14,546 research outputs found

    BioWorkbench: A High-Performance Framework for Managing and Analyzing Bioinformatics Experiments

    Get PDF
    Advances in sequencing techniques have led to exponential growth in biological data, demanding the development of large-scale bioinformatics experiments. Because these experiments are computation- and data-intensive, they require high-performance computing (HPC) techniques and can benefit from specialized technologies such as Scientific Workflow Management Systems (SWfMS) and databases. In this work, we present BioWorkbench, a framework for managing and analyzing bioinformatics experiments. This framework automatically collects provenance data, including both performance data from workflow execution and data from the scientific domain of the workflow application. Provenance data can be analyzed through a web application that abstracts a set of queries to the provenance database, simplifying access to provenance information. We evaluate BioWorkbench using three case studies: SwiftPhylo, a phylogenetic tree assembly workflow; SwiftGECKO, a comparative genomics workflow; and RASflow, a RASopathy analysis workflow. We analyze each workflow from both computational and scientific domain perspectives, by using queries to a provenance and annotation database. Some of these queries are available as a pre-built feature of the BioWorkbench web application. Through the provenance data, we show that the framework is scalable and achieves high-performance, reducing up to 98% of the case studies execution time. We also show how the application of machine learning techniques can enrich the analysis process

    Using conceptual modeling to improve genome data management

    Full text link
    [EN] With advances in genomic sequencing technology, a large amount of data is publicly available for the research community to extract meaningful and reliable associations among risk genes and the mechanisms of disease. However, this exponential growth of data is spread in over thousand heterogeneous repositories, represented in multiple formats and with different levels of quality what hinders the differentiation of clinically valid relationships from those that are less well-sustained and that could lead to wrong diagnosis. This paper presents how conceptual models can play a key role to efficiently manage genomic data. These data must be accessible, informative and reliable enough to extract valuable knowledge in the context of the identification of evidence supporting the relationship between DNA variants and disease. The approach presented in this paper provides a solution that help researchers to organize, store and process information focusing only on the data that are relevant and minimizing the impact that the information overload has in clinical and research contexts. A case-study (epilepsy) is also presented, to demonstrate its application in a real context.Spanish State Research Agency and the Generalitat Valenciana under the projects TIN2016-80811-P and PROMETEO/2018/176; ERDF.Pastor López, O.; León-Palacio, A.; Reyes Román, JF.; García-Simón, A.; Casamayor Rodenas, JC. (2020). Using conceptual modeling to improve genome data management. Briefings in Bioinformatics. 22(1):45-54. https://doi.org/10.1093/bib/bbaa100S4554221McCombie, W. R., McPherson, J. D., & Mardis, E. R. (2018). Next-Generation Sequencing Technologies. Cold Spring Harbor Perspectives in Medicine, 9(11), a036798. doi:10.1101/cshperspect.a036798Condit, C. M., Achter, P. J., Lauer, I., & Sefcovic, E. (2001). The changing meanings of ?mutation:? A contextualized study of public discourse. Human Mutation, 19(1), 69-75. doi:10.1002/humu.10023Karki, R., Pandya, D., Elston, R. C., & Ferlini, C. (2015). Defining «mutation» and «polymorphism» in the era of personal genomics. BMC Medical Genomics, 8(1). doi:10.1186/s12920-015-0115-zHamid, J. S., Hu, P., Roslin, N. M., Ling, V., Greenwood, C. M. T., & Beyene, J. (2009). Data Integration in Genetics and Genomics: Methods and Challenges. Human Genomics and Proteomics, 1(1). doi:10.4061/2009/869093Baudhuin, L. M., Biesecker, L. G., Burke, W., Green, E. D., & Green, R. C. (2019). Predictive and Precision Medicine with Genomic Data. Clinical Chemistry, 66(1), 33-41. doi:10.1373/clinchem.2019.304345Amaral, G., & Guizzardi, G. (2019). On the Application of Ontological Patterns for Conceptual Modeling in Multidimensional Models. Lecture Notes in Computer Science, 215-231. doi:10.1007/978-3-030-28730-6_14Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., … Sherlock, G. (2000). Gene Ontology: tool for the unification of biology. Nature Genetics, 25(1), 25-29. doi:10.1038/75556Eilbeck, K., Lewis, S. E., Mungall, C. J., Yandell, M., Stein, L., Durbin, R., & Ashburner, M. (2005). Genome Biology, 6(5), R44. doi:10.1186/gb-2005-6-5-r44Vihinen, M. (2013). Variation Ontology for annotation of variation effects and mechanisms. Genome Research, 24(2), 356-364. doi:10.1101/gr.157495.113Köhler, S., Carmody, L., Vasilevsky, N., Jacobsen, J. O. B., Danis, D., Gourdine, J.-P., … McMurry, J. A. (2018). Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources. Nucleic Acids Research, 47(D1), D1018-D1027. doi:10.1093/nar/gky1105Proceedings of the Eleventh International Conference on Data Engineering. (1995). Proceedings of the Eleventh International Conference on Data Engineering. doi:10.1109/icde.1995.380416Okayama, T., Tamura, T., Gojobori, T., Tateno, Y., Ikeo, K., Miyazaki, S., … Sugawara, H. (1998). Formal design and implementation of an improved DDBJ DNA database with a new schema and object-oriented library. Bioinformatics, 14(6), 472-478. doi:10.1093/bioinformatics/14.6.472Medigue, C., Rechenmann, F., Danchin, A., & Viari, A. (1999). Imagene: an integrated computer environment for sequence annotation and analysis. Bioinformatics, 15(1), 2-15. doi:10.1093/bioinformatics/15.1.2Paton, N. W., Khan, S. A., Hayes, A., Moussouni, F., Brass, A., Eilbeck, K., … Oliver, S. G. (2000). Conceptual modelling of genomic information. Bioinformatics, 16(6), 548-557. doi:10.1093/bioinformatics/16.6.548Vihinen, M., Hancock, J. M., Maglott, D. R., Landrum, M. J., Schaafsma, G. C. P., & Taschner, P. (2016). Human Variome Project Quality Assessment Criteria for Variation Databases. Human Mutation, 37(6), 549-558. doi:10.1002/humu.22976Fleuren, W. W. M., & Alkema, W. (2015). Application of text mining in the biomedical domain. Methods, 74, 97-106. doi:10.1016/j.ymeth.2015.01.015Salzberg, S. L. (2007). Genome re-annotation: a wiki solution? Genome Biology, 8(1). doi:10.1186/gb-2007-8-1-102Rigden, D. J., & Fernández, X. M. (2018). The 26th annual Nucleic Acids Research database issue and Molecular Biology Database Collection. Nucleic Acids Research, 47(D1), D1-D7. doi:10.1093/nar/gky1267Reyes Román, J. F., García, A., Rueda, U., & Pastor, Ó. (2019). GenesLove.Me 2.0: Improving the Prioritization of Genetic Variations. Evaluation of Novel Approaches to Software Engineering, 314-333. doi:10.1007/978-3-030-22559-9_14Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., … Rehm, H. L. (2015). Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine, 17(5), 405-423. doi:10.1038/gim.2015.30Kelly, M. A., Caleshu, C., Morales, A., Buchan, J., Wolf, Z., … Funke, B. (2018). Adaptation and validation of the ACMG/AMP variant classification framework for MYH7-associated inherited cardiomyopathies: recommendations by ClinGen’s Inherited Cardiomyopathy Expert Panel. Genetics in Medicine, 20(3), 351-359. doi:10.1038/gim.2017.21

    Current advances in systems and integrative biology

    Get PDF
    Systems biology has gained a tremendous amount of interest in the last few years. This is partly due to the realization that traditional approaches focusing only on a few molecules at a time cannot describe the impact of aberrant or modulated molecular environments across a whole system. Furthermore, a hypothesis-driven study aims to prove or disprove its postulations, whereas a hypothesis-free systems approach can yield an unbiased and novel testable hypothesis as an end-result. This latter approach foregoes assumptions which predict how a biological system should react to an altered microenvironment within a cellular context, across a tissue or impacting on distant organs. Additionally, re-use of existing data by systematic data mining and re-stratification, one of the cornerstones of integrative systems biology, is also gaining attention. While tremendous efforts using a systems methodology have already yielded excellent results, it is apparent that a lack of suitable analytic tools and purpose-built databases poses a major bottleneck in applying a systematic workflow. This review addresses the current approaches used in systems analysis and obstacles often encountered in large-scale data analysis and integration which tend to go unnoticed, but have a direct impact on the final outcome of a systems approach. Its wide applicability, ranging from basic research, disease descriptors, pharmacological studies, to personalized medicine, makes this emerging approach well suited to address biological and medical questions where conventional methods are not ideal

    Method for finding metabolic properties based on the general growth law. Liver examples. A General framework for biological modeling

    Full text link
    We propose a method for finding metabolic parameters of cells, organs and whole organisms, which is based on the earlier discovered general growth law. Based on the obtained results and analysis of available biological models, we propose a general framework for modeling biological phenomena and discuss how it can be used in Virtual Liver Network project. The foundational idea of the study is that growth of cells, organs, systems and whole organisms, besides biomolecular machinery, is influenced by biophysical mechanisms acting at different scale levels. In particular, the general growth law uniquely defines distribution of nutritional resources between maintenance needs and biomass synthesis at each phase of growth and at each scale level. We exemplify the approach considering metabolic properties of growing human and dog livers and liver transplants. A procedure for verification of obtained results has been introduced too. We found that two examined dogs have high metabolic rates consuming about 0.62 and 1 gram of nutrients per cubic centimeter of liver per day, and verified this using the proposed verification procedure. We also evaluated consumption rate of nutrients in human livers, determining it to be about 0.088 gram of nutrients per cubic centimeter of liver per day for males, and about 0.098 for females. This noticeable difference can be explained by evolutionary development, which required females to have greater liver processing capacity to support pregnancy. We also found how much nutrients go to biomass synthesis and maintenance at each phase of liver and liver transplant growth. Obtained results demonstrate that the proposed approach can be used for finding metabolic characteristics of cells, organs, and whole organisms, which can further serve as important inputs for many applications in biology (protein expression), biotechnology (synthesis of substances), and medicine.Comment: 20 pages, 6 figures, 4 table
    corecore