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Abstract

The importance of scientific visualization for both science and engineering endeavors has
been well recognized. Televisualization becomes necessary because of the physical distribu-
tion of data, computation resources, and users involved in the visnalization process. However,
televisualization is not adequately supported by existing communication protocols.

We believe that a pipelined televisualization model (PTV) is suitable for efficient imple-
mentation of most visualization applications. In order to support this model over high speed
networks, we are developing a segment streaming interprocess communication (IPC) mechanism
within the Axon communication architecture. Important aspects of this development include:
the segment streaming baradigm which supports low-overhead communication as well as concur-
rency between the communication and local computation; a two-level flow control method for
distributed pipeline synchronization; and an application-oriented error control method which

.allows error control to be optimized for different applications. This paper describes a set of

ideas that lead to the design of this IPC mechanism.

1. INTRODUCTION

The 1987 NSF report Visualizetion in Scientific Computing [17] defines visualization as a method of
computing which transforms symbolic information into geometric information, enabling researchers
to gain better insight into their simulations and computations. It has been further pointed out that
visualization is a critical tool for discovery and understanding, as well as a tool for communication

and teaching [7].

Scientific visualization has emerged as a major computer-based field of research dune to the fol-
lowing three key factors: (1) large-scale computations and high bandwidth data sources (e.g. medical

tThis work was supported in part by the National Science Foundation, and an industrial consortium of Bellcore,
BNR, DEC, Italtel SIT, NEC, NTT, and SynOptics.

*Computer & Communications Research Center and Department of Computer Science, Bryan 405 - Box 1115,
Washington University, One Brookings Drive, St. Louis MO 63130-4895.



2 Pipelined Televisualization

scanners and satellite imaging) generate huge amounts of data that scientists cannot analyze in nu-
merical form in reasonable time [11, 21]; (2) it is believed that the human vision system has a data
bandwidth on the order of gigabits per second, but this bandwidth is not exploited by text-oriented
data presentation methods which limit the data bandwidth made available for interpretation {26];
and (3) images can convey information far more effectively than numerical data [17].

The use of visualization for many scientific applications has been well documented [18]. New vi-
sualization applications have been rapidly emerging with developments in visualization methodology
and underlying technologies. In short, visualization is beginning to revolutionize the way research
is done in various disciplines of science and engineering.

Televisualization is visualization that utilizes data and computing resources that are physically
distributed. There are three components in the visualization process, namely data, computation,
and user interaction. As long as the locations of these components are not all the same, the need for
televisualization arises. For example, in a three-tiered computing facility environment such as the
one at NCsa [11] and as envisioned in the NSF report, a large simulation is run on a supercomputer
while a scientist views the visual output and steers the simulation at a workstation. Furthermore,
the scientist may wish to do parts of the visualization computation on separate machines in order to
distribute the computation load and achieve better performance. Therefore, we believe a significant

fraction of practical visualization will be televisualization.

It is interesting and important to note that many visualization applications fit into a pipeline
model. For example, steps of a visualization process such as data preparation, mapping of raw data
to attributes of visual data, and graphics rendering are readily identifiable stages of a pipeline. The
adoption of pipeline model for visualization applications is also apparent in two existing visualization
systems (apE [9] and Avs [25]). Since televisnalization is important, and a pipeline is an appropriate

computation model for many televisualization applications, a natural question is:

Can we successfully use the pipeline model across high speed networks to make demanding tele-

visualization applications possible?

We believe the answer to this question is yes and our undertaking is to develop the necessary
support and to demonstrate the viability of the pipelined televisualization (PTV) model. The purpose
of this paper is to discuss the requirements of Prv and outline a solution for supporting it. The
rest of the paper is organized as follows: Section 2 discusses the requirements of a visualization
development environment. Since there are two major components to PTV: pipelined computation
and communication, we will describe the computation model in section 3 and leave the discussion
of the communication model to section 4; Section 5 presents major components of our sclution;

Section 6 concludes the paper.

2. VISUALIZATION ENVIRONMENTS

It has been pointed out by many that in order to make scientific visualization a practical tool for every
scientist, a visualization development environment which is user-friendly, functionally complete, and
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efficient is necessary [8]. There are at least two eﬁsting visualization environments, apE and Avs,
that are aimed a$ achieving these objectives. Both systems use a graphical user interface and allow
scientists to build their visualization applications by selecting appropriate function modules and
connecting them in a general pipelined fashion. For example, consider Figure 1, which is a screen
dump from apE version 2.1 showing a typical user interface in apE. In the center is the graphical
display of a visualization pipeline, which was built by dragging and connecting appropriate icons
from the paletie window on the left. For each module in the pipeline, more detailed information
(e.g. input, output, and control) can be displayed in the element info window. In particular, there
is a host box for users to specify which host the module should be executed on. The current element
info window on the top of the screen is showing information on the module forizen, which calculates
a floating horizon hidden-line surface. The executing host is localkoest which is the default. Below
the pipeline display, two control dials for the forizon are also displayed along with a control panel
for the normalization module nerm. The pipeline is invoked by clicking on the sfart bufton in the
center window, and module parameters can be adjusted from the control surface while the pipeline
is running. The pipeline is stopped by clicking on the stop button. Windows to display additional
information or images can be created as needed. We assume that this kind of user interface will be

built on our IPC solution to support PTV.

It is obvious that this kind of window-based graphical interface together with the module-based
programming paradigm makes such environments user-friendly and easy to use. Moreover, these
environments allow users to add new functionality by designing new modules, and thus tailoring
the system to any applications. However, whether a visualization application can be executed with
efficiency is a big question. Although efficiency depends on many factors such as the algorithms
and the implementations of the modules, effective speeds of compute engines used, and efficiency
of the interprocess communication support, 1IPC support is becoming the most critical factor, as
single processors approach their speed limits and the most efficient algorithmic implementations are
achieved. In an environment like apE, we expect that most visualization applications will need to
run different stages of the pipeline on distributed machines. Although apE does provide support
for distributed execution, it will not be able to satisfy the IPG requirement for efficient PTV. In
section 4, we will consider these requirements and look at the current apE support for distributed
pipeline execution in more detail. First, we take a closer look at the computation model of the pTV.

3. PTV COMPUTATION MODEL

There is a significant class of visualization applications whose computation contains several well-
defined stages [11, 25]. We can generalize them into the following five-stage description:

Data generation. This is the step in which the original data is generated. Numerical simulation

and image scanning are two examples.

Data preparation. This stage derives visualization data from the observational, experimental, or

simulation data. For example, for visualization of & simulation, additional data points may be
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Figure 1: An apE Interface Screen Dump

interpolated to transform an irregular grid into a regular one.

Visualization mapping. This stage constructs abstract visualization objects (avo [11]) from the
data derived at the previous stage. Specifically, it maps the derived data (e.g. pressure, tem-
perature, intensity) to the attributes of the avo (e.g. geometry, color, opacity) for graphics
rendering.

Graphics rendering. Abstract visualization objects generated in the last step are rendered into
images for display at this step. The actual operations may include image processing, surface

rendering, and volume rendering.

User interaction. The user interacts with the visualization process through the image display and
input devices such as a keyboard, a mouse, and a set of dials. Interpreting user input and
interfacing with rest of the computation stages are functions of this stage.

These stages can be readily mapped onto a pipeline. In addition, computation at some stages
may be further partitioned, thus creating more stages for the pipeline,
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The pipeline principle has been successfully used in many ways and at different levels of ab-
straction to achieve high performance. For example, instruction pipelines and arithmetic pipelines
are ubiquitous in the designs from microprocessors to supercomputers. Pipelining is also one of the
major principles used in systolic array and wavefront array processors [14, 15]. Many methodolo-
gies for the design and operation of hardware pipelines have been developed [6, 13]. The proposed
use of the pipeline model across networks for televisualization, however, is a new idea and requires
significant research. For instance, most of the existing pipelines are synchronous pipeline (i.e., all
stages of the pipeline are synchronized by a single global clock). On the other hand, the PTV pipeline
is asynchronous and coordination between stages has to be accomplished via explicit message ex-
change. Accurate performance modeling of such pipelines still represents a challenge. Furthermore,
intrastage computation, interstage communication, and their interaction become important factors

affecting overall PTV performance.

There are two major requirements for efficient pipelining: engineering the pipeline to achieve
minimum and equal cycle time for all stages; and operating the pipeline with minimum delay or
interruption. To satisfy the first requirement in televisualization pipelines, visualization computation
has to be partitioned with respect to the communication overhead and allowed to overlap as much
as possible with the communication process. For the second requirement, an efficient IPC paradigm
with appropriate flow and error control mechanisms is necessary to minimize the effect of the network

latency and errois on the operation of the pipeline.

4, PTV COMMUNICATION MODEL

‘We discuss the communication aspect of pipelined televisualization in this section.

4.1. Protocol Hierarchy

In a pipelined televisualization process, different stages of the pipeline are executed on separate
processors, communication protocols are needed for the interprocess communication. Figure 2 illus-
trates, at a high level, the communication model for one visualization process (VP) at stage k to
pass data to another vP at stage k -+ 1. The two stages are separated by an internetwork which is
abstracted as a direct link in the figure. Interprocess communication is provided through a set of
communication protocols, which logically consists of the transport protocol (TP), the internetwork
access protocol (1AP), and the network access protocol (NAP). In essence, the network access protocol
provides communication connections within a homogeneous network while the internetwork access
protocol provides connections across a set of heterogeneous networks, and the transport protocol

provides “reliable” end-to-end communication over the underlying internetwork.

In practice, performance of the underlying internetwork hardware and the communication pro-
tocols will have direct impact on the performance of pipelined televisualization. We look at the

availability of networking support next.
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Stage k { Stage k+1

Figure 2: Interstage Data Communication Path

4.2, Networking Support

Suitable network support is critical to the success of televisualization. Trends in networking suggest
that the necessary support will be possible. Fast packet switching networks are being developed in
many research laboratories (e.g. Broadcast Packet Network at Washington University {24]). These
networks can support communication channels with high transmission rates and low queueing delay.
They will have some resource allocation capability and provide performance guarantees. In order to
make this guaranteed network bandwidth available to applications, the host-network interface must
be designed to support high data rates. A number of research groups have also begun addressing
these issues [2, 12, 22].

However, it is important to note that host-to-host connections with high bandwidth and perfor-
mance guarantees are necessary but not sufficient conditions for successful deployment of demanding
distributed applications. As a result of decreased queueing delay in newer networks, the speed of
light propagation delay will increasingly dominate the communication latency in wide area networks.
The networks will continue to have more packet errors and losses than a local environment. More-
over, the new networks have much higher bandwidth-delay products? which affect flow and error
control strategies at the application and transport levels. It is the responsibility of applications and
the transport protocols to cope with these conditions and to translate the high bandwidth into high
performance for the applications. It has been recognized that suitable solutions can be found by
developing deep understanding of the communication requirements of various classes of applications
[19]. In the case of PTV, the pipelined processing and high communication latency coupled with the
demand for high performance present a unique set of interprocess communication (1PC) requirements

that have not been adequately addressed by existing research on networking or visualization.

{The bandwidth-delay product of a network is the product of the network peak bandwidth {bits/sec) and the
maximum transmission delay (sec) between two hosts on the network. It is a measure of how much data can be in
transit before a feedback message reaches the other end of a connection. For example, if a wide area network has a
peak bandwidth of 1 gigabits per second and 2 maximum host-to-host delay of 100 milliseconds, the bandwidth-delay

product is 100 megabits,
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4.3. IPC Requirements

We focus our energy on the 1PC mechanism, which deals with overlapped issues between the applica-
tion and the transport protocol (corresponding to the shaded areas in Figure 2). The internetwork
access protocol will be assumed to be a multi-point congram-oriented high performance internet
protocol (MCHIP) available from a related research effort [16, 20]. This 1ap will provide connection-
oriented internetwork services with plesio-reliability’. The requirements of the IPC mechanism are

discussed in the next two paragraphs.

A pipeline achieves parallelism by overlapping processing amo'ng different stages [6, 13]. In
a distributed pipeline such as the one for TV, due to the physical distribution of pipeline stages,
inferstage communication incars significant delay. A stage that is the slowest becomes the bottleneck
of the pipeline and limits the pipeline Speed. In order to achieve efficient pipelining, the interstage

communication has to satisfy a number of conditions:

e A visualization application typically involves a large number of data segments of considerable
size. These segments have to be streamed through the pipeline to allow overlapped processing.

e Fach physical stage of the pipeline has to concurrently perform the receiving, processing and

transmitting of data items to achieve overlapping.

o Interstage segment transfer time should match closely with the computation time at a stage,
to avoid wasting communication bandwidth or computing power.

e An application should be able to specify its reliability requirement to the IPC mechanism
and the IPC mechanism should enforce it only to the degree that is necessary to satisfy the

requirement, thus avoiding any unnecessary error control overhead.

¢ Buffer overflow in the pipeline should be avoided because loss of partially processed data due
to overflow may require restarting the pipeline from an earlier stage, thus wasting computing
cycles and introducing unnecessary (and unacceptable} delay.

ApF’s current IPC support for distributed execution is based on the socket library in the Unix
system. The socket library supports the message-passing IPC pa.radigni by providing a set of library
functions for creating sockets, establishing connections between sockets, and sending and receiving
data from the sockets. Specifically, apE uses a stream socket in the Internet domain for communica-
tion between distributed modules of the pipeline. Since this type of socket is built on top of the TCP
(Transmission Control Protocol), which is designed to provide 100% reliable communication regard-
less of the “cost” and application needs, it is impossible for applications to trade error folerances
with the associated control overhead. It should also be noted that the only flow control function
available in the socket mechanism is the one provided by TCP, and this is not suitable for PTV
pipelines. It is possible to implement the pipeline flow control on top of the socket mechanism, but

§ Plesio comes from the Greek word plesios which means close to or almost.
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that puts extra burden on applications and will cause more overhead due to the necessary context
switching. Finally, we recognize that the TCP/IP protocols were not designed with pTV applications
in mind, and are not suitable for our 1PC mechanism [4, 5, 27]. In the next section, we present our

IPC solution to these problems.

5. SEGMENT STREAMING

To support eflicient interstage communication for PTV, we proposed a new IPC mechanism. The
mechanism is based on a new IpC paradigm, called segment streaming, and it is supporied by a
special ALTP (Application-oriented Light weight Transport Protocol) within the framework of Axon
[22]. Axon is a communication architecture designed to support a high performance data path that
delivers high (inter)network bandwidth directly to applications. The two distinguishing components
of the ALTP are a two-level flow control method, and an application-oriented error control method.
We will first describe the segment streaming paradigm, and then the two-level flow control and the

application-oriented error control in two subsections.

A segment is a logical unit of data that is independently processed by application processes.
Segment streaming is an 1PC paradigm for supporting exchanges of large number of segments among
processes with high bandwidth and low latency. First of all, by taking advantage of the fact that the
data to be exchanged is known and large in volume, it allows a single system call (by an application
process) to perform the request for all segments; each segment will be transmitted when ready across
a connection without the latency of request or setup. Moreover, segment streaming supports a set of
options which applications can use to optimize the IPC for their particular needs. Segment streaming
is provided through two transport level operations: send-siream and gei-siream, which are invoked
by applications by making the corresponding system calls. The set of options can be summarized

as follows:

Repeated/Sequential Transfer. This option allows the application to specify if the stream con-
sists of repeated transfers of a single segment or sequential transfer of segments in a group.

Flow Control. This option allows applications to specify their choice of flow control methods.
Flow control determines when to initiate the transmission of each segment in the stream. This
transmission can be initiated at fixed time intervals (interval synchronized), triggered by the
execution of a specific program call (program synchronized), or determined by a two-level flow
control mechanism which will be described later.

Error Control. An application can specify its tolerances for different types of errors. The error
control mechanism will ensure that the tolerances are satisfied with minimal overhead. More
details on the error control will be presented later. However, it is important to point out
that applications will be able o specify error tolerances ranging from accepting every error to

accepting no error at all.
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Send-stream is used to send a segment stream to a remote host. Besides the options described
above, application specifies segments to send, and their destination. Upon invocation, a local control
block for the stream is created and a control packet is sent to the remote host, using a connection
on top of McHIP, which must have been established. The packet contains the name of the segment
group and destination user and process information. After an acknowledgement is received from
the remote host, a series of data packets will flow, which corresponds to segment(s) as.they are
streamed. There is no further request or setup overhead for the whole segment group. Figure 3 is
a high level view of send-siream operation. The actual time lapse between two successive segment
transmission, labeled ¢, will be determined by the particular flow control method used. Get-stream
is used to retrieve a segment stream from a remote host. At the invocation of this operation, the
application process specifies the name of the segment group, the host where the group resides and
the access information (e.g. remote segments access path, access authorization, and estimated size)
along with the other options. The operation is very similar o that of send-stream and will not be

repeated here.

send request packet N
“receive request
acknowledge request
-< ——————————————
send segment packets
: receive segment packets
A
send segment packets y
receive segment packets
Pt
send segment packets ;
gment p Y S

receive segment packets

Figure 3: Send-Stream Flow

It is clear that segment sireaming supports segment prefetching and allows overlapping between
intrastage computations and interstage communications. This provides a necessary condition for
efficient operation of the pipeline. With the flow control function provided as part of the IPC
mechanism at the transport level, applications only need to make appropriate choices. For a typical
PTV application, get-stream call can be used with sequential transfer mode. A segment stream is
established between a pair of neighboring stages. A segment group is defined as the set of data
items to be processed, with each data item corresponding to one segment. Flow will be controlled
by the two-level flow control mechanism. The exact settings for error control option will depend on

the particular application.
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5.1. Two-Level Flow Control

In this section, we present the two-level flow control method and explain why it is appropriate for
PTV,

As pointed out earlier, segment streaming allows more overlapping among intrastage computa-
tions and interstage communications in the pipeline. But it also makes the flow control a more
critical issue than in other 1Pc paradigms (e.g. remote procedure call and synchronous message
passing) due to the queueing of data at each stage. Especially, since each pipeline stage is usually
a multiprogrammed system, change of multiprogrammed tasks will cause a corresponding change
in the effective speed of the pipeline process. Moreover, underlying network connections can only
provide statistical guarantees for bandwidths but not absolute rates. Without an effective fiow
control, buffer overfiow may occur at bottleneck stages. Any overflow can in turn cause significant
performance degradation to the application. Qur objective for flow control is to maintain the flow
rate of the pipeline at that of the bottleneck stage and avoid any overflow. To achieve this objective,
the following issues need to be understood and resolved:

e What capabilities will the next generation (inter)networks have and how do they affect the

flow control?

e How does the large bandwidth-delay product in high speed (inter)networks affect flow control
strategy?

e How can the interferences between flow control, error control, and congestion control functions

be minimized?

Next generation (inter)networks will provide connection-oriented services with statistical guar-
antees on average bandwidth, packet loss rate, and delay. The connection-oriented service is very
appropriate for the interstage communication because the data exchange sessions between stages are
usually long lived. However, users (such as transport protocols and applications) of these services
need to ensure that their traffic output conforms to the specification given at the connection setup
time. Therefore, a rate control mechanism is adopted at the transport level which regulates the
traffic at the (inter)network interface, according to the specification agreed upon at the connection

setup.

While the rate-based flow control may be sufficient for supporting applications such as remote
file transfer, rate control alone cannot provide efficient flow control for distributed applications such
as the PTV pipeline. The reason is that for these applications, there are frequent needs to adjust
the effective flow rate in order to account for user interactions and speed variations in distributed
processors. It is infeasible to achieve this adjustment by modifying only the connection rate in a
large bandwidth-dela_lr product environment. The sclution then is to use another level of flow control

abave the rate mechanism.

A credit-based flow control method is necessary to allow continuous flow of data but avoid any
overflow. Under this scheme, the receiver of a connection grants credit to the sender according to
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the space available and the sender can send a data segment only if it has a matching unit of credit.
1t is also realized that large data granularity should be used in order to achieve high utilization
of connections in high bandwidth-delay product environments. A simple explanation is that, since
the delay is large with respect to bit transmission time (reciprocal of the rate: bits/sec), the data
unit associated with a single control message exchange should be large enough to keep the sender
(and the connection) busy before the next control action is taken. We provide this functionality
by using a simple window based mechanism. The window has a variable size of W and it slides
over a set of consecutive sequence numbers. By choosing the window unit to be an application data
segment, overhead of mapping between these two is avoided. Since data segments of applications
are expected to be on the order of megabytes, the resulting window unit is large and allows the flow
control overhead to be low. The flow control effect is achieved by manipulating two window-related
parameters: (1) the time to send a control message (called permit) to advance the window; and (2)

the size of the newly advanced window.

The combination of rate and window based flow control has lead to the two-level flow control

mechanism as illustrated in Figure 4.

Stage k Stage k+1

Window e mmmmmmmmm—m————— >

Rate @ [ W lrmmcme e e e c e

Figure 4: Structure of Two-Level Flow Control

The rate specification will be in the form of average bandwidth, peak bandwidth, and burst
factor which characterizes the burstiness of the data traffic. The rate enforcement will be based on
derivatives of the leaky bucket model [1, 3]. We explain briefly how the flow control works in this
paragraph, with emphasis on the window control portion. During the setup phase of the pipeline,
the desired speed of the pipeline (e.g. segments/sec measured at the last stage) is translated into
specifications of rate for different stages of the pipeline. These specifications are used to request and
negotiate for connections from the underlying networks. The rate control mechanism is to enforce
the data flow to the rate specification. The window control is used to adjust the stage-to-stage flow
within the limit of rates. The receiver starts by sending a control packet (permit) to the sender
specifying the next expected segment number N and the credit limit W (the maximum number of
segments the sender can send without further permit). The sender can send a segment only if there
are available window slots (¥, N+1,..., N+ W—1). A segment is sent as a sequence of packets, each
carrying a segment number, a packet number within the segment, and the most recently received
credit limit. During pipeline operation, the sender keeps track of the consumption of credits and
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the newly issued credits. The receiver accepts only packets with valid credit and makes decisions as

to when to grant new credit and how much credit to grant.

The two-level flow control mechanism above successfully addresses the flow control needs for
PTV. First of all, the rate control ensures that the sources (visualization processes in PTV) do not
use more bandwidth than requested during the connection setup. The next generation networks
(e.g. ATM) require this of data sources in order to manage network resources effectively and to
provide guaranteed services to applications. Such a performance guarantee from the network is
essential to the success of PTV. At the second level, the window control is used to adjust data
flow between two neighboring stages to account for changes in the data consumption speed. Large
data granularity for each window slot is used to achieve efficiency in networks with high bandwidth-
delay product. Window update at the sending end is controlled by a special permil from the
receiver, not by the ACKs as in a traditional sliding window protocol. Therefore, the flow control
can be quickly activated by withholding new permits. The credii-based window control together
with buffers distributed among pipeline stages prevents data overflow and minimizes delay to the
pipeline, Since the window mechanism serves only the purpose of stage-to-stage flow control, it is
simple and free of the interferences from both error and congestion conditions in the underlying
network. The rate control has already been used in the design of Axon and is supported by the
Axon host-network interface [23]. The proposed window control is also simple and we believe that
the two-level flow control mechanism can be conveniently implemented using the hardware of the

Axon host-network interface.

5.2. Application-Oriented Error Control

Error control has two aspects: detection of packet corruption, loss, and duplication; and compen-
sation for these error conditions. Traditionally, error control either corrects all error conditions to
achieve 100% reliability as in TCP, or does nothing as in UDP (User Datagram Protocol). We ar-
gue that the goal of the error control should be to satisfy the error tolerance of applications with

minimum error control overhead. There are several observations that support this argument.

e With the combination of large bandwidih-delay product of very high speed internetworks and
demanding PTV applications, the delay for rigorous error control becomes a significant overhead

and may not be acceptable for many applications.

o Visualization applications have very diverse reliability requirements from the underlying irans-
port protocol. A visualization application may deal with different types of data (e.g. video
frames, sensory data, text, and model data) at different stages of processing. The error toler-
ances for these data types spread over the whole spectrum from those of model data transfer
to video distribution. A typical data transfer cannot tolerate any errors and thus requires
recovery from every packet loss or corruption. A typical video distribution, on the other hand,
requires no error recovery (as long as the error rate is reasonably low) because previous and
subsequent frames provide a context that compensates for the loss in the current frame. Also,
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transmission of real time data will have more tolerance for corruption than for time delay.
Therefore, it is desirable for the transport protocol to provide variable grades of error recovery

to avoid unnecessary control overhead,

We address this problem by using an application-oriented error control strategy which has several

important aspects to it:

Detection at receiver. The loss detection is located at the receiving end of a connection.
This is consistent with our objective to allow receivers to make application-dependent retransmission

decisions,

Selective retransmission. In the case of errors, a selective retransmission scheme is used. A
receiver saves correctly received data packets and requests retransmissions for only the missing or
corrupted packets. Therefore, application processes can get access to partially received data without
much delay, and extraneous retransmissions (as in a cumulative retransmission scheme) are avoided.
While the unit of retransmission is a packet, we perform loss detection and send acknowledgment
on a per segment basis, thus reducing the control overhead. Retransmissions preempt the primary
data stream, which is consistent with the assumption that the application expects segments in the

sequential order.

Application error tolerance. Since the main objective of the application-oriented error
control is to satisfy an application’s requirement using minimum retransmission, an accurate char-
acterization of application error tolerance is necessary to determine the optimal control strategy.
Application error tolerance has three key components: packet loss rate, burstiness of the loss, and
end-to-end delay. They are specified as the length of a “window” W over which error requirement is
enforced, E the maximum number of packet losses tolerable over W, and B the maximum length of
error burst tolerable. We denote the tolerance as a triplet {B,E,W) (0 < B < E < W). By satisfy-
ing the application tolerance with minimum retransmission overhead, we automatically achieve the
minimun: end-to-end-delay possible for the given connection. An application is expected to specify
its tolerance, and the error control mechanism uses this tolerance to do application-oriented selective

retransmission.

When a televisualization pipeline is set up for an application, the specific requirement for error
control is registered by the transport service. During the pipeline operation, error control mecha-
nisms (at both the sending and receiving ends of a connection) will respond dynamically to various
error conditions and correct them just to the degree required by the application. With this scheme,
applications will have the flexibility to choose appropriate error control strategy to suit their purpose
and to endure transport overhead for error control only if necessary.

6. SUMMARY

The importance of televisualization is becoming well recognized. In this paper we have presented an
efficient 1PC solution for pipelined televisualization across high-speed internetworks. Gur major effort
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so far has been to better understand the communication requirements of distributed visualizations
and to identify trade-offs in the design of 1PC mechanism, with respect to the pipelined computation
model, communication errors, and significant communication latency. This paper has ocutlined a
novel IPC mechanism called segment streaming, which can meet the demands of pTv. Our aim
is to engineer the IPC solution to provide efficient interstage communication so that true pipeline

concurrency can be achieved for PTV applications.

We have completed the design of the flow and error control schemes. Preliminary analysis and
simulation indicate that our schemes can support segment streaming with high channel utilization
and low end-to-end delay. Detailed results of these studies will be presented in future publications.
‘We have also developed a recurrence model for performance analysis of distributed asynchronous
pipelines {10). It will be used to study the direct impact of variations in processor speed, error

retransmissions, and flow control strategies on performance of PTV pipelines.
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