86,841 research outputs found

    Axon: Application-Oriented Lightweight Transport Protocol Design

    Get PDF
    This paper describes the application-oriented lightweight transport protocol for object transfer (ALTP-OT) in the Axon host communication architecture for distributed applications. The Axon Project is investigating an integrated design of host architecture, operating systems, and communication protocols to allow the utilization of the high band-width provided by the next generation of communication networks. ALTP-OT provides the end-to-end transport of segment and message objects for interprocess communication across a very high speed internetwork, supporting demanding applications such as scientific visualization and imaging. ALTP-OT uses rate-based flow control specifically oriented to the transfer of objects directly between application memory spaces. This document is intended to present the design of ALTP-OT, rather than serve as a complete specification and implementation report. It should be treated as a request for comments, and will be periodically updated to reflect comments form the research community and progress on Axon design and prototype implementation. Last revision April 5, 1990

    An Overview of Segment Streaming for Efficient Pipelined Televisualization

    Get PDF
    The importance of scientific visualization for both science and engineering endeavors has been well recognized. Televisualization becomes necessary because of the physical distribution of data, computation resources, and users invovled in the visualization process. However, televisualization is not adequately supported by existing communication protocols. We believe that a pielined televisualization model (PTV) is suitable for efficient implementation of most visualization applications. In order to support this model over high speed networks, we are developing a segment streaming interprocess communication (IPC) mechanism within the Axon communication architecture. Important aspects of this development include: the segment streaming paradigm which supports low-overhead communication as well as concurrency between the communication and local computation; a two-level flow control method for distributed pipeline synchronization; and an application-oriented error control method which allows error control to be optimized for different applications. This paper describes a set of ideas that lead to the design of this IPC mechanism

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    Network emulation focusing on QoS-Oriented satellite communication

    Get PDF
    This chapter proposes network emulation basics and a complete case study of QoS-oriented Satellite Communication

    De-ossifying the Internet Transport Layer : A Survey and Future Perspectives

    Get PDF
    ACKNOWLEDGMENT The authors would like to thank the anonymous reviewers for their useful suggestions and comments.Peer reviewedPublisher PD
    corecore