23,293 research outputs found

    Analysis of Political Economy, International Political Economy, Globalization and its Importance to Public Finance.

    Get PDF
    The purpose of this paper is to provide an analysis of the discipline of political economy, international political economy and their respective historical developments. The paper will then focus on globalization and evaluate the strength and weaknesses of the policy to globalize. Further analysis will be conducted to show the importance of the topic of globalization as it relates to public finance. Rosen & Gayer (2014), Sackery, Schneider & Knoedler (2016), Marlin-Bennett (2017), Ravenhill (2008) and Weingast & Witman (2006) will provide insights into the development of the discipline and its modus operendi. The historical development of the discipline will be provided for by Ingram (1915) and the aforementioned authors will also provide insights into the weakness and strengths of the policy to globalize. Garett & Mitchell (2001) and Kumar (2006) will provide additional insights into the importance of globalization as it pertains to public finance

    Time-Space Trade-Offs for Computing Euclidean Minimum Spanning Trees

    Full text link
    In the limited-workspace model, we assume that the input of size nn lies in a random access read-only memory. The output has to be reported sequentially, and it cannot be accessed or modified. In addition, there is a read-write workspace of O(s)O(s) words, where sโˆˆ{1,โ€ฆ,n}s \in \{1, \dots, n\} is a given parameter. In a time-space trade-off, we are interested in how the running time of an algorithm improves as ss varies from 11 to nn. We present a time-space trade-off for computing the Euclidean minimum spanning tree (EMST) of a set VV of nn sites in the plane. We present an algorithm that computes EMST(V)(V) using O(n3logโกs/s2)O(n^3\log s /s^2) time and O(s)O(s) words of workspace. Our algorithm uses the fact that EMST(V)(V) is a subgraph of the bounded-degree relative neighborhood graph of VV, and applies Kruskal's MST algorithm on it. To achieve this with limited workspace, we introduce a compact representation of planar graphs, called an ss-net which allows us to manipulate its component structure during the execution of the algorithm

    BioCloud Search EnGene: Surfing Biological Data on the Cloud

    Get PDF
    The massive production and spread of biomedical data around the web introduces new challenges related to identify computational approaches for providing quality search and browsing of web resources. This papers presents BioCloud Search EnGene (BSE), a cloud application that facilitates searching and integration of the many layers of biological information offered by public large-scale genomic repositories. Grounding on the concept of dataspace, BSE is built on top of a cloud platform that severely curtails issues associated with scalability and performance. Like popular online gene portals, BSE adopts a gene-centric approach: researchers can find their information of interest by means of a simple โ€œGoogle-likeโ€ query interface that accepts standard gene identification as keywords. We present BSE architecture and functionality and discuss how our strategies contribute to successfully tackle big data problems in querying gene-based web resources. BSE is publically available at: http://biocloud-unica.appspot.com/

    ๊ฐ„๊ฒฐํ•œ ์ž๋ฃŒ๊ตฌ์กฐ๋ฅผ ํ™œ์šฉํ•œ ๋ฐ˜๊ตฌ์กฐํ™”๋œ ๋ฌธ์„œ ํ˜•์‹๋“ค์˜ ๊ณต๊ฐ„ ํšจ์œจ์  ํ‘œํ˜„๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2021. 2. Srinivasa Rao Satti.Numerous big data are generated from a plethora of sources. Most of the data stored as files contain a non-fixed type of schema, so that the files are suitable to be maintained as semi-structured document formats. A number of those formats, such as XML (eXtensible Markup Language), JSON (JavaScript Object Notation), and YAML (YAML Ain't Markup Language) are suggested to sustain hierarchy in the original corpora of data. Several data models structuring the gathered data - including RDF (Resource Description Framework) - depend on the semi-structured document formats to be serialized and transferred for future processing. Since the semi-structured document formats focus on readability and verbosity, redundant space is required to organize and maintain the document. Even though general-purpose compression schemes are widely used to compact the documents, applying those algorithms hinder future handling of the corpora, owing to loss of internal structures. The area of succinct data structures is widely investigated and researched in theory, to provide answers to the queries while the encoded data occupy space close to the information-theoretic lower bound. Bit vectors and trees are the notable succinct data structures. Nevertheless, there were few attempts to apply the idea of succinct data structures to represent the semi-structured documents in space-efficient manner. In this dissertation we propose a unified, space-efficient representation of various semi-structured document formats. The core functionality of this representation is its compactness and query-ability derived from enriched functions of succinct data structures. Incorporation of (a) bit indexed arrays, (b) succinct ordinal trees, and (c) compression techniques engineers the compact representation. We implement this representation in practice, and show by experiments that construction of this representation decreases the disk usage by up to 60% while occupying 90% less RAM. We also allow processing a document in partial manner, to allow processing of larger corpus of big data even in the constrained environment. In parallel to establishing the aforementioned compact semi-structured document representation, we provide and reinforce some of the existing compression schemes in this dissertation. We first suggest an idea to encode an array of integers that is not necessarily sorted. This compaction scheme improves upon the existing universal code systems, by assistance of succinct bit vector structure. We show that our suggested algorithm reduces space usage by up to 44% while consuming 15% less time than the original code system, while the algorithm additionally supports random access of elements upon the encoded array. We also reinforce the SBH bitmap index compression algorithm. The main strength of this scheme is the use of intermediate super-bucket during operations, giving better performance on querying through a combination of compressed bitmap indexes. Inspired from splits done during the intermediate process of the SBH algorithm, we give an improved compression mechanism supporting parallelism that could be utilized in both CPUs and GPUs. We show by experiments that this CPU parallel processing optimization diminishes compression and decompression times by up to 38% in a 4-core machine without modifying the bitmap compressed form. For GPUs, the new algorithm gives 48% faster query processing time in the experiments, compared to the previous existing bitmap index compression schemes.์…€ ์ˆ˜ ์—†๋Š” ๋น… ๋ฐ์ดํ„ฐ๊ฐ€ ๋‹ค์–‘ํ•œ ์›๋ณธ๋กœ๋ถ€ํ„ฐ ์ƒ์„ฑ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋“ค ๋ฐ์ดํ„ฐ์˜ ๋Œ€๋ถ€๋ถ„์€ ๊ณ ์ •๋˜์ง€ ์•Š์€ ์ข…๋ฅ˜์˜ ์Šคํ‚ค๋งˆ๋ฅผ ํฌํ•จํ•œ ํŒŒ์ผ ํ˜•ํƒœ๋กœ ์ €์žฅ๋˜๋Š”๋ฐ, ์ด๋กœ ์ธํ•˜์—ฌ ๋ฐ˜๊ตฌ์กฐํ™”๋œ ๋ฌธ์„œ ํ˜•์‹์„ ์ด์šฉํ•˜์—ฌ ํŒŒ์ผ์„ ์œ ์ง€ํ•˜๋Š” ๊ฒƒ์ด ์ ํ•ฉํ•˜๋‹ค. XML, JSON ๋ฐ YAML๊ณผ ๊ฐ™์€ ์ข…๋ฅ˜์˜ ๋ฐ˜๊ตฌ์กฐํ™”๋œ ๋ฌธ์„œ ํ˜•์‹์ด ๋ฐ์ดํ„ฐ์— ๋‚ด์žฌํ•˜๋Š” ๊ตฌ์กฐ๋ฅผ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ๋ฅผ ๊ตฌ์กฐํ™”ํ•˜๋Š” RDF์™€ ๊ฐ™์€ ์—ฌ๋Ÿฌ ๋ฐ์ดํ„ฐ ๋ชจ๋ธ๋“ค์€ ์‚ฌํ›„ ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•œ ์ €์žฅ ๋ฐ ์ „์†ก์„ ์œ„ํ•˜์—ฌ ๋ฐ˜๊ตฌ์กฐํ™”๋œ ๋ฌธ์„œ ํ˜•์‹์— ์˜์กดํ•œ๋‹ค. ๋ฐ˜๊ตฌ์กฐํ™”๋œ ๋ฌธ์„œ ํ˜•์‹์€ ๊ฐ€๋…์„ฑ๊ณผ ๋‹ค๋ณ€์„ฑ์— ์ง‘์ค‘ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ๋ฌธ์„œ๋ฅผ ๊ตฌ์กฐํ™”ํ•˜๊ณ  ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ถ”๊ฐ€์ ์ธ ๊ณต๊ฐ„์„ ํ•„์š”๋กœ ํ•œ๋‹ค. ๋ฌธ์„œ๋ฅผ ์••์ถ•์‹œํ‚ค๊ธฐ ์œ„ํ•˜์—ฌ ์ผ๋ฐ˜์ ์ธ ์••์ถ• ๊ธฐ๋ฒ•๋“ค์ด ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ์œผ๋‚˜, ์ด๋“ค ๊ธฐ๋ฒ•๋“ค์„ ์ ์šฉํ•˜๊ฒŒ ๋˜๋ฉด ๋ฌธ์„œ์˜ ๋‚ด๋ถ€ ๊ตฌ์กฐ์˜ ์†์‹ค๋กœ ์ธํ•˜์—ฌ ๋ฐ์ดํ„ฐ์˜ ์‚ฌํ›„ ์ฒ˜๋ฆฌ๊ฐ€ ์–ด๋ ต๊ฒŒ ๋œ๋‹ค. ๋ฐ์ดํ„ฐ๋ฅผ ์ •๋ณด์ด๋ก ์  ํ•˜ํ•œ์— ๊ฐ€๊นŒ์šด ๊ณต๊ฐ„๋งŒ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ €์žฅ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋ฉด์„œ ์งˆ์˜์— ๋Œ€ํ•œ ์‘๋‹ต์„ ์ œ๊ณตํ•˜๋Š” ๊ฐ„๊ฒฐํ•œ ์ž๋ฃŒ๊ตฌ์กฐ๋Š” ์ด๋ก ์ ์œผ๋กœ ๋„๋ฆฌ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋Š” ๋ถ„์•ผ์ด๋‹ค. ๋น„ํŠธ์—ด๊ณผ ํŠธ๋ฆฌ๊ฐ€ ๋„๋ฆฌ ์•Œ๋ ค์ง„ ๊ฐ„๊ฒฐํ•œ ์ž๋ฃŒ๊ตฌ์กฐ๋“ค์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ฐ˜๊ตฌ์กฐํ™”๋œ ๋ฌธ์„œ๋“ค์„ ์ €์žฅํ•˜๋Š” ๋ฐ ๊ฐ„๊ฒฐํ•œ ์ž๋ฃŒ๊ตฌ์กฐ์˜ ์•„์ด๋””์–ด๋ฅผ ์ ์šฉํ•œ ์—ฐ๊ตฌ๋Š” ๊ฑฐ์˜ ์ง„ํ–‰๋˜์ง€ ์•Š์•˜๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์„ ํ†ตํ•ด ์šฐ๋ฆฌ๋Š” ๋‹ค์–‘ํ•œ ์ข…๋ฅ˜์˜ ๋ฐ˜๊ตฌ์กฐํ™”๋œ ๋ฌธ์„œ ํ˜•์‹์„ ํ†ต์ผ๋˜๊ฒŒ ํ‘œํ˜„ํ•˜๋Š” ๊ณต๊ฐ„ ํšจ์œจ์  ํ‘œํ˜„๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ด ๊ธฐ๋ฒ•์˜ ์ฃผ์š”ํ•œ ๊ธฐ๋Šฅ์€ ๊ฐ„๊ฒฐํ•œ ์ž๋ฃŒ๊ตฌ์กฐ๊ฐ€ ๊ฐ•์ ์œผ๋กœ ๊ฐ€์ง€๋Š” ํŠน์„ฑ์— ๊ธฐ๋ฐ˜ํ•œ ๊ฐ„๊ฒฐ์„ฑ๊ณผ ์งˆ์˜ ๊ฐ€๋Šฅ์„ฑ์ด๋‹ค. ๋น„ํŠธ์—ด๋กœ ์ธ๋ฑ์‹ฑ๋œ ๋ฐฐ์—ด, ๊ฐ„๊ฒฐํ•œ ์ˆœ์„œ ์žˆ๋Š” ํŠธ๋ฆฌ ๋ฐ ๋‹ค์–‘ํ•œ ์••์ถ• ๊ธฐ๋ฒ•์„ ํ†ตํ•ฉํ•˜์—ฌ ํ•ด๋‹น ํ‘œํ˜„๋ฒ•์„ ๊ณ ์•ˆํ•˜์˜€๋‹ค. ์ด ๊ธฐ๋ฒ•์€ ์‹ค์žฌ์ ์œผ๋กœ ๊ตฌํ˜„๋˜์—ˆ๊ณ , ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ ์ด ๊ธฐ๋ฒ•์„ ์ ์šฉํ•œ ๋ฐ˜๊ตฌ์กฐํ™”๋œ ๋ฌธ์„œ๋“ค์€ ์ตœ๋Œ€ 60% ์ ์€ ๋””์Šคํฌ ๊ณต๊ฐ„๊ณผ 90% ์ ์€ ๋ฉ”๋ชจ๋ฆฌ ๊ณต๊ฐ„์„ ํ†ตํ•ด ํ‘œํ˜„๋  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์ธ๋‹ค. ๋”๋ถˆ์–ด ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ ๋ฐ˜๊ตฌ์กฐํ™”๋œ ๋ฌธ์„œ๋“ค์€ ๋ถ„ํ• ์ ์œผ๋กœ ํ‘œํ˜„์ด ๊ฐ€๋Šฅํ•จ์„ ๋ณด์ด๊ณ , ์ด๋ฅผ ํ†ตํ•˜์—ฌ ์ œํ•œ๋œ ํ™˜๊ฒฝ์—์„œ๋„ ๋น… ๋ฐ์ดํ„ฐ๋ฅผ ํ‘œํ˜„ํ•œ ๋ฌธ์„œ๋“ค์„ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์ธ๋‹ค. ์•ž์„œ ์–ธ๊ธ‰ํ•œ ๊ณต๊ฐ„ ํšจ์œจ์  ๋ฐ˜๊ตฌ์กฐํ™”๋œ ๋ฌธ์„œ ํ‘œํ˜„๋ฒ•์„ ๊ตฌ์ถ•ํ•จ๊ณผ ๋™์‹œ์—, ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ ์ด๋ฏธ ์กด์žฌํ•˜๋Š” ์••์ถ• ๊ธฐ๋ฒ• ์ค‘ ์ผ๋ถ€๋ฅผ ์ถ”๊ฐ€์ ์œผ๋กœ ๊ฐœ์„ ํ•œ๋‹ค. ์ฒซ์งธ๋กœ, ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ์ •๋ ฌ ์—ฌ๋ถ€์— ๊ด€๊ณ„์—†๋Š” ์ •์ˆ˜ ๋ฐฐ์—ด์„ ๋ถ€ํ˜ธํ™”ํ•˜๋Š” ์•„์ด๋””์–ด๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ด ๊ธฐ๋ฒ•์€ ์ด๋ฏธ ์กด์žฌํ•˜๋Š” ๋ฒ”์šฉ ์ฝ”๋“œ ์‹œ์Šคํ…œ์„ ๊ฐœ์„ ํ•œ ํ˜•ํƒœ๋กœ, ๊ฐ„๊ฒฐํ•œ ๋น„ํŠธ์—ด ์ž๋ฃŒ๊ตฌ์กฐ๋ฅผ ์ด์šฉํ•œ๋‹ค. ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ธฐ์กด ๋ฒ”์šฉ ์ฝ”๋“œ ์‹œ์Šคํ…œ์— ๋น„ํ•ด ์ตœ๋Œ€ 44\% ์ ์€ ๊ณต๊ฐ„์„ ์‚ฌ์šฉํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ 15\% ์ ์€ ๋ถ€ํ˜ธํ™” ์‹œ๊ฐ„์„ ํ•„์š”๋กœ ํ•˜๋ฉฐ, ๊ธฐ์กด ์‹œ์Šคํ…œ์—์„œ ์ œ๊ณตํ•˜์ง€ ์•Š๋Š” ๋ถ€ํ˜ธํ™”๋œ ๋ฐฐ์—ด์—์„œ์˜ ์ž„์˜ ์ ‘๊ทผ์„ ์ง€์›ํ•œ๋‹ค. ๋˜ํ•œ ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๋น„ํŠธ๋งต ์ธ๋ฑ์Šค ์••์ถ•์— ์‚ฌ์šฉ๋˜๋Š” SBH ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ์„ ์‹œํ‚จ๋‹ค. ํ•ด๋‹น ๊ธฐ๋ฒ•์˜ ์ฃผ๋œ ๊ฐ•์ ์€ ๋ถ€ํ˜ธํ™”์™€ ๋ณตํ˜ธํ™” ์ง„ํ–‰ ์‹œ ์ค‘๊ฐ„ ๋งค๊ฐœ์ธ ์Šˆํผ๋ฒ„์ผ“์„ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ์—ฌ๋Ÿฌ ์••์ถ•๋œ ๋น„ํŠธ๋งต ์ธ๋ฑ์Šค์— ๋Œ€ํ•œ ์งˆ์˜ ์„ฑ๋Šฅ์„ ๊ฐœ์„ ์‹œํ‚ค๋Š” ๊ฒƒ์ด๋‹ค. ์œ„ ์••์ถ• ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ค‘๊ฐ„ ๊ณผ์ •์—์„œ ์ง„ํ–‰๋˜๋Š” ๋ถ„ํ• ์—์„œ ์˜๊ฐ์„ ์–ป์–ด, ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ CPU ๋ฐ GPU์— ์ ์šฉ ๊ฐ€๋Šฅํ•œ ๊ฐœ์„ ๋œ ๋ณ‘๋ ฌํ™” ์••์ถ• ๋งค์ปค๋‹ˆ์ฆ˜์„ ์ œ์‹œํ•œ๋‹ค. ์‹คํ—˜์„ ํ†ตํ•ด CPU ๋ณ‘๋ ฌ ์ตœ์ ํ™”๊ฐ€ ์ด๋ฃจ์–ด์ง„ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์••์ถ•๋œ ํ˜•ํƒœ์˜ ๋ณ€ํ˜• ์—†์ด 4์ฝ”์–ด ์ปดํ“จํ„ฐ์—์„œ ์ตœ๋Œ€ 38\%์˜ ์••์ถ• ๋ฐ ํ•ด์ œ ์‹œ๊ฐ„์„ ๊ฐ์†Œ์‹œํ‚จ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์ธ๋‹ค. GPU ๋ณ‘๋ ฌ ์ตœ์ ํ™”๋Š” ๊ธฐ์กด์— ์กด์žฌํ•˜๋Š” GPU ๋น„ํŠธ๋งต ์••์ถ• ๊ธฐ๋ฒ•์— ๋น„ํ•ด 48\% ๋น ๋ฅธ ์งˆ์˜ ์ฒ˜๋ฆฌ ์‹œ๊ฐ„์„ ํ•„์š”๋กœ ํ•จ์„ ํ™•์ธํ•œ๋‹ค.Chapter 1 Introduction 1 1.1 Contribution 3 1.2 Organization 5 Chapter 2 Background 6 2.1 Model of Computation 6 2.2 Succinct Data Structures 7 Chapter 3 Space-efficient Representation of Integer Arrays 9 3.1 Introduction 9 3.2 Preliminaries 10 3.2.1 Universal Code System 10 3.2.2 Bit Vector 13 3.3 Algorithm Description 13 3.3.1 Main Principle 14 3.3.2 Optimization in the Implementation 16 3.4 Experimental Results 16 Chapter 4 Space-efficient Parallel Compressed Bitmap Index Processing 19 4.1 Introduction 19 4.2 Related Work 23 4.2.1 Byte-aligned Bitmap Code (BBC) 24 4.2.2 Word-Aligned Hybrid (WAH) 27 4.2.3 WAH-derived Algorithms 28 4.2.4 GPU-based WAH Algorithms 31 4.2.5 Super Byte-aligned Hybrid (SBH) 33 4.3 Parallelizing SBH 38 4.3.1 CPU Parallelism 38 4.3.2 GPU Parallelism 39 4.4 Experimental Results 40 4.4.1 Plain Version 41 4.4.2 Parallelized Version 46 4.4.3 Summary 49 Chapter 5 Space-efficient Representation of Semi-structured Document Formats 50 5.1 Preliminaries 50 5.1.1 Semi-structured Document Formats 50 5.1.2 Resource Description Framework 57 5.1.3 Succinct Ordinal Tree Representations 60 5.1.4 String Compression Schemes 64 5.2 Representation 66 5.2.1 Bit String Indexed Array 67 5.2.2 Main Structure 68 5.2.3 Single Document as a Collection of Chunks 72 5.2.4 Supporting Queries 73 5.3 Experimental Results 75 5.3.1 Datasets 76 5.3.2 Construction Time 78 5.3.3 RAM Usage during Construction 80 5.3.4 Disk Usage and Serialization Time 83 5.3.5 Chunk Division 83 5.3.6 String Compression 88 5.3.7 Query Time 89 Chapter 6 Conclusion 94 Bibliography 96 ์š”์•ฝ 109 Acknowledgements 111Docto

    Binary RDF for Scalable Publishing, Exchanging and Consumption in the Web of Data

    Get PDF
    El actual diluvio de datos estรก inundando la web con grandes volรบmenes de datos representados en RDF, dando lugar a la denominada 'Web de Datos'. En esta tesis proponemos, en primer lugar, un estudio profundo de aquellos textos que nos permitan abordar un conocimiento global de la estructura real de los conjuntos de datos RDF, HDT, que afronta la representaciรณn eficiente de grandes volรบmenes de datos RDF a travรฉs de estructuras optimizadas para su almacenamiento y transmisiรณn en red. HDT representa efizcamente un conjunto de datos RDF a travรฉs de su divisiรณn en tres componentes: la cabecera (Header), el diccionario (Dictionary) y la estructura de sentencias RDF (Triples). A continuaciรณn, nos centramos en proveer estructuras eficientes de dichos componentes, ocupando un espacio comprimido al tiempo que se permite el acceso directo a cualquier dat

    Is a Dataframe Just a Table?

    Get PDF
    Querying data is core to databases and data science. However, the two communities have seemingly different concepts and use cases. As a result, both designers and users of the query languages disagree on whether the core abstractions - dataframes (data science) and tables (databases) - and the operations are the same. To investigate the difference from a PL-HCI perspective, we identify the basic affordances provided by tables and dataframes and how programming experiences over tables and dataframes differ. We show that the data structures nudge programmers to query and store their data in different ways. We hope the case study could clarify confusions, dispel misinformation, increase cross-pollination between the two communities, and identify open PL-HCI questions
    • โ€ฆ
    corecore