safety Pattern

[Tool:Enterprise Architect]

28

the pattern. This is especially useful for larger patterns, and ensures seamless

integration of the pattern with an existing model.650

4.2.6. Pattern Instantiation

The pattern may then be applied to the system model by drag and drop of

the pattern to the diagram by a following dialog window, where it is possible

to assign existing elements to the pattern (cf. Figure 8 Bottom). In the exam-

ple the Pattern “Primary channel” is mapped to the BMS “Process” and the655

Pattern “HomogenousRedundancyStructure” is mapped to the BMS. Based on

the mapping the tool updates the bdd with the missing classes from the chosen

pattern and the pattern import is completed.

4.2.7. Interaction with Analysis Tool

Threat Modeling is a wide spread security analysis, which is also one of660

the contributions for co-analysis techniques like SAHARA or FMVEA. The

main tool for Threat Modeling has been a plug-in for MS Visio, which only

provides a graphical modeling support. The tool from AIT in development

called “ThreatGet” integrates Threat Modeling into Enterprise Architect. With

the integration into EA the threat modeling is based on a SysML model and665

resulting threats can be integrated into the workflow and guarantee traceability.

4.3. Lessons Learned

The definition of patterns in the EA tool is done via simple UML class

diagrams and works for SysML blocks as well. The pattern are saved in separate

files in a software versioning and revision control system, which allowed to built670

easily a “library of patterns”. Furthermore, it is easy to apply the patterns

to the system model via drag and drop. The pattern mechanism of the EA

tool seems to work at this stage for bdd diagrams only, which means that the

pattern “just reminds you to add needed blocks” and the engineer has to connect

them as needed according to the specific context. The concrete interconnections675

between blocks, normally realized via interfaces and ports, are out of scope of

the EA patterns. This is due to the fact that at this point in time the exact

29

definition of ports and interfaces, etc. are unknown. The described approach

using EA limits the application of patterns to early development phases.

4.4. Industry Relevance680

Currently vehicle chargers can be mainly classified into: AC charging that

uses residential power outlet, DC fast charging (DCFC) that charges a vehicle

by DC in much shorter time, and inductive charging that eliminate the use of ca-

bles. All of them require certain message exchange between the charging station

and the vehicle during the charging process to regulate the current provided to685

the vehicle. SAE recommendations are often used in the industry to implement

such communications on top of the physical and data link layer. For exam-

ple, SAE J2847/2 “Communication between plug-in vehicles and off-board DC

chargers” [34] defines message format for DC charging. These messages might be

manipulated to sabotage the charging process that leads to battery explosion.690

Therefore, in SAE J2931/7 “Security for plug-in electric vehicle communica-

tions” [35] a set of security requirements are specified for different stakeholders

involved in the system. On the other hand, standards such as ISO 17409:2015

“Preview Electrically propelled road vehicles - Connection to an external elec-

tric power supply - Safety requirements” [36] specifies the safety requirements.695

The safety and security pattern described here has been instantiated in certain

degree in actual vehicles, which use a gateway to avoid direct data connection to

charging station and relays controlled by BMS to avoid overcharging. Therefore,

safety and security patterns can be an repeatable and efficient way to address

and enforce safety and security requirements from related standards in system700

development based on industry best practices.

5. Discussion and Conclusion

This paper focused on the selection, combination, and application of safety

and security patterns for automotive system engineering. The introduction of

the Combined Pattern-based Engineering Workflow provides a systematic and705

30

integrated way of safety- and security-related pattern engineering. It provides

comprehensive guidance and packaged knowledge with respect to the integra-

tion, as well as auxiliary existing work products, such as the (initial) results

of safety and security analyses and argumentation fragments. The availability

of recurring process steps based on automotive industry standards results in710

faster and cheaper product development while fulfilling the need for intangi-

ble product properties, namely safety and security. The Safety and Security

Co-Engineering Loops as well as the correlated guidance provided by our aug-

mented pattern descriptions help to align the required activities systematically

and foster a tight integration of safety- and security-related process steps. For715

instance, this means if a safety (architectural) pattern will be selected to address

a specific safety requirement, additional information and guidance with respect

to correlated core aspect from a security point of view are provided. A security

pattern, in turn, can have a safety impact, which is again explicitly specified.

With the presented approach, the decision which pattern fits best for a720

specific system can be done more systematically (particularly by non-expert en-

gineers) and taking into account the problem to be addressed and the context

of the system. In general, safety and security engineering are very closely re-

lated disciplines and their synergy can be fostered when their similarities are

recognized and adequate interactions are established correctly.725

To demonstrate the benefits of the presented approach an automotive case

study demonstrated the practical realization of our approach: Architecture of

an automotive battery system was described in a semi-formal way, including

identification of its main components, physical interconnections, and flows of in-

formation. The use case has been reduced in complexity for illustration purposes730

and it highlights the benefits of applying the Pattern Engineering Workflow for

the concept phase development.

With the presented approach, we aimed to benefit from the typical strong

points of patterns to overcome the lack of general security knowledge as well as

organizational weak points (i.e. no integrated safety-security teams, distributed735

or lacking security knowledge etc) that are prevalent in the automotive domain.

31

It is a promising approach that should help accelerating the application of ad-

equate safety and security co-engineering in industry. In particular, we believe

the type of pattern we introduced constitute a way to remediate the lack of

security knowledge and facilitate easier and more informed integration of these740

two separate yet interfering disciplines. Additionally, initial positive experiences

were shown, which were gained by a tool supported model-based systems en-

gineering application, where patterns were created and applied for a specific

automotive use case scenario.

Acknowledgment745

Dedicated to our co-author late Christian Kreiner, who was impressive for

many reasons and has been a wonderful teacher, co-worker, leader and friend.

You have been everything one could look for in a good mentor, the true Master

Yoda, and made working with you an exciting, inspiring and memorable expe-

rience. We will always be grateful to you for your support and kindness. May750

the force still be with you.

Research leading to these results has received funding from the EU ECSEL

Joint Undertaking under grant agreement no. 692474 (project AMASS), EU

ECSEL JU project SCOTT (no. 737422), EU Horizon 2020 research and innova-

tion programme under grant agreement no. 732242 (project DEIS), and from the755

COMET K2 - Competence Centres for Excellent Technologies Programme of the

Austrian Federal Ministry for Transport, Innovation and Technology (bmvit),

the Austrian Federal Ministry of Science, Research and Economy (bmwfw), the

Austrian Research Promotion Agency (FFG), the Province of Styria, and the

Styrian Business Promotion Agency (SFG), the German Federal Ministry of760

Education and Research (BMBF), grant CrESt, 01IS16043.

32

List of Abbreviation

Table 3: List of Abbreviation
Abbrev. Definition Abbrev. Definition

AC Alternating Current HARA Hazard Analysis and Risk Management

ASIL Automotive Safety Integrity Level HAZOP HAZard and OPerability Study

BMS Battery Management System HV High Voltage

C Controlability ID Identifier

CAN Controller Area Network ISO International Organization for Standard-

ization

CI Charging Interface IT Information Technology

CPS Cyber-Physical System MBSE Model-Based Systems Engineering

DCFC Direct Current Fast Charging MS MicroSoft

DFD Data Flow Diagram S Severity

E Exposure SAE Society of Automotive Engineers

E/E Electric and/or Electronic SAHARA Security Aware Hazard Analysis and Risk

Assessment

EA Enterprise Architect STRIDE Spoofing, Tampering, Repudiation, Infor-

mation disclosure, Denial of Service, Ele-

vation

ECU Electronic Control Unit SysML System Modelling Language

FDIS Final Draft International Standard TARA Threat Analysis and Risk Assessment

FMVEA Failure Mode and Vulnerability Eect Anal-

ysis

UML Unified Modelling Language

GSN Goal Structuring Notation XML Extensible Markup Language

References

[1] A. Joshi, M. P. Heimdahl, S. P. Miller, M. W. Whalen, Model-Based Safety

Analysis, Tech. Rep. CR-2006-213953, NASA (2006).765

[2] B. Kaiser, V. Klaas, S. Schulz, C. Herbst, P. Lascych, Integrating system

modelling with safety activities, in: SAFECOMP’10 Proceedings of the

29th international conference on Computer safety, reliability, and security,

Springer, 2010, pp. 452–465.

URL http://link.springer.com/chapter/10.1007/770

978-3-642-15651-9_33

[3] T. Amorim, H. Martin, Z. Ma, C. Schmittner, D. Schneider, G. Macher,

B. Winkler, M. Krammer, C. Kreiner, Systematic pattern approach for

safety and security co-engineering in the automotive domain, in: Interna-

tional Conference on Computer Safety, Reliability, and Security, Springer,775

2017, pp. 329–342. doi:10.1007/978-3-319-66266-4_22.

33

http://link.springer.com/chapter/10.1007/978-3-642-15651-9_33
http://link.springer.com/chapter/10.1007/978-3-642-15651-9_33
http://link.springer.com/chapter/10.1007/978-3-642-15651-9_33
http://link.springer.com/chapter/10.1007/978-3-642-15651-9_33
http://link.springer.com/chapter/10.1007/978-3-642-15651-9_33
http://link.springer.com/chapter/10.1007/978-3-642-15651-9_33
http://dx.doi.org/10.1007/978-3-319-66266-4_22

[4] ISO, ISO 26262 Road vehicles – Functional safety (2011).

[5] SAE, SAE J3061 Cybersecurity Guidebook for Cyber-Physical Vehicle Sys-

tems (2016).

[6] C. Schmittner, G. Griessnig, Z. Ma, Status of the development of780

iso/sae 21434, in: European Conference on Software Process Improvement,

Springer, 2018, pp. 504–513.

[7] G. Macher, E. Armengaud, C. Kreiner, E. Brenner, C. Schmittner, Z. Ma,

H. Martin, M. Krammer, Integration of security in the development life-

cycle of dependable automotive cps, in: Handbook of Research for Cyber-785

Physical Systems Ubiquity, IGI Global, 2017.

[8] C. Schmittner, Z. Ma, E. Schoitsch, T. Gruber, A case study of fmvea and

chassis as safety and security co-analysis method for automotive cyber-

physical systems, in: Proceedings of the 1st ACM Workshop on Cyber-

Physical System Security, CPSS ’15, ACM, New York, NY, USA, 2015, pp.790

69–80. doi:10.1145/2732198.2732204.

[9] G. Macher, H. Sporer, R. Berlach, E. Armengaud, C. Kreiner, Sahara: A

security-aware hazard and risk analysis method, in: 2015 Design, Automa-

tion Test in Europe Conference Exhibition (DATE), 2015, pp. 621–624.

doi:10.7873/DATE.2015.0622.795

[10] C. Schmittner, Z. Ma, T. Gruber, E. Schoitsch, Safety and security co-

engineering of connected, intelligent, and automated vehicles, ERCIM News

109 (2017) 23–24.

[11] T. Gruber, C. Schmittner, M. Matschnig, B. Fischer, Co-engineering-in-

the-loop, Computer Safety, Reliability, and Security (2018) 151.800

[12] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King,

S. Angel, A pattern language (1977).

34

http://dx.doi.org/10.1145/2732198.2732204
http://dx.doi.org/10.7873/DATE.2015.0622

[13] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of

Reusable Object-oriented Software, Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 1995.805

[14] A. Armoush, Design patterns for safety-critical embedded systems., Ph.D.

thesis, RWTH Aachen University (2010).

[15] C. Preschern, N. Kajtazovic, C. Kreiner, Building a safety architecture pat-

tern system, in: Proceedings of the 18th European Conference on Pattern

Languages of Program, EuroPLoP ’13, ACM, New York, NY, USA, 2015,810

pp. 17:1–17:55. doi:10.1145/2739011.2739028.

URL http://doi.acm.org/10.1145/2739011.2739028

[16] B. P. Douglass, Real-Time Design Patterns: Robust Scalable Architecture

for Real-Time Systems, Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2002.815

[17] B. P. Douglass, Design Patterns for Embedded Systems in C: An Embedded

Software Engineering Toolkit, 1st Edition, Newnes, Newton, MA, USA,

2010.

[18] L. L. Pullum, Software Fault Tolerance Techniques and Implementation,

Artech House, Inc., Norwood, MA, USA, 2001.820

[19] M. Schumacher, Security engineering with patterns: origins, theoretical

models, and new applications, Vol. 2754, Springer Science & Business Me-

dia, 2003.

[20] N. A. Delessy, E. B. Fernandez, A pattern-driven security process for soa

applications, in: 2008 Third International Conference on Availability, Re-825

liability and Security, 2008, pp. 416–421. doi:10.1109/ARES.2008.89.

[21] N. E. Petroulakis, G. Spanoudakis, I. G. Askoxylakis, A. Miaoudakis,

A. Traganitis, A pattern-based approach for designing reliable cyber-

physical systems, in: 2015 IEEE Global Communications Conference

(GLOBECOM), 2015, pp. 1–6. doi:10.1109/GLOCOM.2015.7417794.830

35

http://doi.acm.org/10.1145/2739011.2739028
http://doi.acm.org/10.1145/2739011.2739028
http://doi.acm.org/10.1145/2739011.2739028
http://dx.doi.org/10.1145/2739011.2739028
http://doi.acm.org/10.1145/2739011.2739028
http://dx.doi.org/10.1109/ARES.2008.89
http://dx.doi.org/10.1109/GLOCOM.2015.7417794

[22] J. A. Estefan, et al., Survey of model-based systems engineering (mbse)

methodologies, Incose MBSE Focus Group 25 (8) (2007) 1–12.

[23] OMG Systems Modeling Language (OMG SysML) (2012),

http://www.omg.org/spec/SysML/1.3/ (Jun. 2012).

[24] S. Friedenthal, A. Moore, R. Steiner, A practical guide to SysML: The835

systems modeling language, Morgan Kaufmann, 2014.

[25] G. Biggs, T. Sakamoto, T. Kotoku, A profile and tool for modelling safety

information with design information in SysML, Software & Systems Mod-

eling 15 (1) (2016) 147–178. doi:10.1007/s10270-014-0400-x.

URL http://link.springer.com/10.1007/s10270-014-0400-x840

[26] Muhammad Sabir Idrees, Yves Roudier, Ludovic Apvrille, A Framework

Towards the Efficient Identification and Modeling of Security Require-

ments, 2010.

[27] C. Preschern, N. Kajtazovic, C. Kreiner, Security analysis of safety pat-

terns, in: Proceedings of the 20th Conference on Pattern Languages of845

Programs, The Hillside Group, 2013, p. 12.

[28] A. Karahasanovic, P. Kleberger, M. Almgren, Adapting threat modeling

methods for the automotive industry, in: Proceedings of the 15th ESCAR

Conference, 2017, pp. 1–10.

[29] Z. Ma, C. Schmittner, Threat modeling for automotive security analysis,850

Advanced Science and Technology Letters 139 (2016) 333–339.

[30] M. Hamad, M. Nolte, V. Prevelakis, Towards comprehensive threat mod-

eling for vehicles, in: the 1st Workshop on Security and Dependability of

Critical Embedded Real-Time Systems, 2016, p. 31.

[31] Sparx Services CE – Cyber Security Modeling – Security by design, [Online;855

accessed 5. Jul. 2019] (Jul 2019).

URL https://cybersecurity.sparxservices.eu

36

http://link.springer.com/10.1007/s10270-014-0400-x
http://link.springer.com/10.1007/s10270-014-0400-x
http://link.springer.com/10.1007/s10270-014-0400-x
http://dx.doi.org/10.1007/s10270-014-0400-x
http://link.springer.com/10.1007/s10270-014-0400-x
https://cybersecurity.sparxservices.eu
https://cybersecurity.sparxservices.eu

[32] A. Shostack, Threat Modeling: Designing for Security, Wiley, 2014.

URL https://books.google.de/books?id=asPDAgAAQBAJ

[33] J. Dobaj, C. Schmittner, M. Krisper, G. Macher, Towards Integrated Quan-860

titative Security and Safety Risk Assessment, in: Computer Safety, Relia-

bility and Security - SAFECOMP 2019 Workshops - ASSURE, DECSoS,

SASSUR, STRIVE, and WAISE , Vol. LNCS of Lecture Notes in Computer

Science, Springer International Publishing AG, 2019.

[34] SAE, SAE J2847/2 Communication between plug-in vehicles and off-board865

DC chargers (2015).

[35] SAE, SAE J2931/7 Security for Plug-In Electric Vehicle Communications

(2018).

[36] ISO, ISO 17409 Electrically propelled road vehicles – Connection to an

external electric power supply – Safety requirements (2015).870

Appendix A. Pattern Examples

This section shows some pattern examples of our approach to describe pattern:

• pattern template see Figure A.9;

• safety pattern example see Figure A.10;

• security pattern example see Figure A.11.875

37

https://books.google.de/books?id=asPDAgAAQBAJ
https://books.google.de/books?id=asPDAgAAQBAJ

Figure A.9: Pattern Template

38

Figure A.10: Safety Pattern Example

39

Figure A.11: Security Pattern Example

40

	Introduction
	Background and Related Work
	Relevant Automotive Guidance for Safety and Cybersecurity
	Safety and Security Co-Analysis and Co-Engineering
	Architectural Patterns
	Model-based Systems Engineering

	Methodology
	Pattern Description
	Generic Combined Pattern-based Engineering Workflow
	Safety Pattern Engineering
	Security Pattern Engineering
	Safety and Security Co-Engineering Loop

	Automotive Case Study
	Use Case Description
	Application of the Approach
	Safety Pattern Engineering
	Security Pattern Engineering
	Safety and Security Co-Engineering Loop
	Modeling of the System
	Modeling Patterns
	Pattern Instantiation
	Interaction with Analysis Tool

	Lessons Learned
	Industry Relevance

	Discussion and Conclusion
	Pattern Examples

