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Abstract The rapidly growing Internet architecture is causing most recent computer
applications to integrate a more or less important part of distributed functionalities—
such as transport layer services, transport protocols and other services—that need
to meet user’s necessities in terms of functionalities and Quality of Service (QoS)
requirements. Emulation platforms are a classical way for protocol and applicative
experiments to check if user and QoS requirements are met. They complement the
simulation and real network experiments, since they enable to use real implemen-
tation of protocols or applications without having a real network deployed for the
experiments. This chapter presents the emulation approach in the context of net-
working experimentation: First, the different possible utilisations of dynamic emu-
lation in the context of networking and protocol engineering are presented. Then,
requirements for a general network emulation framework are proposed. Further-
more, different network emulation platforms and tools implementing the general
framework are exposed; we describe how to use them in the context of protocol
engineering and discuss their advantages and disadvantages. Finally, the emulation
of wireless systems is challenging, due to many parameters affecting the resulting
behaviour of the channel. Satellite emulation, a subset of wireless emulation, has
unique characteristics concerning the access to the resource that combines static
and dynamic assignment. As an example, the emulation of a QoS-oriented satellite
system is detailed in a final section.

B.1 Network Emulation Basics

B.1.1 Introduction to Network Emulation

Rapid growth in Internet network support is leading to distributed computer appli-
cations, which not only make use of transport layer services by well-known trans-
port protocols such as TCP or UDP, but also have to implement specific application
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and/or transport protocols in a way to meet user’s necessities in terms of functional-
ities and QoS requirements. But these applications, and particularly their distributed
components, have to be carefully tested to determine whether they perform well,
are reliable and robust. This involves the expensive task of testing and debugging
the produced software that is expected to run on distributed computers, intercon-
nected by either a large area network such as the Internet, or by specific network
technologies like wireless or satellite networks.

Nowadays, end users requirements and competition between software develop-
ment companies have continuously shortened the development process. But even if
the time-to-market decreases, a company cannot release a product if it has not been
fully tested and certified to meet clients’ expectations in terms of services, QoS and
reliability. If the client is disappointed about the product, he will switch to products
offered by other companies. These are the reasons why companies need a quality
lab that allows the rapid testing of their products under various conditions. There
are two classical ways to achieve these tests: simulation and live testing.

Event-driven simulation is a powerful tool to achieve economical and fast experi-
mentation. Its main specifications rely on an ad-hoc model working with and using a
logical event-driven technique to achieve the simulation. The modelling techniques
allow simplifying the studied problem in order to concentrate on the most critical
issues. In addition, the model execution is linked to logical time, not real-time. De-
pending on the complexity of the model, logical time can be related to real-time. For
example, it is possible to simulate a logical hour in few real-time milliseconds or a
logical second in several real-time days. Due to both characteristics, no real imple-
mentations involving man-in-the-loop are directly possible to be achieved in such
simulations. Thus, a reliable link between the tested protocol model and the real
implementation has to be accomplished in such a way as to ensure that the offered
services and performance results between the simulation model and the experimen-
tal implementation protocol are consistent.

Another classical way of testing and debugging distributed software is to use
real technology. This technique is generally expensive and time-consuming. The
software can be tested on an ad-hoc test-bed using real equipment and implement-
ing a specific technology. This approach is particularly expensive in the context of
large area networks, but also in specific technological conditions such as satellite
networks. Moreover, it is sometimes impossible to implement this testing method,
because the technology support is not available (e.g., developing an application over
a new satellite transmission technology). This high experimentation cost is not only
due to the technology costs involved, but also to the distributed man-in-the-loop ma-
nipulations and synchronisation it requires. Furthermore, it has limited value due to
the inherent discrepancies between a particular test network and the much broader
range of network imperfection that will be encountered by the software users. An-
other possibility to experiment with real technology is to use, when possible, the
target operational network, e.g. the real Internet. However, lack of control on the
network experimentation conditions makes it very difficult to achieve and reduce
measurements and tests results’ relevance.
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More recently, progress in high-speed processing and networking has fostered
the rapid development of network emulators. Network emulation is used to con-
duct experiments implementing real protocols, distributed applications and network
models. This enables the network emulator to create a controlled communication
environment, which can produce specific target communication behaviour in terms
of QoS. Therefore, network emulation reproduces not only real underlying network
architecture, but also artificial network impairments aiming at testing the charac-
teristics of the experimented protocol. These tools represent a network service and
reproduce the network performance dynamics. This approach is considered to be
efficient and useful for simulations and live experiments, because it mixes real-time
aspects of the experiment, real and simulated functionalities and emulation model.
It provides a means of experimentation using real data and a network model.

B.1.2 What is Network Emulation?

In the most general sense, an emulator is designed to mimic the functions of a system
on another system that is potentially totally different - the two different systems
should then behave similarly. In software engineering, as shown in Fig. B.1, the
same real software can be executed in the same way and without any modification,
either in the real system environment or in an emulated environment with a system
emulator acting exactly like the real system.

Fig. B.1 Experiment in real or emulated environments.

B.1.2.1 System Emulation and Virtual Machines

A perfect system emulator would offer the same services (functional properties) and
the same performance level (non-functional properties) as the reproduced system.
In electrical engineering, the word ”emulation” traditionally means a very low-level
reproduction of real life electrical signals. For example, professional microproces-
sor emulator software comes with a processor-shaped connection, which you can
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actually plug in to a motherboard and run instructions with it. But emulation can
be declined into a larger set of applications, for instance various levels of computer
systems. Network emulation is an example of a system emulator, where the system
is a computer network offering various communication services and is based on a
set of well-known protocols.

An example of a system emulator is the VMWare product [185]. The VMware
Workstation is desktop virtualisation software for software developers/testers who
want to streamline software development, testing and deployment. The VMware
Workstation enables users to run multiple x86-based operating systems, including
Windows, Linux, FreeBSD, and their applications simultaneously on a single PC in
fully networked, portable virtual machines.

The VMware Workstation works by creating fully isolated, secure virtual ma-
chines that encapsulate an operating system and its applications. The VMware vir-
tualisation layer maps the physical hardware resources to the virtual machine’s re-
sources, so each virtual machine has its own CPU, memory, disks, and I/O devices,
and is a full equivalent of a standard x86 machine. VMware can be installed on
the host operating system and provides broad hardware support by inheriting device
support from the host.

The main purpose of the VMware Workstation is streamline software devel-
opment and testing, which enhances productivity by e.g. configuring and testing
desktops and servers as virtual machines before deploying them to production, and
facilitating computer-based training and software demos by deploying classroom
material in virtual machines. The VMware workstation also provides virtual net-
works, allowing the connection between the virtual workstation and the real world.
Thus, it is possible for the virtual workstation to communicate with the real host,
in which the virtual machine is executed with external real machines, using the
physical interface of the host executed. Finally, several virtual machines can also
communicate between each other using a virtual network inside the real machine.
It is also possible to emulate various virtual networks by interconnecting different
virtual machines. Therefore, it is more likely to build a realistic network architec-
ture that implements various subnets with switches, interconnected by virtual hosts
implementing the routing functionality.

The VMWare networking capability provides a realistic and functional interface,
which allows real pieces of software such as operating systems including network-
ing code (IP, TCP, etc.) and any applications to be executed. It is then possible to
build a complex distributed architecture with numerous real implementations of pro-
tocols and test the functional characteristics of this system in a best effort environ-
ment. Furthermore, performance (e.g., throughput, delay, etc.) will mainly depend
on the capacity of the real machine hosting the emulation.

No real-time control is associated with the emulation. The non-functional char-
acteristics of the emulated systems are not supported by the software. The system
does not provide a way to represent the QoS characteristics of the target network
(and the system), even simplest ones such as a given probability of packet loss, or
a simple delay between the end-systems. Of course, more complex network emula-
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tion scenarios such as the behaviour of a satellite link with particular atmospherical
conditions would not be supported.

B.1.2.2 Network Emulation

While the system emulation allows the users to have a system behaviour on hard-
ware architecture (like Linux on Windows, or hand-held video game systems on
computer), network emulation enables network behaviour to be reproduced in a
controlled test bed. The main aim of using such emulation tools is to achieve exper-
iments with real applications as well as protocols and provide them with a support
ability to evaluate their functional (does the protocol work?) and non-functional
properties (how does the protocol performs in particular network conditions?).

The network behaviour can reproduce real technologies (e.g., wireless, satellite
link, or network interconnections) as illustrated in Fig. B.2, where the satellite link
behaviour is reproduced by a simple emulation box.

Fig. B.2 Experiment in (a) operational real environment and (b) emulated environments.

Network emulation is used as a method to test non-functional properties of really
implemented protocols. It means that emulation tools must provide a way to intro-
duce network impairments such as delay, packet losses, and bit errors according to a
model to test the protocols and applications properly. Another important issue about
network emulation is to provide a way to produce a predefined possible behaviour
to test and stress the experimental protocol in a specific condition.

In the particular but very common case of level-3 IP service emulation, the re-
sulted QoS is mainly dependent on external factors, such as underlying technolo-
gies, interconnection topology, network traffic, etc. Thus, IP network service emu-
lation could offer a ”perfect” QoS channel to a 100% loss channel depending on the
underlying protocols and many other external factors. This leads to a large set of
possibilities in the emulation experiments. The level-3 service emulation is able to
produce an end-to-end QoS channel that could focus on:

• Artificial QoS:

The emulator implements processing that aims to test the experimental protocol
on specific QoS conditions, not imperatively related to any technology. This pro-
cessing allows the user to test and stress its experimental protocol in a target QoS
condition, aiming to point out errors or bugs that could be difficult to produce in
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a non-controlled environment. This can be useful for example at transport level to
study the impact of various packet drops in a TCP connection (e.g., the SYN/ACK,
etc.), or at application level to study what happens if a particular block of the ”Intra”
picture is delayed.

• Realistic QoS:

The emulator implements a process that aims to reproduce the behaviour of a spe-
cific network architecture as accurately as possible. This type of emulation allows
the user to test their protocols over an existing network or internetwork without us-
ing a real test bed with all related technologies (e.g., a wireless network, a satellite
network, Ethernet Gigabit network, or any interconnection of such technologies).

B.1.3 Why Using Network Emulation?

What types of users are potential customers of an emulation system? Various types
of customers with their own aims provide different use cases for emulation systems.
Emulation platforms can meet the expectations and help at various stages of protocol
research and development:

• At research stage to study the existing solutions and to help the design of new
protocols and applications;

• At conception and development stages to study advantages and drawbacks of
new proposed solutions compared to the existing ones;

• At test and study of performance stage to test, benchmark, and evaluate the pro-
tocols and application;

• At the final stages, to demonstrate the effectiveness of new solution by a real
demonstration.

B.1.3.1 Network Emulation at Research and Design Stage

The application and protocol that researchers are working on is for existing or fu-
ture network solutions. Therefore, a test bed that can help study different cases is
required. The emulation can then be used for:

• Precise study of a protocol or an application under specific network conditions
to find outside effects, limitations, bugs, or any problems. The advantages of
this protocol can also be investigated. These studies will help in proposing new
solutions, possibly based on existing ones.

• Comparison of several protocols under specific network conditions to see the
advantages and drawbacks of each.

• Comparison of several protocols under realistic network conditions (e.g., satellite
network QoS) to reveal the limitations of a solution over some QoS.
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B.1.3.2 Network Emulation at Conception and Development Stage

The designer and implementer needs to study his current development to see
whether it is reliable and efficient. Different tests can be designed, for example:

• Testing the behaviour of the solution under specific network conditions to find
new solutions that can be used to detect potential bugs. Moreover, the test can
also be used to investigate the advantages of the new solution under conditions
where another solution is deficient.

• Testing the behaviour of the developed solution when a parameter (e.g., delay) is
involved. This can help to design charts with the ideal conditions for the solution.

• Testing the behaviour of new solutions under specific network conditions to see
whether it can be used on every network or if it cannot be released over a specific
technology.

• Doing comparison charts between several protocols and applications, including
the new one, to show the pros/cons of the new one.

Live testing would be definitely too complicated and expensive to meet all these
conditions. The test phase would therefore be too long, or the tests could be incom-
plete.

B.1.3.3 Network Emulation at Testing and Performance Evaluation Stage

The end of the testing and development process will be part of the support phases to
lead the following experiments:

• Product testing over a realistic end-user network condition to see whether the
product can be released to the public. This test is very important to ensure the
service provided is adequate with regard to user or application requirements.

• Debugging a product to find why it is not working on a specific network or under
specific conditions. It can also provide the proof that the product is well designed
for the network, but that presents several bugs under specific end-user computer
configurations.

B.1.3.4 Network Emulation when Demonstrating Software

Demonstration is an important activity to adopt the application or the protocol. The
protocol and application designer must often demonstrate the efficiency of the pro-
posed solution. In the context of distributed application and protocols, the demon-
stration is organised into the environment of a lab. Obtaining an ad-hoc underlying
network behaviour for the lab needs the help of the network emulator tools. The
resulted behaviour can either emulate an operational real network technology or a
specific condition to show particular efficiency of the tested software.

In this context, the first type of user could be an end-user, involved in a final
application test or in the reception of specific software. The users need to be able
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to evaluate the use main user so that the network supervisor is able to plan the
development of his/her network and to see the consequences of a faulty link or an
increased capacity link on his/her network.

B.1.4 Requirements for Emulation Systems

The main issue regarding network emulation is to achieve experiments with proto-
cols. An experiment is any process or study which results in the collection of data
of which the outcome is unknown [186]. An experimenter is the actor conducting
the experiment.

The term network emulation will be restricted to situations in which the user
has control over some of the networking conditions under which the experiment
takes place. This yields a new definition of an emulation experiment. An emulation
experiment can be defined as deliberately imposing processing on the set of packets
exchanged by distributed software in the interest of observing the resulting response.
This differs from an observational study, which involves collecting and analysing the
behaviour without changing existing conditions.

The various use cases of emulation previously introduced into the different stages
of protocol design and developments lead to the following set of functional needs:

• Protocol or application testing: the emulation should be used to test a system un-
der development, or an existing system with specific network conditions to reveal
bugs, performances problems, deadlocks, or advantages. Therefore, modification
can be performed on the product.

• Protocol performance analysis: the emulation should provide means for the sys-
tem under development to be tested and compared to other systems, under spe-
cific network conditions or realistic network parameters to draw performance and
comparison charts.

• Demonstration: the emulation platform will be used to show that the system un-
der development is working under specific conditions and so be well-suited ac-
cording to user need.

B.1.4.1 Functional Requirements

Considering the high level needs of network emulation, several requirements for
network emulator can be defined. Note that all these requirements are not necessarily
required for all uses of emulation:

• Controllability: the delay, loss, modification of packets must be achieved by us-
ing the emulation model that can totally be controlled. The model aim is to pro-
duce a specific set of impairments to either mimic real network architecture or to
introduce a possible QoS scenario.
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• Accuracy: The packets that have been computed to be dropped should be deleted.
The remaining packets have to be delivered according to modification of the
transmission delay calculated from the emulation model.

• Transparency: the emulation system should be used with a minimal (or no) mod-
ification into the tested protocol or application. Moreover, it should offer an in-
terface classically used in the context to use the protocol, for example sockets for
Internet applications.

• Flexibility: a large variety of methods should be provided to the experimenter to
be able to compute and measure packet impairments. These methods should be
adapted to either the development of an emulation model linked to real network-
ing technologies, or to the development of a specific emulation model intended
to stress a particular aspect of the tested protocol.

• Extensibility: The emulation should be able to facilitate further development of
a new emulation model. The new model should be used to achieve particular
requirements associated to the experimentation.

• Scalability: Scalability can be a very important factor, especially in the context
of specific protocol testing such as high-speed or multicast protocols.

• Dynamics: The QoS in the communication area is evolving rapidly with various
limitations, depending on underlying technology being used. In wireless environ-
ments (due to a variety of physical effect on the signal) and also in the context
of wired networks (due to congestion, physical link failure, routing update, etc.),
communication conditions may evolve. The emulation system should provide a
way to test applications and protocols in evolving and different QoS conditions.

• Reproducibility: Experiment conditions that are developed to be carried out for
testing or comparison between protocols should be reproducible to achieve fair
comparisons and provide deterministic performance results.

B.1.4.2 Requirements on Packet Impairments

The basic action that the emulation system has to provide is to introduce QoS impair-
ments on flows generated by the tested protocol. The impairments that can happen in
a network are basically packet latency (delay), packet loss and packet modification.

The four main components of latency are propagation delay, transmission delay,
processing delay and queuing delay (see Chapter 1).

The packet modification is mainly due to two possible sources. The transmission
system can introduce bit errors due to fading or any signal level problem. This bit
error could be transmitted to higher layers, if no error control mechanism is used
in the lower layers. This is not a common case, but various studies at network and
application level address this strategy and the gain that could produce in particular
networking scenario. Another much more common type of packet modification is
packet segmentation, which can happen in the network due to the necessary adapta-
tion of transmission units in a heterogeneous networking environment. Furthermore,
packet duplication is also a possible packet modification that can (rarely) happen in
the network.
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Packet loss is due to various situations in the network. Firstly, as stated in the
previous paragraph, media transmission can produce bit errors that usually imply
packet loss at a higher level, due to the loss of (checksum-based) detection tech-
niques and associated protocol behaviour. Another important source of packet loss
is due to buffer congestion. Buffer congestion can appear in many active network
elements such as in a network router, but also in a link layer bridge or end-systems.

These impairments are the basic emulation actions that happen in a network.
The impact of all these packet level actions is very important in higher protocols.
Producing and controlling these impairments is a way to efficiently evaluate the
functional and non-functional properties of these protocols and distributed applica-
tions. For testing purposes, these impairments can be produced to accurately stress a
particular situation of loss, delay or packet modification. Similarly, for reproducing
a global networking behaviour, these packet emulation actions are required.

B.1.5 Network Emulation System Approaches

Various approaches have been proposed to implement the general network emula-
tion framework proposed in the previous section. In this section we will discuss each
component in more detail.

B.1.5.1 Traffic Shapers

Once the experiment flows are constituted by the classifier, the emulation processor
will add impairments to the packets; for example delay them, drop some of them
and shape the flows to meet a given flow rate. A scheduler has to be implemented to
manage the different existing queues.

Two approaches can be designed for the emulation controllers. The first one is
when the emulation controller is implemented in a single computer (centralised ap-
proach) that represents the whole network. The second way to build an emulation
processor is to use a distributed system (distributed approach) such as a grid, each
computer having its own emulation processor and model, and representing a slice
of the targeted network.

Centralised Approach

ONE [187] was a research project at Ohio University’s Internetworking Research
Group. It provides basic emulation of a network cloud between two interfaces, us-
ing a single computer running under the Solaris system. It does not manage several
flows, so the user must provide a general model. It implements the following func-
tionalities: bandwidth, buffer storage size, output queue size, RED algorithm, bit
error rate and the delay.
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Dummynet [188] integrates an emulation processor, working in the operating
system kernel. It intercepts the packets between the network layer and the appli-
cation layer and is able to delay them. It simulates/enforces queue and bandwidth
limitations, delays, packet losses, and multipath effects by inserting two queues be-
tween the protocol layers, namely rq and pq. When a packet arrives, it is put into the
rq queue that is bound and has its own policy (FIFO, RED for example). The packets
are moved from rp to pq (which has a FIFO policy) at the given bandwidth. Once in
pq, the packets are delayed by the amount of time specified. It can be used on user’s
workstations or on FreeBSD machines acting as routers or bridges. It is controlled
by ipfw and some sysctrl commands. The user has to create pipes to classify the
packets and then configure Dummynet to process the packets following these set-
tings: bandwidth, queue size, delay and random packet loss. Dummynet also allows
the user to create dynamic queues. All the packets matching the pipe rule will go in
the same queue. With the ”mask” option, users can define more flows that will be
split into different queues applying the same impairments. Each pipe is associated
with one or more queues. Each queue has its own weight, size and discipline. A
variant of Weighted Fair Queuing, named WFQ2+ is used to schedule the different
queues of a single flow.

Although Dummynet was initially designed for studying TCP performance, Nist-
Net [189] was designed from the beginning as a network emulator. It integrates an
emulation processor and also works in the system kernel. It neither classifies the
packets, nor the rate control. NistNet can apply the following effects on the flows:
packet delay, both fixed and variable (jitter); packet reordering; packet loss, both
random and congestion-dependent; packet duplication, and bandwidth limitations.
The advantages of NistNet compared to Dummynet are mainly the statistical delay
distribution it offers.

Netem [190] was developed on the basis of NistNet, which is not compatible with
the 2.6.x version of Linux kernels. Netem is an emulation Linux queuing discipline,
integrated into the Traffic Control (TC) module. It is only an emulation processor
and does not include a classifier (i.e., see the various classifiers proposed by TC).
Once TC has classified the packets into different classes, Netem impairs the flows.
Finally, TC takes care of the queuing discipline and the transmission of the pack-
ets. Netem can provide the following effects on the packets: variable delay, choice
of delay distribution, packet loss rate, packet duplication, packet re-ordering and
flow differentiation. As it is based on TC, the user can choose all the other queuing
disciplines and the shapers available for this tool.

EMPOWER [191] is an emulation project based on its own emulation proces-
sor. Each network node implements a Virtual Device Module (VDM). This module
receiver is mapped to a network port and receives an egress flow, diverted from
the IP operating system layer. Once in the VD module, the flow passes through six
sub-modules, representing a different effect: MTU sub module, Delay sub-module,
Bandwidth sub-module, Loss sub-module, Bit error sub-module and finally out of
order sub-module. The flow goes through the sub-modules in the order previously
mentioned. Once the last sub-module has passed, the flow is redirected to the under-
lying network port and transmitted. While in the bandwidth sub-module an on/off



234 B Network Emulation Focusing on QoS-Oriented Satellite Communication

heterogeneous traffic can be injected in the VD to study their impact on the experi-
mental flow.

Distributed Approach

Besides these solutions integrated in the kernel, another way to perform the emula-
tion processing is to use a computer grid. A computer grid [192] is an association of
a wide variety of geographically distributed computers, storage systems, databases
and data sourcing interconnected via a network. Several applications like parallel
calculus have been using grid computing, but it can also be used for emulation.
These systems provide a way to implement a test bed as a configurable topology
and a large amount of computers is provided. Some of the computers on the grid be-
come an emulation processor and are connected to end-system computers with real
links. Using low level emulator in certain nodes enables to produce bottleneck links.
The whole grid behaviour can then represent a target network behaviour. These sys-
tems reproduce a real network and take into account side effects such as routing. We
will present two different grid computing systems.

Emulab [193] is a grid computing oriented emulator. Emulab provides inte-
grated access to three disparate experimental environments: simulated, emulated,
and wide-area network test beds. Emulab unifies all three environments under a
common user interface and integrates the three into a common framework. This
framework provides abstractions, services, and name spaces common to all, such as
allocation and naming of nodes and links. By mapping the abstractions into domain-
specific mechanisms and internal names, Netbed masks much of the heterogeneity
of the three approaches.

The Emulab emulation testbed consists of three sub-testbeds (nodes from each
can be mixed and matched), each having a different research target:

• Mobile Wireless: Netbed has been deployed and opened to public external use, a
small robotic testbed that will grow into a large mobile robotic wireless testbed.
The small version (5 motes and 5 stargates on 5 robots are all remotely control-
lable, plus 25 static motes, many with attached sensor boards) is in an open area
in our offices.

• Fixed 802.11 Wireless: Netbed’s Fixed Wireless testbed consists of PC nodes
that contain 802.11 a/b/g WiFi interfaces, and are scattered around a building at
various locations on multiple floors. Experimenters can pick the nodes they want
to use, and as with other fixed nodes, can replace the software that runs on the
nodes all the way down to the operating system.

• Emulab Classic: a universally available time and space-shared network emu-
lator, which achieves new levels of user-friendliness. Several hundred PCs in
racks, combined with secure, user-friendly web-based tools, and driven by ns-
compatible scripts or a Java GUI allow remote configuration and control of ma-
chines and links down to the hardware level. Packet loss, latency, bandwidth, and
queue sizes can be user-defined. Even the OS disk contents can be fully and se-
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curely replaced with custom images by any experimenter. Netbed can load up to
a hundred disks in less than two minutes.

Grid 5000 [194] is a French project. It aims to interconnect geographically dis-
tributed clusters with high-speed links using Renater’s network. Grid’Explorer is
included in this project. This is a smaller grid designed to emulate network condi-
tions. It will contain three components: 1000 nodes PC Cluster, an Experimental
Condition Data Base and a tool set (emulators, simulators).

PlanetLab [195] is more a resource overlay network than a grid computing em-
ulator. In this system, the Planetlab nodes are located across the world and linked
using real Internet links. The nodes do not perform impairments on the packets arriv-
ing as they are interconnected using a real network. As PlanetLab implements real
routers and real network protocols, this emulation platform is totally transparent to
the user. The main critic made against PlanetLab is that it only reproduces a small
slice of the Internet. It allows conducting experiments over computers linked by the
research network (which is different from the commodity/commercial Internet).

The major drawbacks of these platforms are their low availability and their very
high costs. Indeed, building a grid requires a large free space to store all the nodes
and large funds to be able to buy the different computers. Once a grid has been set
up, it is usually shared in order to use it at the maximum of its capacity. Reserving a
grid is usually compulsory and it can sometimes take a long time to get a slot. The
question of the grid administration has also to be solved. If the computers are geo-
graphically distributed, each site can administrate their own computers or a global
administrator can be nominated.

B.1.5.2 Emulation Models

The emulation processors are a feasible way to process the experimented traffic.
They must be controlled by the way of emulation models. Various levels of com-
plexity in the emulation models are possible, depending on the aim of the whole
experiment. There are three ways to obtain a network model: ad-hoc model (static
or dynamic), trace-based model or by using a simulator.

Emulating QoS Parameters

An ad-hoc model is a set of parameters that are static during the whole experiment in
this case, describing the network we want to emulate. It can be useful to reproduce
artificial QoS. The parameters are the ones previously defined: delay, loss rate, BER,
etc. With an ad-hoc model, the users design the network the way they want and get
the QoS they need. With this type of ad hoc model, the network offers the same
quality of service throughout the experiment. It can be useful to test all the possi-
bilities of a product or to compare it to other already existing products. In order to
set up these models, some GUIs are offered to the user by the emulation processor.
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For example, NISTNet comes with a GUI while a PHP script has been developed to
control Netem.

Ad-hoc models can also evolve according to external events, e.g., time. In real-
ity, the QoS offered by a network is not the same during the night than during the
day for example. Time-oriented models allow the user to define the network and to
enable to evolve with time. For example, the delay will increase during high net-
work utilisation. This can be useful to test a new product in different conditions or
to schematically represent a general behaviour. The tester will be able to validate
the product under several conditions and compare it to the other solutions. The Net
Shaper [196] project uses time-oriented emulation. In this case a daemon is exe-
cuted and is waiting for the new model to be applied to the emulation processor.
The daemon was able to successfully receive and treat up to 1000 messages per
second.

The events can also be driven by randomly generated events. In this case, the arti-
ficial QoS offered by the network would not be driven by time, but by an algorithm.
The algorithm could represent, for example, a node failure randomly occurring or,
in the case of a mobility impact study, the algorithm could modify the QoS offered,
depending on where the user is located. The EMPOWER project [191] uses this kind
of emulation in the wireless section. In this case, a VMN (Virtual Wireless Node)
is added and is associated with an event table where randomly generated mobility
events are listed. A time-stamp is also associated with the events. The incoming
flows are impaired according to this event table.

A last event driven ad hoc model is the script driven model [197] [198]. In this
case, a script describes what the emulator processor should do (e.g., impair the flow
differently, transmit another packet, reply to this packet, etc.) when it receives a
packet. It is useful to study experimental protocols and determine their reactions
under several conditions.

Virtual Nodes Approach

In this approach, the global network behaviour is produced by virtually reproducing
the network topology and components. All nodes constituting the target network to
be emulated are implemented either on a single centralised system or distributed on
various distinct systems usually connected by high speed networks. Virtual links are
used to connect these nodes according to the topology of the target network. Real
protocols such as IP or routing protocols can also be implemented in the virtual node
system. This approach can be implemented in a system (several virtual nodes co-
exist in the centralised system) or over a distributed system such as a grid. Of course,
in this type of architecture, the classical strategy to produce realistic behaviour is to
introduce real traffic into the emulated network to produce congestion, etc.

IMUNES [199] is an example of the centralised virtual node approach and pro-
poses a methodology for emulating computer networks by using a general pur-
pose OS Kernel partitioned into multiple lightweight virtual nodes, which can be
connected via kernel-level links to form arbitrary complex network topologies.
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IMUNES provides each virtual node with a stack that is independent of the entire
standard network, thus enabling highly realistic and detailed emulation of network
routers. It also enables user-level applications to run within the virtual nodes.

At the user level, IMUNES proposes a very convenient interface enabling the
target emulated network to be defined, defining the virtual nodes and their software
and links as well as the impairments parameters.

Another comparable approach is the Entrapid protocol development environ-
ment [200] that introduces a model of multiple virtualised networking kernels and
presents variants of the standards BSD network stack in multiple instances that are
running as threads in specialised user process. Other approaches that follow this
approach are the Alpine simulator [201] project and Virtual Routers [202].

This approach is often considered the only means to achieve realistic emulation
of complex network topology. It enables the target network to be specified accu-
rately and realistic behaviour—as a direct effect of real traffic and protocol imple-
mentations running in the system—to be produced. Nevertheless, the major problem
of this approach is scalability. How can one implement a core network router in a
single machine? What if a realistic network contains several dozens of such net-
work elements? How can one manage the number of necessary flows to produce
realistic conditions in a centralised manner? These questions are very difficult to
answer, in particular in the context of a total centralisation, but are real problems
in distributed systems like grids. Moreover, most of the emulation experiments do
not require such an approach to be implemented. What is really needed by most
protocol experiments, is the notion of channels interconnecting the various protocol
entities that are under testing with either a realistic or a specific behaviour.

Trace Based Approach

The trace based approach is another way to obtain realistic behaviour according to a
given network infrastructure. By using different probes on the real network, or even
into a modelled network (e.g., with a discrete event simulator) it is possible to get
the different parameters aiming to reproduce the network behaviour.

The trace based approach consists of recording the performance of a real (or
a simulated) network, and then use these traces to drive the emulation processor
impairments. In Virtual Routers [203], an appropriate methodology for the trace
based approach is provided. It consists of three complementary phases:

• Collection: in this phase, an experimenter with an instrumented host takes mea-
surements. In the case of a wireless network, the experimenter can be mobile
and traverse a path. During the collection, packets from a known workload are
generated. The mobile host records observations of these packets. By performing
multiple traversals of the same path, one can obtain a trace family that captures
the network quality variation on that path.

• Distillation: The distillation phase transforms a collected trace into a form suit-
able for the next phase. For each time instant, the distillation examines the per-
formance of the known workload and produces a set of parameters for a simple
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network performance model. By composing these, distillation produces a con-
cise, time-varying description of the network performance.

• Modulation: in the modulation phase, the system under test is subject to network
impairment driven by the previous network performance model.

The parameters associated to the end-to-end channel are for example delay, loss
rate, packet reordering or packets duplicated [203]. The user must have probes on
the end-user stations that are used to record the dates the packets arrive or leave the
station. Once this is done, the results are transmitted to a controller that evaluates
the delay and the mean loss rate, given the network model. This enables the user to
obtain a dynamic network profile. Depending on the limitations of the trace (over a
month, or over an hour) we obtain general or specific network conditions. The trace
based approach has one major drawback: it can hardly reproduce all the conditions
that a network can encounter. The trace based approach is not a panacea. A single
trace can only capture a snapshot of the varying performance along a particular
path. Moreover, the traces cannot offer precise reproducible results because network
processes are non deterministic, and the same situation at another time could have
produced further impairments.

Simulation Based Approach

Using a simulator, like a discrete event simulator, is a very common way to con-
duct experiments in networking (see Chapter A). The key characteristics of Discrete
Event Simulations are:

• Events occur at specific moments in time.
• Polling is done to find the time of the next event.
• Time does not increment by fixed amounts. Time jumps to the time of the next

event.

An event occurs anytime the state of the simulation needs to be updated. This hap-
pens for example when a packet is created, when it is sent from one node to another,
or even during the processing of a packet in a node (if required).

Event driven simulators provide a very convenient and very useful way to model
networks. The idea here is to provide the ability to use the simulator capacity to
drive the emulation processor. This cooperation is achieved at a price of having to
undertake several modifications on the original tool. The simulator has to work in
real-time and needs to capture and generate real data packets. Fig. B.3 depicts the
general model of discrete event simulator aided emulation.

NS [204] is a widely used discrete event simulator (see Section A.4). The in-
ternational networking research community has greatly contributed to the models
and tools used in this simulator. An extension to this tool, nse [205], allows inte-
gration between modelling capacity with the impairments implemented in real-time
and applied to live traffic.

Of course, various modifications have been designed to enable such utilisation.
First, the event driven scheduler has to be replaced with a real-time scheduler. In
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Fig. B.3 Using discrete event simulator to provide emulation behavior.

the case of emulation, the simulator does not have to jump onto the next event once
the last event has been processed. It is crucial to process the events synchronously
in real-time. This real-time synchronisation is an important limitation of the tools
capacity. For example, if too many events occur at a given time, the simulator still
has to process them at the right time, not before and not after. Then, the simulator
can come into a ”livelocked” state, if a packet arrived while it delays the last event.
Obtaining a really accurate real-time clock is merely impossible and that causes the
simulator to misbehave under heavy traffic conditions. Another drawback is that if
a large delay is applied to the packets, large memory systems are required to store
all the events to be treated.

Another task to perform to get NS working is to interface it with real traffic.
Indeed, to ”route” packets through the simulator, NS uses its own representation of
the network, totally different from the IPv4 or IPv6 world. When a packet arrives,
two possibilities can be considered: the real IP address can be mapped to the NS
address or NS could be modified to understand IP addresses. The first possibility is
implemented. Finally, NS also has to be modified to the process of capturing and
injecting real data and the packets going through the network. For this task, NS
provides a network object that can understand UDP/IP, raw IP and frame level data.
To capture UDP/IP and raw IP packets it uses the standard socket API while using
the Berkeley Packet Filter to intercept the frame level packets.

Nse can perform emulation in two different modes: opaque and protocol. In
the opaque mode, the packets are passed through the computer without being in-
terpreted. NS implements an emulation processor allowing the real packets to be
dropped, delayed, re-ordered or duplicated depending on the simulation results.
Opaque mode is useful in evaluating the behaviour of real-world implementations
not interfering with the model.

In the protocol mode, packets are interpreted by the ns model. The real packets
are translated into simulation events and take part in the simulation just like any
other internal event. The simulated protocols can then react depending on the real
packet. An inverse function allows the simulator to convert internal packets into real
ones and inject them into the network. The protocol mode can be used for end-to-
end application testing, protocol and conformance testing. Since the protocol mode
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includes a protocol agent understanding the headers, it enables the users to drop
packets depending on header flags.

This approach is theoretically very powerful with respect to the modelling possi-
bilities it may offer. Nevertheless, the major drawback of this approach is the scal-
ability problem requiring extensive system memory and CPU speed to handle the
potentially large number of packets on the network. Other approaches using simu-
lation for emulation have been developed to improve the scalability of the virtual
network. For example, in IP-TNE (Internet Protocol Traffic and Network Emulator)
[206] the use of parallel discrete event simulation and simulation abstraction such
as fluid simulation are addressed to improve the simulation. Various models can be
applied in order to configure the emulation processors. Each model has its advan-
tages and drawbacks, depending on the experiment the user wants to conduct. In all
cases, getting an exact representation of the reality is a difficult task to implement.

Active Emulation Approach

This section outlines the concept of active network emulation. We will see how
active emulation can be a realistic way to emulate complex network behaviour, and
an application of this concept will be presented in the next chapter to emulate a
satellite link.

Some networks produce network dynamics that may require complex models and
mechanism to be emulated. The complexity of this type of emulation often comes
from the highly dynamic behaviour of the protocols used in such networks. Pro-
tocols react depending on internal factors like their own mechanisms and external
factors (such as the traffic crossing the network). For instance, satellite networks,
in particular access schemes such as DAMA, propose three main different types of
traffic assignment techniques that may be combined. Some of them depend on the
traffic characteristics, while others do not. Since the behaviour of this access scheme
is not predictable in advance, dynamic configurations of the emulation system are
required. The only way to have sufficient realistic emulation behaviour is to react
in real time on the emulation model, according to various factors and including the
experimental traffic. In this sense, emulation needs to be active: the traffic will mod-
ify the configuration of the emulation and consequently the resulting modifications
will have an effect on the traffic crossing the emulator. Considering this emulation
problem, several techniques might be used to emulate a satellite link.

In the context of low-level protocol developments, satellite emulation systems
can be based mostly on real protocol implementations (e.g., DAMA, adapted rout-
ing protocols, etc.), using a wire emulation model to avoid the use of a real air inter-
face. The protocol’s complete behaviour and signalling is then actually implemented
while only the physical link is emulated, introducing geostationary end-to-end de-
lay, and possibly loss models. Such systems are often very accurate in the emulation
service they provide, but are also very complex and expensive to develop and main-
tain when protocols evolve. In the context of end-to-end communication, protocol
experimentations do not need such low level emulation.
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The active emulation approach is an alternative [207]: Instead of reproducing
access to the satellite link according to a heavy implementation of low-level protocol
behaviour, only resulting effects on data transfer are emulated by the way of a proper
emulation model. This results in a simple and practical implementation that can
be thus combined with more complex emulation scenarios (e.g., for emulating a
wider network including a satellite link) or operational networks. To achieve this
goal, the emulation model must react in real-time to various external events such as
time or processed traffic, leading to the concept of active emulation. The advantage
compared to the first type of emulation is that it provides an ”in-a-box” solution,
integrating an emulation processor and a potentially complex and realistic emulation
model (not limited to satellite links) into an easy-to-deploy system.

B.1.5.3 Implementation

The emulation platform can be implemented in different layers, ranging from the
hardware layer up to the application layer.

User Space Implementation

Random events and programming facilities in user space have been the reason for
many emulators being developed at this level. The major challenge is that even a
more present, but user-friendly GUI, and a widely tweaked application need to be
developed to solve the problems. In these architectures, the software has to intercept
the packets in the network stack to then process and re-inject them. It can either trick
the operating system into making it believe that it is in the network stack, or either
intercept the packets and inject them using its own sockets, enabling to add further
services on the classical sockets. Some projects dynamically configure the emulator
running in the operating system stack. Although the packets are not captured, the
modules in the network stack are constantly modified.

User space offers lots of services, programming tools and libraries that facilitate
building complex network emulation models. One of the major requirements of such
implementations is to have access to packets that usually cross the system where
the user space emulator is implemented. Various possibilities exist to capture those
packets, such as Raw IP socket, Libpcap and libnet or Divert socket.

The main advantage of the user level implementation is the flexibility of ser-
vices and development that it offers in comparison to kernel space. The two main
drawbacks of user level implementations are:

• At least one packet copy exists between the system kernel and the user space,
affecting the performance of the processed streams;

• User space processes can be interrupted. It basically means that a higher prior-
ity task can be scheduled instead of the emulation task, with all the timing and
processing.
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NS Emulation including its Emulab front-end and the Ohio-Network-Emulator
ONE is an example of emulators implemented in user space.

Kernel Implementation

Network emulation is time critical. As stated in the general requirements of network
emulation, the delay impairment must be achieved as precisely as possible and user
level implementations might fail on this real-time task. A possible alternative to
implement emulation processor is to do it in the operating system kernel to optimise
the performance. In this context, various emulators such as dummynet or NISTnet
are implemented between the Ethernet and IP layers.

Packet interception is completely hidden from user space programs and any user
space software using the standard UNIX communication interfaces (sockets, raw
sockets) will be affected by the specified network properties. The overhead intro-
duced by the additional layer a packet has to pass is crucial, because packet data has
not to been modified or copied to different memory areas (unlike with user space
approaches). Communication through interfaces with NETShaper is required.

The kernel based-solutions offer a powerful set of possibilities that are cheap
to develop and do not introduce much overhead in the packets. The major draw-
backs of these solutions is that they are limited to the precision of the operating
system clock and that if the operating system is highly loaded, some clock ticks
can be missed, impacting the platform performance. Furthermore, development of
applications within the operating kernel is harder than on the application layer. The
developer has less tools and functions to program, has to be careful with the mem-
ory management and the stability of the software. It is highly probable that if the
module crashes, the kernel crashes too.

Most of emulation systems like dummynet or NISTNET are implemented in the
kernel to provide high performance. The implementation of the emulator on a real-
time operating system might be a potential solution to the problem, which needs
further investigations.

Hardware Implementation

An emulation implemented with hardware (e.g., FPGAs) can possibly perform bet-
ter. The emulator needs to be set up based on the parameters given by the user. It
processes the flow with limited software overhead. This approach has the advantage
of minimising the processing time of each packet, but it is also less flexible, harder
to design and more expensive to develop than using software included in the oper-
ating system network stack. The emulator can also be implemented with dedicated
hardware like a network processor, but the software is harder to develop than under
regular X86 architectures, even if the flows are treated more efficiently.



B.2 Case Study: Emulation of QoS-oriented Satellite Communication 243

B.2 Case Study: Emulation of QoS-oriented Satellite
Communication

B.2.1 Introduction

Among the large set of network types considered into the EuQoS project, a geosta-
tionary satellite link is particularly interesting for experiments, due to the particular
QoS services it offers. The satellite link targeted is based on the widely spread DVB-
S standard for the Forward link (from the Hub Station toward the Satellite Terminal)
and DVB-RCS standard for the Return link (from the Satellite Terminal toward the
Hub Station) [208]. This satellite access network has to be provided in order to
make the corresponding experimentations when a satellite link is part of the end-
to-end communication. Due to the high cost of satellite resources, experimentations
involving this particular access network will be conducted on an emulated satellite
link. In order to develop this emulation platform, the characteristics of the satellite
link will be firstly presented.

The main issue in the satellite communication context, and more particularly on
the satellite return links, which will be the particular subject of this use case, is to
make an efficient use of the precious transmission resources, scarce and costly. Re-
cent techniques based on dynamic bandwidth assignment, enable a high efficiency
of the return link usage. Emerging protocols, such as DAMA (Demand Assignment
Multiple Access) integrates a combination of these existing protocols in order to
both ensure a high utilisation of the return link resources and to offer QoS oriented
capacity assignment types. This access scheme is targeted for the satellite access
network experimentation instance presented into this case-study.

B.2.2 DVB Satellite Communications

DVB-S and DVB-RCS are standards used to carry out IP-based applications over
geostationary satellite: DVB-S (Digital Video Broadcasting - Satellite) is used to
transport data over the forward link (from the gateway earth station to the numerous
satellite terminals). DVB-RCS (DVB – Return Channel System via Satellite) is used
to transport data over the return link and specify the access scheme to the return link
(from the satellite terminal to the gateway earth station). This standard enables to
share efficiently resources between a great numbers of Satellite Terminals (ST) ac-
cessing the return link. We will now see in detail how access and resource allocation
is managed by the protocol and how we can take advantage of it to introduce QoS
differentiation on this kind of link.

The satellite user terminal receives a standard DVB-S transmission generated by
the satellite hub station (the gateway). Packet data may be sent over this forward link
in the usual way: DVB-S [209] defines several ways to encapsulate data packets into
an ISO MPEG-2 Transport Stream [210], but the common practice for IP datagrams
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encapsulation is to use the DSM-CC sections through an adaptation layer proto-
col, named Multi-Protocol Encapsulation (MPE) [211]. DVB-RCS standard [208]
is associated to the use of AAL5/ATM, but can also use MPEG2-TS Stream.

To get an idea of the availability and requirements of QoS in the targeted satellite
system, here is a description of how the DVB-RCS system works:

A Return Channel Satellite Terminal (RCST), receives general network informa-
tion from the DVB-RCS Network Control Centre (NCC), sent over the forward link,
to get control and timing messages.

All data transmissions by the RCST over the return link are controlled by the
NCC. This dynamic resource admission control permits to assure an optimal use of
the costly resources of the satellite.

Dynamic resource control consists in assignment of resources (slots) to STs
based on their requests to the NCC and limit values negotiated during connection es-
tablishment. The assignments are conditioned by the availability of resources within
defined return channels. The assignment is the responsibility of the MAC Scheduler
(in the NCC), which implements a Demand-Assignment Multiple Access (DAMA)
protocol.

The uplink scheduling consists of processes taking place in the scheduler and in
STs: First, STs calculate capacity request required for the current traffic and send it
to the NCC. Then NCC calculates and sends the overall assignment to every ST of
the satellite system taking into account current load of the system as well as requests
and limitations of specific ST. Finally, the capacity is distributed within terminals to
end-users and their applications (depending on ST MAC queuing architecture and
service discipline).

The Service Level Agreement (SLA) between the terminal and the hub specifies
guarantees on different classes of access to the Return Link of the satellite. These
classes are defined in the DVB-RCS standard as capacity allocation of a different
type [208].

The DAMA implementation of DVB-RCS uses a combination of static and dy-
namic allocation techniques in order to ensure a set of QoS guarantees as well as
high bandwidth efficiency. The return link scheduler supports three main capacity
assignment types to reach this objective, described as follows:

• Fixed rate (Continuous Rate Assignment – CRA).The CRA assignment type
is a guaranteed rate capacity, fully provided for the duration of the connection
between a ST and a Satellite System, without any DAMA request. The delay
associated to this capacity assignment is fairly constant and reduced to the prop-
agation delay of the satellite link.

• Variable Rate (Rate Based Dynamic Capacity – RBDC). This traffic assignment
is based on requests depending on the average rate of incoming data on the ST.
This assignment type can be guaranteed (up to RBDCmax ceiling rate) or not,
but always on demand. The rate assignment is valid for a certain period of time:
after the timer has expired, capacity is not assigned anymore except if a request
was done in the meantime. A sustained traffic will be doing periodical requests,
thus avoiding timers expiration. In this case, the delay associated to this capacity
assignment, after the initial requests, will be equal to the propagation delay.
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• Best effort (Volume Based Dynamic Capacity – VBDC). This traffic assignment
is based on requests indicating the volume of data in the ST buffers. The capacity
is assigned when available in response to a request, without any guarantee on
assignment. The delay for traffic using this capacity assignment type can be long
(if capacity is not available) and may vary considerably. A guaranteed VBDC
capacity can also be defined by setting a minimum value for VBDC (MinVBDC)
per ST. VBDC capacity up to MinVBDC will be granted (when requested), in
every super-frame.

The return access scheme of the satellite is able to provide different types of ser-
vice. However, QoS differentiation can not be done without architectural solutions
at upper layers. The next section presents a brief overview of these solutions as well
as the QoS-oriented architecture targeted for the emulation.

B.2.3 QoS Support for Satellite Network Systems

In the satellite networking context, the interaction between the IP Layer where the
QoS might be set, and the lower layers where the traffic is finally prioritised, is
of major importance. QoS techniques and architectures for satellite networks have
been widely studied in the literature and the standardisation of these QoS architec-
tures are in progress.[212] [213] propose to use DiffServ architecture [14] on both
forward and return link. This architecture is well adapted to the return link due to
the different classes-of-service of the DVB-RCS capacity allocation. The satellite
system, in this study, is assumed to be an access network to the Internet for end-
users. Thus, as a boundary node, the ST is the most important component regarding
QoS support on the Return Link. It has to implement traffic conditioning/policing
functions, in addition to packet classification and per hop forwarding/scheduling
according to a packet’s Class-of-Service, as illustrated in Fig. B.4.

Fig. B.4 QoS-oriented Architecture of the Satellite Terminal in EuQoS
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The proposed mapping and admission control based on these recommendations
are as follows:

The end-to-end QoS architecture deployed in EuQoS system, integrates DiffServ
and includes signalling mechanisms for admission control as well as resource pre-
reservation. In order to meet the DiffServ forwarding requirements, the IP classes
of service need to be appropriately mapped into MAC QoS classes and then into
DAMA capacity categories supported by the Scheduler. Here we consider that RT
traffic is directed to the highest priority MAC buffer DVB-RT using CRA capacity.
NRT traffic is redirected to a medium priority MAC buffer DVB-VR using RBDC
capacity. Elastic traffic is redirected to the lowest priority MAC buffer DVB-JT
using VBDC and the remaining capacity. The admission control is done by the Re-
source Manager (RM) and Resource Allocator (RA) depending on the available
satellite resources on the return link. This information is passed from the Network
Control Center (NCC) of the Satellite System to the RA. A Service Level Agree-
ment (SLA) is passed at logon between ST and the satellite system’s NCC. The
bandwidth guaranteed for high priority classes (CRA, RBDC) in this SLA, are gen-
erally restricted due to their cost. Thus, to avoid the waste of high priority capacity,
admission control is based on the remaining satellite resources and limitations per
end-user. If bandwidth is available for a specific IP CoS (RT or NRT) in relation with
remaining satellite resources in the corresponding DAMA class, the flow is admit-
ted, if the user is under its contract limitation. No per-flow admission control is done
for the elastic CoS type, but its global rate is limited to the remaining bandwidth not
used by high priority traffic. This ensures full resource utilisation while limiting
congestion in the ST. This QoS Architecture including differentiated services and
admission control enables a flow to use a satellite access class on the return link,
without any interference with concurrent traffic. Thus, a prioritised flow is able to
use CRA or RBDC access class, and will not be delayed by Best Effort traffic that
would rather use VBDC capacity when available. However, the pre-reservation of
resources realised by the QoS architecture is different from the actual allocation
done by the satellite system with internal requests. Indeed, reservation could be pre-
reserved on the control plane, but the connection could finally fail. Thus, immediate
allocation of resource in a satellite environment is not feasible due to its cost.

B.2.4 Emulation of a DVB-S, DVB-RCS Satellite System

Emulation platforms are a classical way to achieve protocol experiments, particu-
larly in the expensive and complex satellite environment. In the context of low level
protocol developments, satellite emulation systems can be based on real protocol
implementations (e.g., DAMA, adapted routing protocols, etc.), using the wire em-
ulation model to avoid the use of real air interface. The complete protocol behaviour
and signalling is then implemented while only the physical link is emulated, intro-
ducing geostationary end-to-end delay, and possibly loss models. Such systems are
often very accurate in the emulation service they provide, but they are also very
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complex and expensive to develop and maintain when protocols evolve. In the con-
text of end-to-end communication, protocol experiments do not need such low level
emulation.

In the active emulation approach proposed here, instead of complex implemen-
tations of link layer access (in this case the satellite link) according to a protocol,
only resulting effects on data transfer are emulated by a proper emulation model.
This leads to a simple and powerful implementation that can be thus combined with
more complex emulation scenarios (e.g., for emulating a wider network including
a satellite link) or operational networks. To achieve this goal, the emulation model
must react in real-time to various external events such as time or processed traffic,
leading to the concept of active emulation. The advantage compared to the first type
of emulation is that it provides an “in-a-box” solution integrating an emulation pro-
cessor and potentially complex and realistic emulation model (not limited to satellite
links) into an easy-to-deploy system.

B.2.4.1 Integration of an Emulated Satellite Link and the EuQoS System

Fig. B.5 presents a simplified scenario of the target satellite system previously de-
scribed, integrated into the EuQoS architecture.

Fig. B.5 Simplified Target Satellite System

The satellite system presented in Fig. B.5 is emulated by a single physical com-
ponent, the Emulation System. The Emulation System is managed by an emulation
controller, configured by an experimenter through predefined scenarios. This emula-
tion controller also integrates the Resource Allocator specific to the satellite system
implementation that also influences the Emulation System (configuration of over-
all resources and admitted flows). This RA-Sat manages the technology-dependent
QoS provisioning specified by the RA-Controller through the EuQoS standard in-
terface. The RA-Sat provides information to the RA-Controller on the current status
of satellite system utilisation.
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The Resource Manager of the satellite system is running on the same machine
as the RA-Controller and manages Admission Control to the Satellite System. Two
sets of modules are accessing the Emulation System:

• The first one represents the satellite Resource Allocator modules defined in Eu-
QoS namely:

1. The Connection Admission Control algorithm specific to the Satellite Link
2. The Underlying Network Configuration Module, that need to configure the

satellite link (here the satellite emulator) upon traffic admission or release.

• The second one corresponds to the scenario-based emulation control. Scenarios
are defined by experimenter (using XML files) in order to specify and emulate
concurrent cross-traffic on the satellite terminal as well as overall load of the
satellite system.

To access simultaneously to the satellite link emulation, these two sets of modules
use a common class instantiated for each satellite access classes. Then, these objects
send messages to the Emulation Control module.

The Impairment System is able to apply impairments to the traffic concerning
three types of parameters:

1. the delay experienced,
2. the bandwidth limitation,
3. the loss model.

Messages sent by the satellite RA and scenario control modules through access
classes objects are translated into control messages sent to the impairment system.
These control messages have an impact on the bandwidth allocated to the traffic and
the packet loss model experienced by the traffic crossing the emulator. Concerning
the delays applied, messages do not modify them; the delay variations reflect the
intrinsic behaviour of the access scheme and are not influenced by external events
other than real data (like for instance admission of flows or cross-traffic emulation),
in the case of satellite emulation.

The behaviour of each Class-of-Service of the EuQoS System in the satellite
context is pre-configured in this Emulation Control module. The Classes-of-Service
behaviour for the return link is directly linked with the Satellite Access classes con-
sidering the mapping proposed.

Emulation control and impairment system can produce basic behaviour that can
be composed to produce more complex behaviour including interaction with the
traffic crossing the emulator leading to the “active” aspect of this architecture. The
composition of such basic impairment modules may correspond to a specific be-
haviour of a network, used to evaluate a protocol in this context, or to produce a
target technology, such as the QoS enabled satellite link. The emulation control is
also in charge of managing information on the traffic. The impairment system fi-
nally applies rules to interfaces in order to configure the impairments on the traffic
as needed. It is also in charge to provide in real time required information about
the traffic to the emulation control, such as sequence number of packets, packets’
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size or any kind of useful information for emulation control modules in order for
them to take some decisions on the evolution of the emulation and thus to apply ap-
propriate rules to the ongoing traffic. The concept of active emulation corresponds
to the dynamic configuration of the impairment system depending on information
gathered in real-time from the data crossing the system; on the opposite, passive
emulation could refer to emulation models where scenarios are defined in advance,
independently of the traffic crossing the impairment system. A traffic shaper is then
in charge of applying constraints on traffic crossing the emulator in accordance with
the current configuration. A detailed description of this active impairment frame-
work and emulation control is described in the next section.

B.2.4.2 Active Emulation of DVB-RCS Access Scheme

As presented earlier, three main IP Classes-of-Service are used to provide different
levels of QoS in the EuQoS system. A distinct emulation of these three classes
needs to be achieved for the satellite system, on forward and on return links. We
will detail how these access classes are emulated using the active emulation concept
after a description of the impairment framework and emulation control.

Impairment Framework and Emulation Control.

The impairment system that will be used to produce the QoS-enabled satellite be-
haviour uses a framework based on the experimentation channel (EChannel). The
EChannel component offers a target QoS to the System under Test (SuT). The
EChannel is defined as a data path providing to the SuT particular QoS impairments.
The actual EChannel QoS will be here associated with the DVB technology.

The Experiment Channel, illustrated in Fig. B.6, intends to produce the final tar-
get behaviour in terms of QoS for the experimentation. This resulting behaviour can
implement a very simple behaviour such as constant end-to-end delay or a more
complicated one such as the behaviour of an end-to-end path constituted by a var-
ious underlying network technologies. To allow the implementation of such an ar-
bitrary complexity, the EChannel is built by the composition of Experimentation
Nodes (ENodes) having a programmable action on the traffic. Each ENode is an ac-
tive component that offers the necessary communication ports to achieve the internal
communication of experiment packets. The nodes are individually parameterised us-
ing an additional communication port (pConf). Finally, a specific spying port called
pSpy may be used to give information about the ongoing processed traffic to an ex-
ternal management module. The communication and spying ports (pConf and pSpy)
enable active emulation. InputTap and OutputTap are input and output interfaces en-
suring the packet capture and re-injection into the physical network.

As illustrated in Fig. B.7, the experimentation node is divided into two main parts
to differentiate the actual impairments to achieve and the controlling process: the
emulation processor is impairing the packets while the emulation model is deciding
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Fig. B.6 Experimentation Channel is a way to produce a target behaviour.

how the packet will be processed, having access to various information (i.e., length
of packet, capture time, internal packet fields, external ports, etc.). When a packet
enters into the ENode, the processor asks the model what to do with it. The model
can be arbitrary complex, but needs to reply to the processor which really processes
the packet. The various actions in the processor are delaying, dropping, modifying,
etc.

The experimentation model provides an abstract representation aiming at spec-
ifying actions to be taken on packets. Experimentation channel processing can be
defined either statically or can evolve dynamically during the experiment.

In complex models, various external events can drive the processing of packets
like algorithm (e.g., a random function), time (e.g., a leaky bucket implementing
a traffic shaper producing a bandwidth limitation). In the context of active experi-
mentation, measurements on the processed traffic or data contained into the packet
themselves can be performed. Mixing those various possibilities allows implement-
ing arbitrary complex per-flow behaviour.

As previously introduced, two main types of models are defined, namely passive
and active models. Passive models act on packet events considering arrival time and
packet length. Examples of classical passive models implemented are e.g., delay,
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Fig. B.7 Experimentation Node is composed of a Experimentation Processor and Experiment
Model

jitter, packet loss, packet re-ordering, packet alteration, etc. Active models can react
on any stimuli in addition to the packet event itself. Those stimuli can be time-driven
or packet-driven based on the value of the data contained in the emulation packet,
or any other signals coming from real world like a geographic position information,
or even signals coming from the state machines of the SuT.

All these models (both active and passive) can be composed in order to obtain
an arbitrary complex behaviour. ENodes are proposed as an extensible library in-
tended to provide various types of experimentation processing. The end-user can
then compose the channel depending on experiment objectives.

B.2.4.3 Emulation Details of the Satellite System in EuQoS Architecture

We will now detail the way the satellite link and each Class-of-Service is emulated
using the active emulation concept. Emulation of Forward Link access is presented
first. Then emulation of various access classes of return link as well as combination
of these classes is presented.

Emulation of the Satellite Forward Link

The access to the satellite link on the forward link is centralised on the gateway. This
implies that there is no specific protocol to access the channel, but just a classical
allocation of resource to an aggregate and an encapsulation in the MPEG2/DVB-S
frame. The encapsulation is taken into account by the control modules to set the
total bandwidth allocated for each Class-of-Service and to update this bandwidth at
the time the flows are admitted.

The Forward link is proposed as a simple experiment channel integrating a con-
stant delay, a throughput shaper and a loss rate ENodes. For each Class-of-Service
the same delay, corresponding to the link crossing, is experienced on the forward
link and thus needs to be emulated by the impairment system. In lower priority
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classes, additional delay might be experienced due to larger buffers. The delay ex-
perienced to cross a geostationary satellite link is around 250 ms, this is the delay
applied to packets crossing the Forward Link in RT, NRT or Elastic Classes.

The difference between these classes is the buffers sizes that are assigned, imply-
ing different delay and losses for the traffic:

For RT class, the buffer size is reduced to the minimum, because the traffic of this
class does not admit additional delay. Flows are admitted if the required bandwidth
is available in the class. This requires that the input traffic rate is lower or equal to
the output traffic rate.

For NRT class the buffer size is reduced, but not as much as for the RT class,
because the traffic admitted in this class is more prone to fluctuations, and thus the
buffer needs to absorb potential bursts. Besides, the delay is not the main issue of
this Class-of-Service.

The Elastic Class is able to take advantage of resources unused by the other
classes and is tolerant to delay. Thus, the buffers need to have rather large dimen-
sions in order to efficiently use the potential resource unused by other classes.

The bandwidth impairment for each Class-of-Service depends on a static con-
sideration: the agreement considered between the satellite terminal and the satellite
system’s NCC (including guaranteed resource for each access class) as well as on
a dynamic consideration: the flows admitted in the class. A simple configuration
through high-level modules is possible in order to set this bandwidth limitation on
the throughput ENode. The applied loss model is the same for all Classes-of-Service
and depends on the loss model defined in the scenario (based on weather conditions).

Emulation of the Satellite Return Link

The emulation of the return link is more complex than for the forward link. Several
Satellite Terminals access the link simultaneously. Thus, a more complex access
scheme has been defined to share efficiently the resource between them. The emula-
tion of on-demand capacity allocation types requires the usage of active emulation.

Depending on the traffic assignment type to emulate, predefined QoS parameters,
such as delay and throughput, are initially set by control modules, in order to emu-
late propagation delay or bandwidth limitations. Some QoS parameters are then set
in real-time in order to emulate signalling process, cross-traffic and satellite load,
and take into account for admission of new flows. The signalling protocol is not
implemented, but only its resulting effect on the traffic.

The emulation control is based on the experimentation channel defined in the
impairment framework to perform impairment decisions. The spying and communi-
cation ports of emulation nodes enable to communicate information about ongoing
processed traffic and to apply real-time impairment decisions taken.

The experiment channel implementing the return link uses a more complex En-
odes composition than the forward link, especially for on-demand access classes.
An active ENode has to dynamically compute the bandwidth limitation, delay and
packet loss rate values to apply to the set of ENodes, which actually impair the
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flows according to the initial configuration of the satellite link emulation and the
information about ongoing network traffic. Depending on the initial configuration
corresponding to the predefined type of contract, several types of traffic assignment
classes will be available and accordingly instantiated in the emulator. Depending on
the traffic assignment types and the ongoing traffic, the active ENode will initially
set some values for the parameters such as delay and throughput, and will take the
decision to modify these values in real-time. This will be done in order to produce
the delay introduced by the signalling process, depending on the resources delivered
to a particular Satellite Terminal.

The three main IP Classes-of-Service of the EuQoS framework are mapped to
the three access classes of DVB-RCS as follows:

• RT Class is mapped to the CRA allocation type. This access class offers a guar-
anteed bandwidth permanently allocated (without signalling) during the entire
connection. Delay for the traffic using this class is then reduced to propagation
delay.

• The NRT class is mapped to the RBDC allocation type. The capacity allocated
to this class is on demand and requested based on the data rate entering the ST
buffers.

• The Elastic class is mapped to the VBDC allocation type. The capacity allocated
to this access class is on demand, and requested based on the data volume in the
ST buffer.

The emulation of the RT Class is similar as on the forward link and uses a simple
experimentation channel composed of three ENodes:

• The first ENode emulates a constant delay of 250 ms that is applied to packets,
according to the propagation delay.

• The second ENode is a throughput shaper. The bandwidth impairment depends
on the SLA passed between the ST and the Satellite System’s NCC as well as the
admission of real flows by the Resource Allocator or emulated ones.

• The third ENode emulates the loss rate. The loss model depends on the defined
scenario (based on weather conditions).

The experimentation channel used for NRT and Elastic classes are based on the
model of active emulation. Active emulation is required for on-demand traffic, be-
cause the behaviour of the experimentation channel depends on the traffic injected
by the SuT. In particular, the signalling part of this protocol has a non-negligible ef-
fect on the delay and bandwidth experienced by the traffic reaching a satellite return
link. Fig. B.8 shows the used experimentation channel.

As shown in Fig. B.8, four passive ENodes and one active ENode have been com-
posed together in this particular experimentation channel. Packets that are conveyed
through the return link EChannel cross the four ENodes. Each ENode is responsible
for a particular aspect of the on-demand access class behaviour. All together, they
emulate the signalling protocol and the return link access behaviour:

• The first ENode emulates the interval of time between two capacity requests that
are sent from the satellite terminal toward the NCC. A spying port is placed
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Fig. B.8 On-demand access classes experimentation channel

on this node to measure the volume and rate of incoming traffic and send this
information to the emulation control (the active ENode).

• The second ENode emulates the propagation delay from the ST to the NCC of
the capacity requests and their processing time. A constant delay is applied with
a possible delay variation introduced by request processing.

• The third ENode emulates the emission rate of data on the air link by the ST. This
ENode has a communication port and applies bandwidth impairments, depending
on information received from the emulation controller (the active ENode). This
is based on real-time traffic measurements (volume or rate) by spying traffic on
the first ENode. The Active ENode spies on the traffic packets and computes the
actual input rate in real-time. The configuration of the rate is calculated when
packets reach the first ENode, but needs to be applied when requests come back.
As a result, there is a delay introduced between the calculated rate and the time
it is applied at the third ENode. The emulated rate can be limited by the SLA
limitations as well as emulation of cross-traffic and the satellite system. This
ENode also applies the buffer limitations.

• The fourth ENode emulates the delay encountered by the traffic to cross the satel-
lite link. A constant delay is applied corresponding to propagation delay (250
ms).
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B.3 Conclusions

Emulation is a widely used approach to experiment real protocols or applications in
order to meet user or QoS requirements. In this chapter, we proposed an overview of
emulation approaches in the context of networking experiments. We explained why
this emulation approach is useful at research, design, and development phases and
we compared it to simulation or real network experiments. Emulation is a trade-
off between these two approaches, as it provides a way to test real applications
or protocols being developed (as opposed to simulation) in a controllable environ-
ment (as opposed to real technologies). We defined a general emulation framework
that should encompass all the possible emulation platforms. For this, we defined
functional requirements of emulation platforms, as well as requirements on packet
impairments that such platforms shall be able to provide. We have then described
the existing emulation platforms implementing this general framework, classified
in two types to realise the traffic shaping: the centralised approach (everything is
done on one system) and the distributed approach (the traffic shaping is realised by
many computers working together). To control this traffic shaping, a set of emulation
models exist with their own advantages and disadvantages: ad-hoc models setting up
QoS parameters of the impairment, virtual nodes models, trace-based models, sim-
ulation based models and active emulation models. Finally, an emulation example
is described, corresponding to a QoS-oriented satellite link integrated in the EuQoS
System. This is an example of how to map the technology characteristics toward the
emulation model using a centralised emulation approach.
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