
Binary RDF for Scalable Publishing,
Exchanging and Consumption in the

Web of Data

Javier D. Ferńandez
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Abstract

Current data deluge is flooding the Web with huge amounts of data represented in RDF, founding the
so-called “Web of Data”. Data about bioinformatics, geography, or social networks, among others, are
already publicly available and interconnected in very active projects, such as Linked Open Data.

Several researching areas have emerged aside; RDF indexing and querying (typically through the
SPARQL language), reasoning, publication schemes, ontology matching, RDF visualization, etc. Se-
mantic Web topics related to RDF are, in fact, trending topics in almost every computing conference.

However, three facts can be gleaned from the current state of the art: i)little work is done in un-
derstanding the RDF essence before researching or applying this data model, ii) traditional RDF repre-
sentations stay influenced by the old document-centric perspective of the Web, containing high levels
of redundancy and verbose syntaxes to remain human readable. This leads to iii) fuzzy publications,
inefficient management, complex processing and lack of scalability to furtherdevelopment the Web of
Data.

In this thesis we first propose a deep study on the most important trends to face a global understanding
of the real structure of RDF datasets. The main objective is to isolate common features in order to achieve
an objective characterization of real-world RDF data. This can lead to better dataset designs, efficient
RDF data structures, indexes and compressors.

Thereafter, we present our binary RDF representation,HDT, addressing the efficient representation
of large RDF data through compact structures optimized for storage or transmission over a network.
HDTpartitions and efficiently represents three components of RDF data: Header, Dictionary and Triples.
Next, we focus on dictionary and triple efficient structures, as long as they take part ofHDTrepresentation
as well as most applications performing on huge RDF datasets. We proposenovel techniques leading
to compressed rich-functional RDF dictionaries and triple indexing. Finally,we propose the use of a
succinct data configuration to browseHDT-encoded datasets. This structure holds the compactness of
such representation and provides direct access to any piece of data.





Resumen

El actual diluvio de datos está inundando la Web con grandes volúmenes de datos representados en RDF,
dando lugar a la denominada “Web de Datos”. En la actualidad, se publican datos abiertos e interrela-
cionados sobre bioinforḿatica, geografı́a o sobre redes sociales, entre otros, que forman parte de proyec-
tos tan activos comoLinked Open Data. Variasáreas de investigación han emergido de este diluvio;
indexacíon y consulta de RDF (tı́picamente mediante el lenguaje SPARQL), razonamiento, esquemas de
publicacíon, alineamiento de ontologı́as, visualizacíon de RDF, etc. Los tópicos de la Web Seḿantica
relacionados con RDF son, de hecho,trending topicsen casi cualquier conferencia informática.

Sin embargo, podemos discernir tres importantes hechos del actual estadodel arte: i) se han real-
izado aplicaciones e investigaciones apoyándose en datos RDF, pero aún no se ha realizado un trabajo
que permita entender la esencia de este modelo de datos, ii) las representaciones cĺasicas de RDF con-
tinúan influenciadas por la visión tradicional de la Web basada en documentos, lo que resulta en sintaxis
verbosas, redundantes y, aún, centradas en humanos. Ello conlleva iii) publicaciones pobres y difusas,
procesamientos complejos e ineficientes y una falta de escalabilidad para poder desarrollar la Web de
Datos en toda su extensión.

En esta tesis proponemos, en primer lugar, un estudio profundo de aquellos retos que nos permitan
abordar un conocimiento global de la estructura real de los conjuntos de datos RDF. Dicho estudio
puede avanzar en la consecución de mejores diseños de conjuntos de datos y mejores y más eficientes
estructuras de datos,ı́ndices y compresores de RDF.

Posteriormente, presentamos nuestra representación binaria de RDF,HDT, que afronta la represen-
tación eficiente de grandes volúmenes de datos RDF a través de estructuras optimizadas para su alma-
cenamiento y transmisión en red.HDTrepresenta eficazmente un conjunto de datos RDF a través de
su divisíon en tres componentes: La cabecera (Header), el diccionario (Dictionary) y la estructura de
sentencias RDF (Triples). A continuacíon, nos centramos en proveer estructuras eficientes tanto para el
diccionario como para dicha estructura de sentencias, ya que forman parte deHDTpero tambíen de la
mayoŕıa de aplicaciones sobre grandes volúmenes de datos RDF. Para ello, estudiamos y proponemos
nuevas t́ecnicas que permiten disponer de diccionarios eı́ndices de sentencias RDF comprimidos, a la
par que altamente funcionales. Porúltimo, planteamos una configuración compacta para explorar y con-
sultar conjuntos de datos codificados enHDT. Esta estructura mantiene la naturaleza compacta de la
representación permitiendo el acceso directo a cualquier dato.
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Why don’t you find a place where there
isn’t any trouble? A place where there
isn’t any trouble. Do you suppose there
is such a place Toto? There must be. It’s
not a place you can get to by a boat or a
train. It’s far, far away. Behind the moon,
beyond the rain.

The Wizard of Oz (1939)

1
Introduction

1.1 Motivation

One of the main breakthroughs after the creation of the World Wide Web (WWWor simply the Web),
was the consideration of the common citizen as the main stakeholder,i.e., an involved part not only in
the consumption, but also in the creation of content. To emphasize this fact, thenotion of Web 2.0 was
coined, and its implications such as blogging, tagging or social networking became one of the roots of
our current sociability.

The complementary dimension to this successful idea deals with the machine-understandability of
the Web. The WWW has enabled the creation of a global space comprising linked documents which
express information in a human-readable way. The WWW has revolutionizedthe way we (humans) con-
sume information. Agreeing this fact, it is also true, though, that its document-oriented model prevents
machines and automatic agents from accessing to the raw data underlying to any web page. The main
reason is that documents are the atoms in the WWW model instead of “data”, hence data lack of an
identity within documents.

A first approach to give structured meaning to data on the WWW was to incorporate machine-
processable semantics to their information objects (pages, services, data sources, etc.). To fulfill these
goals, the Semantic Web community and the World Wide Consortium (W3C) have developed models
and languages for representing the semantics, as well as protocols and languages for querying it.

The Resource Description Framework (RDF) (Beckett, 2004) is the cornerstone of this semantic
approach. RDF provides a graph-based data model to structure and linkdata that describes things in the
world (Bizer, Heath, & Berners-Lee, 2009). Its semantic model is extremely simple; a description of an
entity (also called resource) is represented through triples in the form(subject, predicate, object). For
instance, the two triples:

(wikipedia:FedericoGarćıa Lorca, birthday, 5 June 1898)
(wikipedia:FedericoGarćıa Lorca, friendof, wikipedia:Pabloneruda)

describe the entityFederico Garćıa Lorca, the famous Spanish poet, in Wikipedia. In the first triple, a
value is given to itsbirthdayproperty. The latter triple establishes a friendship relationship between the
two famous poets.

An RDF dataset can be seen as a graph of knowledge in which entities and values are linked via
labeled edges with meaning. These labels (the predicates in the triples) own thesemantic of the relation,
hence it is highly recommendable to use standard vocabularies or to formalizenew ones as needed.
This semantics are often defined using the RDF Schema (RDFS) (Brickley, 2004) and Web Ontology
Language (OWL) (Hitzler, Krötzsch, Parsia, Patel-Schneider, & Rudolph, 2012). Typically, RDFS and
OWL add a built-in vocabulary over RDF with a normative semantics.

Besides describing Web resources, the RDF Recommendation (Beckett, 2004) also devises a broader
scope of application by suggesting the use of RDF “to do for machine processable information (applica-
tion data) what the WWW has done for hypertext: to allow data to be processedoutside the particular
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environment in which it was created, in a fashion that can work at Internet scale”. This latter perspective,
along with increased adoption, has made RDF evolve from a simple model to represent metadata to a
universal data exchange format.

In less than a decade, massive publication efforts have flooded the Web with very large RDF datasets
from diverse fields such as bioinformatics, geography, bibliography,media and government data. This
“democratization” in the creation of semantic data has being mainly driven by theLinked Open Data
(LOD) community1, which promotes the use of standards (such as RDF and HTTP) to publish such
structured data on the Web and to connect it by reusing dereferenceable identifiers between different data
sources (Bizer, Heath, Idehen, & Berners-Lee, 2008). It relies on the following four rules:

1. Use Unique Resource Identifiers (URIs) for naming resources;

2. Use HTTP URIs so that people can look up those names;

3. Provide useful information using standards, such as RDF and its corresponding query language,
called SPARQL (Prud’hommeaux & Seaborne, 2008), when someone looks up a URI;

4. Include links to other URIs so that they can discover other related resources on the Web.

This philosophy pushes the traditional document-centric perspective of the Web to a data-centric
view, emerging a huge interconnected cloud of data-to-data hyperlinks: theWeb of Data.

The Web of Data (Bizer et al., 2009) converts raw data into first class citizens of the WWW. It ma-
terializes the Semantic Web foundations and enables raw data, from diverse fields, to be interconnected
within this data-to-data cloud. It achieves an ubiquitous and seamless data integration to the lowest level
of granularity over the WWW infrastructure. It is worth noting that this idea does not break with the
WWW as we know. It only enhances the WWW with additional standards whichenable data and docu-
ments to coexist in a common space. The Web of Data grows progressively according to the Linked Data
principles. Latest statistics2 pointed out that more than 31 billion triples were published, with more than
500 million links establishing cross-relations between datasets.

This powerful trend can be seen as a side effect of current data deluge in many other fields. It is easy
to find real cases of massive data sources, such as scientific data (Hey, Tansley, & Tolle, 2009) (data
from large-scale telescopes, particle colliders, etc.), digital libraries, geographic data, collections from
mass-media and, of course, governmental data (educational, political, economic, criminal, census infor-
mation, among many others). Besides, we are surrounded by multitude of sensors which continuously
report information about temperature, pollution, energy consumption, the state of the traffic, etc. Any
information anywhere and in anytime is recorded in big and constantly evolvingheterogeneous datasets
which take part in the data deluge. Definitely, it is theBig Datatrending topic era.

Among all possible definitions, we refer to Big Data as “the data that exceed the processing capacity
of conventional database systems”, that is, they are too big, they move too fast, and they do not fit,
generally, the relational model strictures (Dumbill, 2012). Under these considerations, Big Data is
popularly seen as the convergence of multiple “V’s”:

Volume is the most obvious dimension because of the large amount of data continuously gathered and
stored in massive datasets exposed for different uses and purposes.

Velocity describes how data flow, at high rates, in an increasingly distributed scenario.

Variety refers to various degrees of structure (or lack thereof) within the source data (Halfon, 2012).
This is mainly due to Big Data may come from multiple origins, hence data follow diverse struc-
tural models. The main challenge of Big Data variety is to achieve an effectivemechanism to link
diverse classes of data differing in the inner structure.

1http://linkeddata.org
2http://www4.wiwiss.fu-berlin.de/lodcloud/state/ (September, 2011)
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Whereas volume and velocity address physical concerns, variety refers to a logical question mainly
related to the way in which data are modeled to enable efficient integration processes. It is worth noting
that the more data are integrated, the more interesting knowledge may be generated, increasing the
resulting datasetValue (another Big Data characteristic). Thus, semantic technologies such as RDF
and Linked Data perfectly fit the needs of Big Data (Styles, 2012); the use of such a graph-oriented
representation (together with rich-semantic vocabularies) provides a flexible model for integrating data
with different degrees of structure, but also enable these heterogeneous data to be linked in an uniform
way for publication, exchange and consumption of thisBig Semantic Dataat universal scale.

It is worth noting that, although each piece of information could be particularlysmall (the so-called
Big Data’s long tail(Anderson & Andersson, 2007; Bloomberg, 2013)), the integration within a subpart
of this Web of Data can be seen as huge interconnected data. RFID labels,Web processes (crawlers,
search engines, recommender systems), smartphones and sensors arepotential sources of RDF data.
Automatic RDF streaming, for instance, would become a hot topic, specially withinthe development of
smart cities (De, Elsaleh, Barnaghi, & Meissner, 2012). It is clear that Linked Data philosophy can be
applied naturally to theseInternet of Things, by simply assigning URIs to the real-world things producing
RDF data about them via Web.

In practice, these potentially huge datasets are encoded by means of traditional verbose syntaxes
which are still influenced by its conception under adocument-centricperspective of the Web. RDF/XML
(Beckett, 2004), for instance, is functional enough to add small descriptions (metadata) todocuments
or to mark web pages, but carries the heavy verbosity of XML to describehuge corpora. Later on,
representations like N3 (Berners-Lee, 1998), Turtle (Beckett & Berners-Lee, 2011) and RDF/JSON
(Alexander, 2008), have improved in several respects the original format, yet they are stilldominated by
a human-readable view.

It becomes clear that RDF must deal with the aforementioned three “V’s” which are increasingly
present in the Web of Data. To do so, considering RDF under a pure data-centric perspective is indis-
pensable. We identify three general processes whose performance has to be significant improved:

• Publication. An analysis of current RDF datasets published in the Web of Data revealsseveral
undesirable features (Ferńandez, Mart́ınez-Prieto, & Gutíerrez, 2010). First, metadata about the
collection is barely present or it is neither complete nor systematic. The lack ofinformation is such
that a “potential consumer” almost has to guess what the content of a dataset is about, disregarding
its exploration in cases where the effort of consuming it seems not to worth the challenge. This is
even more noticeable for mashups of different sources. Second, the published RDF dumps are ac-
tually bulks with no structure, no design, no final user in mind. They resembleunwanted creatures
whose owners are keen to be rid of them (Ferńandez, Mart́ınez-Prieto, & Gutíerrez, 2010).

• Exchange. Once a client decides that it is worth to get a dataset, it is exchanged under the same
principles of the WWW. Despite their size, RDF datasets are exchanged withinthe plain afore-
mentioned formats (e.g. XML, N3 or Turtle), which yields to high bandwidth costs and network
delays. Universal compressors, such as gzip, are commonly used over these syntaxes in order to
save space, yet it implies a subsequent decompression process at consumer.

• Consumption. Here we can distinguish two different types of consumptions. The first scenario
arises following the natural flow of the previous publish-exchange process. After a final user has
downloaded a dataset, it has to be postprocessed for diverse purposes (analysis, integration with
other sources, local query, visualization, etc.) In general, plain RDF representations force to fully
post-process the dataset in order to make it useful for consumption. Even the most basic data
operation (such as searching for a triple or retrieving the description of agiven resource) has to
deal with the lack of any internal structure in the file, thus parsing the whole data. A second
scenario of consumption regards the case in which the final user wants to make online queries
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(typically with SPARQL) over the RDF data served by a publisher. In this case, the response time
depends on the efficiency of the underlying RDF indexes at the publisherwhich, again, have to
deal with inefficient RDF representations.

In summary, current RDF representations diminishes the potential of RDF graphs due to the huge
space they take in and the large time required for consumption. Moreover, similar problems arise when
managing less RDF data but in mobile devices; together with scalability and memory constrains, these
devices can face additional transmission costs (Le-Phuoc, Parreira, Reynolds, & Hauswrth, 2010).

The presented state of affairs does not scale to amachine-understandableWeb of Data where i) large
datasets are produced and published dynamically and ii) limited devices (mobile,sensors, Internet of
Things) are increasingly joining this community.

1.2 Hypothesis

The motivation and current state of the art call for a binary representation for RDF aimed at reducing
the high levels of verbosity/redundancy and weak machine-processablecapabilities of the datasets. At
the physical level, the binary RDF representation should permit efficient processing, management and
exchange (between systems and memory-disk movements) at large scale. Thus, it has to minimize re-
dundancy while guaranteeing modularity at the same time. At theoperational level, desirable features
include native support for simple checks for triple existence (lookups) and other simple query patterns.

Our hypothesis can be summarized as follows:

Given an RDF dataset, potentially huge, a lightweight binary RDF can encode the data lever-
aging the skewed structure of RDF graphs for the purpose of (i) large spatial savings, (ii) easy and
modular data-centric publication and parsing and (iii) data retrieval.

With this hypothesis, we called for the need to move forward RDF syntaxes to adata-centric view. We
propose a binary serialization format,HDT, that modularizes the data and uses the skewed structure of big
RDF graphs (Ding & Finin, 2006; Oren et al., 2008; Theoharis, Tzitzikas, Kotzinos, & Christophides,
2008) to achieve large spatial savings. We present, in the following, the main requirements for an RDF
serialization format:

• It must be generated efficiently from another RDF input format and easy to convert to other
representations. For instance, a data publisher having the dataset in a semantic store must be
able to dump it efficiently into an optimized exchange format. Similarly, if the serialization format
enables data traversing to be performed efficiently, the conversion process to another (potentially
binary) format can be completed more efficiently.

• It must rely on a clear publication scheme. The format must hold a standard scheme to in-
clude metadata about the data publication and its content, together with informationto retrieve the
dataset.

• It must be space efficient. The exchange format should be as small as possible, introducing
compression for space savings. Reducing size will not only minimize the bandwidth costs of
the server, but also the waiting time of consumers that are retrieving the dataset for any class of
consumption.

• It must be ready to post-process.A typical case is performing a sequential triple-to-triple scan-
ning for any post-processing task. This can seem trivial, but is clearly timeconsuming when large
data are post-processed at the consumer.
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• It should be able to locate pieces of data within the whole dataset.It is desirable to avoid a
full scan over the dataset just to locate a particular piece of data. Thus, the serialization format
must retain all possible clues enabling direct access to any piece of data in the dataset. A desirable
format should be ready to solve most of the combinations of SPARQL triple patterns (possible
combinations of constants or variables in subject, predicates and objects).For instance, a typical
triple pattern provides a subject, leaving the predicate and object as variables (and therefore the
expected result). In such case, we pretend to locate all the triples that talk about a specific subject3.
In other words, this requirement contains a succinct intention; data must beencoded in such a way
that “the data are the index”.

1.3 Contribution

The main contribution of this thesis is a novel binary RDF format, calledHDT : Header-Dictionary-
Triples, addressing publication, exchange and consumption (index/query) of RDF at large scale.HDT
represents the information of an RDF dataset in three optimized components:

• A header, including all type of metadata describing a big semantic dataset.

• A dictionary, organizing all the identifiers (IDs) in the RDF graph. It provides a catalog of the
information entities in the RDF graph with high levels of compression.

• A set of triples, which comprises the pure structure of the underlying RDF graph while avoiding
the noise produced by long labels and repetitions.

Specific contributionsare as follows:

1. Theoretical framework of RDF structure.First, we tackle the problem of understanding the real
structure of huge RDF graphs. To that end, we perform a deep study on these graphs revealing
the underneath structure and composition of the graph. The main objective isto isolate common
features to achieve an objective characterization of real-world RDF data. This can lead to better
dataset designs, as well as efficient RDF data structures, indexes andcompressors.

With this objective in mind, we propose specific parameters to characterize RDF data. We specially
focus on revealing the redundancy of each dataset, as well as their compact and compression
possibilities. Finally, these metrics are evaluated on an evaluation framework comprising fourteen
datasets which cover a wide range of modelings. Detailed results are summarized in Chapter5.

2. Binary RDF Specification.Based on our analysis of the current scalability drawbacks managing
Big Semantic Data, we design, analyze, develop and evaluate a binary RDF format, calledHDT.
HDTis aimed at reducing the studied high levels of verbosity and redundancy in real-world RDF,
enhancing machine-processable capabilities of the datasets. Thus,HDT implements and gives
response and sense to our hypothesis. We provide careful details of the design of theHDTcom-
ponents (Header, Dictionary and Triples), their operations and use. AsHDTacts as a container
and it is flexible enough to allow multiple configurations, we provide a practicaldeployment for
publication and exchange, as well as anRDF/HDTsyntax specification. This syntax took part of a
W3C Member Submission (Ferńandez, Mart́ınez-Prieto, Gutíerrez, & Polleres, 2011), validating
the need of a well-defined binary format.

3. Compressed Rich-Functional RDF dictionaries.Based on the previousHDTdictionary, specific
techniques for RDF dictionaries are proposed. We focus on highly-compressed RDF dictionaries

3Note that this query can be used to dereference an entity in accordance tothe third Linked Data principle.
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with very efficient performance at basic lookup functionality. We first adapt existing techniques
for compressed string dictionaries. The proposed solution, a novel RDFdictionary calledDcomp,
excels in size (it achieves the best compression ratios in our evaluation) and performance (over
traditional dictionaries in the state of the art). Besides, its space/time can be finely tuned thanks
to the organization of subdictionaries inDcomp. In addition, advanced dictionary functionality for
SPARQL filtering is proposed.

4. Compact RDF triple indexes.We address compact triple indexes on top ofHDT-encoded datasets.
We propose the use of succinct data structures and compression notionsto approach practical
implementations. All these indexes are developed on top of a novel triple structure for exchanging,
referred to as Bitmap Triples (BT). The BT encoding sees the graph as a forest of trees and codifies
its structure in two correlated bitsequences. Then, we propose lightweightindexes built efficiently
at consumption time. The final configuration of triple indexes at consumer is called BTWO∗. We
describe the algorithms for triple pattern resolution using these indexes and,more important, the
costs are clearly detailed with the metrics proposed. All configurations are studied and evaluated
on real-world scenarios. Important conclusions are listed in Chapter14.

5. Practical deployment of binary RDF.With the previous successfully achieved objectives for dictio-
naries and triples, we focus on efficiently integrating both components. That is, HDTis serialized
with Dcomp and BT components, and the additional indexes of BTWO∗, as well as the required
in-memory structures ofDcomp, are built efficiently at consumer. This proposal is deployed and
evaluated against existing solutions in the field of RDF stores. Our experiments show howHDT
excels at almost every stage of the publication-exchange-consumption workflow and remains very
competitive in query performance.

1.4 Thesis Structure

First of all, Chapter2 provides background on describing and querying semantic data and the Web of
(Linked) Data processes of publishing, exchanging and consuming. Wealso introduce the concept of
Big Semantic Data and provide basic concepts on succinct data structures and compression.

After that, the remainder of this thesis is organized in five parts, each one corresponding to a particular
contribution, and a final summarizing part. Each part is composed of three chapters: an introduction and
state of the art of the problem, our specific proposal and its empirical evaluation, and a final discussion.
In particular, these parts include the following contents.

Part I tackles the characterization of the RDF structure for the purposes of efficient encoding. Chap-
ter 3 collects the most important works leading to understand the RDF structure at large scale. Prelim-
inary results, showing skewed RDF data distributions, set the basic foundations for more efficient RDF
representations. Then, Chapter4 proposes simple and feasible metrics characterizing RDF datasets. We
establish an experimental framework illustrating these metrics for real-world RDF datasets. The chapter
ends with a study revealing these metrics in different domains. Finally, Chapter 5 summarizes the contri-
butions of this part and analyzes its implications in diverse related fields as well as the connection with
the subsequent chapters.

Part II describes our proposal of a binary RDF representation, optimized for publication and ex-
change within the Web of Data. Chapter6 motivates the problem, revises the state of the art, and de-
scribes our concrete goal. Chapter7 presents our proposalHDT. First, we make a conceptual description
of theHDTcomponentsHeader, DictionaryandTriples. Next, we detail the basic encoding for a practical
implementation focused on publication and exchange. Finally, we set up an experimental framework and
provide results on compact ability and scalability. Chapter8 discusses the applicability of the proposal
and the provided results.
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Part III presents new structures improving the basic functionality of RDF dictionarieson com-
pressed space. Chapter9 introduces and motivates the use of this type of RDF dictionaries to optimize
RDF stores as well as providing novel functionality to binary formats such as HDT. The state of the art
revises previous works on RDF dictionaries and string dictionaries. On thisbasis, we set up the goals of
a novel dictionary. Chapter10 focuses on our approach:Dcomp, a compressed and modular RDF dictio-
nary. After a conceptualization, we present its modular configuration, data structures and algorithms for
the lookup operations. We detail advanced filtering and push-up operations which can now be performed
on the dictionary as a previous step of a triple scanning. DifferentDcomp configurations are tested on a
experimental framework designed to characterize the compressibility and performance of the approach.
The obtained results are discussed in Chapter11.

Part IV focuses on triple indexes. Chapter12revises the state of the art in triple indexes, focused on
RDF native structures and scalable approaches. Chapter13 makes a first approach to construct a basic
triple index forHDT-encoded datasets, proposing the use of compressed succinct data structures. This
simple index allows some patterns to be efficiently resolved. Next, we introduceadditional indexes to
resolve complex graph patterns. Compressibility and query performance are studied on a testbed.

Part V exploits the presented dictionary and triple indexes to allow exchanged RDF tobe directly
consumed. We propose an integrated solution for queryingHDT-encoded datasets and, thus, for efficient
encoding and consumption of large RDF data. The resultant approach is calledHDT-FoQ: HDTFocused
on Querying and it is presented in Chapter15. Next, we evaluate the Publication-Exchange-Consumption
workflow on a real-world setup, analyzing the performance of each stepas well as the overall process.
Finally, we test the performance ofHDT-FoQ for SPARQL querying.

To conclude,Part VI provides a critical discussion of the thesis. Chapter16 summarizes the contri-
butions and suggesting future direction of the research.

Publications and other results of this thesis are listed inAppendix A.





Don’t be trapped by old concepts,
Matthew, you’re evolving into a new life
form.

Invasion of the Body Snatchers (1956) 2
Basic Concepts

2.1 The Semantic Web

Much can be said about the World Wide Web (WWW) and its unparalleled success. It is simply one
of the greatest invention ever, part of our everyday lives. The Web has tremendously changed or influ-
enced fields such as education, libraries, music and video distribution, shopping and advertising markets,
medicine and, of course, the way we communicate with friends, partners andother businesses.

In order to understand some of the limitations or shortcomings of the current Web, one has to go
back to its original conception. As stated by his creator, Tim Berners-Lee, “the goal of the Web was to
be a shared information space through which people (and machines) could communicate”(Berners-Lee,
1996). He thought a global information space, a virtual blackboard to write andread, to share and com-
municate both people and machines. But,what is the shared content? What is written in this blackboard?
Documents, and links between documents accessible via the Internet. As we talk of a global space of
information these documents (also called resources) have to be globally identified and hence (i) the Uni-
versal Resource Identifiers (URI) (Berners-Lee, Fielding, & Masinter, 2005) are the primary and key
element of the original Web architecture. The second element, obviously, isthe protocol for writing
and reading in this global space, that is, (ii) the Hyper Text Transfer Protocol (HTTP). Last, how these
interlinked documents are represented, which conforms (iii) the Hyper Text Markup Language (HTML).

These pillars of the Web have driven human communication to levels never seen before. Thanks to
the adoption of new technologies (such as server and client-side scripting, Javascript, Ajax, etc.), the
so-called Web 2.0 (Musser & Oreilly, 2007) brought the democratization in web publishing under novel
forms of user-generated content. Note that part of this content is directlyand consciously created by users,
such as blogs, websites, podcasts, etc., while other part is series of user interaction records (metadata),
such as ratings, comments, shares, likes, tags, navigation and query logs, etc., of which, eventually, a user
loses control. Thus, the “shared information space” is also a space ofmetainformation, though equally
useful. After analysis, clustering and other data mining processes,metainformation is one of the basis
of advanced recommendation systems and efficient search engines (Baeza-Yates, Hurtado, & Mendoza,
2007; Borges & Levene, 2000).

Another remarkable side-effect of the latest Web development (among others, such as user-generated
quality, data curation, trust or privacy) is the current blurring concept of document. Nowadays, the Web
is so flexible, interactive and dynamic that a new resource can be instantly created or completely changed
based on provided parameters or context information. Moreover, the content is not “ready” beforehand
but tends to be extracted from relational databases, external APIs or other services which, typically,
manage structured content, yet providing a final media representation (text, audio, video, etc.).

Very interesting questions raise from these two side-effects.Is it positive or negative for a machine
to have so much meta and dynamic (yet structured) information? Is it easyor complex for a machine to
communicate in this shared but fuzzy space?In fact, one could argue that, despite all the great success
of the Web, the original purpose of “machine communication in the Web” has been marginally achieved.
Tim Berners-Lee stated that, as a future direction, machines could take a stronger part in analyzing the
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Web, and solving problems for us (Berners-Lee, 1996). Remaining true that machines are currently
acting in the Web, they stay far away from the idealism. Consider solving the question: is there any
correspondence between the studies of the president of the developedcountries and the destination of
financial support for research projects?It is obvious that the information could be in the Web, potentially
distributed in different websites, in different formats, but we have limited automatic understanding of text
semantics (even worse for other media). The challenge was already posed beforehand as a condition to
the aforementioned future direction: “data on the web must be available in a machine-readable form with
defined semantics”. Without semantics a machine can hardly resolve such general and more complex
questions and, in general, any task involving resource integration from different sources in the Web.

Fortunately, meta information and the underlying structured information are twosources a machine
can better deal with.How can we exploit the meta content and structured content for improving machine
interaction with the Web?And, if possible,is it enough with the three pillars of the Web?These are
matters of the Semantic Web.

The Semantic Webwas proposed byBerners-Lee, Hendler, and Lassila(2001) as a complement of
the current Web in order to be more “machine-processable”. It enhances the current WWW with machine-
processable semantics imprinted in their information objects (pages, services, protocols, etc.). Its goals
are summarized as follows:

1. To give semantics to information on the WWW.Although Tim Berners-Lee conceptualized a Web
with random associations (unlike fixed database schemas), in the early stages of the Web there
was still one line of thought modeling the Web as a database, designing formalmodels of Web
queries (Mendelzon & Milo, 1998). The idea of using database techniques did not succeed and
information retrieval techniques have dominated, and currently dominates theWWW information
processing. One could argue that, at that time, the database approach was too futuristic once the
amount of structured data on the Web did not yet reach a critical level thatcurrently does (Gutiérrez,
2011). For this reason, the Semantic Web picks up on some ideas of database techniques which are
structured via schemas that are, essentially, one kind of metadata. In the Web, metadata give the
meaning (the semantics) to data and allows, or stimulate, advanced operations such as structured
query, that is, querying data with logical meaning and precision.

2. To make semantic data on the WWW machine-processable.Assuming that semantic could be
embedded in the Web, the aim is to encourage automatic machine processing: agents can perform
tasks that users have to currently perform with arduous manual processes. Ideally, this objective
could be also extended to the initial step of providing semantics. That is, in the current Web,
the semantics of the data is mainly structured by humans who create domain-specific schemas.
This manual process has known limitations (Quesada, 2008) at Web scale, hence it is crucial
to automatize the process of “understanding” (giving meaning to) data on theWWW, which is
equivalent to develop machine-processable semantics.

In summary, to fulfill these goals, the Semantic Web community, hand in hand with theWorld Wide
Consortium (W3C)1, has developed i) models and languages for representing the semantics, and ii) an
infrastructure for it,i.e., protocols, query languages and specifications for consuming these semantic
data; accessing, consulting, publishing and exchanging (Gutiérrez, 2011).

In the following, we briefly describe the most known models and languages torepresent (§2.1.1) and
query (§2.1.2) semantic data. Next, we will call attention to the most feasible implementation (or variant)
of the Semantic Web, the so-called Web of (Linked) Data (§2.2).

1http://www.w3.org
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2.1.1 Describing Semantic Data

The Resource Description Framework(RDF) was an initiative of the World Wide Web Consortium
(W3C), originally intended to provide an extension of the Platform for Internet Content Selection (PICS)
content selection (superseded by the Protocol for Web Description Resources, POWDER2). PICS was
envisioned as a filtering system for the content of the Web, in order parents to protect minors from “in-
decent” content. Technically, it was based on ratings and labels defined by content providers and other
third-parties and a system for parental filtering. The cornerstone of theinitiative was to provide PICS
labels to be readable by machines (the filter software). After several discussions inside and outside the
W3C, it became clear that this idea was valid for several additional applications and hence the W3C
conformed the Resource Description Framework working group (Miller , 1998).

The original objective was to generalize the idea of machine-readable labels and to support metadata
on the Web. That was the basis of the novel Resource Description Framework (RDF). The mechanism
should providelabels to services, but also “permit string and structured values, and some othernifty
features”. In addition to services, RDF functionality was extended to add small descriptions (metadata)
to documents, to protocols, to mark web pages or, obviously, to describe services.

The initial W3C Recommendation of RDF (Lassila & Swick, 1999) defines it as a “foundation
for processing metadata” and establishes that its broad goal is “to define amechanism for describing
resources”. This conception is clearly influenced by adocument-centricperspective of the Web as it
is stated through some examples of RDF application, such as the description ofpage collections that
represent a single logical document or the intellectual property rights of web pages.

Nevertheless, the focus rapidly evolved to new frontiers. The currentRDF Recommendation (Beckett,
2004) already devises an evolution of RDF“to allow data to be processed outside the particular environ-
ment in which it was created, in a fashion that can work at Internet scale”. That is, the focus is widen
to “data”, to information exchanged between applications without loss of meaning (Manola & Miller,
2004).

In the following we describe the RDF data model as well as two vocabularies given (or more precisely,
extending) its semantics.

The RDF Data Model. It is implicitly built on two premises (Hogan, 2011):

• theOpen World Assumption(OWA). In the open world we assume that any statement that is not
known to be true is just “unknown” and not necessarily false (as would be assumed in the closed
world systems such as relational databases). For instance, if we model thestudies of the presidents
of the developed countries and no studies are given for a particular president, let us sayX, the
closed world assumesX has no studies (one could imagine aNULL value in a relational database)
whereas for the open world it is just unknown. Given that RDF aims to scaleto the Web, it makes
sense to assume that the information is potentially incomplete or unknown (e.g. the studies of the
presidentX can be described in a third-party website).

• theno Unique Name Assumption(UNA). The UNA presence means that different names refer to
different entities. The lack of UNA in RDF assumes that different names (inthis case, URIs) can
refer to the same entities (resources). The implication is that, on the one hand,naming resources
becomes more flexible avoiding a centralized naming service. On the other hand, agents evaluating
the similarity of two entities can not trust in their names and must evaluate other mechanisms.

RDF aims at describing resources, but at this point one could be bewildered by the concept of re-
source. We have spotted that the initial concept of documents, protocols,web pages and services was
extended to general data, always under the OWA and the lack of UNA assumptions. Thereafter, RDF

2http://www.w3.org/standards/techs/powder
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<http://example.org/Javier> <http://example.org/Valladolid> 
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Figure 2.1: A first RDF example.

generalizes the concept of a “Web resource”, which means a thing that can be identified on the Web
(Manola & Miller, 2004). The contact information of an individual, city facilities, every relation in a so-
cial network or product specifications are just few examples of resources which can be described. There
is no limitation whenever we talk of something with an identity.

RDF describes resources through properties and the values for theseproperties. The values for the
properties can be either other resources or constant values (called literals). That is, the basic atom in
RDF are triples (also called statements) of the form:

(subject, predicate, value)

in which the subject is the resource being described, the predicate is a property applied to it, and the
value (also called object) is the concrete value for this property. For instance,

(Javier, e-mail, jfergar@infor.uva.es)
(Javier, birth, Valladolid)

draw two RDF triples. This can be seen as a graph of knowledge in which entities and values are
linked via labeled edges,i.e. the predicates are the labels. Part of the success of RDF is due to this graph
conception and its expressive power: a dataset in RDF represents a network of statements through natural
relationships between data, by means of labeled edges. This is also a matter for OWA as the labeled
graph structure underlying to the RDF model allows new semantics to be easily added in advance. In
other words, graph flexibility allows for handling semi-structured information(entities having different
levels of detail).

Note that, in the previous triples, we have broken the aforementioned basis of RDF, machine-friendly
processing, identity and naming of resources. That is, clearlyJavier is not a Web identifier and machine
processing of the properties can be misleading. For instance,birth is confusing as it can be understood
as the birthday or the birthplace and hence the expected value changes alike (it can be a date, a string
with the place, a link to the place, etc.). A similar appreciation can be done withe-mail; although in this
case its meaning is more obvious, different RDF sources could spell different variations (email, mailbox,
contactmail) or different languages (correo, courriel). These are just few examples showing that the
RDF data model requires formalization in order to facilitate machine processes.

Figure 2.1 draws the RDF graph of an extension of this example, after formalization. Asstated,
resources are named using URIs, hence the resourceJavier is named ashttp://example.org/Javier. Predi-
cates, in some sense, hold the meaning of the descriptions and relationships of the resources, exemplified
in the previous misleading. Therefore, predicates are named with URIs andthey can be described as re-
sources themselves. Sets of predicates are organized in vocabularies which people re-use for naming the
same type of descriptions. For instance,e-mail is further described withhttp://xmlns.com/foaf/0.1/mbox
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and this URI is a well-known way of naming an e-mail property as it belongs to the Friend of a Fiend
(FOAF) vocabulary3. In order to shorten URIs, prefixes are extensively used, such asfoaf: which ex-
pands tohttp://xmlns.com/foaf/0.1/. Thereafter these are Compact URI (CURIE), although in the rest of
the text we abuse of the language calling all URIs.

As shown in the figure, the objects in a triple can be another resources or literal attributes. Literals
can be seen as end nodes4, concrete values describing the resources. They can be (i)plain strings (such
as“jfergar@infor.uva.es”), which can include language tags (such as“Valladolid”@es) or typedstrings
where XML Schema Datatypes can be used (e.g. “83”ˆˆxsd:int). In any case, they may not be used
as subjects or predicates in other RDF triples (Manola & Miller, 2004) and they should be treated as
constants. If some structure on the values is needed, one could create a new resource with a URI grouping
them, or make use of a special kind of node (in this RDF graph) calledblank nodes. These unnamed
resources usually connects various parts of the graph without the needof a URI. They usually serve as
parent nodes to a grouping of data such as:

(ex:Javier, ex:contactInfo,:javierAddress)
( :javierAddress, ex:city, ex:Valladolid)

( :javierAddress, ex:street, “Paseo de Belen 15”)
( :javierAddress, ex:postalCode, “47005”)

( :javierAddress, foaf:mbox, “jfergar@infor.uva.es”)

in which :javierAddressgroups the contact information ofex:Javier(we use the ”ex“ prefix forhttp:
example.org).

An important consideration is that blank node identifiers are just a way of referencing them inside
one RDF graph,i.e., it can be seen as a local naming and the same identifier in two graphs does not
imply to be the same blank node. The representation and use of blank nodes isentirely dependent on the
concrete syntax used (Mallea, Arenas, Hogan, & Polleres, 2011).

At this point, it is worth noting that RDF is a data model and it does not restrict the multiple serializa-
tion formats emerged in the last years, which will be presented along the thesis. Thus, RDF is typically
formalized as follows (Gutiérrez, Hurtado, Mendelzon, & Perez, 2011). Assume infinite, mutually dis-
joint setsU (RDF URI references),B (Blank nodes), andL (RDF literals).

Definition 1 (RDF triple) A tuple(s, p, o) ∈ (U ∪ B) × U × (U ∪ B ∪ L) is called an RDF triple, in
whichs is the subject,p the predicate ando the object.

Definition 2 (RDF graph) An RDF graphG is a set of RDF triples. As stated,(s, p, o) can be repre-

sented as a direct edge-labeled graphs
p
−→ o.

The normative semantics for RDF graphs (P. Hayes, 2004) follows the concept of interpretation, en-
tailment and other classical treatment in logic (Gutiérrez et al., 2011). Its RDF vocabulary includes few
pre-defined keywords such asrdf:XMLLiteral, rdf:List, rdf:Statementor rdf:Bag. One of the most impor-
tant built-in predicate isrdf:type, as it allows for creating classes within the RDF graph. In this context,
a “class” stands for a group of resources sharing common characteristics. For instance, in the previous
example it was stated thatJavier was a type offoaf:Person. Although this basic mechanisms does not
allow “advanced operations” (such as modeling hierarchies), the compromise is that the more expressive
power of its vocabulary semantics, the higher computational complexity is required for processing such
data (Gutiérrez et al., 2011). Assuming that RDF was designed to be flexible and extensible, additional
vocabularies can be used to add semantics to classes and properties. Throughout the next items we briefly
describe the two most successful approaches, the RDF Schema and the Web ontology language.

3xmlns.com/foaf/0.1/
4Literals can not be the subject in triples, only URI resources can be described.
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The RDF Schema (RDFS) (Brickley, 2004). It adds a built-in vocabulary to RDF with a normative
semantics. That is, it provides a “basic type system for use in RDF models”.These types are given
within the same RDF data model and they deal with inheritance of classes and properties among other
features. It can be thought of as a lightweight ontology.

Roughly speaking, the most noticeable contribution of RDFS vocabulary is toadd four novel proper-
ties: rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, andrdfs:range. Without going into details, the
first two allows to define a basic hierarchy within classes and properties, whereas the latest delimit the
class (or classes) of a subject or an object when they appear under agiven predicate. For instance:

(ex:Researcher, rdfs:subClassOf, foaf:Person)
(ex:addressInfo, rdfs:subPropertyOf, ex:contactInfo)

(ex:addressInfo, rdfs:domain, ex:Researcher)
(ex:birthPlace, rdfs:range, ex:Place)

which models, first, that aex:Researcheris a subtype offoaf:Personand theex:addressInfoprop-
erty is a type ofex:contactInfo. This states that a resource of type (rdf:type) ex:Researcheris also a
foaf:Person. Similarly, a property value forex:addressInfois also attached to aex:contactInfopredicate.
The last two triples state that any resource related by aex:addressInfoproperty is member of the class
ex:Researcher(even though the type property is not explicitly given). In turn, a value given for the
propertyex:birthPlaceis member ofex:Place. For instance, if we attach these triples to the example in
Figure2.1, a machine can automatically infer thatex:Valladolidis aex:Place.

RDF semantics (P. Hayes, 2004) include entailment rules to make this type of deductions as well as
the so-called RDFS axiomatic triples,i.e. axioms such as:

(rdf:type,rdfs:domain,rdfs:Resource)

Entailment rules can be seen as a deductive system (Gutiérrez et al., 2011) stating, for instance:

(A,sp,B)(B,sp,C)
(A,sp,C)

which describes the transitivity in subproperties (if the resource A is subproperty of B, and B is sub-
property of C, then A is subproperty of C). Note thatGutiérrez et al.(2011) describe the complexity and
bounds of the main problems.

The Web Ontology Language (OWL) (McGuinness & Van Harmelen, 2004). It is a version of logic
languages adapted to cope with the Web requirements. Intuitively, it is more expressive than RDFS,
allowing more advanced deductions yet, as stated, at the cost of computationcomplexity of evaluation
and processing. Among all the novel language primitives, it highlights the following predicate:

(ex:Javier,owl:sameAs,dblp:JavierD. Fernández)

because it allows for making equivalence between resources in different RDF graphs. In this case, the
RDF graph example establishes a similarity with the external resourcedblp:JavierD. Fernándezwhich
(as we will explain) is part of the RDF graph of the bibliographic DBLP5 catalog.

OWL comes in three flavors, at the cost of the aforementioned complexity: OWL Full, OWL DL and
OWL Lite. In fact, the novel OWL 2 (Hitzler et al., 2012) adds new expressivity and redefines three new
profiles, OWL 2 EL, OWL 2 QL, and OWL 2 RL.

In summary, describing semantic data remains a work in progress in which RDFis currently the
cornerstone. Regardless of the novel potential fields of application, its most valuable attribute has always

5http://www.dblp.org
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been its simplicity to serve as a mechanism for working with metadata which promotesthe interchange
of data between automated processes (Powers, 2003). Thus, if one has scalability in mind, due to
complexity tradeoffs, the expressive power of the semantics should stay at a basic level of metadata.

In the following we present the most practical way (nowadays) of querying such semantic data.

2.1.2 Querying Semantic Data

RDF can be seen as a graph labeled with meaning, in which each triple(s, p, o) is represented as a direct
edge-labeled graphs

p
−→ o. It is clear that a query language over the RDF data model should follow the

same principles (interoperability, extensibility, decentralization, etc.) and a similar graph notion.
SPARQL (Prud’hommeaux & Seaborne, 2008) is the W3C recommendation for searching and ex-

tracting information from RDF graphs. It is essentially a declarative language based on graph-pattern
matching with a SQL-like syntax, such as the one in Figure2.2. This query retrieves the birthplace
and e-mail ofex:Javierfrom an RDF graph such as the previous example (Figure2.1). Intuitively, one
should construct a graph pattern such as the one presented on the right,in which we provide named
terms or variables if the term is unknown or part of the desired result. There exists solution when this
graph pattern matches a subgraph of the RDF data after variable substitution. This required substitution
of RDF terms6 for the variables is then the solution for the query. The corresponding SPARQL query,
with the appropriated syntax, is presented on the left side of the figure. The WHEREclause provides a
serialization of the graph pattern to match against the data graph, whereas theSELECTclause lists which
variables are given as results. In this case, the result is a simple “mapping”, ?place=“ex:Valladolid” and
?email=“jfergar@infor.uva.es”, according to the original excerpt (Figure2.1).

PREFIX ex:<h t t p : / / example . org>
SELECT ? p l a c e ? ema i l
WHERE{

ex : J a v i e r ex : b i r t h P l a c e ? p l a c e .
ex : J a v i e r f o a f : mbox ? ema i l .

}

<http://example.org/Javier> ?place 
<http://example.org/birthPlace> <http://example.org/birthPlace>p:// pl g/

?email 

Figure 2.2: A first SPARQL query.

In a general case, a SPARQL queryQ comprises two parts, the head and the body. The head is an
expression that indicates how to construct the answer for the queryQ whose graph pattern is given in the
body. In the previous query, the head makes use of aSELECTclause which select two variable as results.
There are four output forms in total:

• SELECTwhich, as stated, allows for selections of matching values of the variables in the patterns.

• ASK areyes/noqueries,i.e., return true if the query pattern has a solution, orno in other case.
Consider, for instance:

ASK{ ?resource ?property ex:Valladolid .}

which tests if there is something related toex:Valladolid in the RDF graph. Over the graph in
Figure2.1, the result will beyes.

6An RDF term is a SPARQL terminology naming any element from(U ∪ B ∪ L), though it extends URIs to IRIs
(Duerst & Suignard, 2005).
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• CONSTRUCTreturns an RDF graph, as opposed toSELECTwhich returns a table of bindings for
the variables. To do so, a graph template, which can include variables fromthe query pattern, must
be provided. The substitution of these variables will provide the final RDF graph returned. In the
following query,

CONSTRUCT{ ?resource ex:origins ex:Valladolid .}
WHERE{ ?resource ex:birthPlace ex:Valladolid .}

we are constructing a simple graph in which the originalex:birthPlacepredicate has been substi-
tuted byex:origins. Note that the resulting graph only includes the triples described in the template,
obviating the rest of the RDF graph. A query:CONSTRUCT{ ?x ?y ?z .}WHERE{ ?x ?y ?z .},
will return the original RDF graph.

• DESCRIBEreturns an RDF graph with data about resources (Prud’hommeaux & Seaborne, 2008).
It can be seen as a metadata request over the RDF graph. The concretedescription is determined by
the SPARQL query service holding the graph. One potential use is to know metadata information
about a graph,e.g. the following query,

DESCRIBE<http://example.org>

returns a description of the graph which can include a summary of the type ofresources included,
authoring, relevant publishing dates, etc., which may be useful for an automatic process.

As stated, the SPARQL queries are built under the notion of graph pattern given in the body. The
smaller component of a graph pattern is a triple pattern,i.e., triples in which each of the subject, predicate
and object may be a variable (this is formalized in Definition3). The previous example showed two triple
patterns, called a Basic Graph Pattern (BGP). In general terms, BGPs are sets of triple patterns in which
all triple patterns must match (this is formalized in Definition4). They can be seen as inner-joins in SQL.
Several constructions can be applied over BGPs:

• BGPs can be grouped under braces.

• Alternatives of two groups can be expressed similarly to SQL, with aUNIONkeyword.

• Optional graph patterns can be provided with anOPTIONALkeyword.

• Matching values can be restricted by means of aFILTER clause.

TheOPTIONALconstructor deals with the mandatory graph pattern matching. In BGPs, a solution
is automatically rejected if just one triple pattern in a graph pattern (which can include several triple
patterns) does not match. For instance, in the basic query in Figure2.2, if ex:Javierdoes not include
its birthplace in the original graph, the result will be completely empty. Instead,we would be inter-
ested in retrieving the e-mail in any case and, optionally the birthPlace if present. This is the goal
of including optional parts, exemplified by the query in Figure2.3. This query returns the emails of
those individuals in the domain “infor.uva.es” and, if exist, it also retrieves their birthplaces. In other
words, if the optional graph does not match, it returns no bindings but does not eliminate the solu-
tion (Prud’hommeaux & Seaborne, 2008), in tune with the principles of flexibility andOpen World
Assumption. It is worth noting that optional patterns have its relational counterpoint, theleft outer join
(Perez, Arenas, & Gutiérrez, 2009).

In turn, FILTER conditions are restrictions on solutions applied to a given group. They restrict so-
lutions to those for which the filter expression evaluates to TRUE (Prud’hommeaux & Seaborne, 2008).
They arebuilt-in conditions often used to restrict the values of triples by means of several operators:
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PREFIX ex:<h t t p : / / example . org>
SELECT ? p l a c e ? ema i l
FROM <h t t p : / / example . org>
WHERE{

? someone f o a f : mbox ? ema i l .

FILTER regex ( ? emai l ,"@infor.uva.es" )

OPTIONAL {
? someone ex : b i r t h P l a c e ? p l a c e .

}
}
ORDER BY ? p l a c e

Figure 2.3: A slightly complex SPARQL query.

• Regular expressions (regex).

• Common arithmetic expressions.

• Other boolean operators, such asBOUND(?variable) which test if a valid mapping has been
found for such variable orisURI(?variable) testing if the variable is a URI.

The SPARQL standard (Prud’hommeaux & Seaborne, 2008) details a complete list of operators. In
Figure2.3we restrict withregexto those e-mails including “@infor.uva.es”.

The previous query in Figure2.3also showed two novel clauses. TheFROMclause allows to specify
the graph (or graphs) to be queried. If two or moreFROMclauses are provided, the graph to be queried
is based on the RDF merge of the graphs. TheORDER BYclause is similar to its SQL counterpart, and
is part of thesolution modifiers. These are operators which, once the output of the pattern has been
computed, allow to modify these values. A solution modifier is one of (Prud’hommeaux & Seaborne,
2008):

• ORDER BY, used to order the solutions.

• Projection, by means of selecting the desired variables in theSELECTclause. Note that in the
query from Figure2.3, not all variables are selected, as ?someone is just used to construct the
graph pattern.

• DISTINCT , which allows to restrict to unique solutions.

• REDUCED, very similar toDISTINCT but it allows the SPARQL processor to partially eliminate
the duplicates. In other words, the results are partially or totally removed.

• LIMIT , which restricts the number of solutions in an SQL-like manner.

• OFFSET, used as a pagination service of the solutions in combination withORDER BYand
LIMIT . It causes to start generating solutions after the specifiedOFFSETnumber of solutions.

The evaluation of a queryQ against an RDF graphG is done in two steps: i) the body ofQ is matched
againstG to obtain a set of bindings for the variables in the body, and then ii) using the information on
the head, these bindings are processed applying classical relational operators (projection, distinct, etc.)
to produce the answerQ.

We provide in the following a brief excerpt of the most important SPARQL features in algebraic way,
following Perez et al.(2009). Let us introduce two differences from the previous RDF conceptualization.
First, we should include a novel set,V of variables, disjoint from the aforementionedU (RDF URI
references),B (Blank nodes), andL (RDF literals). Next, URIs are extended to IRIs (Duerst & Suignard,
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2005) in SPARQL, then we change to a setI of RDF IRI references. Thus, anRDF triple (s, p, o) ∈
(I ∪ B) × I × (I ∪ B ∪ L). Assuming the binary operators UNION, AND, FILTER and OPTIONAL
(and the precedence AND over OPTIONAL).

Definition 3 (SPARQL triple pattern) A tuple from(I ∪ L ∪ V ) × (I ∪ V ) × (I ∪ L ∪ V ) is a triple
pattern. In fact, this is the mentioned cornerstone concept of triple pattern.It is worth noting that blank
nodes in graph patterns act as non-distinguished variables (Prud’hommeaux & Seaborne, 2008). As
stated, the semantics of blank nodes prevents from using them as “persistent” identifiers, hence blank
nodes in patterns does not reference specific blank nodes in the RDF graph.

Definition 4 (SPARQL Basic Graph pattern (BGP)) A SPARQL Basic Graph Pattern (BGP) is de-
fined as a set of triple patterns. SPARQL FILTERs can restrict a BGP. IfB1 is a BGP andR is a
SPARQLbuilt-in condition, then(B1 FILTER R) is also a BGP.

Definition 5 (SPARQL graph pattern) A SPARQL graph pattern is defined recursively as:

1. A SPARQL triple pattern is a graph pattern.

2. If P1 andP2 are graph patterns, then(P1 ANDP2), (P1 OPTIONALP2) and(P1 UNIONP2) are
graph patterns.

3. If P1 is a graph pattern andR is a SPARQLbuilt-in condition, then(P1 FILTER R) is also a
graph pattern.

Perez et al.(2009) complete this formalization with more semantics (mappings, evaluation, etc.) and
provides a deep study on complexity query evaluation.Anglés and Gutíerrez(2008) reveal that the
SPARQL algebra has the same expressive power as Relational Algebra,although their conversion is
not trivial (Cyganiak, 2005).

A final remark deals with the SPARQL version. The SPARQL Working Groupinside the W3C has
produced a new SPARQL 1.1 Recommendation (March 2013) (Garlik, Seaborne, & Prud’hommeaux,
2013). Although it includes many interesting features (nesting ofSELECTexpressions, navigational ca-
pabilities thought property paths, an entailment regime for RDFS and OWL2 oraggregates), the novelties
of this version go beyond the purpose of this thesis.

2.2 The Web of (Linked) Data

The “Web of Data” is a “twist” of the Semantic Web, a concrete proposal to dissipate the misgivings
of an initial idealization. The idea behind the Web of Data is that we need to move forward machine-
accessibility of the knowledge of the Web by means of publication, exchangeand consumption of (raw)
data in the Web.Gutiérrez(2011) provides a general (abstract) definition:

The Web of Data is the global collection of data produced by the systematic and decentral-
ized exposure and publication of (raw) data using Web protocols.

At this point, we have presented the Semantic Web and the way data can be modeled semantically
with RDF, extended with additional semantics (RDFS, OWL) and queried with SPARQL. However, de-
spite the expressive power and possibilities of this “infrastructure”, onecould think that we still remain
in isolated RDF datasets, knowledge bases with axioms about a concrete subject. Thus,how can we take
advantage of the different sources publishing semantic data?And even more important,how can this be
extended to a Web scale?
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First of all, the concepts was already grounded. RDF graph structure isflexible enough to represent
interactions and relationships between data. These relationships can be atdifferent levels; in aninter-
nal level, we establish relations between data inside a dataset. For instance, in the previous example
from Figure2.1, we link ex:Javierandex:Valladolid in a meaningful way. Later on, we added a triple
(ex:Javier,owl:sameAs,dblp:JavierD. Fernández)in which we relate this internal resource with the in-
formation of an external source, DBLP. That is exactly the kind of relationat anexternal level. This
feature allows to establish meaningful links between different data sources in such a way that, at Web
scale, we could conform a semantic net of machine-processing descriptions. In fact, this is what led to
the development of the Linked Data initiative.

Tim Berners-Lee envisioned a way to bring these ideas to the Web, in a practical way. He clearly
stated the aim in a W3C design issue (Berners-Lee, 2006):

The Semantic Web isn’t just about putting data on the web. It is about makinglinks, so that
a person or machine can explore the web of data. With linked data, when you have some of
it, you can find other, related, data.

The idea is to leverage the WWW infrastructure to produce, publish, exchange and consume (raw)
data and not only documents (web pages). These processes reflect the current WWW philosophy in the
sense that they are done by different stakeholders with different goals, in different forms and formats and,
obviously, in a distributed manner.

To do so, Linked Data is a set of best practices formalized under the following four rules:

1. Use URIs as names for things. As stated, URIs allows real-world entities, its relationships as well
as any raw data to be unequivocally identified at universal scale,i.e., in the global space of the
Web of Data.

2. Use HTTP URIs so that people can look up those names. This decision leverages HTTP to retrieve
all data related to a given URI. In other words, those names can be dereferenced, they can be
navigated using HTTP.

3. When someone looks up a URI, provide useful information, using standards. This rule standardizes
processes in the Web of Data. One of the main challenges is the meaningful relationships of this
universe of data (Hausenblas & Karnstedt, 2010), and this is where the aforementioned semantic
data make sense. RDF and SPARQL, together with semantic technologies previously described,
defines the standards mainly used in the Web of Data.

4. Include links to other URIs, so that they can discover more things. It encourages to establish exter-
nal links between different datasets, breaking down the isolation and materializing data integration.
A link is done by simply adding new RDF triples linking two entities from two different datasets.
This inter-dataset linkage enables the automatic browsing throughout the net.

These simple four rules provide the basis for raw data to be published, exchanged and consumed
by combining the RDF model and HTTP URI-based identification. The added value is that it allows
different “things” in different datasets to be connected (e.g.scientific data, social networks information,
media, government data, etc.), at the most basic level of granularity (an RDF triple) and to ask questions
not possible before (thanks to the structuredness and expressiveness of SPARQL).

Linked Data is decentralized, strictly speaking it provides just a guide for publishing data with these
best practices, hence they could be applied also in private (closed) environments. This “branch” of Linked
Enterprise Data (Wood, 2010) leverages the infrastructure to improve several enterprise processes. In
particular, the integration of data and applications can be lightened thanks to the underlying RDF model,
and publishing policies help in exposing and sharing product and business information.
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Nevertheless, the most visible and successful example of adoption and application of Linked Data
principles is the Linked Open Data (LOD) movement7. The philosophy is to promote semantic data to
be released with Linked Data principles and under open licenses. Its authors state that:

Linked Data is about using the WWW to connect related data that was not previously linked,
or using the WWW to lower the barriers to linking data currently linked using other methods.

Tim Berners-Lee added (in 2010) a “five-stars” rating system to encourage people (specially, govern-
ments) implementing the Linked Data principles under an open license:

1. Make your stuff available on the web (whatever format) but with an openlicense, to be Open Data.

2. Make it available as structured data (e.g.Excel instead of image scan of a table).

3. Use non-proprietary formats (e.g.CSV instead of Excel).

4. Use open standards from W3C (RDF and SPARQL) to identify things, sothat people can point at
your stuff.

5. Link your data to other people’s data to provide context.

Essentially, LOD builds a cloud of semantic data-to-data hyperlinks8. This cloud has hugely grown
since its origins in May 2007. The first report pointed that 12 datasets were part of this cloud, 45 were
acknowledged in September 2008, 95 datasets in 2009, 203 in 2010, and 295 different datasets in the
last estimation, which is already out of date (September 2011). As stated in theintroduction, this last
systematic study reported more than 31 billion triples and more than 500 million inter-dataset links.
LODStats9, a project constantly monitoring the LOD cloud, reports (in May 2013) 870 datasets (and
other 1416 with problems) having more than 62 billion triples. Other statistics can be found in the
Linked Open Vocabularies10, the Linking Open Data Cloud from CKAN11 and the OpenLink Software’s
LOD Cloud Cache12.

All kind of fields are present in LOD, such as geography, life sciences, media or publications. It is
worth mentioning the noticeable presence of government data and the existence of many cross-domain
datasets comprising data from some diverse fields. In fact, DBpedia13 is considered the nucleus for the
LOD cloud (Auer, Bizer, Kobilarov, Lehmann, & Ives, 2007). DBpedia is an RDF conversion of the
structured data of Wikipedia, published under the Linked Data principles. It is an interesting example of
a big semantic dataset. In the following, we will briefly bridge the Web of Data and the current hot topic
of Big Data.

2.3 Big Semantic Data

Big Data is one of the current trending topics in Computer Science. As we stated in the introduction,
we are living aData Delugeera in which data comes from almost every field, at high volumes and high
rates. Assuming the philosophy of the Web of Data (flexible, distributed, at Web scale, etc.), and the very
productive fields in which semantic data is being produced (bioinformatics, geography, media),can we

7http://www.linkeddata.org
8From now on, we will indistinguishable talk of Web of Data, Web of Linked Data, or just Linked Data, but we always refer

to Linked Open Data (LOD).
9http://stats.lod2.eu/

10http://lov.okfn.org/dataset/lov/
11http://datahub.io/group/lodcloud
12http://goo.gl/sDUiO
13http://dbpedia.org
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talk of Big Semantic Data?And, would this concept influence Big Data in general?To answer the first
question we have to review again the principles of Big Data. Then, we will moveback to the first origins
of eScienceto exemplify the answer to the second question.

In short, among the several Big Data definitions, we use this term to refer to “the data that exceed
the processing capacity of conventional database systems” (Dumbill, 2012). Big Data result then in the
convergence of the following so-called “three V’s”:

Volume refers to the huge datasets continuously produced, stored and managed. Scalability is one of
the main challenges related to Big Data. It is worth noting that storage decisionsinfluence data
retrieval which will often be the ultimate goal. Under this perspective, the semantic datasets fit in
this dimension as they can be potentially huge. DBpedia and other LOD datasetsare conformed
of hundreds of millions of triples. A dataset integrating large RDF corpus could reach billions of
triples and terabytes of data.

Velocity describes how data flow at high rates, in a distributed scenario. Moreover, the final user expects
management and querying to be performed as fast as possible, specially inreal-time systems. This
again, perfectly fits the Web of Data, where dereference operations, complete downloads of RDF
datasets and SPARQL queries (with potential large results) are performed. A significant interesting
and very active area in LOD is, in fact,streaming data processingas sensors are able to produce
and automatically exchange RDF data.

Variety refers to the different degrees of structure (or absence) within the dataset (Halfon, 2012). Big
Data has to deal with the different formats and data models coming from several distant fields
and sources. Managing Big Data variety should rely on mechanisms for linking (and integrating)
diverse classes of data. We have already argued that RDF datasets both own the similar variety
concern and it is in fact a solution due to its flexibility and extensibility.

A four “V” is often added in order to refer to theValue of the data,i.e. how fast data can be processed
to obtain a significant value. The more interesting knowledge can be generated, the higher dataset value.
It is obvious that semantic data in the Web of Data can generate an enormous value once it allows to
stick together different “things” in different and potentially distributed datasets, thanks to the established
meaningful links.

Thus, in this thesis, we introduce the concept ofBig Semantic Data, recently presented in our work
(Ferńandez, Arias, Martı́nez-Prieto, & Gutíerrez, 2013).

Definition 6 (Big Semantic Data) The term “Big Semantic Data” refers to the semantic data whose
volume, velocity and variety exceed the computational resources available for its efficient management
in a given system.

Note that we do not restrict solely to huge systems. The difference is noticeable. Although one
could think in terabytes or petabytes talking about Big Semantic Data, few gigabytes may be enough
to collapse an application running on a mobile device or a limited personal computer. As we consider
that similar dimensions and problems could arise in such scenario, the definitionpretends to cover all
scalability issues.

Finally, we questioned if Big Semantic Data could influence Big Data in general. Back to the origins
of the Data Deluge, Jim Gray devised its effects in the Science (Hey et al., 2009). He stated that
scientists were no longer interacting directly with the phenomena as he envisioned that they should
perform instead complex computational processes for analyzing the largedata captured by instruments
or recollected from simulations. Gray named this form of science the fourth paradigm: theeScience. But
eSciencewas indeed not an easy task. It has to deal with the complexities of scientific data creation or
capture,sharingthese data with other scientists, and finally processing and analyzing such data. To do
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rank1(B,6)=3 

select0(B,5)=9 access(B,17)=1

0  0  1  0  1  1  1  0  0  1  1  0  1 0  0  0  1 

Figure 2.4: Example of a bitsequenceB andrank /select /access operations.

so, Gray relied on machine-readable information. He stated that“the only way that scientists are going
to be able to understand that information is if their software can understand theinformation”.

This example has its origins in Science but remains completely true in the currentglobalized Big
Data scenario. It shows the importance of thedata representationas one of the key factors in the process
of creating, exchanging, storing, filtering, analyzing, and visualizing data at large scale. It is easy to
find the correspondence between the words of Jim Gray and the use of the semantic standards (RDF,
RDFS, OWL, SPARQL) previously presented. Big Semantic Data could actually influence Big Data
whenever this datasets move to, partially shares or integrate, Web of Data models which allow advanced
machine-processing facilities and leverage a complete Web-scale infrastructure for these data workflows.
In addition, the graph-based model supports higher levels of variety before data become unwieldy, allow-
ing more data to be linked and queried together (Styles, 2012).

2.4 Succinct Data Structures

The Big Data explosion has led to develop novel techniques, such as the well known MapReduce frame-
work for data processing on distributed clusters (Dean & Ghemawat, 2008). In parallel, other “tradi-
tional” techniques have been reviewed to be adapted to the new reality. One of the main trends is to
revisit data structures (e.g. trees, hashing or graph indexes) to take full advantage of the memory hierar-
chy. In other words, if data structures perform in higher levels of the memory hierarchy, the performance
is clearly improved. While dealing with large data, one of the main requirements is that they need to rep-
resent and index as much data as possible taking minimum space and remaining performance efficient.

Recent years have witnessed a boom in compact structures with this latter purpose. These are the so-
calledsuccinct data structures, which are able to approach information theoretic minimum spaces while
still serve efficient operations over the data. For instance, the compressed full-text indexes take space
proportional to that used for the compressed text and replace it (Mäkinen & Navarro, 2007). A good
example is the FM-index (Ferragina & Manzini, 2000) which counts the occurrences of an arbitrary
pattern of lengthp in timeO(p log|

∑
|), remaining close to the information theoretic minimum space.

The FM-index and most succinct data structures are based onrank /select operations over binary
or arbitrary sequences (Mäkinen & Navarro, 2007). We briefly describe these operations over binary
sequences and give references of the main practical implementations. Other advanced succinct data
structures are described throughout the thesis.

2.4.1 Rank and Select over Binary Sequences

Given a sequence of bitsB1,n, i.e., a sequence of lengthn of bits,b, from an alphabetΣ = {0, 1}, three
typical operations can be defined (a running example is shown in Figure2.4):

- rank b(B, i) counts the occurrences of bitb up to thei-th element,i.e., in the prefixB[1, i]. For
instance, the operation in the examplerank 1(B, 6) counts the number of 1-bits up to the sixth position
(appearing in the prefixB[1, 6]), resulting in 3.
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- select b(B, i) locates the position for thei-th occurrence of bitb in B. Hence,select 0(B, 5)
searches for the position where the5-th occurrence of a 0-bit occurs which results in 9 in the example.

- access (B, i) returns thei-th element,i.e., the symbol stored inB[i]. The example shows the
access (B, 17) operation which is a 1-bit.

Two additional operations are useful when iterations are made over bitsequences:prev b(B, i) and
next b(B, i). These operations returns the position of the previous/next bitb from the i-th element,i.e.
fromB[1, i] orB[i, n] respectively. Nevertheless, these operations (as well asaccess ) can be expressed
via a constant number ofrank andselect queries (Mäkinen & Navarro, 2007).

In short, rank andselect operations have been achieved attaching additional structures to the
bitsequence witho(n) extra bits of space while answering the queries in constant time (Clark, 1996;
Munro, 1996). The idea (originally intended only for constantrank by Jacobson(1988)) is based on a
two level directory of precomputed values and table lookups. In summary, given a bit array, a frequent
operator is to count the number of set bits. This method uses precomputed tables storing these values for
fixed length arrays. A fine tuning of the gap between counts at two levels (called superblocks and blocks)
yields to constant time with the aforementionedo(n) overhead.

Gonźalez, Grabowski, M̈akinen, and Navarro(2005) provide two significant practical implementa-
tions. The first one follows the previous concept and uses a fixed 37.5%extra space on top of the original
bitsequence size. The other practical implementation offers a space/time tradeoff. It uses just one level
of precomputing and allows to parametrize the number of blocks. The more blocks, the more precom-
puted data and hence the faster performance at the cost of space. Each block takes32 ∗ k bits, i.e., there
are n

32∗k blocks and a total of 1/k space overhead. A common value isk = 20, still solving rank and
select efficiently with just 5% space overhead. This implementation is referred to asRG-k in this
thesis, wherek is the mentioned parameter.

It is worth noting that none of these approaches takes into account the compressibility of the bits. In
the words ofMäkinen and Navarro(2007), although then + o(n) solutions are asymptotically optimal
for incompressible binary sequences, one can obtain shorter representations for compressible ones.

Among several practical representations, we highlight the approach from Raman, Raman, and Rao
(2002). The underlying idea is that one could establish the most used bit configurations in blocks and to
take advantage of the repetition when coding. A configuration can be represented as the number of 1-bits
in the block and the concrete positioning of these bits inside the block. Then, every block is modeled
with a tuple(ci, oi), whereci is the so-called class (the number of bits) andoi is the offset inside the list
of possible variations for this number of bits. In this thesis we use the practical implementation of this
method by Francisco Claude (Compact Data Structures Library (libcds), 2012), referred to asRRR-k
wherek is the sample rate for partial sums. It performs inO(k) time for rank andO(log len) for
select wherelen is the length of the bitstring.

2.4.2 Rank and Select over General Sequences

The operations over binary sequences can be extrapolated to the context of a general sequence of symbols.
In short, given a sequenceS1,n of n general symbols from an alphabetΣ of sizeσ:

- rank a(S, i) counts the occurrences ofa ∈ Σ in S[1, i].
- select a(S, i) locates the position for thei-th occurrence of the symbola ∈ Σ in S.
- access (S, i) returns the symbol inS[i].

These operations over general sequences can be efficiently achieved by a structure calledWavelet
Tree(Grossi, Gupta, & Vitter, 2003). A deep study on Wavelet Trees and their applications can be found
in a recent work byNavarro(2013). In summary, a Wavelet Tree represents a general sequence of sym-
bols as a balanced tree in which the alphabet, at each node, is split into “high” and “low” symbol values
and the resulting subsequences are recursively subdivided until onlyone different symbol is present. Fig-
ure2.5 shows an example of a Wavelet Tree over the sequence “onemississippi”. As can be seen, the
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Figure 2.5: Example of a Wavelet TreeS.

first level is split into two branches (or halves), one corresponding to lower symbols in{ ,e,i,m} and
the other for higher symbols in{n,o,p,s}. A bitsequence marks with a 0-bit the positions in the array
belonging to the first halve, and sets a 1-bit when they belong to the secondhalve. The symbols in each
level are shown only for illustration purposes, but only bitmaps are finally stored. Note that both the
alphabet and the decision for splitting is known beforehand.

It is clear that this representation produces a tree of heighth = ⌈logσ⌉. Practical implementations
answerrank , select andaccess in proportional time to its heighth (Navarro, 2013). These opera-
tions over the Wavelet Tree are resolved making use of constant timerank andselect operations of
the underlying binary sequences (represented as bitmaps) in each level.We briefly detail these operation
below over a running example shown in Figure2.6:

• access (S, i) - Symbol at positioni: To discern such symbol we have to navigate the tree from
the given position on top to the symbol represented in leaves, in order. First, we start retrieving
the bitbi in the top level bitmap. If the retrieved valuebi is 0, we navigate to the left child branch,
or to the right child otherwise. In the following level, we have to discount the number of previous
positions that have gone to the other half. Thus, the position of the symbol we are looking for in
the second level,i2 = rankbi(B, i). We continue descending in the three until the last level of
leaves is reached. The symbol represented in the leaves is exactly the symbol at the positioni.

In the example in Figure2.6, access (S, 9) asks for the symbol at position9. As the bitmap at
top level stores a 0-bit at such position, we descend to the left child. The novel position in the
second level isrank0(B, 9) = 5, thus we ask for the fifth symbol in the second level (as marked in
the figure). The process continues and we finally descend to the leaves storing p-symbols, hence
the symbol at the original position9 was actuallyp.

• select a(S, i) - position of thei-th occurrence of the symbola: In this case we have to traverse
the tree from bottom to top. First, we start in thei-th position in the leaves representing the symbol
a. We climb up to the father node; the novel position in this node, let us sayih−1 (as it is in the
h − 1 level of the totalh levels), is calculated asih−1 = selectbi(Bh−1, i) = 7, wherebi is 0
if the child node comes from the left half or 1 otherwise, andBh−1 is the bitmap at levelh − 1
for such path. This process is repeated until the top level is reached, in which the final operation
i1 = selectbi2 (B2, i2) returns the asked position.
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Figure 2.6:Rank/select /access operations over an example of a Wavelet TreeS.

Figure2.6illustrates the resolution ofselectp(S, 1), i.e., we ask for the position of the first symbol
“p”. As explained, we proceed bottom-up, starting for the second positionin p leaves. Note that
this belongs to the first half (0-bits) of the split. Thus, the position in the fathernode (third level)
is i3 = select0(B3, 1) = 5. That is, we are positioned in the fifth position of the third level. As
we are now in the second half of the vocabulary (1-bits), we climb up to the second level to a
positioni2 = select1(B2, 5) = 7. Finally, we climb again throw the second half and hence the
final position in the first top level isi1 = select1(B1, 7) = 13.

• rank a(S, i) - number of occurrences ofa in S[1, i]: We traverse the tree from top to bottom,
delimiting at each level the range of positions we are interested in. We start descending to the
second level by the appropriate branchb1 given the symbola. As we have to discount those
symbols up to positioni (we rename iti1) that have gone to the opposite branch, the novel position
in the second level isi2 = rankb1(B1, i1). We continue descending in the three until the last level
of a leaves is reached. The position at leaves is exactly the number ofa-symbols up to the original
positioni.

Figure2.6shows the resolution ofranke(S, 4), i.e., we ask for the number ofe-symbols up to the
fourth position. Given thate belongs to the first half of the vocabulary, we descend to the second
level by a 0-bit branch, and the maximum position at this second level isi2 = rank0(B1, 4) = 2.
Again, we descend to the third level by a 0-bit branch, to a positioni3 = rank0(B2, 2) = 2.
Finally, the last descent is by a 1-bit branch and thus the final number of symbols is given by
rank1(B3, 2) = 1. That is, only 1e-symbol appears up to the fourth original position.

Practical implementations usen⌈logσ⌉+ o(n)logσ bits (Navarro, 2013). Note thatn⌈logσ⌉ counts
the total bits of the bitmaps (there are⌈logσ⌉ levels with at mostn bits per level) whereaso(n)logσ)
holds the overhead to support intermediateranks andselects in constant time.

As the previous extra space may be a problem on large alphabets (Navarro, 2013), a variant for the
representation of levels has been proposed (Golynski, Grossi, Gupta, Raman, & Rao, 2007), hereinafter
referred to asGMR. This representation draws a matrixT of σ×n bits, i.e., one row per symbol and one
column per position in the sequenceS. A 1-bit in the cellT [k, i] indicates that the symbol represented
in the rowk occurs in the positioni of the sequenceS. Then, a bitmapA of sizeσ · n indexes this
table by rows. Figure2.7 illustrates the construction of aGMRstructure over the string sequence of the
previous example. One can easily see thatA is highly compressible. Thus,A is logically split in blocks
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Figure 2.7: Example of aGMRconstruction.

of sizeσ: an additional arrayB stores the cardinality (number of 1-bits) in each block, in unary code.
Note that the arrayB replacesA which is not stored. Two additional structures are then required: the
first sequence lists, for each block, all the positions of each symbol in theblock in alphabetical order.
In fact, this is represented as a permutation,π, of the positions in the block1, · · · , σ, as can be seen in
Figure2.7. The second sequence is a bitmap,X , storing the cardinality of each symbol in the block, in
unary. All this uses up tonlogσ + o(nlogσ) bits and it provides the basis to performaccess , rank
andselect with efficient performance. Without going into details, the resolution of theseoperations
is based on first locating the corresponding block inB (restricted operations over each block are used),
and then browsing the block with the structuresπ andX . Finally, two variants are provided depending
on the permutation encoding. On the one hand, one can supportaccess andrank in O(loglogσ), and
select in O(1). On the other hand,access can be revolved inO(1) at the cost ofO(loglogσ) in
select , andO(loglogσ · logloglogσ) in rank . More details can be found inGolynski et al.(2007).

2.4.3 Basic Compression Notions

Succinct data structures share the basis of traditional compression whichaims at representing an original
message in a reduced space. This section summarizes the classification of compression techniques and
different measures of their efficiency.

At the most general level, one could classify compression techniques inlosslessor lossy methods. In
the first case, the decompressor returns an exact copy of the originalmessage. In the latter, it may obtain
the message with some differences. Text compression, for instance, requires to recover the exact original
text, whereas video streaming may afford some losses. Both techniques arethen classified according to
the codification of the message and the type of data modeling (Mart́ınez-Prieto, 2010; Salomon, 2007a).
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Codification. Two compression families are traditionally defined (Bell, Cleary, & Witten, 1990):

• Dictionary techniquesfirst build a dictionary of phrases which, in this context, are any sequence
of consecutive symbols in the message. Next, compression is achieved by substituting the occur-
rence of phrases in the message by an index to the entry in the dictionary. Ziv-Lempel algorithms
(Ziv & Lempel, 1977, 1978) are prototypical examples of dictionary-based compression.

• Statistical techniquesare based on estimating the probability of a symbol, and to use shorter
codes for the most frequent ones. Huffman codes (Huffman, 1952) and arithmetic codifications
(Abramson, 1963; Pasco, 1976; Rissanen, 1976) are common representatives of these methods.

Note that estimating the probability of symbols leverages on obtaining a feasible model of the mes-
sage. In statistical compression, a model defines what is a symbol in a message, and some specific
properties (such as the number of occurrences), required for the subsequent codification. Thus, a statisti-
cal method is typically seen as a “modeling + encoding” process. In the following, we classify statistical
compression according to different models.

Modeling. The modeling phase can be one of the following schemes.

• Static modelstake a fixed probability distribution, known by the compressor and decompressor be-
forehand. These probabilities do not depend on the current message,hence it can lose compression
capabilities if the real probabilities strongly differs from the model. They are, though, a suitable
option in several scenarios due to its simplicity and processing speed. General image compression
(such as JPEG) is a widespread field of application.

• Semi-static models, in contrast, build a specific model for each message. Compressors perform a
two-pass process. In the first pass over the whole message, statistics are extracted. Once the model
with frequencies is built, it remains static in the second pass, where the message is encoded. Thus,
a symbol is always encoded with the same code. The model is provided in a header which is first
processed by the decompressor prior to the message. This is the model followed by the Huffman
coding (Huffman, 1952).

• Dynamic models, also calledadaptivemodels, also construct a specific model for each message,
but they perform on a single pass. They start with an initial configuration and progressively update
the model for each symbol read. In turn, the decompressor only receives the compressed text,
as the model is totally dynamic. Note that symbol frequencies are varying whilereading the
message, and hence a symbol may be represented with different codes inthe resultant compressed
message. Thus, the decompressor has to replicate the model as decompression progresses, in the
same way compression did. Dynamic models are flexible and adapt to the distribution at each state
of processing, optimizing the bits used to codify each symbol. In contrast, thecontinuous updating
adds an overload time. Ziv-Lempel algorithms (Ziv & Lempel, 1977, 1978), arithmetic encoding
(Abramson, 1963) and other text compressors, such as PPM (Cleary & Witten, 1984), are good
examples of these models.

In any case, the efficiency of compression techniques can be measuredin terms of time and space.
In the first case, the complexities of compression and decompression denote the behavior of a technique.
Empirical performance, then, is measured as compression and decompression times (seconds, millisec-
onds, etc.). In turn, the space effectiveness evaluates the compressive capacity of a given technique.
Let us present some traditional metrics (a complete description can be foundin Salomon(2007a)). We
assume an input message ofn bytes and its compressed counterpart ofc bytes. Consider also that the
original alphabet can be represented withb bits per original symbol.
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• Compression ratio: it represents the effectiveness computed as:

(
c

n
)

✞

✝

☎

✆2.1

A value of0.7 means that the compressed data occupies 70% of the original size.

• Bit per symbol (BPS): it measures the mean number of bits used in compression to represent each
original symbol, as follows:

(b×
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n
)
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Part I

Characterizing the RDF Structure





If the poem’s score for perfection is plot-
ted on the horizontal of a graph and its
importance is plotted on the vertical, then
calculating the total area of the poem
yields the measure of its greatness. A
sonnet by Byron might score high on the
vertical but only average on the horizon-
tal.

Dead Poets Society (1989)

3
Introduction

This first part of the thesis studies the underlying RDF structure essence. We first motivate this study
(§3.1), based in the fact that few works address real-world RDF characterization. Nevertheless, we review
these and other related works (§3.2, §3.3and §3.4), prior to our proposal in the next chapter.

3.1 Motivation

Throughout the thesis we focus on an efficient RDF representation addressing the most important scala-
bility issues in the current Web of Data. To do so, one should study the realstructure of RDF datasets,
in order to take advantage of some of its features. That is a common methodologywhen modeling data
structures aimed at solving real problems. However, despite RDF is being widely used, its structural
properties are barely known and exploited in real-world deployments. Thiscould be seen as a natural
consequence of its adoption. First, plain RDF representations do not even pose the question as metadata
was confined to small pieces of descriptions (see background in §2.1.1). Later, they evolved to add some
grouping and features to “abbreviate” constructions, yet with the uniqueintuition of subject repetition (a
review of current RDF serializations is presented in §6.2.1). Besides, many RDF stores serving SPARQL
were developed on top of well-known relational schemas and indexes, such as B-trees. In such cases,
one could argue that the necessary reflexion of the underlying model has been superficially addressed.

The objective of this chapter is to present the sparingly number of studies addressing real-world
RDF structural characterization. In the next chapter, we will establish a minimum set of metrics for our
purposes, and develop its empirical study. Note, though, that the study ofthe RDF structure has to deal
with two important and correlated aspects:

• Part-whole relationship. This term distinguishes the study of the structure of a given RDF dataset
or the consideration of the whole Web of Data as a network of networks (Y. Gil & Groth, 2011).

• Schema-instance separation. URIs in RDF provides a global naming scheme for resources. As
stated, the semantics can be completed through languages such as RDFS (Brickley, 2004) and
OWL (McGuinness & Van Harmelen, 2004). They provide schema-level information of classes,
properties and relationships. These (lightweight) ontologies are used to beencoded together with
RDF, hence the study of the structure and topology can consider the ontology structure indepen-
dently of the instantiations (the pure RDF data).

For our purposes, we are actually interested in the structure of a unique RDF dataset, which can (or
not) include the schema. This chapter also reviews, though, some specific works at schema level as well
as some characterizations of the whole Web of Data in order to have a wider perspective of the problem.

3.2 Power Law Distributions. Scale-free Network

One of the first conclusions of initial RDF studies was the presence of power law distributions. A power
law is a function with scale invariance, which can be drawn as a line in the log-log scale with a slope



32 3. Introduction

equal to a scaling exponent. For example, lettinga, c, β be constants:

f(x) = ax−β, thusf(cx) ∝ f(x)

As can be seen, power law distributions arescale-free: multiplying by a constant,f(x) remains
proportional tox−β.

Empirical observations of power law distributions in real networks,e.g. the WWW, have induced
a new interest in fat-tailed degree distribution (Dorogovtsev & Mendes, 2003). Fat-tailed and scale-
free structures are the Internet (Faloutsos, Faloutsos, & Faloutsos, 1999; Govindan & Tangmunarunkit,
2000), WWW (Albert, Jeong, & Barabasi, 1999), scientific citation nets (Redner, 1998) and nets of
protein-protein interactions (Jeong, Mason, Barabasi, & Oltvai, 2001).

RDF graphs are actually not random graphs. In those,P (k), the probability that a vertex has a degree
k, does not follow a Poisson distribution. RDF graphs, instead, follow power law distributions in most
of their metrics, as seen throughout the following observations.

Observations. Although power law distribution validation could be methodologically arguable1, in
practice it is assumed as a common characteristic of RDF real-world data.Ding and Finin(2006) crawled
more than300 million triples from1.7 million documents2, founding power law distribution in most of
the considered metrics:

• The number of documents RDF documents per website.

• The number of triples per RDF document. They stated that most resourcesare described with
two to ten triples. Whereas few triples are not very useful (a triple carrieson little information),
complex descriptions can be reduced by other means (e.g. pointing to a resource which groups
other information).

• The use of instances of the defined classes and properties. In other words, more than the 97% of
classes and 70% of properties are defined but never used.

Bachlechner and Strang(2007) collected more than1.6 million Fiend-Of-a-Friend (FOAF) docu-
ments. Although they focus on demonstrating small-world phenomenon as shown in Section3.3, they
also addressed degree distribution. Note that the number of triples related toa subject is calledout-degree
and the number of triples related to a object is calledin-degree. They study different communities inside
FOAF, reaching similar conclusions; the cumulative in- and out-degree distributions for each community,
as well as the entire network, follow power law distributions. For the entire network, the linear regression
obtains an exponent ofβ ≈ −2.1 for both in- and out- distributions. Average degree is9.56 whereas the
maximum is7, 739, reflecting its skewed distribution.

In a more recent work,Ge, Chen, Hu, and Qu(2010) point out the absence of a macrostudy on the
instance level in the Web of Data. In order to carry out this study, they first define the notion ofObject
Link Graph. This considers an undirected graph of related URI instances, either directly or through
blank nodes paths (blank nodes are then removed3 as well as literals). This graph holds also a power law
distribution. This test was performed against110.5M objects recollected from the Falcon search engine
(Cheng, Ge, & Qu, 2008). The slope of the distribution was fitted to2.84, a little larger than the ones of
the traditional Web (βin ≈ −2.1 andβout ≈ −2.7 (Broder et al., 2000)).

The same work considers domain-specific structures for two well-known datasets such as DBpedia
and Bio2RDF4. Similar conclusions are obtained, with power law presence (slopes between 2.52−2.59).

1Some authors are reluctant to ratify a power law following the criticism ofClauset, Shalizi, and Newman(2009).
2Ding and Finin(2006) name Semantic Web documents (SWDs) to each pure RDF graph or Web page with embedded RDF

graphs. We refer this simply as RDF documents.
3Note that blank nodes cannot be referred in other RDF graph as being the same node.
4http://bio2rdf.org/
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Power law at the schema level. As stated,Ding and Finin(2006) also studied the schema level in their
Web crawl, stating that 97% of classes and 70% of properties are never used.

Subsequent studies examined power law presence in more depth.Theoharis et al.(2008) studied
the power law presence for250 Semantic Web schemas, RDFS and OWL. They found power law dis-
tributions for about58.6% of the schemas, for total-degree (sum of in- and out- degree) as well asfor
out-degrees (property domains) and in-degrees (property ranges), although the corresponding percent-
ages are lower. Similar conclusions were inferred for the Discrete RandomVariable (DRV) and the
Cumulative Density Function (CDF) distributions.

Later, R. Gil and Garćıa (2004) confirmed the CFD fitting to power law. They performed an eval-
uation over282 extracted ontologies (near1.5M triples) from the DAML Ontology Library5. While
Theohariset al gave a range of [0.65, 2.05] for the exponent of total degree distribution, Gil and Garcı́a
find a slope of1.186, i.e., centered on the previous range.Zhang(2008) obtained a slightly greater slope
for two biomedical ontologies (FullGalen and NCI-Ontology), ranging in2.12− 2.47.

One of the most recent works in this areaHu, Chen, Zhang, and Qu(2011) also confirm this distribu-
tion by recollecting4, 433 ontologies in Falcons. They obtain a power law distribution for total degree
with an exponent of1.34.

Both for instance and schema level, (Guns, 2008) claims for quantifying the skewed degree distribu-
tion in more detail. This work proposes the use of the Lorenz curve (Lorenz, 1905), i.e., the representa-
tion of the relative amountsai = xi/

∑
x for i in 1..N being N the number of different elements in the

distributionx. They axis represents the cumulative fractiona1 + a2 + · · ·+ ai. The diagonal represents
the case of perfect evenness (each case has the same amount). In-degree distribution is farther from the
diagonal than the out distribution and thus it has more unevennesses.

3.3 Small-world Phenomenon

A graph is in fact a small world when it has short global separations,i.e., the average minimum distance
between nodes,L, is reduced (Watts, 1999). It is also associated with high local clustering (bigger than a
random graph). The clustering coefficient,γ, for a vertexv, measures the probability that two neighbors
of v are also neighbors in common. It is a measure of cliquishness of a network.

That is, formally defined, a small-wold graph havingn vertexes with an averagek degree and a
characteristic pathL when,

L ≈ Lrandom, butγrandom << γ, whereγrandom ≈ k/n.

The small-world phenomenon has been popularly accepted within the networks of friends, stating
that two random citizens are connected by only six degrees (intermediate nodes) of difference (Milgram,
1967). However, the consideration of the Semantic Web as a small world is still under discussion.

In practice, small-world networks have several important characteristics. Cliques (subgraphs in
which all the possible connections are present) are highly represented,and most pairs of nodes will
be connected by at least one short path (Bachlechner & Strang, 2007). This type of networks are also
associated with a large presence ofhubs, intermediate nodes with many associations,i.e., high degree,
and thus leading to power law distributions. These nodes are used to navigate through the network in
fewer steps. They are good candidates for feeding them as seeds in thesearch engine (Ge et al., 2010).

In addition, as most nodes have small degree, small-world networks remain fault tolerant of ran-
dom failures. However, major failures in the hubs may turn the graph isolated(unconnected). This is
even more dangerous if the Web of Data is queried by automated agents with fewer recovering power.
Addressing this issue,Guéret, Groth, Van Harmelen, and Schlobach(2010) propose metrics to evaluate
robustness and to recommend optimizations,i.e., nodes to add at the expense of fewer costs.

5http://www.daml.org/ontologies/
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Once we have highlighted the most important works observing power law distributions6, we review
the most important studies on clustering and path length measures.

Clustering coefficient. Bachlechner and Strang(2007) questioned the small-world essence of the Se-
mantic Web. As we stated, they collected more than1.6M FOAF documents. They split the graph attend-
ing to FOAF communities, such asTribeNetor LiveJournal, evaluating the clustering coefficient in each
community. They do find high coefficients in all subgraphs, for instance0.168 versusγrandom = 0.00024
for LiveJournal, greater than the WWW factor of0.108.

Later,R. Gil and Garćıa (2004) performed an evaluation at schema level. They studied282 ontolo-
gies from the DAML Ontology Library. They computed the 1-neighborhoodclustering coefficient for
a directed graph and then they multiplied the mean value by two (in order to consider the graph as an
undirected graph). The resulting clustering coefficient was0.092, much greater than the corresponding
γrandom = 0.0000895 for this case. The ontology clustering coefficient is slightly lesser than the WWW
factor of0.108 (Adamic, 1999).

Path lengths. Previous aforementioned works have also studied path lengths in the graph. Guns(2008),
with a small corpus of instances, established the longest shortest path (diameter) in11 whereas the av-
erage was only4.12. The directed diameter of the Web is at least 28 (Broder et al., 2000) (for the
connected component).Ge et al.(2010), with a bigger corpus, approximate an effective length to11.53,
which is still small regarding the size of the graph, but almost the double than the 6.83 for the tradi-
tional WWW7(Broder et al., 2000). Bachlechner and Strang(2007) also found a value of6.26 for its
consideration of semantic network, near the6.84 random value in theory.

Again R. Gil and Garćıa (2004), at the schema level, found5.07 as the average path length, slightly
lesser than the6.83 for WWW. Cheng and Qu(2008) form a dependency graph of ontology terms and
found also power law distributions and an average length path of10.5. The recent work byHu et al.
(2011) studies the connectivity of the graph formed by matching ontologies. The clustering coefficient
was0.60 for classes and0.72 for properties, whereas the average distance is19.28 and8.81 respectively.

3.4 Other Studies

The presented studies have shown that there exist several empirical studies working with different cor-
pora at different time and different levels. All them, whether focused onthe ontology or in a concrete
instantiation, verify power law presence in graph degrees (essentially in-and out- degrees) and small-
world criteria,L ≈ Lrandom andγrandom << γ.

Few studies leave this line of research and go into details. For instance,what is the frequency of
multivalued pairs (subject, predicate)? How many subjects act also as objects in other relations? Do
typed subjects present different features?None of these questions is addressed by previous studies.

Hogan et al.’s work (Hogan, 2011; Hogan, Harth, Passant, Decker, & Polleres, 2010) confirms
many of those observations but additionally analyzes popularity in terms of interlinkage and publishing
quality of RDF online, particularly focusing on compliance with Linked Data principles. Among statis-
tical analysis, two relevant works, byHogan, Polleres, Umbrich, and Zimmermann(2010) and the most
recent byHogan, Zimmermann, Umbrich, Polleres, and Decker(2012), define metrics such as cardinali-
ties for (subject,predicate) and (predicate,object) pairs. These ran parallel to our research on RDF struc-
ture (Ferńandez, Gutíerrez, & Mart́ınez-Prieto, 2010; Ferńandez, Mart́ınez-Prieto, & Gutíerrez, 2010),
hence some of these metrics are somehow considered in our proposal, fullydetailed in the next chapter.

6power law presence is already an indicator of small-world graphs (Bachlechner & Strang, 2007).
7Considering the direction of links, average shortest-directed-path lengthbetween pages is equal to 16.



You still don’t know what you’re dealing
with, do you? Perfect organism. Its struc-
tural perfection is matched only by its
hostility.

Alien (1979) 4
Our proposal: Metrics for RDF Graphs

In this chapter we present a theoretical and empirical study on real-worldRDF structure and properties,
in order to determine common features and characterize real-world RDF data. As we motivate, our
purpose is not to serve as a one-size-fits-all set of metrics, but to provide a simple set of useful metrics, a
handbook toolkit when developing RDF data structures such as the ones we present in the next chapters.
We also expect that some of these metrics and observations can provide insights to develop better dataset
designs, other efficient RDF data structures, indexes and compressiontechniques.

4.1 Proposed Metrics

First of all, we note that RDF interpretation as a graph can be misleading. As shown in Definition1
and2, an RDF dataset can be represented as an edge-labeled graph. This conception is useful for some
purposes such as modeling or visualization. However, it can not be considered a graph in the standard
sense because the predicates can again appear as nodes of other edges (J. Hayes & Gutíerrez, 2004).
Thus, the application of well-established methods from graph theory presents problems. For instance,
traditional graph metrics must be reconsidered as well.

In the following, we provide specific parameters to characterize RDF data.We follow Perez et al.
(2009) andGutiérrez et al.(2011) for graph notation, with no distinction between URIs, Blank nodes
and Literals1.

4.1.1 Subject and Object Degrees

Previous studies (§3.2) focused on showing the presence of power-law distributions on subjects and ob-
jects. The presence of a skewed structure is a useful indicator as it points that some level of compression
can be achieved (Salomon, 2007a). Thanks to the aforementioned concepts of succinct data structures,
if compression can be achieved, there should exist a data structure with a good tradeoff between space
and time performance. However, the design of these structures requiresadditional details, which is our
purpose with the following metrics characterizing the concrete degree distribution in subject and object.
Few indicators are sufficient, with simplicity in mind.

For the sake of clarity, we first summarize the purpose of each category prior to the formal definition:

• out- and in- degrees: to known the cardinality of subjects and objects. A subject with a high
out-degree is a so-called“star” (a resource described in depth). An object with a high in-degree
used to be a repeated final value or a hub to further information.

• partial out- and in- degrees: to describe the presence and cardinality of the multivalued pairs
(subject,predicate)and (object,predicate). That is to say, they quantify the number of objects
related to the same(subject,predicate)and the number of subjects for a given(object,predicate).

1Naming of blank nodes can matter in some treatments,i.e., our serialization is notcanonical. Canonical representations of
RDF are, due to the structure of blank nodes, tricky to achieve in general(Carroll, 2003).
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• labeled out- and in- degrees: to know the number of different predicates related to subjects
and objects. It is a mean showing if subjects are described with many or few predicates and,
respectively, if objects are used with one or more predicates.

• direct out- and in- degrees: to count direct relationships between subjects and objects, thus
minimizing the effect of the labeling. They consider to disregard labels and to count the number of
objects related to a subject and, respectively, the corresponding number of subjects for each object.

Let G be an RDF graph, andSG, PG, OG be the sets of subjects, predicates and objects inG. As-
sume generics ∈ SG, p ∈ PG ando ∈ OG. Let us also denoteZG andXG the set of valid pairs
(subject,predicate)and(object,predicate)respectively. That is,ZG = {(s, p) | ∃z : (s, p, z) ∈ G}, and
XG = {(o, p) | ∃x : (x, p, o) ∈ G}.

Definition 7 (out-degree) Theout-degreeof s, denoteddeg−(s), is defined as the number of triples in
G in which s occurs as subject. Formally,deg−(s) = |{(s, y, z) | (s, y, z) ∈ G}|. Themaximum
out-degree, deg−(G) = maxs∈SG

(deg−(s)), and themean out-degree, deg−(G) = 1
|SG|Σs∈SG

deg−(s),
are defined as the maximum and mean out-degrees of all subjects inSG.

Definition 8 (partial out-degree) The partial out-degreeof s with respect top, denoteddeg−−(s, p),
is defined as the number of triples ofG in which s occurs as subject andp as predicate. Formally,
deg−−(s, p) = |{(s, p, z) | (s, p, z) ∈ G}|. For the whole graphG, themaximum partial out-degree,
deg−−(G) = max(s,p)∈ZG

(deg−−(s, p)), and respectively themean partial out-degreeof graphG,

deg−−(G) = 1
|ZG|Σ(s,p)∈ZG

deg−−(s, p), are defined as the maximum (resp. the mean) partial out-
degrees of all pairs of subject-predicates ofG.

Definition 9 (labeled out-degree)The labeled out-degreeof s, deg−L (s), is defined as the number of
different predicates (labels) ofG with which s is related as a subject in a triple ofG. Formally,
deg−L (s) = |{p | ∃z ∈ OG, (s, p, z) ∈ G}|. Themaximum labeled out-degreeof the whole graph,
deg−L (G) = maxs∈SG

(deg−L (s)), and its correspondingmean labeled out-degreeof the whole graph,

deg−L (G) = 1
|SG|Σs∈SG

deg−L (s) of G, are defined as the maximum (resp. the mean) labeled out-degrees
of all subjects ofG.

Definition 10 (direct out-degree) Thedirect out-degreeof s, denoteddeg−D(s), is defined as the number
of different objects ofG with whichs is related as a subject in a triple of graphG. Formally,deg−D(s) =
|{o | ∃y ∈ PG, (s, y, o) ∈ G}|. For the whole graphG, themaximum direct out-degree, deg−D(G) =

maxs∈SG
(deg−D(s)), and its correspondingmean direct out-degreevalue for graphG, deg−D(G) =

1
|SG|Σs∈SG

deg−D(s), are defined as the maximum (resp. the mean) direct out-degrees of all subjects ofG.

It is worth noting that, given the definition, thedirect out-degreeof a subjects can only differ from
its out-degreewhens is related to, at least, an objecto by means of two or more different predicates.
In other words, if every(subject,object)pair is only related with one predicate, then theout-degreesare
equal todirect out-degrees.

Symmetrically, we define thein-degreesfor objects in a formal way, as follows:

Definition 11 (in-degree) Thein-degreeof o, denoteddeg+(o), is defined as the number of triples inG
in whicho occurs as object. Formally,deg+(o) = |{(x, y, o) | (x, y, o) ∈ G}|. Themaximum in-degree,
deg+(G) = maxo∈OG

(deg+(o)), and themean in-degree, deg+(G) = 1
|OG|Σo∈OG

deg+(o), are defined
as the maximum and mean in-degrees of all objects inOG.
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Definition 12 (partial in-degree) Thepartial in-degreeof o with respect top, denoteddeg++(o, p), is
defined as the number of triples ofG in which o occurs as object andp as a predicate. Formally,
deg++(o, p) = |{(x, p, o) | (x, p, o) ∈ G}|. For the whole graphG, themaximum partial in-degree,
deg++(G) = max(o,p)∈XG

(deg++(o, p)), and respectively themean partial in-degreeof graph G,

deg++(G) = 1
|XG|Σ(o,p)∈XG

deg++(o, p), are defined as the maximum (resp. the mean) partial in-
degrees of all pairs of object-predicates ofG.

Definition 13 (labeled in-degree)Thelabeled in-degreeofo, denoteddeg+L (o), is defined as the number
of different predicates (labels) ofG with whicho is related as object in a triple ofG.Formally,deg+L (o) =
|{p | ∃x ∈ SG, (x, p, o) ∈ G}|. Themaximum labeled in-degreeof the whole graph,deg+L (G) =

maxo∈OG
(deg+L (o)), and its correspondingmean labeled out-degreevalue for graphG, deg+L (G) =

1
|OG|Σo∈OG

deg+L (o), are defined as the maximum (resp. the mean) labeled in-degrees of allobjects ofG.

Definition 14 (direct in-degree) The direct in-degreeof o, denoteddeg+D(o), is defined as the num-
ber of different subjects ofG with which o is related as an object in a triple of graphG. Formally,
deg+D(o) = |{s | ∃y ∈ PG, (s, y, o) ∈ G}|. For the whole graphG, the maximum direct in-degree,
deg+D(G) = maxo∈OG

(deg+D(o)), and its correspondingmean direct in-degreevalue for graphG,

deg+D(G) = 1
|OG|Σo∈OG

deg+D(o), are defined as the maximum (resp. the mean) direct in-degrees of
all objects ofG.

As previously stated, it remains true that if every(subject,object)pair is related only with one predi-
cate, then thein-degreesare equal todirect in-degrees.

Note thatcardinality, average cardinality, inverse cardinalityand average inverse cardinalityby
Hogan, Polleres, et al.(2010) andHogan et al.(2012) are equivalent to partial out-degree, average partial
out-degree, partial in-degree and average partial in-degree.

Example and potential uses. Figure4.1illustrates these properties in a small example graph which is
inspired by the previous example in Chapter2 (Figure2.1).

As stated, the subject out-degree indicates the cardinality of a subject node. In the example, the
nodehttp://example.org/Javierhas a significant out-degree (it is related to four nodes, above average)
and hence it conforms a star-shaped node. In practice, this type of nodes can have hundreds, or even
thousands, of labeled edges.

When designing an RDF data structure,e.g.an index, it is potentially interesting to know the presence
or absence of these nodes, but also the distribution of this high out-degrees. For instance, if a real-world
RDF graph has a maximum out-degree close to1, it stands for a very simple graph whose access may be
optimized. In contrast, a skewed distribution of high out-degrees could require a more refined structure
than the previous case.

Thus, out-degree distribution together with maximum and mean values constitutesa fair character-
ization of these types of nodes in a given graph. Similar reasoning can be made for object in-degree,
where the node is not a source, but is a common destination object node.

Regarding partial and labeled out- and in- degrees, they provide information on the different types of
edges coming out from (or going into) a node. Partial degree provides ametric of the multi evaluation of
pairs (subject-predicate or predicate-object), while labeled degree refines the nodes categorization. For
instance, in the example,http://example.org/Valladolidis a common object as three subjects are related
to it, hence its in-degree is three. However, the labeled in-degree is “two” as it receives edges from two
labelsex:birthdayandex:areaOfWork. Subsequently, its partial in-degree is two, denoting that the pair
(http://example.org/Valladolid, ex:areaOfWork)is multivalued.

As we state in the forthcoming evaluation, labeled out-degree verifies that few predicates are related
to the same subject or object. This could serve RDF structures to optimize the representation of the list
of predicates related to a given subject or object.
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<http://example.org/Javier> <http://example.org/Valladolid> 
ex:birthPlace 

“jfergar@infor.uva.es” 

“Valladolid”@es 

foaf:name 

:birthPlace

<http://example.org/Researcher> 

rdf:type 

ex:bex:b

rdf:type

foaf:mbox 

<http://example.org/Santiago> 

ex:areaOfWork 

<http://example.org/Pablo> 

fWork ex:ex:areaOfWork 

 

“jfergar@example.org” 

e.org/Javier>

@example.org”

foaf:mbox 

SUBJECT
OUT-DEGREE

Max

total deg−(G) 4.00

OBJECT
IN-DEGREE

Max

total deg+(G) 3.00
partial deg−−(G) 2.00 partial deg++(G) 2.00
labeled deg−L (G) 3.00 labeled deg+L (G) 2.00
direct deg−D(G) 4.00 direct deg+D(G) 3.00

Mean

total deg−(G) 1.75

Mean

total deg+(G) 1.40
partial deg−−(G) 1.17 partial deg++(G) 1.17

labeled deg−L (G) 1.50 labeled deg+L (G) 1.20

direct deg−D(G) 1.75 direct deg+D(G) 1.40

PREDICATE
DEGREE

Max
total degP (G) 2.00

RATIOS

αs−o 0.13
out deg−P (G) 2.00
in deg+P (G) 2.00

αs−p 0.00

Mean
total degP (G) 1.40

out deg−P (G) 1.20
αp−o 0.00

in deg+P (G) 1.20

Subject-Object degrees(restricted to<http://example.org/Valladolid>)

SUBJECT
OUT-DEGREE
(restricted to

common s-o)

Max

total deg−(G)|s−o 1

OBJECT
IN-DEGREE

Max

total deg+(G)|s−o 3
partial deg−−(G)|s−o 1 partial deg++(G)|s−o 2
labeled deg−L (G)|s−o 1 labeled deg+L (G)|s−o 2
direct deg−D(G)|s−o 1 direct deg+D(G)|s−o 3

Mean

total deg−(G)|s−o 1

Mean

total deg+(G)|s−o 3
partial deg−−(G)|s−o 1 partial deg++(G)|s−o 1.5

labeled deg−L (G)|s−o 1 labeled deg+L (G)|s−o 2

direct deg−D(G)|s−o 1 direct deg+D(G)|s−o 3

Typed subjects(restricted to<http://example.org/Javier>) and classes(<http://example.org/Researcher>)

# Classes(|CG|)= 1

SUBJECT
OUT-DEGREE
(restricted to

typed S)

Max

total deg−(G)|s−o 4.00
partial deg−−(G)|s−o 2.00

# Typed Subjects(|SC
G |)= 1

labeled deg−L (G)|s−o 3.00
direct deg−D(G)|s−o 4.00

Ratio( |S
C

G
|

|SG|
)= 25%

Mean

total deg−(G)|s−o 4.00
partial deg−−(G)|s−o 1.33

Max. lists per class(degLPC(G))=1
labeled deg−L (G)|s−o 3.00

direct deg−D(G)|s−o 4.00

Figure 4.1: Summary of structural metrics describing a small RDF graph example.

Finally, direct out- and in-degrees complete the degree metrics for subjectand objects. They indicate
the cardinality of binary relations between subjects and objects disregarding the labels. In the example,
direct degrees throw similar results as the out- and in-degrees, as every(subject,object)pair is related
only with one predicate
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Direct degrees could serve when representing RDF as a classical adjacency matrix. For instance, let
us suppose that one builds a matrix in which rows represent subjects and columns represent objects. A
marked cell, then, stands for a triple having the corresponding subject and object. The cell could include
the predicate labels of the relationship. In such scenario, direct out-degrees model the cardinality of
rows, whereas direct in-degrees describe the cardinality in columns. Inturn, if all the cells hold a unique
predicate, the out- and in- degrees of every subject and object are equivalent to the direct degrees.

4.1.2 Predicate Degrees

Despite the fact that important RDF characteristics can be extracted from the previous metrics (or a com-
bination of them), one could argue that some RDF indexing techniques need further details. For instance
the family of indexing techniques following vertical partitioning (Abadi, Adam, Madden, & Hollenbach,
2007) builds indexes per predicate (see a review in §6.2.1). Typically, these techniques index all the
(subject,object)pairs for each predicate. In such scenario, the number of(subject,object)pairs for each
predicate would be a good indicator of the size and distribution of these predicate partitions.

With this objective in mind, we detail predicate degrees following the same preceding principles of
simplicity and use in other scenarios. The purpose of the metrics is summarized as follows:

• predicate degrees:to know the cardinality of predicates. In contrast to the relational model in
which every row of a table is described with the same number of attributes (columns), the flexibility
of RDF yields to a potentially high variability in the number of predicates describing each subject.
Thus this metric is an important clue of the most important, or better said, most used, predicates in
an RDF dataset.

• predicate in- degrees:to describe the number of subjects related to given predicates. It is used
to refine the previous metric, specially useful when there are multivalued pairs (subject,predicate)
heavily loaded which influence the previous metric.

• predicate out- degrees:to know the number of different objects related to given predicates, also
used to describe the predicate degree in detail.

We make use of the aforementioned notation, beingG an RDF graph, withSG, PG, OG the sets of
subjects, predicates and objects inG and generics ∈ SG, p ∈ PG ando ∈ OG.

Definition 15 (predicate degree)Thepredicate degreeof p, denoteddegP (p), is defined as the num-
ber of triples ofG in which p occurs as predicate. Formally,degP (p) = |{(x, p, z) | (x, p, z) ∈
G}|. Themaximum predicate degree, degP (G) = maxp∈PG

(degP (p)), and themean predicate de-
gree, degP (G) = 1

|PG|Σp∈PG
degP (p), are defined as the maximum and mean predicate degrees of all

predicates inPG.

Definition 16 (predicate in-degree)Thepredicate in-degreeof p, denoteddeg+P (p), is defined as the
number of different subjects ofG with which p is related as a predicate in a triple ofG. Formally,
deg+P (p) = |{s | ∃z ∈ OG, (s, p, z) ∈ G}|. For the whole graph, themaximum predicate in-degree,
deg+P (G) = maxp∈PG

(deg+P (p)), and its correspondingmean predicate degreevalue for graphG,

deg+P (G) = 1
|PG|Σp∈PG

deg+P (p), are defined as the maximum and mean predicate in-degrees of all
predicates ofG.

Definition 17 (predicate out-degree)Thepredicate out-degreeof p, denoteddeg−P (p), is defined as the
number of different objects ofG with which p is related as a predicate in a triple ofG. Formally,
deg−P (p) = |{o | ∃x ∈ SG, (x, p, o) ∈ G}|. For the whole graph, themaximum predicate out-degree,
deg−P (G) = maxp∈PG

(deg−P (p)), and its correspondingmean predicate out-degreevalue for graphG,

deg−P (G) = 1
|PG|Σp∈PG

deg−P (p), are defined as the maximum and mean predicate out-degrees of all
predicates inG.
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Explanation and potential uses. As stated, the predicate degree constitutes an essential metric when
a (subject,object)or (object,subject)is built for each predicate, such as the vertical partitioning tech-
nique (Abadi et al., 2007).

The predicate degree reflects the number of entries for such a predicatetable. In turn, predicate in-
degree and out-degree refine this metric by providing a characterization of the domain and range sizes for
each predicate. For instance, predicates such asrdf:typehave a limited range (low predicate out-degree)
but a great domain (high predicate in-degree).

For instance, if a predicate returns a high degree (it appears in many triples) but a low out-degree,
it reveals that few values are repeated along descriptions. For instance, if we are describing individual
records, this is the case of discrete values for predicates such as “CityState” or “Postalcode” in which
a dozen of similar values could be repeated in thousands or millions of records.

In- and -out degree may also serve in other scenarios when individualsubjects or objects for a given
predicate must be indexed.

Figure4.1 illustrates these metrics. Despite the limited size of the example, it shows the variablefig-
ures of predicate degrees. For instance, the predicatefoaf:nameis present only once whereasfoaf:mbox
andex:areaOfWorkare twice. In this latter, its predicate in-degree is two (denoting two differentsub-
jects) yet the out-degree is only one (all two subjects points to the same object). This example shows that
predicate in- and out- degree could roughly classify predicate usage asfollows:

• N:N predicates. These are predicates having a similar in- and out-degree,deg+P (p) ≃ deg−P (p).
Note that a special case would be1:1 predicates, i.e. predicates appearing only in one triple, but
this is a marginal case at large scale2.

• 1:N predicates.These are predicates having a significant smaller in-degree than their out-degree,
deg+P (p)≪ deg−P (p).

• N:1 predicates.These are predicates having a significant greater in-degree than their out-degree,
deg+P (p)≫ deg−P (p).

Although the formal demonstration of this classification goes beyond the purpose of this thesis, one
could envision that this is a general scenario in real-world datasets. For instance, predicates describ-
ing unique IDs, such as “Passport” or “ProteinID”, belong to1:1 predicates. In turn, the mentioned
“City State” or “Postalcode” fall intoN:1 predicates. Finally, other predicates, such as “foaf:mbox” in
the example, can belong to1:N predicates. Note that these examples seems perfect and clear examples,
it could depend on the particular context and other predicates, though, can not be categorized beforehand
such as “owl:sameAs” which depends on the concrete data.

4.1.3 Common Ratios

The presence of star nodes is popularly accepted as a natural consequence when describing a resource
in depth. A second popular “construction” is the presence of chains,i.e., paths of linked nodes. This
construction occurs, for instance, whenever we useowl:sameAsto interlink two described entities. As
some of these nodes in the chain is also a star, one could talk of “star chaineddesign” for RDF datasets.

Intermediate nodes in chains appear in two triples acting with different roles.For instance, let us
suppose a design such asA

p1
−→ B andB

p2
−→ C. As shown,B is present in two triples, being an object

in the first one, and subject in the latter. Additionally, we should also consider that predicates can again
appear as nodes of other edges, acting also as intermediate nodes. In general terms, considering the three
different roles in triples (subjects, predicates and objects), there couldexist elements which are present
in a graph acting with more than one role.

2It is generally accepted that the number of predicates is much smaller thanthe number of subjects and objects
(Atre, Chaoji, Zaki, & Hendler, 2010).
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We make use of three metrics to characterize the proportion of these common elements with respect
to the total elements. In short:

• subject-object ratio: to describe the number of elements acting both as subject and objects among
all subjects and objects. In other words, the subject-object ratio denotesthe percentage of nodes
having incoming and outgoing edges. They are, in fact, the main players when navigating the
graph.

• subject-predicate ratio: to describe the number of elements acting both as subject and predicates
among all subjects and predicates. Their presence points that semantics is given to predicates,e.g.
usingrdfs:domainor rdfs:range.

• predicate-object ratio: to describe the number of elements acting both as predicates and objects
among all predicates and objects. It refines the previous metrics,e.g.when usingrdfs:subPropertyOf.

Formally described, let us retake againG as an RDF graph, withSG, PG, OG the sets of subjects.

Definition 18 (subject-object ratioαs−o) The subject-object ratioαs−o(G) of a graphG is defined as

the ratio of common subjects and objects in the graphG. Formally,αs−o(G) = |SG∩OG|
|SG∪OG| .

Definition 19 (subject-predicate ratioαs−p) The subject-predicate ratioαs−p(G) of a graphG is de-

fined as the ratio of common subjects and predicates in the graphG. Formally,αs−p(G) = |SG∩PG|
|SG∪PG| .

Definition 20 (predicate-object ratioαp−o) The predicate-object ratioαp−o(G) of a graphG is de-

fined as the ratio of common predicates and objects in the graphG. Formally,αp−o(G) = |PG∩OG|
|PG∪OG| .

Explanation and potential uses. Ratios give evidence of chain constructions. The example in Figure
4.1illustrates that there are no common subject-predicates and predicates-objects. In contrast, the subject-
object ratio reveals that 13% of the subjects and objects are common elements which take part in a
subject-object path.

Subject-object is, in fact, the most common construction as it is a natural way of linking the descrip-
tion of two resources. Subject-objects are key edges to index, becauseof the different roles they play,
either as subjects described elsewhere, or as objects describing other resources. Thus, this ratio provides
a good measure for data structures of the ratio of potential paths and the level of “navigability”.

In turn subject-predicate and predicate-object ratios, when present, show how far predicates are also
used as subjects or objects. These two ratios can be used to justify the consideration (or not) of a given
RDF dataset as a graph. If there is a null influence of these types of shared nodes, one could assume that
little semantics has been added.

4.1.4 Subject-Object Degrees

Given the importance of subject-object nodes, a fine-grained analysis can be made. In particular, one
could study the in- and out-degrees restricted to subject-object nodes.

We define these degrees implicitly, as their formalization is equivalent to the degrees presented in Sec-
tion 4.1.1, but restricted to subject-object nodes. For instance, themaximum out-degreeof the graphG
restricted to subject-objects, which is denoted asdeg−(G)|s−o is the maximum out-degree of all subject-
object nodes in the graphG. That is,deg−(G)|s−o = maxs∈SG∩OG

(deg−(s)). In the same way, the
mean out-degreeof the graphG restricted to subject-objects,deg−(G)|s−o =

1
|SG∩OG|Σs∈SG∩OG

deg−(s),
is defined as the mean out-degrees of all subjects-objects inG.

We make use of the same notation to define implicitly all out-degrees and in-degrees restricted to
subject-objects, in Definitions7 to 14.
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For all the graphG:

• out- and in-degrees restricted to subject-objects:deg−(G)|s−o, deg+(G)|s−o and their respective
meansdeg−(G)|s−o, anddeg+(G)|s−o.

• partial out- and in-degrees restricted to subject-objects:deg−−(G)|s−o, deg++(G)|s−o, and their
respective meansdeg−−(G)|s−o anddeg++(G)|s−o.

• labeled out- and in-degrees restricted to subject-objects:deg−L (G)|s−o, deg
+
L (G)|s−o, and their

respective meansdeg−L (G)|s−o anddeg+L (G)|s−o.

• direct out- and in-degrees restricted to subject-objects:deg−D(G)|s−o, deg
+
D(G)|s−o, and their

respective meansdeg−D(G)|s−o anddeg+D(G)|s−o.

Explanation and potential uses. These metrics serve the same purposes as the original ones in Section
4.1.1, but restricted to subject-object nodes. This particularity allows to focus on these intermediate nodes
and give a more detailed vision of what is going on in these important nodes.

Figure4.1provides these metrics over the given example. As only one subject-objectnode is present
(http://example.org/Valladolid), the figures are simple: all out-degrees are equal to1 because this node is
solely related to the literal“Valladolid”@es. For in-degrees, the node playing the object role is presented
in three triples with three different subjects.

This characterization might result specially useful when common subject-objects connects two dif-
ferent graphs. In such cases, one could grasp the features of these “connecting nodes” with these metrics,
gaining insights to improve navigability. For instance, additional structures and indexes can be built for
query suggestion or visualization purposes.

4.1.5 Predicate Lists

Subjects are described by means of one or more predicates. The list of predicates related to a subject
may vary greatly for each subject. However, there would exist repetitionswhenever two subjects are
described in the same way. For instance, the list of predicates used to describe asongvaries enormously
from those used to categorize aprotein, and both can coexist in a cross-domain dataset. We define metrics
to characterize these lists. In short:

• number and ratio of predicate lists: it counts the number of different lists, and the ratio of lists
from the total lists.

• degree of predicate lists: it characterizes the number of repetitions of each list.

• lists per predicate: it describes the number of different lists including each predicate.

Formally described, letLs be the set of predicates (labels) related to the subjects. That is, the set of
predicatesLs = {p | ∃z ∈ OG, (s, p, z) ∈ G}. We denote asLG to the set of different predicate lists in
G. That is,LG = {Lx, x ∈ SG}, hence thenumber of different lists in the graphG is |LG|. Note that
the total predicate lists (with repetitions) is equal to the number of different subjectsSG.

Definition 21 (Ratio of repeated predicate lists)Theratio of repeated predicate listsrL(G) of a graph
G is defined as the ratio of repeated predicate lists from the total lists in the graphG. Thus, formally,
rL(G) = 1− |LG|

|SG| .
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Definition 22 (predicate list degree )Thepredicate list degreeof a listLs, denoteddegPL(Ls), is de-
fined as the number of different subjects inG whose list of predicates is exactlyLs. Thus, formally,
degPL(Ls) = |{Lx | x ∈ SG, Lx = Ls}|. For the wholeG, the maximum predicate list degree,
degPL(G) = maxLx∈LG

(degPL(Lx)), and respectively themean predicate list degreeof the graphG,
degPL(G) = 1

|LG|ΣLx∈LG
degPL(Lx), are defined as the maximum and mean out-degrees of all predi-

cate lists inG.

Definition 23 (lists per predicate degree)The lists per predicate degreeof a predicatep, degLPP (p),
is defined as the number of different predicate lists inLG in which the predicate appears. Formally,
degLPP (p) = |{Lx | p ∈ Lx, Lx ∈ LG}|. For all G, the maximum lists per predicate degree,
degLPP (G) = maxp∈PG

(degLPP (p)), and respectively themean lists per predicate degreeof the graph,
degLPP (G) = 1

|PG|Σp∈PG
degLPP (p), are defined as the maximum and mean out-degrees of all predi-

cates inG.

Explanation and potential uses. The presented metrics for the predicate lists characterize the repeti-
tion of predicates structures. On the one hand, if a short set of lists is present in all the entities, one could
perfectly categorize this set and manage a reduce set of combinations. Onthe other hand, “random” lists
denotes the presence of a cross-domain datasets or a light schema, as few repetitions are present.

The example in Figure4.1, for instance, presents four predicate lists (one per subject): [rdf:type,
ex:birthPlace, foaf:mbox], [foaf:name], [ex:areaOfWork] and again [ex:areaOfWork]. This latter is re-
peated in two different subjects, denoting a common structure (in spite of the reduced size of the exam-
ple). In fact, the ratio of repeated predicate lists isrL(G) = 1 − 3

4 = 0.25. This means that 25% of the
predicate lists are repetitions. Note also that each predicate is present in only one list. In other words, in
this particular case, predicates are unequivocally included in one list.

Predicate lists characterization would serve several purposes such asvisualization or indexing. For
instance, regarding the visualization scenario, the approach byKhatchadourian and Consens(2010) fo-
cuses in summarizing the links between Linked Open datasets. It is based on the notion of bisimulation
contraction of a neighborhood (BCN), a structure which captures links between RDF datasets. In other
words, BCN represents common predicate structures and modeling patternsof the original RDF graph.
Our metrics may contribute to these summaries, as they categorize the type of repetitions.

In turn, regarding the indexing scenario, several approaches consider the commonalities in the predi-
cate structures.Campinas, Perry, Ceccarelli, Delbru, and Tummarello(2012) make a structural summary
grouping the entities having the same set of predicates in order to suggest potential predicates and rela-
tionships when writing a query.Tran, Ladwig, and Rudolph(2013) propose a structure index for RDF,
grouping similar structured data elements. In both cases, the proposed metrics may help in determining
structural properties of the indexes.

4.1.6 Typed Subjects and Classes

As stated, entities can be associated to types by means of therdf:typepredicate. The values for this pred-
icate are thenClasses, which can be described in detail by means of RDFS (see §2.1.1). For instance, in
the example in Figure4.1, Javier is of typeResearcher. One should expect that, as previously mentioned,
entities of the same class would be described with similar predicates. We define metrics to characterize
these commonalities. In short:

• number of classes: it counts the number of different classes.

• number and ratio of typed subject: it counts the number of typed subjects (those including at
least one type) and the ratio over the total subjects.

• lists per class: it describes the number of different predicate lists including each class.
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• out-degrees of typed subject: it characterizes the out-degrees of typed subjects.

• degree of predicate lists for typed subjects: it characterizes the number of repetitions of those
predicate list including at least onerdf:type.

Formally, letCG be the set of all classes in the graphG, andc a generic class,c ∈ CG. Thenumber
of all different classesis then|CG|. Let Sc be the set of subjects of typec, Sc = {s | (s, t, c) ∈ G},
being t the predicaterdf:type. The setSC

G denotes all different typed subjects in the graphG, that is
SC
G = {s | ∃c ∈ CG, (s, t, c) ∈ G}, with t = rdf:type. The number of different typed subjects in the

graph is then|SC
G |.

Definition 24 (Ratio of typed subjects) Theratio of typed subjectsrT (G) of a graphG is defined as

the ratio of different typed subjects from the total subjects ofG. Formally,rT (G) =
|SC

G |
|SG| .

LetLC
G be the set of different predicate lists for typed subjects. That is,LC

G = {Lx, x ∈ SC
G}.

Definition 25 (lists per class degree)The lists per class degreeof a classc, degLPC(c), is defined as
the number of different predicate lists inLG in which the classc appears as a value for a typed subject.
Formally, degLPC(c) = |{Lx | Lx ∈ LC

G, x ∈ Sc}|. For all G, the maximum lists per class degree,
degLPC(G) = maxc∈CG

(degLPC(c)), and respectively themean lists per class degreeof the graph,
degLPC(G) = 1

|CG|Σc∈CG
degLPC(c), are defined as the maximum and mean out-degrees of all classes

in G.

We define thetyped subject out-degreesand thedegree of predicate lists for typed subjectsimplicitly,
as their formalization is straightforward. In the first case, thetyped subject out-degreesare equivalent to
those studied in Section4.1.1, but restricted to typed subjects. For instance, themaximum out-degreeof
the graphG restricted to typed subjects, which is denoted asdeg−(G)|SC

G
is the maximum out-degree

of all typed subjects in the graphG. That is,deg−(G)|SC
G

= maxs∈SC
G
(deg−(s)). In the same way,

themean out-degreeof the graphG restricted to typed subjects,deg−(G)|SC
G
= 1

|SC
G
|Σs∈SC

G
deg−(s), is

defined as the mean out-degrees of all typed subjects inG. We make use of the same notation to define
all out-degrees restricted to typed subjects, in the corresponding Definitions7 to 10.

Next, thedegree of predicate lists for typed subjectsare equivalent to those studied in Section4.1.5,
but restricted to typed subjects. For instance, therepetition ratio of predicate listsrestricted to typed
subjects,rL(G)|SC

G
of a graphG is defined as the ratio of different predicate lists from the total lists of

predicates, both restricted to typed subjects. Formally,rL(G)|SC
G
=

|LC
G|

|SC
G
| . Similar reasoning can be made

to define thepredicate list degreeof a list restricted to typed subjects,degPL(Ls)|SC
G

, and thelists per

predicate degreeof a predicate restricted to typed subjects,degLPP (p)|SC
G

.

Explanation and potential uses. The characterization of different classes and typed subjects, as well
as their degrees, is an important step in describing a common schema, if present. As we have motivated,
one should expect that subjects typed equally would be described with similarpredicates. These metrics
provide an answer to this assumption, and give insights of other schema features. For instance, the
ratio of typed subjects constitutes a ratio of the level of well-categorized information. They also help
determine if typed subjects are (or not) further described than non-typedones.

Figure 4.1 (bottom) illustrates these metrics on the given example. There is only one class (Re-
searcher) and one typed subject (Javier). As there are four different subjects, the ratio of typed sub-
jects is0.25. In this simple example, there is only one predicate list per class, [rdf:type, ex:birthPlace,
foaf:mbox].
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As for the previous predicate list metrics, this characterization may serve diverse purposes, such as
visualization (Campinas et al., 2012) and structure indexing (Tran et al., 2013), but also reasoning. For
this latter objective, we characterize not only the presence of instances for the classes, but the different
predicate lists, which may be useful to create a reduced index with all the possible variants.

4.2 Experimental Framework

We design an experimental framework to illustrate the proposed metrics in real-world RDF datasets.
Table4.1summarizes the most basic features of the experimental datasets.

First, in order to cover most real-world topics, we defineseven categories: media, publications,
knowledge base, government, sensors, geography and biology. We make this distinction based on the
Linked Open data cloud most frequent topics3.

We choose fourteen datasets based on the amount of triples, topic coverage, availability and, if pos-
sible, previous uses in benchmarking. Table4.1 illustrates the datasets for each topic. Most datasets are
well-known in the area. In particular:

• Media: Jamendois a “small” dataset of music records and artists,LinkedMDBstores information
about movies and authors,Dbtuneprovides music-related structured data (mainly from MySpace4),
andFlickr Event Media(shorty known hereinafter as Flickr) holds Flickr events and their authors.

• Publication: SWDFis a small dataset with information related to the main conferences and work-
shops in the area of Semantic Web research, whereasFaceted DBLP(or DBLP hereinafter) is an
RDF conversion of the well-known bibliographic repository.

• Knowledge Bases:Wordnet 3.0is a conversion to RDF of Wordnet (a lexical database of En-
glish) andDbpedia 3-8is an RDF conversion of Wikipedia, with the aim of making this type of
information semantically available on the Web.

• Government: The2011 Australian Censusis an open portion of the given census with aggregated
data and the2000 US Censuscomprises the first entities of the given census.

• Sensors:AEMET includes measurements made by the network of meteorological stations of the
Spanish Meteorological Agency, andIke contains meteorologic sensor information of the real Ike
hurricane.

• Geography: Linked Geo Dataholds geographic information mainly from the OpenStreetMap
spatial data collection.

• Biology: Affymetrixcontains probesets used in DNA microarrays.

A preprocessing phase is applied to all datasets. First, for a fair comparison, we manage all datasets
in N-Triples (Grant & Beckett, 2004), one of the most basic formats containing one sentence per line.
If the original dataset was not in N-Triples, it is converted to this raw format by means of the Any23
tool5 (version: any23-0.6.1). Next, if the dataset is composed of several files, they are merged together.
Finally, the dataset file is lexicographically sorted and duplicate triples are discarded.

Table4.1 reflects the resulting figures after cleaning: the number of triples, the datasets size in N-
Triples format, the given version of the dataset and the available URL.

Table4.2provides finer details of the datasets. The four latest columns show the number of different
subjects, predicates, objects, and common subject-objects respectively.As expected, the number of

3We rename the topics fromhttp://lod-cloud.net/state/
4Due to restrictions, we extract Dbtune information from the Billion Triples Challenge 2010 data collection.
5http://any23.apache.org/
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Dataset Triples Nt Size(MB) Version Available at

Media

Jamendo 1,049,637 144 2013-07-01 http://dbtune.org/jamendo
LinkedMDB 6,147,996 850 2010-01-29 http://queens.db.toronto.edu/õktie/linkedmdb
Dbtune 58,920,361 9,566 BTC 2010 http://km.aifb.kit.edu/projects/btc-2010
Flickr Event Media 49,107,168 6,714 2010-07-01 http://www.eurecom.fr/ troncy/ldtc2010

Publications
SWDF 101,321 16 2013-07-01 http://data.semanticweb.org/dumps
Faceted DBLP 60,139,734 9,799 2013-07-01 http://dblp.l3s.de/dblp++.php

Knowledge
Wordnet 3.0 6,257,922 974 2013-07-01 http://semanticweb.cs.vu.nl/lod/wn30
Dbpedia 3-8 431,440,396 63,053 2013-07-01 http://wiki.dbpedia.org/Downloads38

Government
2011 Australian Census 361,842 52 2013-07-01 http://datalift.org/en/event/semstats2013/challenge
2000 US Census 149,182,415 21,796 2007-08-14 http://www.rdfabout.com/demo/census

Sensors
AEMET 3,547,154 726 2011-11-19 http://aemet.linkeddata.es/source/rdf/data.zip
Ike - Linked Observation Data 514,824,008 102,662 2013-07-01 http://wiki.knoesis.org/index.php/SSWDatasets

Geography Linked Geo Data 274,668,813 39,423 2013-07-01 http://downloads.linkedgeodata.org
Biology Affymetrix 44,207,145 6,526 2012-11-06 http://download.bio2rdf.org/release/2/affymetrix

Table 4.1: Description of the evaluation framework.

Dataset Triples #Subjects #Predicates #Objects #Common SO

Media

Jamendo 1,049,637 335,925 26 440,602 290,291
LinkedMDB 6,147,996 694,400 222 2,052,959 416,664
Dbtune 58,920,361 12,401,228 394 14,264,221 10,076,199
Flickr Event Media 49,107,168 5,490,007 23 15,041,664 3,822,727

Publications
SWDF 101,321 10,476 132 34,609 10,374
Faceted DBLP 60,139,734 3,591,091 27 25,154,979 1,326,104

Knowledge
Wordnet 3.0 6,257,922 1,100,503 85 1,689,363 1,021,222
Dbpedia 3-8 431,440,396 24,791,728 57,986 108,927,201 22,762,644

Government
2011 Australian Census 361,842 51,768 26 6,901 508
2000 US Census 149,182,415 23,904,658 429 23,996,813 23,815,829

Sensors
AEMET 3,547,154 394,289 23 793,664 433
Ike - Linked Observation Data 514,824,008 114,484,017 10 114,629,189 114,484,017

Geography Linked Geo Data 274,668,813 51,916,995 18,272 121,749,861 41,471,798
Biology Affymetrix 44,207,145 1,421,763 105 13,240,270 245

Table 4.2: Details of the evaluation framework.

predicates remains commonly low. There are two exceptions:DbpediaandLinked Geo Dataare extreme
cases in which the number of predicates grows to the order of thousands due to the variability of the
represented information. However, note that the number of predicates remains proportionally small to
the total number of triples.

4.3 Results

We compute the parameters previously presented, in order to characterizethe structure and gain insights
toward the aforementioned potential uses. For our future purposes, wespecially focus on analyzing the
redundancy of each dataset, as well as their compact and compression possibilities.

For a comprehensive explanation, the order of presentation of the results is slightly different than the
previous definitions.

4.3.1 Ratios

We start describing the common ratios in Table4.3. These were described in Section4.1.3, and they are
a good starting point as they can reveal a level of cohesion between the different types of nodes. In other
words, they can denote and characterize the presence (or absence)of shared nodes and labels.

As we expected, subject-object is the most frequent path constructor indeed and subject-predicate
and predicate-object ratios are almost negligible. These latter are scheme descriptions, which are rare
due to the RDF itself is schema-relaxed and the vocabulary can evolve as needed on demand.
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RATIOS
Dataset Common SO (αs−o) Common SP (αs−p) Common PO (αp−o)

Media

Jamendo 0.60 0 0
LinkedMDB 0.18 0 1.66×10−5

Dbtune 0.61 0 3.44×10−6

Flickr 0.23 0 0

Publications
SWDF 0.30 0 0
Faceted DBLP 0.05 7.52×10−6 0

Knowledge
Wordnet 3.0 0.58 7.27×10−6 1.78×10−6

Dbpedia 3-8 0.21 2.24×10−3 7.50×10−5

Government
2011 Australian Census 0.01 9.65×10−5 8.67×10−4

2000 US Census 0.99 0 0

Sensors
AEMET 3.65×10−4 0 0
Ike 0.99 0 0

Geography Linked Geo Data 0.31 0 4.52×10−7

Biology Affymetrix 1.67×10−5 0 5.89×10−6

Table 4.3: Ratios of the given Datasets .

The subject-object ratio shows interesting variable figures, ranging between 0 to 99%. Extreme cases
are particularly of interest. For instance, the2011 Australian CensusandAEMET present values near
to 0 whereas their counterparts per category, the2000 US CensusandIke show values near of 99% of
shared nodes. One can find the explanation in the diverse strategy followed to model the information.
On the one hand, both the2011 Australian CensusandAEMET describe particular values for a given
entity (a statistic value or a sensor measure). Thus, a more “isolated” graphcan be found in such cases
where we represent certain measures. On the other hand, both the2000 US CensusandIke make use of
intermediate nodes (blank nodes in the census and entity resources in Ike)to organize the different types
of figures or measures.

The low subject-object ratio inFaceted DBLPandAffymetrixis due to a different reason. In both
cases, the datasets describe entities with a high number of different literals values. In the first case, ti-
tles, identifiers, dates, homepages, etc., of authors, articles and conferences are scarcely repeated. In the
second,Affymetrixalso describes entities (probesets) by different literal values (for labels, identifiers, ver-
sion, description, dates, etc.). In addition, although URIs are used as objects, they are further described
(as subjects) in other different datasets in thebio2rdf project.

The rest of the datasets can be grouped into two categories: datasets holding around 20-30% of
shared entities (LinkedMDB, Flickr, SWDF, DbpediaandLinked Geo Data), or near 60% (Jamendo,
DbtuneandWordnet).

4.3.2 Out- and in-degrees

In this section we study the mean out- and in-degree for subjects and objectsrespectively. The mean
results and their standard deviations are presented in Figure4.2. For the sake of comprehensibility, we
erase hereinafter those error bars which significantly exceed the range of the figure. In this case, all
in-degree deviations are erased. It is worth mentioning that both axes arein logarithmic scale. We also
plot a dashed line delimiting the1 value.

As can be seen, most datasets present a limited mean number of triples per subject and object. Re-
garding the out-degree, its mean is modestly greater than 10 only forDBLP, DbpediaandAffymetrix.
This denotes that most datasets (even those with hundreds of millions of triples) present a mean of10
triples per subject at most. In turn, the mean in-degree is even lower. All datasets apart from the2011
Australian Censushave a lower mean in-degree than out-degree, being always smaller than10. That is,
given an object, it is present in a mean of 10 triples at most. The2011 Australian Censusis a special
case. A detailed analysis shows that it makes use of discrete values for most fields, hence these values
are highly repeated in different subjects.
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Figure 4.2: Mean out- and in-degrees for the evaluation datasets.

Both mean out- and in-degrees show, in general, a high standard deviation. In fact, all in-degree
deviations exceed considerably the range of the figure. This points to a noticeable skewed structure,
more remarkable in objects.

These skewed structures are revealed in Figures4.3 to 4.6which draw the out- and in-degrees. That
is, we represent the cardinality of subjects and objects. We group datasets by categories for the only sake
of clarity.

Several comments can be drawn from these figures. First of all, we can state that subjects and objects
(out- and in-degree) almost always present skewed distributions. In fact, the in-degree in all datasets
reveal a remarkably skewed structure on objects. Only two datasets, the2011 Australian Census(Figure
4.4, bottom left) andAEMET (Figure4.6, top left) hold some objects slightly differing from the general
tendency. In all the rest of cases, the distribution is heavily skewed.

In turn, subject distribution (out degree) is skewed in most datasets, butnot all of them. The figures
in our evaluation denote three types of patterns:

• Skewed distributions, as for objects. This is the case of all media datasets except for some blur in
Jamendo (Figure4.3), SWDFandDBLP (Figure4.4), all knowledge datasets (Figure4.5), Linked
Geo DataandAffymetrix(Figure4.6).

• A great number of different subjects are present in few triples. This can correspond to a structured
data modeling in which subjects are described with a similar number of triples. We can find this
circumstance in our two census (Figure4.4, bottom left and right), andAEMET (Figure4.6).

• A large number of different subjects are present in few triples, while many others are described
with a small proportion of triples. OnlyIke shows this type of distribution (Figure4.6). It can be
seen as a variation of the previous two types of distributions: some subjects are deeply described
(or they have more relations) whereas others are concisely defined.
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Figure 4.3: Degree distribution (media), in logarithmic scale.
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Figure 4.4: Degree distribution (publications and government), in logarithmic scale.



50 4. Our proposal: Metrics for RDF Graphs

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1  10  100  1000  10000  100000  1e+06

#e
le

m
en

ts
 (

su
bj

ec
ts

|o
bj

ec
ts

|p
re

di
ca

te
s)

 in
 X

 tr
ip

le
s

#triples

WORDNET distributions

Subject Distribution
Object Distribution

Predicate Distribution

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1  10  100  1000  10000  100000  1e+06

#e
le

m
en

ts
 (

su
bj

ec
ts

|o
bj

ec
ts

|p
re

di
ca

te
s)

 in
 X

 tr
ip

le
s

#triples

DBPEDIA distributions

Subject Distribution
Object Distribution

Predicate Distribution

Figure 4.5: Degree distribution (knowledge), in logarithmic scale.
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Figure 4.6: Degree distribution (sensors, geography and biology), in logarithmic scale.

Subject-object distribution. Figure4.7compares the previous mean out- and in-degree (presented in
Figure4.2) with the same degrees restricted to subject-object. For a fair comparison, we split the datasets
by their range of common subject-object ratio (as stated in §4.3.1): common entities around 0%, 20-30%,
60% and 99%. We order the description of the results by these sets for explanation purposes:

• Common entities around 0%: In this case, the common entities are so rare that themeans refer
to few elements of the total. However, one could note that the mean in-degree restricted to these
subject-objects is remarkably higher than for the total objects. We can find the reason of this
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Figure 4.7: Mean out- and in-degrees for the evaluation datasets in comparison with the common subject-
objects. The y-axis is represented in logarithmic scale.

difference in the non shared objects distribution. In all these datasets, a large number of different
objects are present, whose in-degree is low (or even close to1) as we can see in their corresponding
in-degree distributions. Thus, the common subject-objects are more frequently present as they act
as intermediate nodes and then playing as object in more triples on average.

• Common entities around 99%: This is the case of the2000 US CensusandIke. Figure4.7shows
low figures for the mean in-degree, being exactly1 for the2000 US Census. We have argued that
both datasets make use of different shared elements to organize the different types of figures or
measures, hence the low in-degree. In contrast, given that 99% of elements are shared, the mean
out-degree for these nodes is almost equal to the out-degree for all subjects.

• Common entities around 60%: We can see that the mean out-degrees are almost equivalent as
more than 50% of the elements are shared, hence these nodes highly contributes to the original
figures. As for the previous case of common entities around 99%, this scenario shows low figures
for the mean in-degree. The reason in this case is equivalent as intermediate nodes organize the
information.

• Common entities around 20-30%: This is the most variable set and datasets can present differ-
ent results. In general terms, the mean out-degrees remain comparable. Nevertheless,Flickr and
Linked Geo Datashow a slightly smaller out-degree for subject-object nodes. This fact clearly de-
pends on the represented information. For instance, this phenomenon can appear when an “event”
in Flickr is described in depth but the related subject-object nodes representing “authors” are usu-
ally described in lesser depth. Regarding the in-degrees, in some cases the figures restricted to
subject-objects are equal, slightly smaller or bigger than the non restricted metric. The reasons are
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Figure 4.8: Mean labeled out- and in-degrees for the evaluation datasets.

similar to the presented above: it would be slightly smaller for subject-objects when they serve to
organize the information and slightly bigger whenever non repeated objectsare predominant.

4.3.3 Predicates per Subject and Object

We study the labeled out- and in-degrees, that is, the predicates per subject and object respectively. Figure
4.8 illustrates the mean figures. As can be seen, the results show that few predicates are related to the
same subject, on average.Affymetricis the extreme case in which20 predicates are present per subject.
This fact, together with the mean out-degree (more than30 triples per subject) reflects a description of
entities in detail. In contrast, datasets such asJamendoandIke provide a mean of3 − 4 predicates per
subject. In all cases, the mean labeled out-degree is a clear indicator of thepresence of star-shaped nodes,
i.e., nodes with different triples around one common subject.

The mean labeled in-degree reveals an important conclusion. The number of predicates related to a
given object is very close to1. This stands for specific “leave nodes” reached by only one predicate.

The study of the maximum labeled out- and in-degrees, in Table4.4 comes to similar conclusions.
The results show that even in the extreme maximum cases, few predicates arerelated to the same subject
and even less predicates per object. Besides, we provide in the table the ratio of maximum degrees over
the total number of predicates. That is, a value of20% for Wordnetmeans that, in the maximum case, a
subject is related to the20% of predicates in the dataset.

Finally, Figure4.9compares the mean labeled degrees of the common subject-objects with respect to
the values obtained without restrictions. Two conclusions can be drawn form this comparison. First, the
number of labels per common subject-object is generally equal or slightly smaller than the non restricted
results. The corner case isAffymetrixwhich presents a significant reduction for subject-objects. One
could argue that, in this case, general entities are detailed in depth whereascommon subject-objects are
simple nodes grouping discrete values and hence its smaller number of relatedpredicates. Finally, it is
important to note that the mean labeled in-degree of common subject-objects remains close to1. This
means that intermediate nodes (which are important for navigation as we havemotivated) are reached by
a mean of one unique predicate.
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Dataset
Max. number of predicates per subject Max. number of predicates per object
Labeled out deg. Ratio Labeled in deg. Ratio

(degL−(G)) (
degL−(G)

|PG|
) (degL+(G)) (

degL+(G)
|PG|

)

Jamendo 10 38.46% 5 19.23%
LinkedMDB 31 13.96% 50 22.52%
Dbtune 24 6.09% 93 23.60%
Flickr 14 60.87% 5 21.74%
SWDF 21 15.91% 13 9.85%
Faceted DBLP 18 66.67% 4 14.81%
Wordnet 17 20.00% 10 11.76%
Dbpedia 3-8 480 0.83% 6,005 10.36%
2011 Australian Census 7 26.92% 3 11.11%
2000 US Census 104 24.24% 366 85.31%
AEMET 12 52.17% 5 21.74%
Ike 5 41.67% 1 8.33%
Linked Geo Data 76 0.42% 3,431 18.78%
Affymetrix 35 33.33% 5 4.76%

Table 4.4: Values and ratios of the maximum labeled out- and in-degree for theexperimental framework.
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Figure 4.9: Mean labeled out- and in-degrees of common subject-objects for the evaluation datasets with
respect to the values obtained without restrictions.

4.3.4 Partial and Direct Degrees

Figure4.10 shows the mean partial out- and in-degrees. First of all, let us remember that partial out-
and in-degrees reflect the presence of multivalued(subject, predicate) and(predicate, object) pairs
respectively. As we can see, the mean partial out-degree is slightly biggerthan 1, which implies that
the presence of multivalued(subject, predicate) pairs is not so frequent. In fact, the deviation is not
pronounced (except forWordnet) which denotes a uniform distribution.

In contrast, the mean in-degree remains close to 1, but it presents bigger deviations. Almost all
deviation extends the range of the figure and they have been erased forthe sake of clarity. This fact
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Figure 4.10: Mean partial out- and in-degrees for the evaluation datasets.

denotes a pronounced skewed distribution of multivalued(predicate, object) pairs. That is, a large
amount of different subjects are related to the same(predicate, object) (e.g. this can be the case of
rdf:type and its related classes) while others pairs are related to few different subjects, being1 on average.

Next, we study the direct degrees, which measure the relationship betweensubjects and objects
disregarding the presence of predicates. We have stated that thedirect out-degreeof a subject (the
number of different related objects) can only differs from theout-degree(different related triples) when
the subject is related to the same object by means of more than one predicate. Analogously, thedirect
in-degreeof an object differs from thein-degreewhen the object is related to the same subject by means
of more than one predicate.

We represent in Figure4.11the comparison between the mean out- and in-degrees and their respec-
tive mean direct degrees. The results show that the out-degree and the direct out-degree have similar
figures, and the same applies to in-degree and direct in-degree. That is, results yield to an important
state: given a subject and an object, if they are related, only one predicate brings these nodes together,
on average.

Another remarkable fact is the difference, in some cases, between the mean direct out- and in-degrees.
For instance, inDbpedia, subjects are related with 5 times more objects than vice versa, reaching to 10
times inAffymetrix. This corresponds with datasets in which, on average, a subject is described in depth
with different objects, which are no heavily repeated between subjects. In contrast, objects are related
with 8 times more subjects than vice versa in the2011 Australian Census. This is due to large repetitions
of the same set of objects in multiple subjects.

4.3.5 Predicate Degrees

In this section we study the predicate degrees, that is, the cardinality of predicates. We also detail their
out- and in-degrees, which stands for the different objects and subjects related to each predicate.

First, Figure4.12shows the mean predicate degrees for all datasets. Note that this mean is highly
biased by the number of triples of each dataset (figures are represented in logarithmic scale). For instance,
conserving the same modeling, one could add other observations for the hurricaneIke, and the mean
cardinality of the predicates will be increased.

In general terms, we can observe that the mean predicate out degree is slightly smaller than the
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Figure 4.11: Mean direct degrees in comparison with mean out- and in-degrees for the evaluation
datasets.

corresponding mean in degree. That is, given a predicate at random, itis probably related with more
subjects than objects. This fact is in line with previous labeled and partial measurements; subjects are
more related to predicates than objects, and multivalued(subject, predicate) pairs are, when present,
more infrequent than(predicate, object) pairs.

We study in the following the distribution of predicates, as they can reveal different use patterns
for the predicates. Figures4.13to 4.15illustrate the degree of each predicate as well as their out- and
in-degrees. It is clear that no prior assumption can be made on predicate distribution. In general terms,
predicates distribution is tight to the information modeling. We can roughly distinguish three types of
patterns in predicates:

• Mostly all predicates are present in every entity. In this case we could find a distribution such as
the presented inFlickr (Figure4.3, bottom right) or the2000 US Census(Figure4.4, bottom right).
In such case, the predicates are in the same region as they participate in a similar range of triples.

• Some predicates are present rarely while others are frequently used.This is the case of several
representations such as all media datasets except forFlickr (Figure4.3), all from publications and
government except for the2000 US Census(Figure4.4), Wordnet(Figure4.5, left), and all from
sensors, geography and biology except forLinked Geo Data(Figure4.6).

• It is common that predicates are present in a reduced number of triples, whereas few predicates
are related to thousand or millions of triples. This corresponds to the definitionof a power law
distribution. We can find this very clear skewed distributions in cross-domaindatasets such as
Dbpedia(Figure4.5, right), or datasets including information about a given domain but mixed
from diverse sources such asLinked Geo Data(Figure4.6, bottom left). Due to the same reasons,
these two datasets hold the higher numbers of predicates of all evaluation datasets.
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Figure 4.12: Mean predicate degrees for the evaluation datasets. The y-axis is in logarithmic scale.
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Figure 4.13: Predicate degree distribution (media), in logarithmic scale.
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Figure 4.14: Predicate degree distribution (publications and government),in logarithmic scale.
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Figure 4.15: Predicate degree distribution (sensors, geography and biology), in logarithmic scale.
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Figure 4.16: Predicate degree distribution (knowledge).

4.3.6 Study of Predicate Lists

We perform a study of the different predicate lists and their distribution. Aswe have motivated, there
would exist repetitions whenever several subjects are described in the same way. Our goal is to establish
to what extent these lists are repeated.

Table4.5(left) presents the number of different predicate lists and the repetition ratio. As can be seen,
the number of different predicate lists is spectacularly low in all cases. Forinstance,Jamendoholds26
predicates (as shown in Table4.2), and between all potential combinations, only43 different lists are
present (999.872h of the lists are repetitions). It is also significant in the2000 US Censusin which
only 106 different lists appear from429 predicates (999.996h of the lists are repetitions). Regarding
those cross-domain datasets with more predicates and thus different entities, the proportion remains over
947h repetitions. This is the case of Dbpedia, and it is also valid forLinked Geo Data.

Table4.2 (right) shows the results of these metrics restricted to typed subjects (which are discussed
in Section4.3.7). As can be seen, predicate lists for typed subjects (Table4.2, right) behaves similarly to
the general case. The bigger difference is present in Dbpedia, in which the proportion of repeated lists
decreases up to712.413h. Nevertheless it remains significantly high once we are describing different
type of entities, and we still found massive repetitions.

Thus, one can state that, in general terms, predicate lists are massively repeated. Next, we study the
number of repetitions per list on average, and their distribution. This mean has been defined as the mean
predicate list degree (Definition22), and the results are shown in Figure4.17.

These results are in line with the presented repetition ratio. Nevertheless, it isimportant to note that,
as for the predicate cardinality, these results can be highly biased by the number of triples (the y-axis is in
logarithmic scale). For a fairer characterization, we study the distribution ofthese repetitions in Figures
4.18to 4.21.

One could expect that these distributions would correspond to the predicate distributions presented
in the previous Section4.3.5. That is, if a skewed distribution is present in predicates, the same result
could be found in predicate lists. In contrast, if all predicates participates insimilar number of triples
(uniform distribution), the same shape is shared in predicate lists. Currentresults denotes that both
assumptions remain true, with some interesting remarks described below. We consider the same previous
categorization of predicates:

• Mostly all predicates are present in every entity, such asFlickr (Figure4.18, bottom right) and the
2000 US Census(Figure4.20, bottom right). In such case, a similar non skewed distribution is
present. Predicate lists are highly repeated, although they do not have to share the same number of
repetitions.
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Dataset
ALL subjects TYPED subjects

# Dif. pred. lists Repetition ratio # Dif. pred. lists Repetition ratio

(|LG|) (1− |LG|
|SG|

) (|LC
G|) (1− |LC

G
|

|SC

G
|
)

Jamendo 43 999.872h 41 999.859h
LinkedMDB 8,459 987.818h 8,442 987.314h
Dbtune 963 999.922h 782 999.922h
Flickr 25 999.996h 22 999.987h
SWDF 364 965.254h 341 961.754h
Faceted DBLP 254 999.929h 254 999.929h
Wordnet 872 999.208h 868 999.007h
Dbpedia 3-8 1,309,392 947.184h 1,152,617 712.413h
2011 Australian Census 14 999.730h 14 999.730h
2000 US Census 106 999.996h - -
AEMET 5 999.987h 5 999.987h
Ike 5 1,000.000h 4 1,000.000h
Linked Geo Data 220,902 995.745h 219,015 995.562h
Affymetrix 9,434 993.365h 9,424 993.369h

Table 4.5: Number and ratio of predicate lists for all subjects (left) and restricted to typed subjects (right).
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Figure 4.17: Mean predicate list degree for the evaluation datasets, in logarithmic scale.

• Some predicates are present rarely while others are frequently used,such as all media datasets ex-
cept forFlickr (Figure4.18), all from publications and government except for the2000 US Census
(Figure4.20), Wordnet(Figure4.19, left), and all from sensors, geography and biology except for
Linked Geo Data(Figure4.21, bottom left). This is the most variable pattern. In fact, some of
these datasets evolve to skewed distribution of predicate lists while others arenot so marked. One
can state that, whenever a slight skewed distribution is present in predicatedegree, this evolves to
a marked skewed distribution (power law) in predicate lists. Compare, for instance, the distribu-
tion of lists ofAffymetrix(Figure4.21, bottom right) with its predicate degree distribution (Figure
4.15, bottom right). This is the case ofLinkedMDBandDBTUNE(Figure4.18), SWDFandDBLP
(Figure4.20) andWordnet(Figure4.19), and the aforementionedAffymetrix(Figure4.21).

Other skewed structures different than power law distributions can be present. This is the case of
Jamendo(Figure4.18, top left) and the2011 Australian Census(Figure4.20, bottom left).

• It is common that predicates are present in few triples, whereas others are related to thousand or
millions of triples. This also evolves to clear skewed distributions (power law) of predicate lists
in datasets such asDbpedia(Figure4.19, right), andLinked Geo Data(Figure4.21, bottom left).
Note that, due to the same reasons, these two datasets hold the highest numbersof predicates of
all evaluation datasets.
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Figure 4.18: Predicate list degree distribution (media), in logarithmic scale.
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Figure 4.19: Predicate list degree distribution (knowledge), in logarithmic scale.
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Figure 4.20: Predicate list degree distribution (publications and government), in logarithmic scale.
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Figure 4.21: Predicate list degree distribution (sensors, geography and biology), in logarithmic scale.
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Figure 4.22: Mean list per predicate degree for the evaluation datasets, inlogarithmic scale.

Finally, we study the number of different lists per predicate, on average.This is shown in Figure
4.22(in logarithmic scale) which shows a significant low number of different lists inwhich a predicate
is present. Note that if a predicate was related to one or two lists, given a predicate it is almost direct
to know its peer predicates for any subject or object, even for the biggest datasets. In other words, the
nearer this mean is to 1, the easier could be to discern the concrete list givena predicate, even in the
biggest datasets.

The highest figures are obviously obtained for those datasets with more different datasets, but they
remain proportionally small to the number of lists.

4.3.7 Study of Classes and Typed Subjects

We finish our evaluation with a brief study on typed entities. As we have argued, the following chapters
of this thesis will consider all predicates regardless of the distinction between classes. Nevertheless, we
incorporate this evaluation given the importance for other uses such as reasoning (see the potential uses
of these metrics in Section4.1.6).

Table4.6shows the resulting number of classes, typed subjects and the ratio of thesetyped subjects
over the total subjects. Several remarks should be considered. First of all, one could expect that the
larger is the dataset, the more classes are included. However it is worth remembering that RDF holds
a relaxed schema, hence this assumption can result completely false. In other words, a “small” dataset
such asJamendoor SWDFcan include more classes than the biggerFlickr or AEMET. Thus, the number
of classes and typed subjects is completely biased by the data modeling and the domain, or domains,
involved in the dataset.

With this assumption in mind, we can find in the results that the number of classes remain proportion-
ally small with respect of the number of triples and entities. This is an obvious result as classes model
common semantic types of entities, and this distinction should be limited. However, theratio of typed
subjects draws more interesting results. Table4.6reflects three types of modelings:

• Non-typing: in this case no types are used, such as the2000 US Census.

• Small-medium typing: datasets in which types are used around one of everyfour subjects (h 25%).
In our study, we find two cases,Flickr (31%) and Dbpedia (16%), matching this scenario.
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Dataset # Classes
# Typed Subjects Ratio

(|SC
G |) (

|SC

G
|

|SG|
)

Jamendo 11 290,291 86.42%
LinkedMDB 53 665,441 95.83%
Dbtune 64 10,042,747 80.96%
Flickr 3 1,690,338 30.79%
SWDF 62 8,916 85.11%
Faceted DBLP 14 3,591,091 100.00%
Wordnet 25 873,986 79.42 %
Dbpedia 3-8 351 4,007,892 16.17%
2011 Australian Census 15 51,768 100.00%
2000 US Census 0 0 0.00%
AEMET 5 394,289 100.00%
Ike 12 114,471,666 99.99%
Linked Geo Data 1081 49,352,200 95.06%
Affymetrix 3 1,421,291 99.97%

Table 4.6: Number of classes, typed subjects and its ratio for the experimental framework.
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Figure 4.23: Mean lists per class for the evaluation datasets. The y-axis is inlogarithmic scale.

• Extensive-typing: most subjects are typed. This is the case of most datasets in our study, ranging
from 79% to 100% of typed subjects.

Next, we extend our previous study on predicates, performing a mean of predicate lists per class (see
Definition 25). This is represented in Figure4.23(in logarithmic scale). Note that the mean is exactly 1
(with no deviation) forAEMETandIke.

The mean figures show that, seven of thirteen datasets hold a mean of less than ten predicate lists per
class, and it remains valid independently of the size of the dataset. This meansthat, given a class, we can
automatically state that all subjects of this class are described with one of ten variation of predicates, on
average. Another three datasets range between 10 and 100 lists per class (which remains still small). The
three datasets with more different lists, obviously present more lists per class (up to 19,000 forDbpedia).
Nevertheless in these latter cases the deviation is also high, hence we can also find classes with much
lesser variants.

Finally, we present in Figure4.24a brief comparison of mean out-degrees for typed subjects with
respect to all subjects. We restrict to those datasets having small-medium typing (as defined above),
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Figure 4.24: Mean out degree for the evaluation datasets in comparison withtyped subjects.

as in the extensive-typing case both means are similar and the comparison makes no sense. Thus, we
compare the figures ofFlickr andWordnet. We extend the range of the y-axis to show that both means
and deviations are comparable. Nevertheless, typed subject are, in fact, described with slightly more
triples on average than all subjects without restrictions. This can be seen as a way of providing a detailed
description for such important nodes to navigate and organize the information of the graph.



I’m sorry but I don’t want to be an Em-
peror - that’s not my business - I don’t
want to rule or conquer anyone. I should
like to help everyone if possible.

The Great Dictator (1941) 5
Discussion

This chapter briefly summarizes the contributions (§5.1) of this part of the thesis devoted to characterize
the RDF structure. We also list the most important empirical findings(§5.2) and we envision potential
applications (§5.2).

5.1 Contributions

In this part of the thesis we have studied and characterized the real structure of RDF datasets. First,
in Chapter3, we have motivated our purpose in the sparingly number of previous empirical studies
and the few parameters considered. We have reviewed the state-of-the-art baseline revealing power law
distributions, and the existence of a small-world phenomenon.

Next, in Chapter4, we propose and define novel metrics for RDF aimed at characterizing real-world
RDF data. Our initial purpose was to provide a toolkit of parameters that could both i) help determine
common features in most RDF datasets when possible and ii) become a useful handbook when develop-
ing or optimizing RDF data structures (such as the ones proposed in the nextparts of this thesis), indexes
and other related technologies.

The proposed metrics cover a wide spectrum of parameters. First, the RDFdataset is regarded as a
graph labeled with predicates, and we give metrics to characterize the subject (out-) and object (in-) dis-
tributions. We measure their degree (out- and in-degreesrespectively), the presence of multivalued pairs
(partial degree), the number of different predicates per node (labeled degree) and the direct relationships
disregarding labels (direct degree).

Then, we characterize the distribution of predicates, which is of great importance as they hold the
semantics of the datasets. We define their cardinality (predicate degree), and the distribution of subjects
and objects per predicate (predicate in and out-degre). This later is equivalent to describe the domain
and range of each predicate.

We consider the repetitions of nodes playing different roles, hence common ratios are defined:
subject-object, subject-predicateandpredicate-object. Given the importance of the first ones as hubs
in the navigation of the graph, we propose to characterize the subject andobject degrees restricted to
common subject-objects.

Agreeing that the list of predicates per subject can be repeated in several subjects, we then focus on
parameterize these list and their repetitions. We define aratio of repeated predicate lists, the cardinality
of each list (predicate list degree) and the number of lists in which each predicate takes part (lists per
predicate degree).

Finally, we make a special distinction of typed subjects, as they could share commonalities. We
count the number of classes, typed subjects and their ratio over the total number of subjects. We also
define the number of different predicate lists per class (lists per class degree) and we propose to consider
the subject and predicate list degrees restricted to typed subjects.



66 5. Discussion

5.2 Result Summary

As we have motivated, the generalization of common patterns, when possible,was one of the intended
purposes of the proposed metrics. Nonetheless, evaluating this generalization is not an easy task given the
huge range of different types of RDF datasets, changing in size, domain, authoring and conversion tools,
and modeling. Thus, when no generalization is possible, the focus is not to serve as a one-size-fits-all set
of metrics, but to provide a simple set of useful metrics for a given scenario.

From these initial premises, we established an evaluation framework consisting in fourteen datasets
trying to cover a wide range of different datasets. The following summary of conclusions can be drawn
from the evaluation results:

• As we expected, subject-predicate and predicate-object ratios are almost negligible and subject-
object is the most frequent path constructor. Datasets were grouped in three ranges, near 0% of
shared entities (4 dataset), [20-30]% (5 datasets), 60% (3 datasets) and near 100% (2 datasets).
The design and domain of a dataset have a strong influence in the presence of such intermediate
nodes.

• Most datasets present a mean of10 triples per subject at most, but with high deviation. In turn,
almost all datasets have a lower mean in-degree. That is, given an object,it is present in a mean of
10 triples (also with high deviation).

• All datasets reveal a remarkably skewed structure on objects. Twelve of the fourteen datasets are
very clear power law distributions.

• The distribution of subjects is also skewed except for some cases. We identify that the distribution
is less skewed when the data modeling follows well-structured patterns (suchas census data), in
which resources are described with a similar number of triples.

• Most datasets show that each subject is described with less than 10 different predicates, on average.
This remains true if we restrict to common subject-objects.

• The number of predicates related to a given object is very close to 1, alsofor common subject-
objects.

• The mean partial out-degree is slightly bigger than 1, which implies that the presence of multival-
ued pairs(subject, predicate) is not so frequent.

• Although the mean in-degree also remains close to 1, the high deviation denotes pronounced
skewed distribution of multivalued(predicate, object) pairs.

• The out- and in-degrees are comparable to their corresponding directout- and in-degrees. This
means that given a subject and an object, if they are related, only one predicate brings these nodes
together.

• The results for predicate degrees state that, on average, given a predicate at random, it is probably
related with more subjects than objects.

• The number of different predicate lists is spectacularly low and predicatelists are massively re-
peated in all cases. Over 947h of the predicate lists are repetitions. This remains also true for
typed subjects.

• The distribution of the repetitions of predicate lists is also skewed. The only exception found in
the experimentation was the case in which mostly all predicates are present in every entity, thus
resulting in a non skewed distribution. This latter was only present in 2 of 14 datasets.
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• Each predicate participates in a number of predicate lists proportionally smallwith respect to the
number of lists.

• The number of classes remain proportionally small with respect to the numberof triples and entities
in the dataset.

• Most datasets are extensively typed, that is, [80-100]% of the subjects are typed.

• Half of the datasets holds a mean of less than 10 predicate lists per class, and it remains valid
independently of the size of the dataset.

5.3 Applications

We expect that these metrics and observations can provide insights to take advantage of some of the
revealed features. In future parts of this thesis, we exploit the skewed structure of RDF graphs. We
will motivate our decisions in most of these metrics, specially those delimiting the meandegrees (total,
labeled, partial, etc). In particular, the binary deployment proposed in Section7.2takes advantage of the
subject-object ratio characterization and groups the references to the same node. In turn, we will repre-
sent the graph compacting the distribution with implicit and coordinated adjacency lists, parametrized by
the degree metrics.

We also expect to help develop and optimize better dataset designs, visualizations, efficient RDF
data structures, indexes (in particular, structural indexes) and compression techniques. The full list of
optimizations and decisions are subject of each particular scenario and are out of the scope of this study.
Nonetheless, through the previous chapter, we have introduced some concrete decisions which can be
considered.

For instance, as the number of predicates per object is close to 1, this stands for a specific treatment
of these “leave nodes” for each predicate. Thus, approaches suchas a specific compression over vertical
partitioning can obtain important results.

In turn, the number of few predicates per subject and their distribution (labeled out degree) is a clear
indicator of the presence of star-shaped nodes. Together with the characterization of intermediate nodes,
this could serve query suggestion and visualization purposes. In particular, it is highly remarkable that
intermediate nodes are reached by a mean of one solely different predicate, reducing the number of
predicates which connects different parts of the graph.

The family of indexing techniques following vertical partitioning can consideralso the predicate
distributions and, potentially, make use of these metrics to optimize the resolution ofcomplex queries.

Predicate lists and the characterization of classes would serve several purposes such as visualiza-
tion, structural indexing for querying and reasoning. We would like to remark the massive repetition of
predicate lists, in general, and the low number of predicates per class in particular. This may help in
determining structural indexes for such purposes.





Part II

Binary RDF Representation for
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- I remember you being a lot bigger. - To
a ten year old I’m huge.

Hook (1991) 6
Introduction

The last decade has witnessed an unexpected change in the policies for exposing Open Data thanks to the
efforts (and advantages) of the Linked Open Data movement (§2.2). As we stated, thedata delugeand
the phenomenon ofBig Datahas no doubt affected the semantic data, actually becoming “Big Semantic
Data” (see Definition6).

This chapter introduces scalability drawbacks managing Big Semantic Data exposed in the Web of
Data. First, we describe the different actors within the current Web of Data (§6.1). Then, we define a
common workflow arising in this scenario, typically conformed of three correlated processes; publica-
tion, exchange and consumption (query) of the information (§6.2). Next, we review the state of the art
techniques to perform each process (§6.2.1). Finally, their problems will motivate the need of binary
RDF representations (§6.3).

6.1 Stakeholders in Big Semantic Data Management

We have shown that the “data deluge” had been originally devised in the fieldof eScience(§2.3). Al-
though we identify data scientists as one of the main actors in the management of Big Semantic Data,
we have rapidly moved to a globalized scenario. We unveil “traditional” users moving from a Web of
documents to a Web of Data, or, in this context, to Big Semantic Data exposed in theWeb of Data.

Note that the scalability problems arising for data experts and general users cannot be the same, as
these are supposed to manage the information under different perspectives, as follows:

• Effort: A data expert can make strong efforts to create novel semantic data or to analyze huge
volumes of data created by third parties. In contrast, general users expect a treatable information,
a knowledge ready for consumption.

• Response Times:General users expect to deal with semantic information in reasonable times
whereas data experts deal with long batch processing. For instance, a user retrieving all artistic
performances located in “Rome” in a given year could expect a response in a range of seconds. In
some scenarios, real-time processing is a mandatory requirement. For a dataexpert, though, it is
perfectly accepted to spend several hours performing a closure of a graph.

• Resources: Data experts can make use of data-intensive computing, powerful servers or dis-
tributed machines and specific algorithms taking advantage of these infrastructures. Users run
on generic machines, mobile devices and other configurations with more limited resources.

Although one could establish an isolated categorization of the problems of these worlds, we cannot
forget that theValue of Big Semantic Data exposed in the Web of Data is establishing and discovering
links between diverse data. This interlinkage is beneficial for all parties.For instance, in life sciences it
is important to have links between the bibliographic data of publications and the concrete genes studied
in each publication, thus another researchers can look up previous findings of the genes they are currently
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studying (Hey et al., 2009). Thus, the “v”ariety of both “publications” and “genes” is represented, linked
and managed under a semantic perspective.

Our concern here is clear:To address user-specific management problems while remaining in the
general open representation and publication infrastructure of the Web ofData.

This premise leverages the Web of Data to exploit the full potential of Big Semantic Data. In turn,
user management problems have to be specifically addressed, hence theyneed a prior analysis. This
section provides an approach toward this characterization. We first establish a simple set of stakeholders
in Big Semantic Data management, from where we define a common data workflow inorder to better
understand the main processes performed in the Web of Data. In other words, this first characterization of
the involved users and processes would allow researchers and practitioners to clearly focus their efforts
on a particular area.

6.1.1 Participants and Witnesses

The Web of Data has successfully emerged on the roots of Open Data. However, the initial main corner-
stone which feeds all the infrastructure (semantic data creation) is one of the hardest task for a common
user. To date, neither the creation of self-described semantic content nor the linkage to other sources, are
simple tasks for a common user. There exists several initiatives to bring semantic data creation to a wider
audience, being the most feasible the use of RDFa (Adida, Herman, Sporny, & Birbeck, 2012), a way to
include RDF data within HTML pages.

Vocabulary and link discovery can also be mitigated through searching andrecommendation tools
(Hogan, 2011; Volz, Bizer, Gaedke, & Kobilarov, 2009). However, in general terms, one could argue
that the creation of semantic data is still almost as narrow as the original content creation in Web 1.0.
In the LOD statistics, previously reported, only0.42% of the total data is user-generated. It means
that public organizations (governments, universities, digital libraries, etc.), researchers and innovative
enterprises are the main creators, whereas citizens are, at this point, justwitnesses of a hidden reality.

All this brings up two main facts. On the one hand, the Web of Data success, beyond the data expert
community, strongly relies on achieving the general audience to implicate in suchcreation of machine
readable descriptions (RDF). On the other hand, the current reality shows that few creators have been
able to produce huge volumes of RDF data and to feed the system. One could argue, though, about the
quality of these publication schemes (in agreement with empirical surveys (Hogan et al., 2012)).

In what follows, we characterize a minimum set of stakeholders interacting with Big Semantic Data
in the Web of Data. Figure6.1 illustrates the main identified stakeholders. We provide a classification at
two orthogonal levels, according to the stakeholder role and nature.

On the first level, three main roles are identified:creators, publishersandconsumers, with an inter-
nal subdivision by the creation method or intended use. In parallel, we distinguish betweenautomatic
stakeholders, supervised processes, andhuman users. We describe below each stakeholder, acknowl-
edging that this classification may not be complete as it is intended to cover the minimum foundations
to understand the processes in Big Semantic Data. In turn, categories are not disjoint. For instance, a
creator can also consume information and vice versa.

Creator. As stated, the creator feed the Web of Data with new content. We define the process of
creation as the generation of a distinguishable new RDF dataset by, at least, one of these processes:

• Creation from scratch:the new dataset is not based on a previous data model. Even if the data
exist beforehand, the data modeling process is not influenced by the previous data schema. RDF
authoring tools1 are traditionally used.

1A list of RDF authoring tools can be found athttp://www.w3.org/wiki/AuthoringToolsForRDF.
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Figure 6.1: Stakeholder classification in the Web of Data.

• Conversion from other data schema: the creation phase is highly determined by the conversion
of the original data source; potential mappings between source and target data could be used;
e.g. from relational databases (Arenas, Bertails, Prud’hommeaux, & Sequeda, 2012), as well as
(semi-) automatic conversion tools2.

• Data integration from existing semantic content: the challenge is to achieve an efficient integration
of vocabularies and the validation of shared entities (Knoblock et al., 2012).

As stated, the creator can construct a new dataset combining these three tasks. For instance, a new
RDF dataset describing a city can be created by means of a sort of: i) creation from scratch for those
facilities never modeled before (e.g.cultural events), ii) conversion of some existing data (e.g.transport)
and integration of other semantic data (e.g.weather data).

Note that several subtasks can also be shared among all three processes. In particular, two main tasks
are the identification of those entities to be modeled and the reuse of vocabularies. The first one is even
more important in the creation from scratch, as no prior identification has been done. The latter is crucial
in data integration in which different ontologies could be aligned.

A complete description of the creation process is out of the scope of this thesis. A detailed guide for
Linked Data creation can be found inHeath and Bizer(2011).

Publisher. A publisher is one that makes RDF data publicly available for different purposes and users.
In the context of the Web of Data, let us suppose that the publisher followsall the Linked Data princi-
ples (§2.2). We distinguish between creators and publishers as the roles can strongly differ in several
scenarios. The idea is that publishers hold RDF content, possibly createdby third-parties. Publishers,
then, are responsible of the publication scheme and policy, and the availabilityof the offered services
(such as querying). For instance, a creator could be an automatic systemof sensors reporting temperature
measures in RDF (Atemezing et al., 2012), while the publisher is the agency exposing this information
in the Web of Data. It is worth noting that the publisher provides entry points to the information, dealing
with correct HTTP URIs and their dereferenciation, in compliance with the principles of Linked Data.

Consumer. In general terms, a consumer makes use of published RDF data for disparate purposes.
As for the traditional Web, the computational task required for consumption can be distributed between

2A list of RDF converters can be found athttp://www.w3.org/wiki/ConverterToRdf.
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the server (the publisher) and the client (final consumer). According tothe distribution, we distinguish
between two main types of consumptions:

• Direct consumption: a process whose computation task mainly involves the publisher, without
intensive processing at the consumer. Downloads of the total dataset (or subparts) and online tasks
of querying, information retrieval, visualization or summarization, are simple examples in which
the computation is focused on the publisher.

• Intensive consumer processing: processes with a non-negligible consumer computation, such as
offline analysis, data mining or reasoning over the full dataset or a subpart of it (e.g. live views
(Tummarello et al., 2010)).

Together with this characterization, a special type of consumption is thecomposition of data. That
is, we refer to processes consuming different data sources and services in order to serve their pur-
poses. RDF snippets in search engines (Haas, Mika, Tarjan, & Blanco, 2011) and federated services
on top of existing publishers in the Web of Data (Schwarte, Haase, Hose, Schenkel, & Schmidt, 2011;
Taheriyan, Knoblock, Szekely, & Ambite, 2012) are two examples of these consumers.

As shown in Figure6.1, the second level of classification of the stakeholders regards the nature of cre-
ators, publishers and consumers. Three main types of stakeholders areidentified:automatic stakeholders,
supervised processesandhuman stakeholders.

• Automatic stakeholders, such as sensors, Web processes (crawlers, search engines, recommender
systems), RFID labels, smartphones, etc. Automatic RDF streaming, for instance, would become
a hot topic, specially within the development of smart cities (De et al., 2012).

• Supervised processes, such as semantic tagging and folksonomies within the domain of social
networks (Garćıa-Silva, Corcho, Alani, & Ǵomez-Ṕerez, 2012). These are automatic processes
requiring some sort of human supervision.

• Human stakeholders,who currently perform most of the task for creating, publishing or consum-
ing RDF data.

Example. The following running example provides a practical review of this classification. Nowadays,
an RFID tag can document a user context through RDF metadata descriptions (Foulonneau, 2011). Let
us imagine a system in which sensors provide georeferenced information about pollution in different parts
of a city. We could have thousands of sensors providing RDF excerpts.In turn, citizens can visualize
and query online this information which has been linked to other data (e.g. weather) or facilities and
industries of the city. For instance, one could establish potential correlations between the pollution levels
of a given area and the environmental plan of the city council or other unexpected events such as strokes,
massive live concerts or sport matches. In addition, RDF data can be consumed by a monitoring system
to automatically alert population in case of extreme pollution levels in a particular area. When this system
is integrated with census data, the possibilities are even higher.

Following the classification, sensors areautomatic creatorsconforming, all together, a potentially
big semantic dataset. A sensor should be designed to take care of RDF descriptions, i.e., to follow a
set of vocabularies and description rules and to minimize the size of descriptions. Additionally, auto-
matic intermediate hubs would collect data of several sensors. In any case, it is clear that sensors can
not address all publishing policies such as providing query endpoints and other services to users. The
reasonable configuration is that the authoritative organization in charge of the system will be responsible
of its publication, applications and services over these data. This publicationauthority would implement
a supervised processcollecting the information, filtering it (e.g. eliminating redundancy) and finally
publishing in compliance with Linked Data standards. This process should becarefully designed and
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implemented to solve scalability issues of huge RDF datastreams. Although it couldbe automatic, let
us suppose that human intervention is needed, for instance to link sensor data to information about city
events. Note also that intermediate hubs could be seen assupervised consumersof the sensor data, yet
the information coming from the sensors is not openly published but streamedto the appropriate hub.
The final target arehuman consumers, in case of the online users (concerned of query resolution, visual-
ization, summarization, etc.) or anautomatic consumer, in case of monitoring (doing potential complex
inference or reasoning).

This feasible example agrees with our initial premise of the enormous diversityof involved actors
and their different concerns. When designing a system, this classificationcould help as a first step in the
identification of the roles and natures of the stakeholders. Then, different scalability issues should be
considered for each kind of stakeholder.

6.2 The Workflow of Publication-Exchange-Consumption

We henceforth consider the creation step out of the scope of this work, because our approach relies on
the preexistence of big semantic data (without belittling those ones which can becreated hereinafter).
Although very interesting issues arise in this phase, we focus on tasks involving large-scale management
as they take part in most scenarios. For instance, scalability issues of visual authoring a big RDF dataset
are comparable to RDF visualization by consumers, or the performance of RDF data integration from
existing content depends on efficient access to the data and thus existing indexes, a crucial issue also for
query response.

Management processes for publishers and consumers are diverse and complex to generalize. How-
ever, it is worth characterizing a common workflow present in almost everyapplication in the Web of
Data in order to place scalability issues in context. Figure6.2 illustrates the identified workflow of
Publication-Exchange-Consumption.

sensor 

Reasoning/Integration 

Quality/Provenance 

Indexing 

RDF dump 

SPARQL Endpoints/  
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dereferenceable URIs 
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Figure 6.2: Publication-Exchange-Consumption workflow in the Web of Data.

• Publication refers to the process of making RDF data publicly available following the Linked Data
principles. Strictly speaking, the only obligatory “service” in accordance with the principles is to
provide dereferenceable URIs,i.e., related information of an entity. In practice, publishers used to
complete this limited functionality. At the most basic level, they provide RDF dumps in order to
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download the complete RDF dataset, or at least some parts of it. A recommendedpractice is to go
one step further and expose data through public query APIs. Typically,queries are written in the
SPARQL query language and posed via SPARQL endpoints, which interprets SPARQL queries
and serves its results.

• Exchangeis the process of information interchange between publishers and consumers. Although
the information is represented in RDF, note that consumers could obtain different “views” and
hence formats, some of them not necessarily in RDF. For instance, the result of a SPARQL query
could be provided in a CSV file or the consumer would request a summary with statistics of the
dataset in a XML file. As we are issuing management of semantic datasets, we restrict exchange to
RDF interchange. Thus we rephrase exchange as the process of RDFexchange between publishers
and consumers after an RDF dump request, a SPARQL query resolution oranother request or
service provided by the publisher.

• Consumptioncan involve, as stated, a wide range of processes, from direct consumption to inten-
sive processing and composition of data sources. Let us simply define theconsumption as the use
of potentially large RDF data for diverse purposes.

A final remark must be done. As we stated when defining Big Semantic Data (§2.3), we do not
restrict management to large RDF datasets. We open scalability issues to a wider range of publishers and
consumers with more limited resources. For instance, similar scalability problems arise when managing
RDF in mobile devices; although the amount of information could be potentially smaller, these devices
have more restrictive requirements for transmission costs/latency, and forpost-processing due to their
inherent memory and CPU constraints (Le-Phuoc et al., 2010). Thus, although we provide approaches
for managing large RDF datasets, we assume similar decisions could be taken for limited configurations
with equivalent scalability issues.

6.2.1 State of the Art

This section summarizes some of the current trends to address publication, exchange and consumption
at large scale.

Publication schemes. Current straightforward publication of Big Semantic Data presents several prob-
lems, at all levels:

• RDF dumps.A massive empirical study of Linked Open Data datasets byHogan et al.(2012)
draws discouraging conclusions: few providers attach metadata to their resources (authoring, sum-
mary of content, statistics, etc.) or licensing information. In accordance also with the work
by Ferńandez, Mart́ınez-Prieto, and Gutiérrez(2010), the paradoxical fact is that the lack of sys-
tematic metadata is so worrying that RDF dumps do not encourage its consumption. Potential users
know almost nothing about the content they are going to download beforehand. Thus, managing
millions (and billions) of RDF triples in Big Semantic Data is, first, a matter of blind trust.

• SPARQL endpoints.Same features can be applied to SPARQL endpoints in which consumers,
most times, do not even know which are the vocabularies used in the data modeling. In these
cases, to query a dataset is an exploration task in which queries are constructed by “trial and error”.
In addition, SPARQL endpoints are services built on top of an RDF engine which has to address
efficient querying of such big data.

• Dereferenciation of HTTP URIs.Deferenceable URIs can be done in a straightforward way, pub-
lishing one document per URI, or set of URIs. However, the publisher commonly materializes the
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output by querying its RDF engine at URI resolution time. This moves the problem again to the
underneath RDF store, which is potentially solving other SPARQL queries. The empirical study
by Hogan et al.(2012) also confirmed that publishers often do not provide locally-known inlinks
in the dereferenced response which must be taken into account by consumers.

In general terms, except for the general Linked Data recommendations (Heath & Bizer, 2011), few
works address the publication of RDF at large scale. The Vocabulary ofInterlinked Datasets, VoiD
(Alexander, Cyganiak, Zhao, & Hausenblas, 2009), is the nearest approximation to the discovery prob-
lem, providing a bridge between publishers and consumers. Publishers make use of a specific vocabulary
to add metadata to their datasets,e.g. to point to the associated SPARQL endpoint and RDF dump, to
describe the total number of triples and to connect to linked datasets. Thus,consumers can look up
this metadata to discover datasets or to reduce the set of interesting datasets infederated queries over
the Web of Data (Akar, Halaç, Ekinci, & Dikenelli, 2012). Finally, the proposal of Semantic Sitemaps
(Cyganiak, Stenzhorn, Delbru, Decker, & Tummarello, 2008) extends the traditional Sitemap Protocol
for describing RDF data. They include new XML tags so that crawling tools (such as Sindice3) can
discover and consume the datasets.

RDF Serialization Formats. As we previously stated, we focus on exchanging large-scale RDF data
(or smaller volumes in limited resources stakeholders). Under this consideration, the RDF serialization
format directly determines the transmission costs and latency for consumption. Unfortunately, datasets
are currently serialized in plain and verbose formats such as RDF/XML (Beckett, 2004) or Notation3:
N3 (Berners-Lee, 1998).

RDF/XML (Beckett, 2004) was released hand in hand with the latest W3C RDF Recommendation.
In fact, it was a good solution to take advantage of all solutions managing XMLat that time. However, it
terribly overloads the representation with verbose information “for humans”, whereas humans should not
be the focus when downloading, for instance, hundreds of millions of triples. Same consideration could
be argued when optimizing the representation for limited devices, in which we should prioritized the
efficiency. RDF/XML includes, though, some naive compacting features,summarized in the list below
(Ferńandez, Mart́ınez-Prieto, Gutíerrez, Polleres, & Arias, 2013):

• Omitting Blank Nodes (Beckett, 2004, section 2.11): The attributerdf:parseType=“Resource”
allows to implicitly create blank nodes.

• Omitting Nodes (Beckett, 2004, section 2.12): Under certain conditions, object nodes with string
literals can be moved to property attributes, hence the subject node becomesempty.

• Abbreviating URI references (Beckett, 2004, section 2.14): First, a base URI attributexml:base
can be set. This is the base URI for resolving relative RDF URI references, otherwise the base URI
is that of the current document. Then, therdf:ID attribute on a node element can be used instead
of rdf:about. This attribute must be interpreted as a relative RDF URI reference.

• Collections (Beckett, 2004, section 2.14): It allows anrdf:parseType=“Collection”attribute to be
defined on a property element. This provides a set of node elements relatedto the subject node.

In turn, Notation3 (N3 (Berners-Lee, 1998)) is a language which was originally intended to be
a compact and readable alternative to RDF/XML, optimized for reading by scripts. Thus, it reduces
verbosity and represents RDF with a simple plain grammar. It also allows some compacting features
such as abbreviations for URIs prefixes (and base URI), shorthands for common predicates and square
bracket blank node syntax. One major advantage is the use of lists. For instance, repetition of another

3http://sindice.com/
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objects for the same previous subject and predicate using a comma “,” and repetition of another predicate
for the same subject using a semicolon “;”.

Turtle (Beckett & Berners-Lee, 2011) is a more compact and readable alternative. It is intended to
be compatible with, and a subset of, N3, thus it inherits its compact features,e.g. the abbreviation of
RDF collections. N-Triples (Grant & Beckett, 2004) is also a subset of N3, restricting to only one triple
per line, using hardly any syntactic sugar. It simplifies the parsing process at the expense of avoiding
compact structures.

RDF/JSON (Alexander, 2008) resembles Turtle, with the advantage of being coded in a language
easier to parse and more widely accepted in the programming world. It is intended to be easy for humans
to read and write and easy for machines to parse and generate.

Although most of these formats present features to “abbreviate” constructions like URIs, groups of
triples, common datatypes or RDF collections, the compactness of the representation definitely was not
the main concern of their design. Finally, Sterno (Weaver & Williams, 2011) is designed as a subset
of Turtle for optimizing parallel I/O. Although it collaterally addresses some notion of initial metadata
and compactness (e.g. all prefix declarations must occur at the beginning of a document and a Lempe-
Ziv compression over Sterno is evaluated), its main purpose is to allow parallel processing (divisibility)
disregarding publication facilities as well as native query support.

In order to reduce exchange costs and delays on the network, universal compressors (e.g. gzip) are
commonly used over these plain formats. In addition, specific interchange oriented representations may
be also used. For instance, the Efficient XML Interchange Format: EXI (Schneider & Kamiya, 2011)
may be used for representing any valid RDF/XML dataset.

Efficient RDF Consumption. The aforementioned variety of consumer tasks hinders to achieve a
one-size-fits-all technique. However, some general concerns can be outlined. In most scenarios, the
performance is influenced by i) the serialization format, due to the overall data exchange time, and ii) the
RDF indexing/querying structure. In the first case, if a compressed RDFhas been exchanged, a previous
decompression must be done. In this sense, the serialization format affects the consumption through the
transmission cost, but also with the easiness of parsing. Once the consumerhas downloaded the dataset,
the most likely scenario is indexing it in order to operate with the RDF graph,e.g.for intensive operation
of inference, integration, etc., but also for the most simple query. Current serialization formats do not
provide any means of direct access to the data,i.e. they only provide sequential parsing.

Although the indexing at consumption could be performed once, the amount ofresources required
for it may be prohibitive for many potential consumers (specially for mobile devices comprising a limited
computational configuration). In both cases, for publishers and consumers, an RDF store indexing the
datasets is the main actor for efficient consumption.

RDF is a logical data model which does not limit its physical storage or indexing. However, these pro-
ceedings are strongly related with the later querying process, which is typically performed by SPARQL
queries (see §2.1.2). The semantics and complexity of the SPARQL query language have been fairly
studied theoretically, showing that full SPARQL evaluation is PSPACE-complete4 (Perez et al., 2009)
due to the OPTIONAL operator alone (Schmidt, Meier, & Lausen, 2010). However, our empirical study
of real-world SPARQL queries (Arias, Ferńandez, Mart́ınez-Prieto, & de la Fuente, 2011) reveals that
most SPARQL queries are simple. In fact, over a large DBPedia log, up to66.41% of the queries just
contain one single triple pattern (see Definition3). In other logs, such as the Semantic Web Dog Food5,
the percentage of these simple queries reaches up to97.25%.

Several RDF indexes and RDF stores explore efficient SPARQL resolution methods. We review the
most important approaches in Section12.2, showing that the vast majority of them suffers from lack of

4A problem is PSPACE-complete if it can be resolved taking polynomial space w.r.t the input and every PSPACE problem
can be converted to it in polynomial time.

5http://data.semanticweb.org
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scalability in Big Semantic Data. There is still a large interest in querying optimization(Schmidt et al.,
2010), whose performance is diminished when the RDF stores manage very largedatasets.

6.3 Our Goal

Managing Big Semantic Data yields to optimize each process in the Web of Data workflow. In other
words, all steps must be designed to address the three Big Data dimensions,volume, velocity and variety.
Whereas we already argue that variety is already addressed with RDF and the Linked Data principles,
four brief insights can be gleaned from the study of the stakeholders, processes and current state of the
art in the Web of Data:

1. Data serialization has a big impact on the workflow, as traditional RDF serialization formats are
designed to be human readable instead of machine processable. They may fit smaller scenarios
in which volume or velocity are not an issue but, under the presented premises, they become a
bottleneck in the workflow. Moreover, current RDF serializations only enable sequential scan.

2. Besides inadequate overweighted serializations, most publishing schemes obviates metadata and
other facilities to upgrade publication and enable discovery for consumption.

3. Even for simple operations, current serialization formats do not provide any means of direct access
to the data. Thus, offline RDF consumption typically results in a painful set ofcostly tasks: ex-
change, decompression, indexing all plain data and, finally, use. Althoughthe information remains
semantically the same, note that each of these processes manages different data representations
with different levels of functionality.

4. Diverse stakeholders acts in the Web of Data, with different purposes. However, all them are
influenced by plain, non-functional, human-readable formats while managing Big Semantic Data.

Moreover, the aforementioned skewed structure of real-world RDF data(characterized in Chapter4)
gives insights showing that a compact RDF representation should be achieved. The motivation and state
of the art call for a binary representation for RDF aim at reducing the high levels of verbosity/redundancy
and weak machine-processable capabilities of the datasets. We collect the main requirements for an RDF
serialization format of Big Semantic,i.e. our hypothesis (§1.2) which will be addressed hereinafter.

• Efficient conversion from and into another RDF format. In particular, RDF stores must be able
to manage such optimized exchange format both to dump their information and to load new one.

• Clear publication scheme.For publishing, the format must rely on a clear scheme, providing a
standard way to add provenance and other metadata for discovery and processing by consumers.

• Efficient space.It must create compressed representations. Big semantic datasets are shared on the
Web of Data, and they may be transferred through the network infrastructure. Space minimization
reduces, then, both bandwidth costs and latency. In other words, consumers start processing the
information faster, which can be essential for real-time processes.

• Easy parsing.As stated, consumers are used to perform a sequential triple-to-triple scanning for
any post-processing task. This results in several minutes (or hours) when post-processing Big
Semantic Data at the consumer. In addition, most of the aforementioned RDF indexes use variants
of B-Trees, which are more inefficient to construct on unsorted elements.

• Ability to locate pieces of data within the whole dataset.Nowadays, the most basic lookup
requires to full scan the plain triples or to re-index the exchanged RDF dataat consumer, which
was potentially indexed at publisher. We conceive two desirable requirements for our format:
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1. It must be ready to solve, natively, a limited core of SPARQL queries, for instance the basic
triple patterns. As shown, triple patterns resolution covers a very significant percentage of
the real-world SPARQL queries (Arias et al., 2011).

2. It must provide enough flexibility to build additional indexes to efficiently resolve complex
SPARQL queries.

In summary, as we argued, “data must be encoded to be the index”. The next chapter presents
our proposal addressing the core format which fulfills the requirements for efficient publication and
exchange. Then,Part III andIV will present new structures to enhance the initial core with additional
query functionality.
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comes and takes out all the big trees?
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Very Bad Things (1998) 7
HDT: A Binary Serialization for RDF

Our approach,HDT : Header-Dictionary-Triples(Ferńandez et al., 2013), considers the previous re-
quirements, addressing a machine-processable RDF serialization format. It enables Big Semantic Data
to be efficiently managed within the common workflows of the Web of Data.

This chapter formalizes theHDTserialization for publication and exchange over a network. First,
we present a conceptual description of theHDTlogical components: Header, Dictionary and Triples. As
HDTallows different implementations for each component, we characterize the requirements, operations
and the intended use of each component. Next, we provide a practical deployment ofHDTwith simple
implementations of each component. Then, we design a generalRDF/HDT syntax specification and
provide specific details for the previous deployment. Finally, we perform an empirical study which
analyzesHDTfeatures on real-world datasets.

In the following chapters we present succinct data structures to browseHDT-encoded datasets (direct
access to any piece of data) in harmony with all aforementioned requirements.

7.1 Conceptual Description

HDT is designed as an RDF binary encoding which succinctly represents the information of an RDF
dataset by organizing and representing the RDF graph in terms of three logical components:Header,
Dictionary andTriples (Figure7.1).

• Header. The Header holds metadata describing a big semantic dataset encoded inHDT. Although
the binary representation should be machine-oriented, this component is aimedto gather a human-
friendly context of the dataset. In spite of the existence of dedicated RDF vocabularies to describe
datasets (e.g. VoiD (Alexander, Cyganiak, Hausenblas, & Zhao, 2011) and annotation properties
in OWL (Motik, Patel-Schneider, & Parsia, 2009, Section 10)), current serialization formats do
not provide means on how to publish these metadata along with datasets. In other words, the
metadata, when present, is currently provided in the same RDF graph in a nonstandard way which
makes difficult to extract and process them automatically.

In contrast, we propose the metadata to be encoded together with the data butin a distinguishable
component, the Header, making metadata a first-class citizen (Ferńandez et al., 2013). The Header
is, by itself, a plain RDF graph, thus leveraging the current semantic infrastructure for management
and discovery. The Header triples use standard vocabularies to describe the dataset. For instance,
one publisher can provide information about the provenance (authoring, publication dates, version),
statistics (size, quality, vocabularies), physical organization (subparts, location of files) and other
type of information (intellectual property, signatures).

• Dictionary. The Dictionary component organizes the catalog of all different terms used in the
dataset (URIs, literals and blank nodes). A unique identifier (ID) is assigned to each term, enabling
triples to be represented as tuples of three IDs which, respectively, reference the corresponding
terms in the dictionary.
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Figure 7.1: Description ofHDTComponents: Header-Dictionary-Triples.

Note that most RDF stores (such as the well-known RDF-3X (Neumann & Weikum, 2010) or
Virtuoso (Erling & Mikhailov, 2007)) make use of a dictionary as it allows the graph structure to
be indexed as an integer-stream. We propose to incorporate into the binaryRDF representation
this simple but effective decision for managing RDF. As we will argue, this is afirst step toward
compactness, since it avoids long terms to be repeatedly represented.

• Triples. The triples take advantage of the dictionary mapping to represent a graph of IDs, avoiding
to manage nodes and edges with long strings. This is, in fact, the key component to query the
RDF structure. On the one hand, an efficient triples encoding can help in triple scanning for
post-processing tasks. On the other hand, if data can be easily indexed,basic queries (such as
SPARQL triple patterns) could be resolved natively. Ideally, the data exchanged would not need
of decompression nor re-indexing to be consumed (or these processesmay be performed but in a
marginal timew.r.t traditional approaches).

Figure7.2shows a typical Publication-Exchange-Consumption scenario inHDT. We make use of the
following definitions (revised from our previous work (Ferńandez et al., 2011)).

Definition 26 (HDTprocessor) An HDTprocessor is a component used by application programs to en-
code their data intoHDTand/or to decodeHDTdata to make the data accessible.

Definition 27 (HDTencoder) An HDTencoder is anHDTprocessor which, at least, is able to encode
application data intoHDTdata.

Definition 28 (HDTdecoder) An HDTdecoder is anHDTprocessor which, at least, is able to decode
and post-processHDTdata for the purposes of an application program.

Definition 29 (HDTcore data) TheHDTcore data of anHDTrepresentation consists of its Dictionary
and Triples components, whether it is present in a unique or several files or streams. This core data must
be self-contained,i.e., it must contain enough information to consume the full dataset.

The HDTprocessorconcept generalizes the notion of publishers and consumers. This is specially
useful for environments in which stakeholders can act with several roles, such as consumers which look
up and integrate diverse sources and publish big semantic data. In such scenarios, one could distinguish
if the involved sources can (or not) manageHDTdata, that is, if they incorporate anHDTprocessor.
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Figure 7.2: The common process ofHDTencoding/decoding.

A “pure” HDT consumer (not acting as publisher) may be only interested in decoding and post-
processing the exchangedHDTdata, including then anHDTdecoderfunctionality. In turn, a publisher
willing to encode data toHDT, will run anHDTencodersoftware. In both cases they mainly exploit the
HDTcore data, that is, the Dictionary and Triples components, without denying the importance of the
metadata of the Header.

Thus, Figure7.2illustrates a content publisher making use of anHDTencoder (a program module or
an external library) in order to generateHDTfrom its RDF content. Once published and exchanged, the
consumer uses anHDTdecoder to efficiently access theHDTheader and the core data (dictionary and
triples). TheHDTdecoder should provide the consumer with distinct access possibilities, such as getting
the original full RDF dataset, retrieving the metadata of the header, parsingits information into another
data structures and querying the data.

Figure7.3 illustrates a variant of the previous encoding. One could effective argue that a consumer
would be interested in downloading only the Header with metadata in order to discover and filter the
properties of the dataset. In this case, the Header includes links to theHDTcore data. Moreover, the
Dictionary and Triples components allow diverse configurations and functionality, which can exploit the
trade-off between the compression ratio for exchanging and the nativelysupported operations. Thus, the
dictionary and triples could be split in several chunks or streams, one perdifferent configuration. The
user can select the appropriate format for the intended purpose.

The previousHDTbasic description was flexible enough to allow this possibility. In order to for-
malize these variations, in the following we detail the threeHDTcomponents and list potential uses and
levels of functionality.
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Figure 7.3: A variant ofHDTencoding/decoding for discovery.

7.1.1 Header

The Header is an RDF graph describing the dataset. The use of RDF in the Header provides flexibility in
the metadata itself. This way, publishers can include the set of properties oftheir choice to describe the
dataset. We distinguish four general types of metadata:

• Publication Metadata provides information about the publication act itself, for instance when
was the dataset generated, when was it made public, who is the publisher, where is the associated
SPARQL endpoint, which is the version of the publication, etc. Many properties of this type can
be described using the popular Dublin Core Vocabulary1.

• Statistical Metadataprovides statistical information about what follows in the dataset. This class
of metadata is valuable for humans to get a glimpse of the content but also to processes such as
visualization, indexing optimization for RDF engines or federated query evaluation.

Metadata can be simple (such as the number of triples, the number of different subjects, predicates,
objects, etc.), aggregated (histograms) or slightly richer such as our metrics in Chapter4.

• Format Metadata describes the concrete format of theHDTdataset,i.e., which specific Dictionary
and Triples implementations are used. Format metadata also allows i) to state that thepublisher
provides different available dictionary or triples representations if needed, for example with dif-
ferent space/time tradeoffs, and ii) that the information has been split in several streams. In both
cases, format metadata points to the URI locations of each representation.

• Additional Metadata collects other informations provided by the publisher using any RDF vocab-
ulary,e.g. tags, annotations, or signatures. It also holds specific application metadata.

1http://dublincore.org/
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Header Uses and Operations for Consumption

The Header serves as an entry point for a consumer, who can look up certain properties to have an idea
of the contents of the dataset.

Physically, the header can i) precede theHDTcore data and be downloaded together with the rest of
the information, or ii) be a standalone file, downloaded alone. In the first case, it may not serve to decide if
a (potentially huge) dataset worth to be downloaded, as the whole dataset has already been downloaded.
Nevertheless, the metadata could help discriminate whether a dataset deserves to be really consumed.
In addition, features such as statistics could optimize consumption processessuch as indexing. In the
latter case, the consumer can discover and filter the properties of a givendataset, for instance, through
SPARQL queries toward the RDF graph of metadata. This process is done before retrieving the whole
dataset. Moreover, if the header metadata can be retrieved and queried online, the user could consume
the header online. Last, if theHDTcore data is distributed in several chunks and available in different
formats the user can discriminate the relevant chunk and format to download.

Publishers need simple operations over the Header as it is a general (andtypically small) RDF graph.
Thus, the set of operations provided byHDTencoders can be reduced to the following simple set:

• write(RDF header, HDT core data) : Include an RDF description of the header within
theHDTcore data, conforming anHDTdataset.

• update(RDF header, HDT dataset) : Update anHDTdataset with a novel Header. Pub-
lishers typically write the Header once, but it could be updated several timeswith newer informa-
tion (Ferńandez et al., 2013).

In turn, consumers can download and access the Header locally, or theymight consume it using
SPARQL queries. In the first case,HDTdecoders should provide an operation such as:

• extract( HDT dataset, RDF header) : Extract the header out of anHDTdataset.

Both the filtering in this case as well as the SPARQL query in the latter case are general operations a
semantic library can deal with.

7.1.2 Dictionary

Historically, a dictionary is a repository of information about data such as meaning, relationships to other
data, origin, usage, and format (IBM, 1993). Nonetheless,HDTmakes a simpler conceptualization:
the HDTdictionary maps each term used in a dataset to a unique integer ID. Thus, it contributes to
compactness and more efficient triples management since each term occurrence is now replaced by its
corresponding ID, whose encoding requires less bits in the vast majority of the cases.

To the best of our knowledge, the dictionary has not been proposed in any RDF representation syn-
tax. Current RDF syntaxes achieve compactness by means of elementary “dictionaries” for namespaces
and prefixes (Ferńandez et al., 2013). Other approaches exploit the dictionary construction apart from
the RDF stores (Mart́ınez-Prieto, Ferńandez, & Ćanovas, 2012a; Urbani, Maassen, & Bal, 2010). A
detailed state of the art of RDF dictionaries is addressed in Chapter9.

Dictionary Characterization for Exchanging

The Dictionary component inHDTallows multiple implementations. It is clear, though, thatHDTen-
coders and decoders must agree on how to manage a specific encoding.In the following, we distinguish
a set of properties that typically characterize a dictionary implementation:

• Mapping Function. As we described, the dictionary mapping assigns an ID to each term. Ob-
viously, this assignment is not chosen at random, but it follows a clear pattern. For instance, one
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could sort all the terms used in a graph by alphabetic order and assign correlative IDs. In turn, an
important decision concerns the dictionary partitions. Instead of holding a global mapping, one
could distinguish into the different sets of subjects, predicates and objects, because each compo-
nent in a triple can be then independently named. Thanks to these partitions and due to the limited
number of different predicates (studied in Chapter4), the range of IDs for predicates is limited too.
Thus, the ID-stream in triples can make use of fewer bits per predicate. Inaddition, RDF engines
usually map shared subject-object elements with the same ID (Atre et al., 2010).

• Terms encoding.Several decisions affect the specif encodings of terms. First, dictionaries usually
make use of namespaces and prefixes, already present in most RDF syntaxes. This allows to
abbreviate long and repeated strings. Thus, theHDTencoder must share this information so that
the decoder can undo the abbreviation. Next, a mechanism to separate the serialized terms must
be established. Typically, a reserved character delimits terms and dictionarypartitions (if present).
Finally, the encoding of each term can strongly differs (plain, differential encoding, etc.) and must
be defined to enable the correct deserialization.

All these issues must be clearly formalized when designing and exchanginga novelHDTdictionary.

Dictionary Uses and Operations for Consumption

For publication and exchanging, the main goal of the Dictionary is to contributeto compactness. Then,
once the information is exchanged, the consumer needs two main operations over the mapping (further
developed in §9.1):

• locate(term) : returns the unique identifier for the givenelement, if it appears in the dictionary.

• extract(id) : returns the term with identifierid in the dictionary, if it exists.

In order to serve these operations, consumers typically load the exchanged dictionary into a func-
tional data structure. This is usually referred to asparsing. For instance, consumers could load the
serialization into Hashes, B-Trees or other well-known traditional forms ofdictionaries. An “intelligent”
encoding for the dictionary could help make this parsing more efficient. For instance, a lexicographically
order in the encoding could alleviate the posterior sorting made by some structures such as B-Trees.

Besideslocate andextract operations, more advanced techniques might also provide the fol-
lowing operations at consumption time:

• prefix(p) : finds all terms starting with the prefix ’p’.

• suffix(s) : finds all terms ending with the suffix ’s’.

• substring(s) : finds all the terms containing the substring ’s’.

• regex(e) : finds all strings matching the specified regular expression ’e’.

For instance, these advanced operations are very convenient when serving query suggestions to the
user, or when evaluating SPARQL queries. As shown in Chapter2, FILTER operations in SPARQL
restrict the final result by a given condition, typically a regular expression but also language or datatype
selection (§2.1.2). All these can be evaluated first over the Dictionary which can delimit a range of IDs
satisfying the condition (we describe these possibilities in §10.4).

In Part III, we study compressed rich-functional encodings for dictionaries which provide all these
operations natively once they are loaded at consumption time.
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7.1.3 Triples

The Dictionary mapping allows the RDF graph to be encoded as a graph of IDs. As we will show, the
triples organization is the cornerstone to i) exploit inherent graph redundancy and ii) allow triples to be
efficiently traversed.

Triples Characterization for Exchanging

Once again,HDTdevises multiple configuration for Triples encoding, varying in space/time tradeoffs and
diverse functionalities. A novel implementation has to clearly define two main properties for a correct
serialization/deserialization process:

• Triples organization. After ID replacement, the RDF graph is managed as a graph of IDs. Nev-
ertheless, the serialization of such ID-graph can be made in many different ways. For instance, a
triples component could perform an in-order traversal, seeing the serialization as a continuous ID-
stream of three IDs per triple. In contrast, one could make use of traditional concepts of adjacency
lists or other types of structures to achieve compactness.

• ID-terms encoding.As we have described in the dictionary, there are different mappings affecting
the potential range of IDs. Then, one could codify every ID with the same number of bits (e.g.23
bits) or to leverage the range in each partition to use fewer bits (e.g.log(|P |) for predicates). These
and other decisions taken to promote compactness, such as using differential and VByte encoding
(Williams & Zobel, 1999), must be explicitly known and shared byHDTencoders and decoders.

Triples Uses and Operations for Consumption

Similarly to the previous remark in dictionaries, an “intelligent” encoding for theHDTtriples component
can improve parsing at consumption time. We distinguish here four differentlevels of triples functionality
(revised from our previous work (Ferńandez et al., 2013)) at consumption time:

L0 Exchange.At the most basic level, an RDF Triples component solely serves to encode the set of RDF
statements, optimizing the objective of exchange. Then, it must allow the minimum operative to
retrieve all triples:

• scanTriples(HDT dataset) : Returns a sequential scan of all RDF statements in an
HDTdataset.

L1 Triple Pattern Search.An RDF Triples encoding under this level provides basictriple patternreso-
lution2, serving a search operation such as:

• searchTriplePattern(triplePattern, HDT dataset) : Returns the solution
for the given triple pattern in theHDTdataset.

Ideally, RDF Triples component should be able to resolve efficiently all kinds of triple patterns
(see Definition3). However, this ability can be achieved at the cost of more complex structures.
For instance, if a lightweight structure organizes data by subject, it can excel for triple patterns
providing a constant subject. In contrast, the performance may be significantly degraded if the
subject is not provided in the query. For this reason, we refer to the level “ L1+ Full Triple Pattern
Search” when the encoding is able to efficiently resolve all triple pattern combination.

2In these operations we consider a prior ID replacement of the triple patterns
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L2 BGP Resolution.In this case, the Triples facilitates to resolve SPARQL BGPs (see Definition4). As
stated, BGPs imply matching two or more triples patterns which share one or more variables, being
one of the most common constructions in RDF queries. Thus, RDF Triples component serves an
operation:

• resolveBGP([triplePatterns]?, HDT dataset) : Returns the solution for the
given BGP of one or more triple patterns in theHDTdataset .

L3 Full SPARQL.Ideally, the engine should be able to answer efficiently any SPARQL 1.0 query, serv-
ing:

• resolveQuery(SPARQL query, HDT dataset) : Returns the solution for the given
SPARQL query in theHDTdataset.

Note that, compared to the previous level, full SPARQL involves resolving Graph Patterns (see
Definition 5). That is, this level must address theOPTIONALandUNION operators (shown in
Chapter2.1.2). Thus, as we also refer to “efficient” resolution, the triples component must consider
query evaluation optimization techniques.

In Part IV, we study a rich-functional encoding for triples which provides aL1 level natively once it
is loaded at consumption time. Moreover, we propose additional succinct indexes which can be built on
top to provide higher levels of functionality.

7.2 Practical HDTDeployment for Publication and Exchange

HDTis designed as a modular format in which different implementations can be plugged into components
as long as they provide the minimum basis. In this section we provide a practicalHDTdeployment aimed
at clean publication and compact exchange.

7.2.1 A Specific Vocabulary for the Header

The Header component is always an RDF graph itself in order to take advantage of current applications
and services for management and discovery. A practical deployment, though, deals with the appropriate
standard vocabularies to describe the dataset. We propose a specifichdt vocabulary, with the namespace
http://purl.org/HDT/hdt#hdt . The mandatory structure of this practical Header is illustrated
in Figure7.4. The explanation of its main features is guided by a running example of a Header in Figure
7.5. This Header is given in Turtle syntax (Beckett & Berners-Lee, 2011) and it corresponds to the RDF
graph in Figure4.1. Note that the choice of a specific RDF syntax for the Header is an issue oftheHDT
syntax (we address it in §7.3).

First of all, the Header describes anHDTdataset, which is of typehdt:Dataset (line 10). As
seen in the structure (Figure7.4) thehdt vocabulary states that:

(hdt:Dataset,rdfs:subClassOf,void:Dataset)

, anHDTdescription is then an extension of the Vocabulary of Interlinked Datasets,VoiD (Alexander et al.,
2009). Thus, the Header can make use of VoiD properties to describe theHDTdataset in a standard way.
In addition, it enhances the VoID Vocabulary to provide a standardized binary dataset description.

Next, the Header distinguishes four “sections”, corresponding to the four basic types of metadata
detailed in Section7.1.1: Publication, statistical, formatandadditional Metadata. In practice, we model
these sections by means of four blank nodes (lines11-14 ) grouping the metadata of each type. These
are the most important remarks.
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_:publication 

<dataset> hdt:DataSet 

rdf:type

_:statistics _:additional 

void:DataSet 

rdfs:subClassOf

_:format 

_:dictionary _:triples 

 hdt:triplesPlain 

 hdt:triplesCompact 
rdfs:subPropertyOf

<typeDic> <locationDic> <typeTri> <locationTri> 

 hdt:tdictionaryPlain 
_:dictiona

Figure 7.4: The structure of the proposedHDTpractical deployment.

• Publication Metadata (hdt:publicationInformation ), group the statements about the publication
act (lines16-22 ). As can be seen in the example, it is strongly recommended to use standard
vocabularies such as Dublin Core and FOAF. Additionally, VoiD propertiescan provide specific
RDF features, such as the location of the associated SPARQL endpoint (line22).

• Statistical Metadata (hdt:statisticalInformation ) include statistics such as the number of RDF
triples of the dataset, or the number of different predicates. This is shownin lines14-25 , exploit-
ing VoiD properties. Note that statistics in VoiD are limited, hence a specific vocabulary could
also include the metrics presented in Chapter4. Other well-known vocabularies for statistics are
encouraged, such as RDFStats (Langegger & Woss, 2009) for histograms, semantic statistics with
SDMX (Cyganiak, Field, Gregory, Halb, & Tennison, 2010) or the RDF Data Cube Vocabulary
(Cyganiak & Reynolds, 2013).

• Format Metadata (hdt:formatInformation ) link to the concrete dictionary and triples encodings.
Thehdt:dictionary andhdt:triples properties group the metadata about the dictionary
and triples respectively. Two mandatory properties are required to describe these components:

– The specifictype of the Dictionary and Triples implementations. This can be specified in
two different ways:

1. Stating therdf:type of the component. In the header example, the line30 states
that the dictionary is of typehdt:dictionaryPlain (this is explained in the next
section §7.2.2).

2. Using RDFS subproperties ofhdt:dictionary andhdt:triples , as shown in
Figure7.4. In the example, line28 points to thehdt:triplesCompact configura-
tion, implicitly denoting that the triples are inCompact Triplesformat (this is described
in the following section, §7.2.3).
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1 @pref ix v o i d : <h t t p : / / r d f s . org / ns / vo id #> .
2 @pref ix d c : <h t t p : / / p u r l . o rg / dc / te rms /> .
3 @pref ix f o a f : <h t t p : / / xmlns . com / f o a f / 0 . 1 /> .
4 @pref ix h d t : <h t t p : / / p u r l . o rg /HDT/ hd t #> .
5 @pref ix x s d : <h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema#> .
6 @pref ix r d f s : <h t t p : / /www. w3 . org / 2 0 0 0 / 0 1 / rd f−schema#> .
7 @pref ix r d f : <h t t p : / /www. w3 . org /1999/02/22− rd f−syn tax−ns #> .
8 @pref ix swp: <h t t p : / /www. w3 . org / 2 0 0 4 / 0 3 / t r i x / swp−2/> .
9

10 <h t t p : / / example . org / myInfo . hd t> a h d t : D a t a s e t ;
11 h d t : p u b l i c a t i o n I n f o r m a t i o n : p u b l i c a t i o n ;
12 h d t : s t a t i s t i c a l I n f o r m a t i o n : s t a t i s t i c s ;
13 h d t : f o r m a t I n f o r m a t i o n : f o r m a t ;
14 h d t : a d d i t i o n a l I n f o r m a t i o n : a d d i t i o n a l .
15

16 : p u b l i c a t i o n d c : i s s u e d"2013-01-01" ;
17 d c : l i c e n s e<h t t p : / /www. gnu . org / c o p y l e f t / f d l . h tml> ;
18 d c : p u b l i s h e r [ a f o a f : O r g a n i z a t i o n ;
19 f oa f :homepage<h t t p : / / example . org / theCompany> ] ;
20 d c : s o u r c e<h t t p : / / downloads . example . org / 1 . 0 / en /> ;
21 d c : t i t l e "myInformation" ;
22 v o i d : s p a r q l E n d p o i n t<h t t p : / / example . org / myInfo / s p a r q l> .
23

24 : s t a t i s t i c s v o i d : t r i p l e s "7" ;
25 v o i d : p r o p e r t i e s "4" .
26

27 : f o r m a t h d t : d i c t i o n a r y : d i c t i o n a r y ;
28 h d t : t r i p l e s C o m p a c t : t r i p l e s .
29

30 : d i c t i o n a r y r d f : t y p e h d t : d i c t i o n a r y P l a i n ;
31 h d t : f i l e L o c a t i o n <h t t p : / / example . org / myInfo . hd t> ;
32 d c : f o r m a t "application/x-gzip" ;
33 h d t : d i c t i o n a r y E n c o d i n g"utf8" ;
34 h d t : d i c t i o n a r y N a m e s p a c e s [ hd t :namespace [ h d t : p r e f i x L ab e l "ex" ;
35 h d t : p r e f i x U R I "http://example.org/" ] ] ;
36 h d t : d i c t i o n a r y O r d e r<h d t : a l p h a b e t i c a lo r d e r> ;
37 h d t : d i c t i o n a r y S e p a r a t o r"\\0" .
38

39 : t r i p l e s h d t : f i l e L o c a t i o n<h t t p : / / example . org / myInfo . hd t> .
40 h d t : p r e d i c a t e S t r e a m [ d c : f o r m a t"application/octet-stream" ;
41 h d t : I D C o d i f i c a t i o n h d t : l o g B i t s ] ;
42 h d t : o b j e c t S t r e a m [ d c : f o r m a t"application/octet-stream" ;
43 h d t : I D C o d i f i c a t i o n "32" ] ;
44

45 : a d d i t i o n a l s w p : s i g n a t u r e"AZ8QWE..." ˆ ˆ<x s d : b a s e 6 4 B i n a r y> ;
46 swp :s i gna tu reMe thod<swp:JjcC14N−md5−xor−r s a> .

Figure 7.5: A Header example inHDT.

– The URI to localize the dictionary and triples. If they are provided in the same file as the
Header (in a standalone configuration), this URI will coincide with the current HDTURI.
This is the case of our example, in which the URIs of the dataset in line10 is equal to the
URI of the dictionary, line31 , and triples, line39 . If the components are split in several
chunks, one could make use of an RDF sequence (rdf:Seq ) to number all the locations.

In turn, additional format metadata depend on the concrete implementation of both Dictionary and
Triples components. Hence the metadata for our dictionary and triples practical approaches (lines
32-37 and40-43 ) are detailed in the following sections. It is worth noting that all the additional
metadata provided here are intended for discovering. The specific decisions forHDTdecoding are
delegated to specific control information described in theHDTsyntax (§7.3).

• Additional Metadata (hdt:additionalInformation ) gather all kind of additional information. Lines
44-46 provide a basic signature.
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7.2.2 Plain Dictionary Encoding

We propose aPlain Dictionaryby default, denoted in the Header with thehdt:dictionaryPlain
type, an RDFS subproperty ofhdt:dictionary . Plain dictionary is aimed at publishing and ex-
change, but it should contribute to an efficient parsing post-processing. That is, we must acknowledge
that this plain dictionary is only a serialization which has to be loaded into some datastructure in order
to allow the minimumlocate andextract operations at consumption time (seeDictionary uses and
operations for Consumptionin §7.1.2).

Similarly to any dictionary implementation, Plain Dictionary takes specific decisions for the mapping
between RDF terms an IDs and its codification for serialization:

Mapping Function: We split the dictionary in the four common subsets commonly used by RDF
engines (Atre et al., 2010), mapped as follows. Let us suppose an RDF graphG with SG, PG, OG

different subjects, predicates and objects:

1. Common subject-objects, denoted as the setSOG, are mapped to[1, |SOG|].

2. Thenon common subjects, SG − SOG, are mapped to[|SOG|+ 1, |SG|].

3. Thenon common objects, OG − SOG, are mapped to[|SOG|+ 1, |OG|].

4. Predicatesare mapped to[1, |PG|].

Note that the subject-object ratio (Definition18) characterizes the proportion of common subject-
objects in the dictionary. The empirical study of this ratio already denoted a noticeable value of common
subject-objects (see §4.3.1). Thus, the dictionary size is reduced versus a disjoint assignment of sub-
jects and objects, because the common elements are encoded once. In addition, the set of predicates is
treated independently because of their low number and the infrequent overlapping with other sets. This
configuration minimizes the range of predicate IDs, hence it contributes to compactness in the triples
substitution (smaller IDs are equivalent to less bits per ID).

An example of these four sets is shown in Figure7.6, built upon the graph in Figure4.1. One
could argue that a potential ambiguity could be present when extracting the ID-triples. Note that an
ID, such as2 in the figure belong to different sets:Subjects, Objectsand Predicates. However, the
disambiguation is trivial as long as we know that the ID in a triple is acting as a subject, a predicate or
an object (Ferńandez et al., 2013). Let us suppose that we are parsing and ID-triple such as(2, 3, 3).
The first ID-term is a subject, then it could be mapped whether in theCommon Subjects-Objector the
Subjectspartition. As the maximum ID inCommon Subjects-Objectis 1, it is obvious that2 belongs to
theSubjectspartition. An extract operation will return<http://example.org/Javier>. Next, the predicate
in the triple is numbered as3. As it is a predicate, it is unambiguously mapped in thePredicatepartition,
and then theextract operation retrievesfoaf:mbox. Finally, the process runs similar for the object3,
retrieving “jfergar@example.org”.

Terms encoding: We assume an alphabetic order inside each set, and a sequential numeric mapping.
The physical serialized data comprises a list of plain strings (typically inutf8) in order from (1) to (4).
This is shown in Figure7.7. We make use of a reserved character to delimit strings and sections. In
particular, we reserve the '\0' ASCII character. A double '\0\0' denotes the end of dictionary section.

Finally, it is worth mentioning that one could modify these by-default parameters (such as the delim-
iting character), but it must be described by specific control information for the dictionary (described in
theHDTsyntax7.3). These decisions can also be described in theHDTHeader for discovering purposes.
For instance, the example in Figure7.5 describes the use of “utf8” encoding in terms (line33), the al-
phabetic order in each partition (line36) and the delimiting character (line37). In addition, we declare
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Figure 7.6: An example of the different sections in anHDTplain dictionary.

<h t t p : / / example . org / V a l l a d o l i d> \0\0 <h t t p : / / example . org / J a v i e r> \0 <h t t p : / / example . org / Pab lo> \0 <h t t p : / / example . org / S a n t i a g o>
\0\0 <h t t p : / / example . org / R e s e a r c h e r> \0 ‘ ‘ j f e rga r@example . org’’ \0 ‘ ‘ j f e r g a r @ i n f o r . uva . e’’ \0 ‘ ‘ V a l l a d o l i d ’’ @es \0\0
ex:areaOfWork \0 e x : b i r t h P l a c e \0 foa f :mbox \0 foa f : name \0 r d f : t y p e \0\0

Figure 7.7: Serialized data of anHDTplain dictionary (from Figure7.6).

a “ex” prefix (lines34-35 ). Last, note that, in order to improve the final size for exchanging, all the
dictionary stream is compressed with gzip (line32).

7.2.3 Triples Encodings

We propose two simple encodings for the Triples component:Plain TriplesandCompact Triples. In-
tuitively, both are aimed at compact serialization for exchange, thus it should be post-processed for
consumption. Figure7.8 illustratesPlain andCompact Triplesover the example in Figure7.6.

• Plain Triples encoding(hdt:triplesPlain ) is the most basic approach. Plain Triples (PT) only ex-
ploits dictionary to perform the ID substitution of triples. Thus, the physical serialization contains
three IDs per triple (shown in Figure7.8(A)). In order to provide a certain order, the triples stream
is sequentially sorted by subject, predicate and object IDs respectively.It is worth noting that one
would make use of a number of fixed bits per ID (e.g. 32 or 64) or each ID can be encoded with
logn bits, beingn the number of total subjects, predicates or objects.

These decisions must be specified in the specific control information for thetriples (described in
theHDTsyntax7.3), and can also be described in theHDTHeader for discovering purposes.

• Compact Triples encoding(hdt:triplesCompact ) reduces verbosity by creating adjacency lists
in a similar way than N-Triples and Turtle do. As stated in Section6.2.1, these syntaxes avoid
repetitions, i) using a semicolon “;” to separate different predicates of the same subject, and ii)
using a comma “,” to separate different objects of the same pair of subject and predicate. We take
the same underlying concept of adjacency list, though we overcome this ideataking advantage of
the implicit order of the IDs. Let us consider the set of triples:

{(s1, p1, o11), · · · , (s1, p1, o1n1
), (s1, p2, o21), · · · (s1, p2, o2n2

), · · · (s1, pk, oknk
)}

can be written then as the adjacency list (organized by subject):

s1 → [(p1, (o11, · · · , o1n1
), (p2, (o21, · · · , o2n2

)), · · · (pk, (oknk
))].
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<http://example.org/Javier> rdf:type <http://example.org/Researcher> .

<http://example.org/Javier> foaf:mbox “jfergar@example.org” . 

<http://example.org/Javier> foaf:mbox “jfergar@infor.uva.es” . 

<http://example.org/Javier> ex:birthPlace <http://example.org/Valladolid> . 

<http://example.org/Santiago> ex:areaOfWork <http://example.org/Valladolid> . 

<http://example.org/Pablo> ex:areaOfWork <http://example.org/Valladolid> . 

<http://example.org/Valladolid> foaf:name “Valladolid”@es . 

Figure 7.8: Practical approaches forHDTtriple serialization.

Assuming a set of subjectsSG = {s1, s2, · · · , sN}, the graph can be represented as all the adja-
cency lists of subjects:

s1 → [(p1, (o11, · · · , o1n1
), (p2, (o21, · · · , o2n2

)), · · · (pk, (oknk
))].

s2 → [· · · ].

· · ·

sN → [· · · ].

Compact Triples (CT) encodes these lists (a list of lists) compactly. First, notethat, following the
same sequential order as Plain Triples, subject IDss1, s2, · · · , sN are a correlative sequence. Thus,
an immediate saving can be achieved by omitting the subject representation. In the final encoding,
the first list corresponds to the first subject, the second list to the secondsubject, and so on. Next,
the representation is slightly modified. We split the list of lists into two coordinated streams of
Predicates andObjects , as shown in Figure7.8(B).

– The Predicate stream lists the predicates associated with subjects, maintaining the
implicit grouping order. The end of a list of predicates is marked with the reserved zero
ID3. In other words, predicate lists are separated by 0s, therefore thei-th list belongs toi-th
subject.

– TheObject stream lists the objects for each pair(subject, predicate). In this case, the
zero ID marks a change of(subject, predicate)pair, moving forward in the first stream pro-
cessing. That is, thej-th list belongs to thej-th (subject, predicate)pair in the former stream.

This underlying representation entails several remarks:

– All predicates related to a subject are sorted in increasing way. For instance, in Figure7.8, the
predicates for the second subject are sorted as{2,3,5 }. This is very similar to a well-known

3Note that the dictionary assigns IDs from1.
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problem: posting list encoding for information retrieval purposes (Baeza-Yates & Ribeiro-Neto,
2011; Witten, Moffat, & Bell, 1999).

– Objects are ordered for each pair(subject, predicate). In our example, the object5 is listed
first (because it is related to the pair(1,4) ), then1 (related to(2,2) ), next the objects
3,4 (by considering that both are related to the pair(2,3) ), and so on.

– A Depth First Search (DFS) traversal of the forest retrieves all triplessorted by ID. That is, it
obtains the Plain Triple list.

Similarly to PT, Compact Triples would make use of a number of fixed bits per ID (32 or 64 in
practice) or each ID can be encoded according to the logarithm of the corresponding number of
elements. CT includes two streams by default, hence different codificationscan be used in each
stream. Again, this must be specified in the specific control information for thetriples (§7.3), and
can also be described in theHDTHeader for discovering purposes. For instance, the example in
Figure7.5describes the use oflog bits in the predicate stream (lines40-41 ) but a fixed number
of 32 bits in the object stream (lines32-43 ).

Finally, it is very significant to note that some of the metrics proposed in Chapter 4 perfectly
characterize both streams in CT. In short:

– The labeled out-degree of a given subject is the number of different predicates related to this
subject. Thus, for every subjects ∈ SG, the length of its list in thePredicate stream
is exactly its labeled out-degree,degL−(s).

– In general, one could characterize the expected mean and maximum length ofthe lists in the
Predicate stream , given bydegL−(G) anddegL−(G) respectively.

– Symmetrically, the partial out-degree,deg−−(s, p), denotes the size of the corresponding list
in theObject stream for every valid pairs ∈ SG, p ∈ PG.

– In general, mean and maxim values of the lists in theObject stream are given by
deg−−(G) anddeg−−(G) respectively.

7.3 RDF/HDTSyntax Specification

We have stated thatHDTis flexible and provides multiple configurations for each of its three components,
hence we provided a practical deployment for publication and exchange. In this section we summarize
the RDF/HDT syntax specification to standardize the encoding of these multiple variations. Further
details can be found in our W3C Member Submission (Ferńandez et al., 2011). Note that the W3C
specifications were published in 2011. Thus, the following details of the syntax introduce some novel
improvements which make the format slightly differ from the original approach(Ferńandez et al., 2011).

7.3.1 The Structure of anHDTFile

Despite multiple configurations,HDTprocessors have to know how to manageHDTfiles. In other words,
clear instructions on the structure ofHDTfiles allow to implement anHDTencoder/decoder in any lan-
guage/platform. AnHDTfile consists of the following items:

• One mandatory initialControl Information preamble.

• TheHDTHeader.

• Zero or moreHDTDictionary, each one preceded by aControl Information .

• Zero or moreHDTTriples, each one preceded by aControl Information .
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Cookie Type Codification [Options]

Table 7.1:HDTControl Information.
Component Bits Stands for

00 Global
01 Dictionary Component
10 Triples Component
11 Reserved

Table 7.2: Valid types in theHDTControl Information.

Thus, anHDTfile must be headed by aControl Information preamble which establishes
some general properties (described in the next section). It is worth mentioning that everyControl
Information is perfectly delimited as it starts with a “$HDT” keyword and ends with “$END” (both
are reserved keywords). Thus, theHDTHeader component, which provides metadata about the RDF
dataset, is located right after the firstControl Information preamble. TheHDTHeader is encoded
in Turtle by default. Note that a void content could be provided (but not recommended).

Both the Dictionary and Triples components are optional. This feature may notbe commonly used,
but it allows to exchange only header information, which could be useful for discovering datasets. As
stated, theHDTcore data can be distributed in several chunks and under different formats. The metadata
of the header could help retrieve the appropriateHDTcore data.

Dictionary and Triples components are also preceded by aControl Information which can
provide additional properties for each concrete implementation.

In the next sections we present theControl Information structure, and commonalities for
every Dictionary and Triples implementations.

7.3.2 The Control Information

A Control Information (CI) is a preamble describing configuration options. It is used at the
beginning of theHDTfile as well as the Dictionary and Triples components. It has the following structure
(showed in Table7.1):

Cookie. The CI starts with anHDTCookie, a magic keyword ’$HDT’, as four ASCII characters. These
four bytes are particular toHDTand specific enough to distinguishHDTfiles and streams from a broad
range of data types.

Type. The second part of the CI consists of two bits identifying the component or components that
follow the CI, i.e. the component described by the CI. The valid values are provided in Table7.2. A “00”
value stands for the initial global preamble, whereas “01” and “10” indicate that the CI is describing a
Dictionary or a Triples component respectively. We reserve the “11” value.

Codification. The third part of the CI identifies the codification being used in the following compo-
nent (Dictionary or Triples). If the CI is the initial preamble of the file, this format indicates theHDT
syntax version. The codification is given as a null-terminated string containing a URI of the concrete
implementation. This way i) we leverage the same URI infrastructure and ii) remainflexible for future
codifications. Table7.3shows the default URIs for the aforementioned practical deployments. Note that
for the global description,hdt:HDTv0.9 stands for this current version of theRDF/HDTsyntax. Thus,
future version could be added by defining the appropriate URI.
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HDTPractical Component Reference URI

currentRDF/HDTsyntax hdt:HDTv0.9
Plain Dictionary hdt:dictionaryPlain
Plain Triples hdt:triplesPlain
Compact Triples hdt:triplesCompact

Table 7.3: Reference URIs of theHDTpractical components.

Options. The last part of the CI provides a mechanism to specify additional properties of the global
HDTfile or the concrete Dictionary or Triples component. Properties are ASCIIstrings with the scheme:

<property1>= <value1>; <property2 >= <value2>; · · · <propertyN>= <valueN>;\ 0

noting that the list of properties is finished by a NULL character and, obviously neither properties nor
values can include “=” nor “;” symbols.

These auxiliary properties are used to provide the necessary informationto process the data. We
reserve one property,format , as a standard property to identify the MIME type of the Header (in case
of a global CI), Dictionary or Triples component. This is the property, forinstance, in which we set up
the concrete RDF syntax used in the Header.

Finally, a reserved word “$END” must be added at the end of the CI to delimitits length.

7.3.3 Plain Dictionary Encoding

Plain Dictionary encoding follows the description of Section7.2.2. As stated, the serialization consists
of a plain bulk of the strings in each dictionary section, with a reserved separator between them. This
was shown in Figure7.7. We provide additional remarks to complete a standard serialization.

Strings encoding. Plain Dictionary follows the N3 syntax for the RDF terms,i.e., to distinguish be-
tween URIs, literals and blank nodes (Ferńandez et al., 2013):

• URIs are delimited by angle brackets “<” and “>”.

• URIs can be absolute or relative to the base URI (defined as a propertyin the CI of the Dictionary
component).

• URIs can make use of prefixes (defined as a property in the CI of the Dictionary component) or
predefined prefixes (described below).

• Blank nodes are named with the: namespace prefix,e.g. :b83 represents a blank node.

• Literals are written using double-quotes (e.g. “literal”). The ““literal”” string form is used when
they may contain linebreaks.

• Literals representing numbers or booleans can be written directly corresponding to the right XML
Schema Datatype: xsd:integer, xsd:double, xsd:decimal or xsd:boolean.

• Comments are not allowed in any form.

Table7.4 shows the predefined prefixes whereas Table7.5 describes the string escaping sequences
which follows N3.
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Stands for

a <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

= <http://www.w3.org/2002/07/owl#sameAs>

=> <http://www.w3.org/2000/10/swap/log#implies>

<= <http://www.w3.org/2000/10/swap/log#implies>,

but in the inverse direction

Table 7.4: Dictionary predefined prefixes.

Stands for

\newline Ignored
\\ Backslash (\)
\' Single quote (')
\" Double quote (”)
\n ASCII Linefeed (LF)
\r ASCII Carriage Return (CR)
\t ASCII Horizontal Tab (TAB)
\uhhhh character in BMP with Unicode value U+hhhh
\U00hhhhhh character in plain 1-16 with Unicode value U+hhhhhh

Table 7.5: Dictionary string escaping sequences.

Property Use

dictionaryEncoding Set up the dictionary encoding. By default, utf8.
dictionarySeparator Define the reserved separator character. As stated, the default valueis “\0”.
dictionaryOrder Describe the order inside each defined subset in the dictionary.
PrefixBaseURI Set up the base prefix to be used in the dictionary when parsing relative URIs.
PrefixLabel1, PrefixLabel2, etc. Set up prefixes labels to be used in the dictionary.
PrefixURI 1, PrefixURI2, etc. Set up the corresponding URIs to the predefined prefix labels.
Sequence Identify the order in the sequence of all the dictionary chunks in case of splitting.

Table 7.6: Plain Dictionary properties in the Control Information.

Properties in Control Information. As stated above, both Base URI and user-defined prefixes can
be established. These and other decisions of encoding are provided withproperties in the CI of the
dictionary section. Table7.6 shows the possible parameters for a Plain Dictionary. For instance, if
present, thedictionaryOrderproperty establishes the order of the mapping within each of the four Plain
Dictionary sections. By default the order is “alphabetic”, but other accepted values are “none” and
“frequency”. In the latter case, terms are ordered by number of occurrences within the triples.

7.3.4 Triples Encodings

In Section7.2.3 we proposed two practical encodings for the Triples component:Plain Triples and
Compact Triples. The concrete encoding of anHDTdataset is established in thecodification value
of the Control Information. The reference URI of each proposal is given in Table7.3.

Properties in Control Information. Obviously, the properties depends on the concrete triples ap-
proach. Nevertheless, both encodings share a set of common parameters which can be defined its corre-
sponding CI. These parameters are summarized in Table7.7.

Plain Triples. It follows the same simple notions provided in Section7.2.3. The final physical serial-
ization contains a continuous streams of IDs, with three IDs per triple. In addition to the properties in
Table7.7, it must provide the number of bits per element in the CI:

• IDCodificationBits: establishes the number of bits per ID. One could expect a number
(the default value is 32 bits) or the URIhdt:logBits denoting that each ID is encoded with
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Property Use

Triples Indicate the total number of triples.
Order Set up the triples ordering: SPO (default), SOP, PSO, POS, OPS, OSP ornone.
Subjects, Predicates and ObjectsProvide the number of different elements respectively.
Sequence Identify the order in the sequence of all the triples chunks in case of splitting.

Table 7.7: Common triple properties in the Control Information.

log(n) bits, beingn the number of total subjects, predicates or objects. These numbers must then
be provided in the CI (as shown in Table7.7).

Compact Triples. The CT encoding splits the representation into two streams of IDs (Predicatesand
Objects in case of a SPO order). The streams are encoded one after the other. In order to know the limit
and bits per ID of each stream, both Compact and Bitmap Triples make use of additional properties in
the CI.

• FirstStreamLength: indicates the number of elements in the first stream.

• SecondStreamLength: indicates the number of elements in the second stream.

• FirstIDCodificationBits: provides the number of bits of each ID in the first stream. The
default value is set to 32. The value logBits must be interpreted as follows: each ID is encoded
with log(n) bits, beingn the number of the elements in this stream.

• SecondIDCodificationBits: provides the number of bits of each ID in the second stream,
with the same policy than the previous property.

7.4 Experimental Evaluation

This section evaluates the size and performance of the practicalHDTdeployment for publication and
exchange presented in the previous Section7.2.

First, we measure the size of theHDTDictionary and Triples to show its compactness (§7.4.1). Then,
we evaluate the scalability ofHDTbased on the implementation of Plain Dictionary and Compact Triples
(§7.4.2). Finally, we perform and evaluate traditional compression on top of anHDTdataset (§7.4.3).

This experimentation runs on the datasets described in Chapter4, Section4.2. For the evaluation, we
consider a Header in Turtle syntax such as the one in Figure7.5. Note that the size of the Header (a few
KB at most) is negligible at large scale.

As this section studies the Publication-Exchange workflow, we design a real-world setup in which
two main stakeholders are involved (Table7.8details their characteristics):

• The data publisher is implemented on a powerful computational configuration. It simulates an
efficient data provider within the Web of Data.

• The consumer is designed on a configuration able to play the role of an agent consuming Big
Semantic Data. Thus, we assume a powerful computational configuration, although slightly more
limited than the data publisher.

Finally, let us remark that we use a g++ 4.7.2 compiler with-09 optimization for all the tools, which
are openly provided athttp://rdfhdt.org .
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Machine Data publisher Consumer
Num. of CPUs 4 8

CPU Intel Xeon X5675 Intel Core i7 3820
CPU speed 3.07 GHz 3.6 GHz

cache size L1/L2 1 MB / 256 KB 64 KB / 256 KB
RAM size 48 GB 16 GB

I/O cached reads: 7,200 MB/sec 13,100 MB/sec
I/O buffered disk reads: 190 MB/sec 194 MB/sec

RAID disks 8 of 1TB, SAS 7,200 RPM 1 of 1TB, SATA 7200 RPM
RAID level 10 -

Operating System Ubuntu/Precise 12.04.2 LTS Debian 7.1

Table 7.8: Machines configuration of the experimental framework.

7.4.1 Dictionary and Triples Compact Ability

Table7.9 shows the compact ratios of each proposed component inHDTwith respect to the original
N-Triples format (one triple per line). For the sake of clarity, we presentthe datasets in ascending order
of triples. Plain Triples (PT) and Compact Triples (CT) are represented according to the logarithm of the
corresponding number of elements (see §7.2.3).

First of all, it is remarkable that in all datasets, except for the2000 US Censuscommented below,
the size of the Dictionary is significant bigger than the corresponding size for Triples (both in PT and
CT). Whereas the size of the Plain Dictionary is around 12% the size of the original dataset, and up
to 21%, Plain and Compact Triples are all in the range 2.5% - 5.6%. In some cases, such asJamendo,
SWDFor DBLP, the dictionary is 6 times bigger than the triples. This first result points to the need of
improving the representation of both components to boost the final compression result. These insights
encourage the design of compact but functional Dictionaries and Triplesthat we address in Part III and
IV respectively.

In addition, Table7.9shows that PT and CT have a comparable ratio. Nevertheless, as we expected,
Compact Triples outperforms Plain Triples in all datasets. The only exceptionis again the2000 US
Census. Note that this dataset includes a particular structure in which almost all subjects make use of
shared blank nodes to organize the different types of census figuresor measures. In this scenario, it is
possible that i) the triple structure exceeds the dictionary size, as there is a low number of different values
and ii) PT outperforms CT, as the adjacency lists are too short and CT paysthe overhead of the delimiting
character of each list. Nevertheless, this is a corner case and the final compression ratio figures remain
very close.

Next, Table7.10 compares the compression ratio ofHDTwith Plain and Compact Triples against
three well-known universal compressors. We choosegzip 4 and lzma 5 as two dictionary-based tech-
niques on Lempel-Ziv compression, andbzip2 based on the Burrows-Wheeler Transform.

The most effective universal compressors for all datasets arebzip2 and lzma which achieve ra-
tios of around4%. Note that theHDT representation is completely “in plain”. That is, these results
are obtained by representing the dictionary and triples components aside, grouping references in the
dictionary, using alog bits (of the corresponding number of elements) codification in ID-triples, and
using adjacency lists (in CT). In other words, with these simple decisions, compression ratios are around
16%, only 2 times bigger (on average) than a pure data compression with gzip. This demonstrates the
previously cited ability ofHDTto obtain compact representations of RDF.

Nonetheless, we present below an additional compression on top ofHDT(§7.4.3), which can fit in
very strict exchanging scenarios requiring even a better compression than traditional compressors.

4http://www.gzip.org
5http://www.7-zip.org
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Dataset
Original Size

Plain Dictionary
Triples

(MB) Plain Compact

SWDF 16 15.26% 2.93% 2.65%
2011 Australian Census 52 5.88% 2.82% 2.63%
Jamendo 144 21.13% 3.73% 3.51%
AEMET 726 11.20% 2.56% 2.49%
LinkedMDB 850 11.66% 4.22% 4.12%
Wordnet 974 9.10% 3.75% 3.57%
Affymetrix 6,526 11.97% 4.20% 3.67%
Flickr 6,714 12.05% 4.53% 3.80%
Dbtune 9,566 10.39% 4.19% 4.02%
DBLP 9,799 16.82% 3.80% 3.32%
2000 US Census 21,796 2.63% 4.81% 4.87%
Linked Geo Data 39,423 21.49% 5.58% 5.47%
Dbpedia 3-8 63,053 12.78% 5.55% 3.77%
Ike 102,662 8.40% 3.47% 3.31%

Table 7.9: Compression ratio of the Dictionary and Triples components with respect to the original size
of each dataset.
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Figure 7.9:HDTdictionary growth with respect to the number of triples in the dataset. Both axesare
drawn in logarithmic scale.

7.4.2 Scalability Evaluation

We evaluate theHDTscalability in three correlated aspects: dictionary size,HDTcompact ability and
performance (at publisher and consumer). First, we study thedictionary growth with respect to the
number of triples. Note that the dictionary is seen as the largestHDTcomponent, as shown in Table7.9.

Figure7.9represents (in logarithmic scale) the number of entries of the dictionary versus the number
of triples of the dataset. Each point corresponds to one of the 14 different evaluation datasets. We
consider a Plain Dictionary (§7.2.2), hence the “number of entries” is the sum of all the elements in each
subdivision:common subject-objects, non common subjects, non common objectsandpredicates.

Note that Figure7.9also represents they = x function and the adjusted function fitting the distribu-
tion, y = 25.75x0.77. As can be seen, the number of unique dictionary entries has a sublinear growth
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Dataset
Triples Size HDT Universal Compressors
(millions) (MB) PT CT gzip bzip2 lzma

SWDF 0.1 16 18.21% 17.92% 9.68% 6.63% 7.03%
2011 Australian Census 0.4 52 8.70% 8.51% 2.80% 1.33% 1.85%
Jamendo 1.0 144 24.87% 24.64% 5.83% 4.16% 4.00%
AEMET 3.5 726 13.77% 13.69% 2.57% 1.20% 1.37%
LinkedMDB 6.1 850 15.89% 15.79% 4.75% 2.79% 3.23%
Wordnet 6.3 974 12.85% 12.66% 4.97% 3.22% 4.32%
Affymetrix 44.2 6,526 16.17% 15.64% 5.42% 3.43% 3.91%
Flickr 49.1 6,714 16.58% 15.84% 9.03% 7.40% 6.28%
Dbtune 58.9 9,566 14.57% 14.41% 11.24% 7.65% 5.98%
DBLP 60.1 9,799 20.62% 20.14% 5.42% 3.49% 4.59%
2000 US Census 149.2 21,796 7.45% 7.50% 4.62% 2.27% 2.83%
Linked Geo Data 274.7 39,423 27.07% 26.96% 5.90% 4.13% 4.39%
Dbpedia 3-8 431.4 63,053 18.32% 16.55% 8.01% 5.90% 6.17%
Ike 514.8 102,662 11.86% 11.71% 3.22% 1.08% 1.50%

Table 7.10: Compression ratio ofHDTwith Plain and Compact Triples and universal compressors.

w.r.t. the number of triples. This result points that we can assure that the appropriate treatment inHDT
can maintain the sublinear tendency in size, guaranteeing the scalability of the representation.

Next, we study theHDT compact ability with incremental sizes. To do so, we test the compression
ratios of the Ike dataset (see description in Section4.2), incrementally split in steps of 50 million triples
up to the total size of the dataset (515 M.). We choose this particular datasetbecause it includes similar
meteorological measures in different days. This way, we assure that incremental sizes actually share the
same data modeling and identical properties. This gives the opportunity to carry out a precise evaluation
of the evolution of the size inHDT.

The evaluation is shown in Figure7.10. The top table studies theHDTevolution of effectiveness. As
can be seen, the compression ratios for Plain and Compact Triples are in tune with the previous results.
This ensuresHDTeffectiveness by considering that the effectiveness is achieved regardless the size of
the dataset. Moreover, we can observe that the ratios decrease as the number of triples increases, going
between15% for 50 M. triples to around12% for the 515 M. dataset. This can be seen as a natural
reflection of the sublinear tendency of the dictionary growth. In other words, for increasingly large
datasets, the proportion of new entries tends to decrease (the dictionary contributes to the totalHDTsize
in less proportion), and thus more compression ratios can be achieved. The two rightmost columns of
the top table show the memory usage for the creation ofHDT(PT and CT figures are comparable). We
provide the memory peak usage in GB and the ratio over the original size. It isworth noting that the
creation process always employs less than 40% of the original size. It also follows a decreasing tendency
in accordance to the number of triples. For the complete dataset, only 1/3 of theoriginal size is used,
resulting in a highly scalable process.

The bottom graph on Figure7.10 shows theHDT creation times in the publisher machine. In
this scenario, thecreation time stands for the time required to transform an RDF dataset (from plain
N-Triples) intoHDT. This process is only performed once at publishing and shows a linear growth. Note
that both Plain and Compact Triples configurations provide comparable times.Nonetheless, CT remains
below PT times: as less information is managed in CT, it requires less transfersto disk for the final dump
of the representation.

Finally, we study theHDT performance at the consumer. This evaluation is done on incremental
sizes of the2000 US Census(see description in Section4.2), in steps of 15 million triples up to the total
size of the dataset (150 M.). We choose this particular dataset because itprovides similar features as
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Triples Size HDT Memory Peak Usage (creation)
(millions) (GB) PT CT Size (GB) % mem/original

50 9 15,68% 15,37% 3,6 38,17%
100 19 15,91% 15,54% 6,9 36,18%
150 28 15,88% 15,45% 10 35,13%
200 38 15,33% 15,22% 13 34,02%
250 48 14,46% 14,35% 15 31,28%
300 58 13,88% 13,82% 19 32,71%
350 68 13,52% 13,52% 23 33,73%
400 78 13,16% 13,17% 25 32,02%
450 88 12,89% 12,89% 27 30,78%
500 97 12,11% 12,00% 30 30,80%
515 100 11,86% 11,71% 32 31,92%
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Figure 7.10: Performance ofHDT(Plain andCompact ) with incremental size fromIke. The top table
shows effectiveness, whereas the bottom figure draws creation times.

the previous meteorological case (the structure remains similar for increasing number of triples) and it
perfectly fits in a typical client such as the proposed in our evaluation framework (§7.4).

Figure 7.11 shows the results of this evaluation. The top table represents theHDTPlain Triples
effectiveness in space, the memory used for creation at publisher, andfor loading at consumption. It is
important mentioning that, in this case, “loading” means to retrieve the dictionary and triples components
of theHDTrepresentation and to load them in memory structures, being functional for basic consumption.
In this test, we load each of the four sets in Plain Dictionary into a Hash structure (hence we compute
its overhead in size), and the Plain Triples in a sorted array. We obviate CT comparison for the sake of
clarity as it provided very close results.

As can be seen, both theHDTPT size and the memory peak usage at publisher follow a similar
tendency to that observed forIke: the compression and memory usage ratio decrease as the number of
triples increases. In addition, we can observe an identical tendency in theuse of memory at loading. For
the full dataset, the memory usage in the consumer is slightly above 20% of the original N-Triples size.
Note that this size computes all the aforementioned structures in memory, required forRDFretrieval.

In turn, the bottom graph on Figure7.11shows the creation and loading times forHDT, in the pub-
lisher and consumer machines respectively. As in the previous case ofIke, the creation time follows
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Triples Size
HDT PT

Memory Peak Usage (creation) Memory Peak Usage (load)
(millions) (GB) Size (GB) % mem/original Size (GB) % mem/original

15 2 9.77% 0.87 36.39% 0.86 35.97%
30 5 8.15% 1.4 30.10% 1.3 27.95%
45 7 7.80% 1.9 28.07% 1.8 26.60%
60 9 7.29% 2.5 27.27% 2.1 22.91%
75 11 7.25% 3.1 27.40% 2.6 22.98%
90 13 7.34% 3.7 27.71% 3.2 23.97%
105 15 7.26% 4.1 26.52% 3.5 22.64%
120 17 7.45% 4.6 26.31% 4 22.88%
135 19 7.43% 5.1 26.17% 4.3 22.06%
150 21 7.39% 5.5 25.63% 4.7 21.90%
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Figure 7.11: Performance ofHDT(Plain ) with incremental size from the2000 US Census. The top ta-
ble shows effectiveness, whereas the bottom figure draws creation (publisher) and load times (consumer).

a linear growth, which is also replicated for theloading time: as can be seen, the loading time is only
a very small fraction (≈ 3%) of the creation one. Note again that the creation phase is made once at
consumption, whereas loading is made in every potential consumer.

7.4.3 Additional HDTCompression

HDTachieves a significant reduction of the RDF dataset size by means of the Plain Dictionary and the
Plain or Compact Triples configurations. This provides a clean publication scheme together with efficient
compression ratios. However, we have stated that traditional compressionoutperforms the size of this
representation. Obviously, this reduction is at the cost of decompressionat consumption time (which
can be very significant for techniques such asbzip2 andlzma ). Moreover, data after decompression
remain in the same plain RDF format (such as N-Triples).

Thus, we state thatHDTcan be even more compressible with little effort, fitting very strict exchanging
scenarios. We testHDTcompressibility with a particular deployment calledHDT CT-Compressed .
This deployment simply applies a gzip compression on theHDTdataset in Compact Triples.

Table 7.11 shows the results ofHDT CT-Compressed with respect to the traditional gzip and
bzip2 compression (over the original N-Triples). As can be seen,HDT CT-Compressed achieves the
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Dataset
Size HDT Universal Compressors

(MB) CT CT-Compressed gzip bzip2

SWDF 16 17.92% 5.67% 9.68% 6.63%
2011 Australian Census 52 8.51% 0.80% 2.80% 1.33%
Jamendo 144 24.64% 4.15% 5.83% 4.16%
AEMET 726 13.69% 1.03% 2.57% 1.20%
LinkedMDB 850 15.79% 2.35% 4.75% 2.79%
Wordnet 974 12.66% 2.27% 4.97% 3.22%
Affymetrix 6,526 15.64% 2.44% 5.42% 3.43%
Flickr 6,714 15.84% 3.57% 9.03% 7.40%
Dbtune 9,566 14.41% 2.58% 11.24% 7.65%
DBLP 9,799 20.14% 3.52% 5.42% 3.49%
2000 US Census 21,796 7.50% 1.30% 4.62% 2.27%
Linked Geo Data 39,423 26.96% 3.70% 5.90% 4.13%
Dbpedia 3-8 63,053 16.55% 4.64% 8.01% 5.90%
Ike 102,662 11.71% 0.78% 3.22% 1.08%

Table 7.11: Compression results of a gzippedHDT Compact Tiples representation (HDT
CT-Compress ).

most effective results with ratios between2 − 4% for all the considered datasets (except for a slight
difference inDBLP). This implies reductions between3−4 times with respect toPlain HDT and, con-
sequently, proportional improvements on exchanging processes. In turn, HDT-Compress outperforms
universal compressors, improving the bestbzip2 results a mean of25%.

These results show thatHDTand its subsequent compression arises as the most efficient choice for
exchanging RDF within the Web of Data. In the next parts we focus on makingthe exchanged datasets
queryable for consumption.



- Why, you wouldn’t follow that beast
alone? - Someone’s got to stay on his
trail while it’s hot!

King Kong (1933) 8
Discussion

In this part of the thesis we have addressed the scalable publication and exchange of Big Semantic Data.
This chapter ends this part with a brief summary illustrating our main contributions(§8.1) and a compact
overview of the next steps (§8.2), retaken in the following parts of this thesis.

8.1 Contributions

We started this part of the thesis, in Chapter6, with an introduction to the scalability drawbacks arising
in Big Semantic Data. We developed a simple classification on the main different stakeholders acting in
the current Web of Data. Although this categorization may be extended to cover all corner cases, it is a
first step in the identification of the roles, natures, and different scalabilityproblems of the stakeholders.

We then presented and characterized a common Publication-Exchange-Consumption workflow tak-
ing part in almost every application in the Web of Data. After reviewing the stateof the art, we stated that
these processes (and their stakeholders) are compromised at large scale by plain, non-functional, human-
readable formats while managing Big Semantic Data. In short, we argued that they are very verbose and
space-inefficient, they obviate metadata and other facilities to upgrade publication and enable discovery
for consumption, and more importantly, they do not provide any means of direct access to the data.

These problems motivated the need of an efficient machine-processable RDF representation, ad-
dressed in Chapter7. In this Chapter, we proposedHDT, a binary serialization format for RDF publi-
cation and exchange at large scale, and the basis for direct consumption(addressed in the following parts
of this thesis).

We first described the conceptualphilosophyof theHDTcomponents (Header, Dictionary and Triples).
We provided the definition of each flexible component, detailing their different operations and intended
use. Then, we instantiate a concrete practical deployment ofHDTwith a Plain Dictionaryencoding and
two simple encodings for the Triples:Plain TriplesandCompact Triples. In turn, we developed the
RDF/HDTsyntax specification as a well-defined but flexible container ofHDT-based datasets.

Finally, we performed a deep evaluation which analyzesHDTfeatures on real-world datasets. Main
conclusions can be summarized as follows:

• The size of the dictionary (12− 21%) is significant bigger than the corresponding size for Triples
(2.5 − 5.6%). This pushes the need of addressing both components (addressed in Part III and IV)
to enrich the final representation.

• The mereHDTdecomposition leads to large space savings: This simple decision takes around16%
of the original representation (N-Triples) and only 2 times more space than agzip compression.

• HDT CT-Compressed , a particular deployment which applies a gzip compression on theHDT
dataset in Compact Triples, outperforms traditional compression (includinggzip). It improves the
bzip2 results a mean of25%.
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• Our study of scalability shows that the number of unique dictionary entries has a sublinear growth
w.r.t. the number of triples. We also report that compression ratios remain high at incremental
sizes, guaranteeing the scalability of the representation.

• Both the creations and loading ofHDTare highly scalable processes: the creation performance
employs less than 40% of the original size for the considered datasets, following a decreasing ten-
dencyw.r.t the number of triples. The memory usage for loading in the consumer can be estimated
in 1/3 of the original size, with a similar decreasing tendency.

• The creation and loading times follow a linear growth, and the loading time is only avery small
fraction (≈ 3%) of the creation one.

These results demonstrate significant opportunities for RDF compression allowing important size
reduction of the huge datasets that are being published in the Web of Data, therefore providing an efficient
RDF exchange.

8.2 Next Steps

HDT is designed as a binary RDF format to fulfill the requirements of portability (from and to other
formats), clear publication scheme, compact ability, parsing efficiency (readiness for post-processing)
and direct access to pieces of data in the dataset.

In the next parts of this thesis, we argue thatHDT-encoded datasets can be directly consumed. We
will show that lightweight indexes can be created once the different components are loaded into the
memory hierarchy at the consumer. Thus, more complex operations can be achieved almost directly on
the exchangedHDTdatasets. This positionsHDTas an integrated solution to manage Big Semantic Data
in a Publication-Exchange-Consumption workflow.
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Compressed Rich-Functional RDF
Dictionaries





The world is not in your books and maps.
It’s out there.

The Hobbit: An Unexpected Journey
(2012) 9

Introduction

We start a new part of the thesis, specifically focused on RDF dictionaries. This chapter motivates the
need of advanced RDF dictionaries when managing Big Semantic Data (§9.1). As RDF dictionaries
could be seen as a particular case of string dictionaries, we review different techniques for compressed
dictionaries of general strings (§9.1). We also study the specific RDF dictionaries used in the Web of
Data (§9.3). Finally, we list our future goals (§9.4) which concern the adaptation of the former techniques
to provide specific and scalable RDF dictionaries.

9.1 Motivation

The previous Chapter7 presented the notion of RDF dictionary. Rephrasing the definition, an RDF
dictionary is a bijective function,D : string → ID, which maps the strings representing the terms and
the integer values (IDs) which identify them. Then, all triples in the dataset can be rewritten by replacing
the terms with their corresponding ID.

Later in Section7.2.2, we proposed a Plain Dictionary encoding showing high compression ratios.
This approach, though, is a serialization aimed at exchange and it demandsadditional structures to be
functional at consumption. As we stated,“it has to be loaded into some structure (hash, B-trees) in order
to allow searches (locate, extract, etc.) at consumption time”.

In particular, a functional dictionary for consumption must provide two complementary operations
(detailed in Section7.1.2): (i) the string-to-ID operation,locate(term) , which returns the ID of a
given term, and (ii) theID-to-string, extract(id) , which retrieves the term identified by a given ID.

When most query processors perform on the ID-triples representation(Neumann & Weikum, 2010),
both operations are exhaustively used by SPARQL engines during the query resolution process. Let us
consider a SPARQLtriple pattern, (x,y,z), in which x , y , or z may be a term in the RDF graph or a
variable. Thus, the engine proceeds as follows:

1. It makes use of the dictionary tolocate the IDs associated to the terms provided in the SPARQL
triple patterns.

2. It transforms the given triple pattern of strings into a triple pattern of IDs.

3. It searches the pattern into the ID-triples representation, where the resulting ID values are bound
to the variables given in the query.

4. It extracts the terms associated to these bounded IDs and returns the resulting subsetof strings.

Note that, for SPARQL querying,extract is used many times as results are returned for each
variable in the query, whereas the use oflocate is limited to the number of terms bounded in the query.
In this scenario,extract is overused in comparison tolocate .

Most semantic applications implementing SPARQL are well-founded on a similar scenario, hence a
functional dictionary is highly exploited in consumption processes. In addition, the dictionary could be
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Technique Operations Scenario Stand out
Hash (Hashing) L,E General Fast locate

PFC (Front-Coding) L,E, pref Repeated prefixes Tradeoff space/time

HTFC (Front-Coding) L,E, pref Repeated prefixes Tradeoffspace/time

Re-Pair (Grammar-Comp.) L,E, pref Repeated substrings Tradeoffspace/time

FM-Index (Self-Indexing) L,E, substr General Broad functional coverage

Table 9.1: Techniques for compressed string dictionaries:L,E stand forlocate andextract respec-
tively; pref andsubstr denotes support for prefix and substring locates.

used to resolve more specific matchings like the required forfiltering. This is an interesting challenge by
considering that an earlyFILTER evaluation allows query performance to be improved when the space
of RDF triples to be explored is considerable reduced (Schmidt, Hornung, Lausen, & Pinkel, 2008).

However, the use of functional RDF dictionaries for consumption is also compromised in Big Seman-
tic Data. The space required by the dictionaries is even larger than that used for the resulting ID-triples
representations (as showed in Section7.4.1). Whereas specific ID-triple indexes have been proposed
for RDF (detailed in Section6.2.1), specific RDF dictionaries are not fully addressed to the best of our
knowledge. In other words, RDF stores currently make use of classicalapproaches for string dictionaries,
and they do not scale (Brisaboa, Ćanovas, Claude, Martı́nez-Prieto, & Navarro, 2011).

These classical techniques suffer from scalability issues.Hashing, for instance, holds plain strings
and hence it dissuades applications handling the large vocabularies contained in Big Semantic Data. The
use ofB-tree(Bayer & McCreight, 1970) based solutions is the alternative, considering their optimiza-
tion for large scale disk representations. However, the efficiency is compromised by the I/O costs derived
from disk transfers.

In this scenario,compressionarises as the natural solution for increasing the amount of data which
can be efficiently managed in memory. This fact was already pointed out byHogan(2011), when claims
that a dictionary of URIs (for a web reasoning application) requires a prohibitive amount of memory to
be stored and its compression would help increase the in-memory capacity.

Next section revises different approaches for compressed dictionaries of general strings. Then, we
review the state of the art for RDF dictionaries. Finally, we describe the objectives of our compressed
rich-functional RDF dictionary for Big Semantic Data.

9.2 Compressed String Dictionaries

RDF terms consists of elements from the vocabulary of Uniform Resource Identifiers (URIs), blank
nodes, and literals. As all three can be seen as strings, the complete term collection (referred to as
vocabulary) can be mapped as a traditional string dictionary.

String dictionaries (such as hashing or B-trees) are, in fact, the naturalprecedent of RDF dictionaries.
Their conception and basic functionality is actually similar. A string dictionaryD holds an ID-mapping
of all different strings{s1, s2, . . . , sn} used in a dataset (vocabulary), providing the operation:

• locate( si) which maps the stringsi into its ID in D.

Typically, an additional structure must be implemented on top ofD to provide the reverse operation:

• extract(i) which returns the stringsi identified asi in D.

Compressed string dictionaries(Brisaboa et al., 2011) introduce compression and succinct data
structures to lightweight scalability issues of string dictionaries, remaining efficient in performance.
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An initial work by Bender, Farach-Colton, and Kuszmaul(2006) starts proposing a variant of the B-
tree technique. They develop a cache-oblivious tree in which leaves arecompressed with a technique
called Front-Coding (Witten et al., 1999), described in Section9.2.2. Later, this approach was improved
by the compressedpermuterm(Ferragina & Venturini, 2010). The originalpermuterm(Garfield, 1976)
augmented each term with various rotations of its characters, resolving pattern queries with one wild-card
symbol. The compressed version is a space-efficient variant which, additionally, gives efficient support
for locate andextract in a compressed space.

A more recent work byBrisaboa et al.(2011) revisits the problem proposing compressed variants
of well-known string dictionaries, introducing some novel ones. They propose practical approaches in
which a dictionary of URIs is also tested, achieving promising results in spaceand performance.

Based on this work, we review four techniques potentially subject to be adapted to RDF dictionaries.
Table9.1shows all techniques and gives, for each one, its supported operations, its more suitable scenario
and its most remarkable feature.

• Compressed Hashing(§9.2.1) as representative of classical solutions for string dictionaries.

• Front-Coding(§9.2.2), based on the premise that it excels for representing long common prefixes
shared between many strings.

• Grammar-based Compression(§9.2.3) which exploits the repetitions in the text, finding a small
grammar reproducing the text.

• Self-indexes(§9.2.4), an interesting choice to achieve competitive compressed indexes of general
text collections.

All these techniques are shown by following the description given byBrisaboa et al.(2011). Thus,
the dictionary encoding regards a text:Tdict, which concatenates all strings of the vocabulary ended by a
reserved ’$’ symbol1.

9.2.1 Compressed Hashing

TraditionalHashing(Cormen, Leiserson, Rivest, & Stein, 2001) is a natural choice forkey-valuestruc-
tures, hence it is intensively used for string dictionaries (string-ID). Thanks to the hash function,locate
can be performed in constant time (in the absence of collisions). However,it presents several drawbacks:

• The hash table itself does not provide theextract operation (ID-to-string). In such scenario, an
additional structure is needed.

• Hashing needs space to hold alln different strings of the vocabulary, which are stored in plain.

• Due to the well-known collisions of non-perfect hashing, extra storagespace is required for repre-
senting the hash table itselfH[1,m]. The load factor: n/m (n < m) influences the space usage
and the performance time.

Addressing these difficulties,Brisaboa et al.(2011) consider a technique namedHashB(dh). Thedh
suffix denotes that it employsdouble hashing, i.e., it computes another hash function to solve collisions.
In addition, it achieves compression through two main decisions:

• It removes all empty cells, storing a compact hash table in an arrayM [1, n]. A bitmap structure
B[1,m] marks with a1-bit the nonempty cells ofH. Thus,B[i] = 1 if H[i] is a non-empty cell
andB[i] = 0 if H[i] is empty.

1In practice, the separator character is the ASCII zero code.
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• It compresses the stringsTdict with canonical Huffman (Huffman, 1952) and performs the hash
function over the compressed strings.

Compared to traditional hashing, HashB(dh) excels in space. The price,though, is an overhead of
time. Note thatlocate(s) implies several operations. First, it has to get the Huffman encoding ofs,
and to apply the hash function on it. Let us suppose that it has to retrieve thevalue inH[i]. As empty cells
have been removed, it is easy to see that it has to retrieveM [j], beingj the number of nonempty cells in
H[1, i]. This operation is efficiently achieved byj = rank1(B, i). To support thisrank operation, an
RG-encoded bitmap forB is used (§2.4).

HashB(dh) makes another important decision in order to natively resolve the extract operations
(without the need of another auxiliary structure). It performs aTdict reordering to store the words in the
same order that they are stored in H. This decision allows for supporting efficient extraction: the answer
to extract(i) is simply calculated by decompressing the string pointed fromH[i] as it stores the
position in the compressedTdict for the i-th string.

9.2.2 Front-Coding

Front-Coding (Witten et al., 1999) is a technique commonly used for compressing lexicographically
sorted dictionaries. It is based on the premise that consecutive strings are likely to share a common prefix
which is obvious in the case of the URIs in RDF datasets. Then, it achieves compressiondifferentially
encoding a string with respect to the previous one. Each string is encodedas two components:

1. An integer indicating the number of prefix characters shared with the previous string.

2. A string which represents the substring suffix after the prefix.

For instance, consider the strings:

http://www.example.org/about
http://www.example.org/javier
http://www.example.org/resources/pablo
http://www.example.org/resources/santiago

A feasible codification for these strings can be:

(0, http://www.example.org/about) (23, javier) (23,resources/pablo) (33, santiago)

As can be seen, retrieving the complete string of(33,santiago)implies to move backward, which can
be costly for a long series of shared prefixes. Thus, Front-Coding partitions the sorted dictionary into
buckets ofb strings. Each bucket is encoded independently of others: the first string is explicitly stored,
whereas the otherb− 1 ones are differentially encoded as described above.

Operations are performed as follows:

• The locate(s) operation has to locate first the bucket containing the string. To do so, it com-
pares the first explicit string of each bucket,e.g. through a binary search. Then, it starts decoding
the strings in the bucket until it finds (or not) the required string.

• The extract(i) operation, again, has to locate the appropriate bucket. As we assume a se-
quential numbering, the required bucket for thei ID is ⌊i/b⌋. Then, it decodes all strings until the
required number of string.
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The parametrization ofb yields to different space/time tradeoffs. A highb value produces longer
buckets which can take more advantage of shared prefixes, achieving higher compression ratios. How-
ever, this leads to perform more decoding operations, hence it lose efficiency. In contrast, a smallerb
value performs faster (fewer strings to decode inside each bucket) at the cost of compression.

Note that higher levels of compression can be achieved by compressing theprefix lengths and the
suffix strings. First, thePlain Front-Coding (PFC) technique (Brisaboa et al., 2011) uses VByte encod-
ing (Williams & Zobel, 1999) for the prefix length. In short, VByte is used to represent numbers where
many are small. Within each byte, the last bit signals whether the number continues in the following
byte, or not. Actually, it is not limited to work on bytes and it can be used for a random number of bits
in each chunk, but byte-alignments decodes efficiently as they run fast bytewise operations.

Finally, theHu-Tucker Front-Coding(HTFC) technique compresses both the prefix length and the
suffix strings. It uses a single Hu-Tucker (Knuth, 1973) code to compress all the byte-stream, performing
all operations over this compression. This is the most compressed Front Coding representation, though
it slightly increases querying times because of decompression.

9.2.3 Grammar-based Compression

This kind of compressors infers a grammar which generates the given text.They are particularly suit-
able for texts comprising many repeated substrings because these can be effectively encoded through the
grammar rules.Re-Pair (Larsson & Moffat, 2000) is the representative of grammar-based compres-
sors, running in linear time.Re-Pair recursively replaces the most-repeated pair of symbols by a rule
drawn from a context-free grammar. It outputs the compressed text and the grammar of inferred rules.
Re-Pair allows fast sequential decompression by simple rule expansion.

Brisaboa et al.(2011) also proposeRe-Pair for representing string dictionaries because it com-
presses effectively all repeated substrings (non-only prefixes like the previous techniques). A little re-
striction is used in the algorithm to avoid that rules cross for two different strings. The compressed
sequence must be enhanced to support direct access to each string (this is required forlocate and
extract ). It is achieved through a symbol reorganization based onDirectly Addresable Codes(DAC)
(Brisaboa, Ladra, & Navarro, 2013). The resultant technique also supportsprefix-based retrieval.

9.2.4 Self-Indexing

A compressed text self-index (Navarro & Mäkinen, 2007) represents a textT [1, N ] in a space close to its
compressed counterpart, while providing search functionality. It takes advantage of the compressibility
of the text, commonly applying succinct data concepts (§2.4) to provide random access.

As the self-index can reproduce any text substring, it actually replacesthe text (i.e. the text is not
encoded but its index). In particular, a self-index supports, at least, toextract the original text between
two given positions and to return the positions where a given substring occurs.

Of all self-indexes (Navarro & Mäkinen, 2007), the FM-Index (FMI) family (Navarro & Mäkinen,
2007) achieves the best compression ratios remaining fast in operations (Brisaboa et al., 2011). The
FM-Index (Ferragina & Manzini, 2000) models the text on the so-called Burrows-Wheeler Transform
(BWT) (Burrows & Wheeler, 1994). In short, the BWT of a text is a permutation of its symbols which
maximizes its compressibility. For instance, the BWT is the core of the well-knownbzip2compressor.

Brisaboa et al.(2011) propose an FMI-based compressed string dictionary also performing on a lexi-
cographicTdict ordering. Their study shows that this approach is specially recommended for general texts
where no prior assumptions (e.g. long prefixes) can be done. Moreover, it provides a powerful substring
searching, with no limitation. In contrast, it can be less competitive forlocate andextract .

To complete this brief review, two recent approaches revisit former experiences in trie-guided solu-
tions (Ferragina, Grossi, Gupta, Shah, & Vitter, 2008) and LZ78 parsing (Ziv & Lempel, 1978), propos-
ing solutions for string dictionaries.Grossi and Ottaviano(2012) introduce a new succinct data structure
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which transforms the trie representing the string in the dictionary into a new tree-shaped structure in
which each node represents a path in the original tree. In turn,Arz and Fischer(2013) adapt the LZ78
method to perform on string dictionaries. Both adaptations excel in space and report promising results
for locate andextract resolution.

9.3 RDF Dictionaries

RDF dictionaries are massively used within the Web of Data because of its abilityto reduce the represen-
tation space of the dataset. As previously explained, dictionaries are also an issue for querying: SPARQL
engines make intensive use of dictionary indexes, in conjunction with evaluation and histogram indexes
for physical optimization(Groppe, 2011).

Neumann and Weikum(2010) remark this fact and suggest the use of dictionaries because it “com-
presses” the dataset and implies a great simplification for the query processor. Thus, the dictionary-based
replacement is accepted as the first step for RDF indexing (Chong, Das, Eadon, & Srinivasan, 2005). It
is worth mentioning that the solutions implementing the dictionary traditionally depend on the underly-
ing indexing technologies.

Some RDF indexes perform on top of relational databases, such as Virtuoso (Erling & Mikhailov,
2007) or Jena TDB (Wilkinson, Sayers, Kuno, & Reynolds, 2003), and therefore they delegate the dic-
tionary resolution to the own database. A common approach is to maintain a dedicated table with the
string-to-ID mapping, and to built indexes on its columns to speed uplocate andextract .
Some solutions, such as Virtuoso, do not use IDs for short literals (e.g. less than 12 characters). Instead,
they store these literals inline,i.e., in the same table storing the triples, thus saving dictionary accesses.

A special case arises for column-oriented databases (Abadi et al., 2007). Storing data in these sys-
tems increases the similarity of adjacent records (Sidirourgos, Goncalves, Kersten, Nes, & Manegold,
2008) which can be effectively compressed.Abadi, Madden, and Ferreira(2006) show that the use
of compression schemes significantly improves the query processing performance of column-oriented
databases. Based on this premise,Binnig, Hildenbrand, and F̈arber(2009) introduce a novel indexing
approach based on codifying variable-length string values in shared leaves, that provides efficient access
to the dictionary while compressing the index data.

Other approaches, like RDF-3X (Neumann & Weikum, 2010) use aB+-tree for locate and a
direct mapping index forextract (an array), almost doubling the space used for the dictionary. The
absence of any dictionary solution in triple indexes such as BitMat (Atre et al., 2010) denotes that its
representation is an open problem. The most recent full-in-memory index k2-triples also supports this
fact (Álvarez-Garćıa, Brisaboa, Ferńandez, & Mart́ınez-Prieto, 2011). Besides, it devises the use of
compactrepresentations because of the very large sizes of the dictionaries obtained from the datasets
currently published.

High-performance computing also addresses the problem of RDF dictionaries, sometimes recalled
asdictionary encoding. Urbani et al.(2010) state that fast and scalable compression is crucial for high-
performance applications and propose a MapReduce solution for distributed dictionaries. Later, their
results have been improved (Goodman et al., 2011) using two hash-tables (string-to-ID / ID-to-string)
and an array with all strings in the dataset. Its compressed dictionary takes≈ 4 times less space in disk
than the original dataset, but this size increases a factor between1.5 and2 to be loaded in memory.

ID-based engines need additional operations over the dictionaries in order to support full SPARQL
resolution. In particular, we highlight theregex filter as an interesting challenge because it needs
support forsubstring queries. Virtuoso, for instance, allows to create additional indexes to support
efficient full text search2. Lee et al.(2010) propose a solution to resolve regular expressions which
outperforms Sesame3 querying times at the price of using≈ 5 times its space.

2http://docs.openlinksw.com/virtuoso/sparqlextension s.html
3http://www.openrdf.org/
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9.4 Our Goal

We have shown that RDF dictionaries is a common practice among those applications performing on Big
Semantic Data. However, the dictionary size is not negligible and the techniques used for their represen-
tation also suffer from scalability issues. In parallel, we have presented the emergent field of compressed
string dictionaries. This decision greatly compacts the dataset and thereby itmitigates scalability issues.

In the following, we propose a novel compressed RDF dictionary technique to address current scala-
bility problems arising from Big Semantic Data. We pursue three main objectives:

• Reduce the dictionary sizeapplying techniques of compress string dictionaries (shown in §9.2).
An effective compression provides several advantages in our scenario:

1. Thescalability is upgraded, as these techniques achieve high compression ratios.

2. The dictionary can fit and full-processed in main memory, thanks to the succinct data struc-
tures performing on the compressed representation.

3. The query performance of thelocate andextract operations can be improved taking
advantage of the memory hierarchy.

• Enhance the dictionary functionality to natively supportSPARQL filtering. We envision two
complementary researches: i) reorganizing the dictionary into subdictionaries according to each
role and term vocabulary and ii) leveraging the underlying structures, such as FMI, to provide
searching in a compressed space.

Then, the compressed dictionary can be directly incorporated into theHDTrepresentation, improving
space efficiency and directly providing the aforementioned operations and consumption time.





I can do almost anything that could pos-
sibly be asked of me. I can assist your
employees. I can make your organiza-
tion more efficient. I can carry out direc-
tives that my future counterparts might
find distressing or unethical. I can blend
in with your workforce effortlessly.

Prometheus (2012)

10
Our Approach:Dcomp

This chapter presents our proposal for a compressed RDF dictionary,referred to asDcomp. On the one
hand, it can be used as a general approach for representing and querying an RDF vocabulary. On the other
hand,Dcomp perfectly fits in theHDTDictionary component, providing native operations performing on
compressed space at consumption.

First, we describe, over a running example, a partitioning of the RDF vocabulary (§10.1) which can
be exploited for compression. Then, we present the conceptual description of Dcomp (§10.2) and the
locate andextract algorithms over the proposed organization (§10.3.2). Next, we show SPARQL
filtering on top ofDcomp (§10.4).

Finally, we perform an empirical evaluation with real-world datasets. We first characterize RDF dic-
tionaries, evaluating its compressibility with different techniques. In turn,Dcomp features (compression,
performance time forlocate andextract and filtering resolution) are widely evaluated.

10.1 RDF Vocabulary Partitioning

We base our explanation on the running example shown in Figure10.1. This RDF excerpt consists of25
triples providing basic descriptions of the staff of a university. As can beseen,MyUniversityis composed
of three members. We make use of a blank node (of typerdf:Bag) to model this composition.Javier
andSantiagoare researchers whereasPablo is a student. They are described at different levels of detail,
providing information such as the age, birthplace, category, etc. The city of Valladolid is also shortly
described. Note that different languages (English and Spanish), anddata types (integer, float, date) are
present in literals.

As we argued (§7.2.2), RDF engines (Atre et al., 2010) as well as theHDTPlain Dictionary, make
use of a role-based partitioning for the RDF vocabulary. In other words, RDF dictionaries split the
mapping according to the role of the terms in the dataset. For our running example, Figure10.2extracts
the vocabulary of all36 different terms according to the aforementioned partitioning ofcommon subject-
objects, subjects, objectsandpredicates(§7.2.2).

An RDF dictionary technique must be optimized from two correlated perspectives: i) the space
used for its representation, and ii) the time required for answering, mainlylocate and extract .
The previous role-based partitioning has several advantages in both directions. On the one hand, this
partition contributes to ID-triples compression. First, the common subject-objects are mapped only once,
thus reducing the dictionary size versus over a disjoint assignment of subjects and objects. In turn,
predicates are treated independently. For Big Semantic Data, the number of predicates is limited, thus
reducing the range of predicates IDs and, consequently, the number ofbits per ID. On the other hand,
this partition allows to employs not a unique dictionary for consumption but fourdictionaries, one per
partition. In other words, the most feasible solution to providelocate andextract facilities is to
load each partition into a different dictionary structure. That is, one structureD1 would hold the common
subject-object mapping,D2 for the subjects,D3 for objects and, finally,D4 for predicates. The scalability
issues are slightly mitigated as we have split and isolate four different structures. For instance,locate
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<http://example.org/MyUniversity> ex:members : nodes106 .
:nodes106 rdf:type rdf:Bag .
:nodes106 rdf: 1 <http://example.org/Javier>
:nodes106 rdf: 2 <http://example.org/Santiago>
:nodes106 rdf: 3 <http://example.org/Pablo>

<http://example.org/Javier> rdf:type <http://example. org/Researcher> .
<http://example.org/Javier> foaf:mbox "jfergar@exampl e.org" .
<http://example.org/Javier> foaf:mbox "jfergar@infor. uva.es" .
<http://example.org/Javier> ex:birthPlace <http://exa mple.org/Valladolid> .
<http://example.org/Javier> ex:age "29"ˆˆ<http://www. w3.org/2001/XMLSchema#integer> .
<http://example.org/Javier> ex:category "Estudiante de doctorado. Personal Investigador"@es .
<http://example.org/Javier> ex:category "PhD student. J unior Researcher"@en .
<http://example.org/Javier> ex:birthPlace <http://exa mple.org/Valladolid> .
<http://example.org/Santiago> rdf:type <http://exampl e.org/Researcher> .
<http://example.org/Santiago> ex:birthPlace <http://e xample.org/Valladolid> .
<http://example.org/Santiago> ex:birthDate "01/01/197 6"ˆˆ<http://www.w3.org/2001/XMLSchema#date> .
<http://example.org/Santiago> ex:category "Associate" @en .
<http://example.org/Santiago> ex:age 37 .
<http://example.org/Pablo> rdf:type <http://example.o rg/Student> .
<http://example.org/Pablo> ex:birthDate "26/01/1987"ˆ ˆ<http://www.w3.org/2001/XMLSchema#date> .
<http://example.org/Pablo> ex:age 26
<http://example.org/Valladolid> dbpedia:lat "41.84805 7"ˆˆ<http://www.w3.org/2001/XMLSchema#float> .
<http://example.org/Valladolid> dbpedia:long "-5.9061 11"ˆˆ<http://www.w3.org/2001/XMLSchema#float> .
<http://example.org/Valladolid> foaf:name "Valladolid " .
<http://example.org/Valladolid> foaf:name "Pucela" .

Figure 10.1: An RDF example with a diverse vocabulary.

andextract operations over the predicates inD4 would perform faster on a smaller and potentially
optimized dictionary. In fact, this dictionary of predicates could be managed inplain due its limited size.

Despite its benefits, this partition provides undesirable effects, it disregards the direct application of
techniques from compressed string dictionaries (§9.2). As we studied, most of these techniques take
advantage of vocabulary regularities. However, role-partition mixes in each partition, different sets from
U (RDF URI references),B (Blank nodes), andL (RDF literals). For instance, attending to the definition
of a triple (see Definition1), an objecto in the Object partitionof the dictionary, would belong to
(U ∪B ∪ L). In other words, the dictionary ofObjectsmixes up three very different kinds of terms.

• URIs. The URI set is characterized by the well-known fact that many elements share com-
mon long prefixes (Mart́ınez-Prieto, Ferńandez, & Ćanovas, 2012b). Note that two substrings
can be identified within a URI. First, an initial prefix gives the root context (domain) of the
resource, and a second substring identifies the concrete resource in itscontext. For instance,
the resourceJavier in our example is identified with a URI which firstly describes the domain
(http://example.org/ ) and next identifies the concrete resource (Javier ). Both Santiago,
Pablo, Valladolid,etc., in the example, share the same context. It is worth mentioning that, in
Linked Data, there exist two standard policies for naming resources and properties: slash URIs
and hash URIs (Sauermann & Cyganiak, 2008). They both establish a common scheme to be
followed in the assignment of URIs, sharing an initial prefix in any case. This suggests the use of
techniques, such asPFCor HTFCfor its efficient representation, as they can detect and effectively
compress these repetitions.

• Blank nodes. They name anonymous nodes within the RDF graph and usually serve as parent
nodes to a grouping of data. For our purposes, we consider the naming convention of N3, as the
concatenation of: with a specific label. In most cases, the RDF engine renames the Blank nodes
consecutively, establishing an initial keyword (e.g. bnodes88, bnodes99, bnodes100, etc.). In such
scenario, the previous technique could also excel for representing blank nodes.

• Literals. Although literals are strings which can be tagged with an optional language ordatatype,
no general characteristics can be considered beforehand about their content. Its features are
strongly related to the knowledge represented in the dataset. For instance,uniprot represents
biological sequences, whereasdbpedia stores descriptive texts in natural language. General
solutions, like the self-indexFMI, seem the better choices in this scenario.
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Common Subject-Objects

<http://example.org/Javier>
<http://example.org/Pablo>
<http://example.org/Santiago>
<http://example.org/Valladolid>
:nodes106

Subjects <http://example.org/MyUniversity>

Objects

"-5.906111"ˆˆ<http://www.w3.org/2001/XMLSchema#floa t>
"01/01/1976"ˆˆ<http://www.w3.org/2001/XMLSchema#dat e>
"25"ˆˆ<http://www.w3.org/2001/XMLSchema#integer>
"26/01/1987"ˆˆ<http://www.w3.org/2001/XMLSchema#dat e>
"29"ˆˆ<http://www.w3.org/2001/XMLSchema#integer>
"41.848057"ˆˆ<http://www.w3.org/2001/XMLSchema#floa t>
"Associate"@en
"Estudiante de doctorado. Personal Investigador"@es
"PhD student. Junior Researcher"@en
"Pucela"
"Valladolid"
"jfergar@example.org"
"jfergar@infor.uva.es"
26
37
<http://example.org/Researcher>
<http://example.org/Student>

Predicates

dbpedia:lat
dbpedia:long
ex:age
ex:birthDate
ex:birthPlace
ex:category
ex:members
foaf:mbox
foaf:name
rdf: 1
rdf: 2
rdf: 3
rdf:type

Figure 10.2: Vocabulary for the running example in Figure10.1.

This is well illustrated on Figure10.2, in which strings and URIs coexist. In addition, as each section
is sorted lexicographically, tagged strings are completely mixed with other different tags and non-tagged
strings, numbers, dates, etc. Filtering, in this case, is natively unfeasible.

All this encourages the use of specific modeling techniques for each classof dictionary. In other
words, a dictionary technique which detects and compresses specific vocabulary regularities allows spa-
tial requirements to be optimized. In the following, we present the organization, structures and algorithms
for our dictionary proposal,Dcomp (Mart́ınez-Prieto, Ferńandez, & Ćanovas, 2012a, 2012b).

10.2 Dcomp Conceptual Description

Dcomp provides a specific organization combining the partitioning attending the role and the diverse types
of terms in each partition. Figure10.3 (left) illustrates the resulting organization. First, the previous
four-sectioned role-based partitioning is considered. It takes the same mapping as the previous Plain
Dictionary (§7.2.2), hence three ID-ranges are considered. Let us refer this mapping as theglobal ID
mapping:

• Subjects are mapped in the range[1, |SO|+|S|] .

• Objects, in the range[1, |SO|+|O|] .

• Predicates are mapped in[1, |P|] .

As stated, a given ID can belong to different ranges but ambiguity cannot arise inextract because
the general role (subject, object or predicate) is always known and is provided together with the term ID
in a query.

Then, each partition is subdivided attending to the potential classes (URIs,Blank nodes or Literals)
that they can store. As can be seen in Figure10.3, the partitionsSOandS are split into URIs (subdic-
tionariesD1 andD3 respectively) and Blank nodes (D2 andD4). ObjectsOalso contains URIs (D5) and
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Figure 10.3:Dcomp organization (dictionary (left) + ptrs (right)).

Blank nodes (D6), but also a partition for literals (D7). In addition, literals are subdivided again in order
to keep a distinction between strings: i) The subdictionaryD7.1 holds the untagged strings, referred to as
generalstrings. Next, we keep ii) a list of subdictionaries, notated asD7.2.[∗], one per different language
tag and iii) another list of subdictionaries, notated asD7.3.[∗], one per different datatype tag. We will
show that this could help in resolving SPARQL filtering (§10.4). Finally, the partition of predicatesP,
only contains URIs.

Thus,Dcomp allows to choose the best dictionary fitting each subdictionary, hence it canleverages
the particularities of each class within each partition. In other words, each subdictionary holds one and
only one class, with an isolated local mapping. We show below (§10.3), the correspondence between
“local” and “global” mapping.

Figure10.4 (left) shows theDcomp organization for the running example (Figures10.1 and10.2).
Note that, for explanation purposes, we describe the local ID within each dictionary and the correspond-
ing global ID on both sided of each term. This information, though, is not stored as it remains implicit
in the representation. Note also that each dictionary holds a specific type, thus delimiting characters can
be removed: “<” and “>” for URIs, “: ” for blank nodes and quotes (’“’) for literals. In turn, the tags
can be also extracted as they are kept in the secondary structure which helps in transforming local IDs to
global IDs (and vicecersa), which is then explained.
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Figure 10.4:Dcomp organization for the RDF excerpt described in the Figures10.1and10.2.

10.3 Data Structures and Algorithms

Whereas subdictionaries own a local mapping, the RDF graph after ID replacement (ID-triples) is en-
coded with the aforementioned global ID mapping (§10.2). In turn, alocate operation provides a term
and must return its global ID (not local), andextract provides a global ID (not local), returning the
mapped term. Thus,Dcomp has to implement a mechanism for translating global and local IDs.

This mechanism leverages the organization ofDcomp, which perfectly delimits the global IDs as
they are correlatives within different partitions of the same role.Dcomp just requires a simple additional
structure, referred to asptrs, shown in Figure10.3and in practice in Figure10.4. This is a very small
array of one cell per subdictionary. Each cell inptrs stores two elements:

1. A pointer to the corresponding subdictionary.

2. An integer value representing the number of terms previously stored in thecorresponding role.

Assuming that we number the cells inptrs from 1, the ith cell in ptrs stores the valueptrs[i] =
ptrs[i− 1] + ti−1, whereti−1 is the number of terms organized in the subdictionaryi− 1, havingi and
i+ 1 the same role. Some remarks must be considered:
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• ptrs[1] = 0 andptrs[8] = 0, always, as no previous subdictionaries can be present beforeSOand
predicatesP roles respectively.

• ptrs[5] = ptrs[3] = ptrs[2]+t2, always, because both cells store the number of terms represented
in the partitionSO. For instance, in the running example (Figure10.4), ptrs[5] = ptrs[3] = 5
because there are five previous terms in theSOpartition.

A second level of pointers is stored insideptrs[7] in order to manage the literal subpartitions inO.
Three subcells are used:

• The first subcell,ptrs[7, 1], points to the subditionary of general strings. As can be seen in the
running example (Figure10.4), this is equivalent to state thatptrs[7, 1] = ptrs[7], as this is the
first subdictionary in literals.

• The second subcell points to the lang-tagged literals representation and stores the valueptrs[7, 2] =
ptrs[7, 1] + t7,1, wheret7,1 is the number of general literals inDcomp.

• Finally, the third subcell points to the datatype-tagged literals representationand stores the value
ptrs[7, 3] = ptrs[7, 2] + t7,2, wheret7,2 is the number of lang-tagged literals inDcomp.

In addition,ptrsstores two simple indexes for language-tagged literals,lang, and another for datatype-
tagged literals,dtype. These indexes respectively point to the beginning of each language and datatype
subdictionary. They store, respectively sorted, the datatype and language keys allowing them to be
deleted in each literal. This decision saves space because each different tag is represented once, and
helps in SPARQL filtering (§10.4).

In the running example (Figure10.4), general literalsstores four terms, whereas there are three
language-tagged literals: two English (“en” lang keyword) and one Spanish (“es”), and eightdatatype-
tagged literals: two dates (“xsd:data”), two floats (“xsd:float”) and four integers (“xsd:integer”). As can
be seen, all these tags are indexed and represented once. Note also that 26 and 37 were originally given
without quotes (see original excerpt in Figure10.1), which is allowed for numbers (see Turtle common
datatype abbreviations (Beckett & Berners-Lee, 2011, section 2.4)).Dcomp takes this into consideration
and perform an implicit tagging when possible.

Let us detail these two functions of the indexes.

• lang(x) returns the dictionaryDj storing the string lang-tagged withx. For instance, in our
running example,lang(es) = D7.2.1.

• dtype(x) returns the dictionaryDj storing the string datatype-tagged withx. In our running exam-
ple,dtype(xsd : date) = D7.3.1.

Abusing from notation, let us also denotelang[j] anddtype[j] as the language and dictionary tags
for the dictionaryDj respectively. For instancelang[7.2.1] =@en, or lang[7.3.1] =xsd:date .

Ptrs implementation can make use of basic data structures as its size is negligible for real-world
RDF dictionaries. On the one hand, the first two levels ofptrs are stored through an array of11 cells:
8 for the first level, and3 for the second one. On the other hand, the number of different languages and
datatypes modeled in an RDF dictionary depends on the dataset features. However, this number is very
small in practice (only several tens, in the worst case), and these indexes can be efficiently implemented
through two lexicographically sorted arrays which enable efficient searches for key and global ID.

It is worth noting thatlang anddtypeare also small indexes due to the reduced number of langs and
datatype. For instance, two sorted arrays can be used and hencelang(x) anddtype(x) can be achieved
by means of a binary search. Other implementations can make use of a small hash or another sorted
structure such as a linked list.
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10.3.1 Transforming Local and Global IDs.

Ptrs is the key structure for transforming local IDs into global IDs and viceversa. Let us define these
operations more formally. Assuming that we denotelj to thel-th local ID in thej-th subdictionary, and
r is a role of the term such thatr ∈ Subject, Predicate,Object, then:

• The local-to-global operation, denotedglobal(lj), returns the global ID for the given local
ID lj .

• The global-to-local operation, denotedlocal(i, r) returns the subdictionary and local ID,
lj , in which the global IDi is mapped with the given roler (Subject, Object or Predicate).

Note that theglobal-to-local operation requires the role of the term in order to disambiguate
ID overlapping (e.g. the global ID6 is used in Subjects, Predicates and Objects). For instance, in the
running example (Figure10.4), the term“http://example.org/Researcher”is located inD5 with the local
ID 1 but the global ID6. Thus, the correct transformations areglobal(15) = 6 andlocal(6, Object) =
15.

In the first operation,local-to-global , it is clear that a local IDlj is transformed into its global
counterpart as:

global(lj) = l + ptrs[j]
✞

✝

☎

✆10.1

In the previous example,global(15) = 1 + ptrs[5] = 1 + 5 = 6. The same formula can be applied
with the second level of literal subdictionaries. In this case, one has to consider the appropriate subcell
of ptrs. For instance, for the term“01/01/1976” (Figure10.4) with local ID 1 in dictionaryD7.3.1, we
proceed:global(17.3.1) = 1 + ptrs[7.3.1] = 1 + 14 = 15.

The opposite transformation:global-to-local , is also implemented overptrs. Given a global
ID i and a roler, the first step is to determine thejth subdictionary in whichi is represented with the
given roler. Last, an operationi − ptrs[j] undoes the global mapping, resulting in the expected local
ID.

For instance, consider the operationlocal(2, Subject) in the running example (Figure10.4). First,
we delimit that Subjects are inD1,D2,D3 or D4, and then the starting global ID of each dictionary is
obtained asptrs[1] + 1, ptrs[2] + 1, ptrs[3] + 1, andptrs[4] + 1 respectively. Asptrs[2] = 4, it means
that the first global ID ofD2 is 5, then if we are looking for2, it has to be mapped inD1. Last, the local
ID is obtained as2− ptrs[1] = 2− 0 = 0

Let us define this operation formally. First, we make use of adictionariesper role function,dpr(r),
which groups the dictionaries containing the given roler, such that:

• dpr(Subject) = {D1,D2,D3,D4}.

• dpr(Object) = {D5,D6,D7.1,D7.2.∗,D7.3.∗}.

• dpr(Predicate) = {D8}.

Then, if we look for alocal(i, r), the dictionary mappingi is aDj ∈ dpr(r). From this set, the
dictionaryj is that satisfying:ptrs[j] < i ≤ ptrs[j + 1]. Finally, the local ID is obtained by subtracting
ptrs[j] from i. Formally:

local(i, r) = i− ptrs[j], whereDj ∈ dpr(r), andptrs[j] < i ≤ ptrs[j + 1]
✞

✝

☎

✆10.2

Note that this formula exactly applies for literal subdictionaries as they are also considered indpr.
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10.3.2 Basic Lookup Operations

We detail below howDcomp provideslocate andextract operations. In fact, theextract opera-
tion is straightforward achieved by means of the previousglobal-to-local operation. In contrast,
locate will also make use of the indexeslang anddtype.

Let us exemplify this functionality through the SPARQL queryQ is shown in Figure10.5. This
query retrieves all the categories of the researcher from the graph ofour running example (Figure10.1).

PREFIX ex:<h t t p : / / example . org>
SELECT ? someone ? c a t e g o r y
FROM <h t t p : / / example . org>
WHERE{

? someone r d f : t ype<h t t p : / / example . org / Researcher> .
? someone ex : c a t e g o r y ? c a t e g o r y .

}

Figure 10.5: An SPARQL queryQ for the RDF graph in Figure10.1.

As stated in the previous chapter (§9.1), a SPARQL processor firstly parsesQ to obtain the cor-
responding sets of terms,T , and variables,V . Therefore, the SPARQL processor obtains the set of
terms (in order of appearance):T = {rdf:type , <http://example.org/Researcher> , ex:category }, and
the variables:V = {?someone , ?category }. The next step consists of locating the ID correspond-
ing to each termti ∈ T . It requires as manylocate lookups as terms in the setT . In our case,
locate( rdf:type,Predicate ) = 13, locate( <http://example.org/Researcher>,Object ) = 6 and
locate( ex:category,Predicate ) = 6. Using these IDs, the SPARQL query is rewritten, and it is run
over the ID-triples representation. The query resolution outputs a seriesof ID values matching for the
variables inV . Thus, the last step performs as manyextract operations as results are obtained, for
each variable inV , and the corresponding terms are reported within the final query result. The solution
to our case are:

?someone= <http://example.org/Javier>, ?category=‘‘ Estudiante de doctorado. Personal Investigador ’’@es

?someone= <http://example.org/Javier>, ?category=‘‘Ph D student. Junior Researcher’’@en

?someone= <http://example.org/Santiago> and ?category= ‘‘Associate’’@en

We detail below how the location and extraction processes are implemented inDcomp and illustrate
them using the example query above.

Locate. This operation implements the translationstring-to-id . As stated, it has to provide the
role of the string in order to resolve overlappings. Thus the operation is given as:

• locate( s, r) which maps the strings with role r ∈ (Subject, Predicate,Object) into its ID

in Dcomp.

Dcomp organizes subdictionaries by vocabulary classes (URI, Blank nodes,general literals, etc),
hence the first process is to identify the type of the terms. This is done by a simply parsing of the
syntax, identifying, if present, also the language and datatype tags. Let us refer to aparsefunction,
parse(s), which identifies the vocabulary class,sk and tagst in s. It is clear that the roler, classsk and
tagst unequivocally identifies the subdictionary,Dj , to be queried. Then,locate( ti) is performed on
Dj , and the ID representing the term:lj , is returned. However,lj is a local ID and must be transformed
into its global counterpart by using thelocal-to-global method explained above.

Two variants exist in this process. On the one hand, terms playing as subject or object can be rep-
resented in the common partitionSOor in their specific one. It implies that locating a subject or object
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firstly looks for the smallest dictionary and if the term is not found, the other one is queried. On the
other hand, as stated, tagged literal terms need to make use of their corresponding index,lang(x) or
dtype(x)to determine the subdictionary representing their language or datatypex. In both cases, the
local-to-global method is used for translation purposes.

Let us analyze the operations in our example:

• locate( rdf:type,Predicate ) , searches for a URI (due to the syntax) playing the predicate role.
Then, the subdictionary of predicates is queried and the global ID13 is returned. Note that, with
the current mapping, the local and global mapping for predicates are always equivalent.

• locate( <http://example.org/Researcher>,Object ) , searches for a URI playing a subject role.
Theparsefunction identifies the URI and also erases the delimiting characters “<”, “>” as they
are not stored in the subdictionaries. This term can be found in the subdictionary of Object URIs,
D5, or the subdictionary of common Subject-Objects URIs,D1. Then, this term is firstly searched
in D5 as it is smaller in this case. The term is found with the local ID1, transformed into the
corresponding global ID though global(15) = 1 + ptrs[5] = 6.

• Finally, locate( ex:category,Predicate ) runs similar to the first case.

Extract. This operation implements the translationid-to-string . Thanks toDcomp organization
it can be simply achieved by a firstglobal-to-local operation over the given ID, and an extract
process over the subdictionary involved. Thus:

extract(i, r) = Dj .extract(l), wherel anj are obtained aslocal(i, r) = lj
✞

✝

☎

✆10.3

in whichDj .extract(l) denotes theextract operation over the DictionaryDj .
A simple final modification must be done. Note thatDj .extract(l) extracts the stored term, which

is kept without neither delimiters in general nor tags for literals. Les us callunparsingto the process of
undoing the previous parsing. Unparsing first adds delimiters to the obtainedterm. Then, for those sub-
dictionaries storing tagged literals, it makes use oflang[j] or datatype[j] to retrieve the corresponding
lang or datatype tag for the dictionaryDj . This tag is included in the final returned term.

For our previous example, the bindings are extracted for each variable involved in the query. Let us
exemplify the process for the first response ofJavier.

• The variable?someone (as a subject) is binded to the global ID1. First,local(1, Subject) = 11,
that is, theglobal-to-local operation returns the local ID1 within theD1 subdictionary.
Then, the corresponding term is extracted with the operationD1.extract(1), which is, after un-
parsing:<http://example.org/Javier> .

• The variable?category is binded to the global ID14 . First,local(14, Object) = 17.2.2, that is,
theglobal-to-local operation returns the local ID1 within theD7.2.2 subdictionary. Then,
the corresponding term is extracted as:D7.2.2.extract(1), obtaining after parsing: “ Estudiante de
doctorado. Personal Investigador”. As we have explained, being a subdictionary of lang-tagged
literals,lang[7.2.2] = @es, which is then appended to the previous string to return the final string.

As shown,locate andextract can be easily achieved leveraging the organization and simple
data structures ofDcomp. These operations are the basis of any RDF dictionary. In the following we
present advanced operations supported byDcomp.
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10.4 Filter Resolution

Dcomp organization keeps a distinguishable partition of roles, vocabulary classes, langs and datatypes.
Most SPARQLFILTER conditions (see description in2.1.2) are restrictions playing with these partitions.
In particular, unary SPARQL filters can be directly resolved over the proposed dictionary. We emphasize
on three types of SPARQL filtering:

• Vocabulary testsare used for checking if a query result is drawn from a given term class. Thus,
three different tests are available for filtering:isIRI, isBlank , andisLiteral .

• Simple accessorsuse basic internal term information for filtering. Three different accessors are
distinguished:

– str : returns the lexical form of a given term. In practice, this accessor is used for retrieving
the string version of the argument passed to it (DuCharme, 2011).

– lang : returns the language tag of a given literal, if it has one. In other case, itreturns an
empty string.

– datatype : returns the datatype tag of a given literal. If it is a simple (general) literal, orit is
tagged with any language information,datatype returns the string tag (<xsd:string> ).

• Regexis an accessor which restricts the string values to those matching a given regular expression.

Efficient filtering is a cornerstone in real-world scenarios as we showedthat roughly the50% of the
queries perform any kind of filtering (Arias et al., 2011). Filter resolution is traditionally resolved by
means of two different strategies which comes from its SQL counterpart. The traditional non-early test
evaluation runs the query by matching the triple patterns against all triples in the datasetG. Then, the
result set must be checked, one-on-one, with respect to the filter condition, obtaining the final resultant
bindings. In contrast, theearly test evaluation, is based onpushing-up filter evaluation. That is, if
possible, filter conditions are evaluated first, reducing the set of triples to be explored in the query which
is run next. It can be seen as querying a reducedG′, beingG′ a subgraph ofG in which all conditions of
the filters are evaluated to true.
Dcomp provides direct filter resolution over the dictionary forvocabulary testsandsimple accessors

natively on both strategies, which is described below. However,regexhas to leverage on the specific
implementation of literals subdictionaries. This latter is evaluated in the evaluation section (§10.5.3).

10.4.1 Vocabulary Tests

As explained above, these filters only rely on checking the vocabulary class of terms. We slightly modify
the previous query example to illustrate the resolution overDcomp. The novel queryQ is shown in Figure
10.6and it restricts to those categories being literals. Although all categories areliterals in our previous
graph (Figure10.1), this query still makes sense as categories could perfectly point to URIs as well.

PREFIX ex:<h t t p : / / example . org>
SELECT ? someone ? c a t e g o r y
FROM <h t t p : / / example . org>
WHERE{

? someone r d f : t ype<h t t p : / / example . org / Researcher> .
? someone ex : c a t e g o r y ? c a t e g o r y .
FILTER i s L i t e r a l ( ? c a t e g o r y )

}

Figure 10.6: An SPARQL queryQ with a vocabulary test for the RDF graph in Figure10.1.
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The traditional non-early test evaluation inDcomp performs directly on the IDs,i.e., without the need
of extraction of the literal mapped to each ID. This is due to the fact that eachpartition (subdictionary)
only holds a type of term; URIs, Blank nodes or Literals. Then, theglobal-to-local operation,
which returns the subdictionary of a global ID, directly points to the vocabulary class of the term.

For instance, in the example query, one binding for the variable?category playing the role of an
object, is the global ID14 . The operationlocal(14, Object) return17.2.2, and therefore this solution is
in the dictionaryD7.2.2 which stores lang-tagged literals. Thus, this solution truly matches the filter. In
addition, no extra operations are performed, as theglobal-to-local operation is required for the
final extract operation in order to return the string result.

In contrast, early test evaluation is resolved beforehand by means ofptr. In the example query, the
filtered variable:?category , plays as object and the filter condition restricts its bindings to literals.
Thus, the space of possible results is first limited to the triples whose object is identified within the range
[ptr[7] + 1, ptr[7.3.3]+ |D7.3.3|], as these are the ranges assigned to the literals. In our running example,
this range is[8, 22]. These ranges are then provided to the engine which only searches formatching
results in them.

10.4.2 Simple Accessors

These filters extract and test specific information about the terms. In particular, thestr operation returns
the lexical form of a term and then it cannot be resolved on the IDs. Thus, the ID is firstly extracted and
then compared with respect to the string in the filter. In contrast, thelang anddatatype filters can
be resolved natively onDcomp as well. To illustrate the resolution, we reformulate the previous query to
only retrieve comments expressed in English. This is shown in Figure10.7.

PREFIX ex:<h t t p : / / example . org>
SELECT ? someone ? c a t e g o r y
FROM <h t t p : / / example . org>
WHERE{

? someone r d f : t ype<h t t p : / / example . org / Researcher> .
? someone ex : c a t e g o r y ? c a t e g o r y .
FILTER i s L i t e r a l ( ? c a t e g o r y )

}

Figure 10.7: An SPARQL queryQ with simple accessors for the RDF graph in Figure10.1.

In the traditional non-early evaluation method, again, the query is first runover the full dataset and
the result set must be individually checked. Then, each ID can be directly compared against the range
assigned to the corresponding language or datatype. In this case, the resolution requires querying the
second level ofptrs and the indexeslang anddtype. In the current query, comments are restricted to
those expressed in English, so the retrieved global IDs12, 13 and14 are first localized by means of
the global-to-local operation, which returns the subdictionariesD7.2.1, andD7.2.2. As we are
looking for Spanish term, the operationlang(@es) returns the dictionary storing Spanish term, thus
D7.2.2. In such case, only the global term14 is held in this dictionary, performing then a common
extraction process.

The early evaluation algorithm proceeds as in the previous vocabulary test case. That is, the ranges
of possible results are firstly obtained and the query is exclusively performed over them. This way, the
set of returned results is already filtered. In our example query, we firstly access to thelang index and
retrieves that the dictionaryD7.2.2 stores the Spanish term. Then, the range of global ID for such terms is
in [ptrs[7.2.2] + 1, ptrs[7.3.1]]. In our scenario, this range is only[14,14] . This range is provided to
the engine which only searches possible results among those triples containing an object ID in this range.
In this case, the returned result contains the value4 and it is extracted with the common procedure.
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Dataset Triples #Subjects #Predicates #Objects #Common SO

2011 Australian Census 361,842 51,768 26 6,901 508
Jamendo 1,049,637 335,925 26 440,602 290,291
AEMET 3,547,154 394,289 23 793,664 433
Dbtune 58,920,361 12,401,228 394 14,264,221 10,076,199
2000 US Census 149,182,415 23,904,658 429 23,996,813 23,815,829
Dbpedia 3-8 431,440,396 24,791,728 57,986 108,927,201 22,762,644

Table 10.1: Details of the evaluation corpora for compressed RDF dictionaries.

10.5 Experimental Evaluation

This section studies the size and performance of compressed RDF dictionaries on real-world datasets.
We run the evaluation on a heterogeneous corpora described in Table10.1. We choose six datasets from
our evaluation setup in Section4.2, covering different application domains and number of triples.

First, we test compressed string dictionaries on each vocabulary partition:URIs, blank nodes and
literals (§10.5.1). Next, the conclusions of this study help us address two functional configurations for
Dcomp: D

(C)
comp is focused on compression effectiveness andD(Q)

comp is optimized for querying. Finally,
we evaluate the size and performance of these configurations (§10.5.2).

All querying tests are performed on the “consumer” computer presented inSection7.4. We re-
port user times for all experiments.Dcomp prototypes are developed in C++ using structures from
libcds (Compact Data Structures Library (libcds), 2012). We use two bitmap implementations (de-
scribed in Section2.4.1): plain, referred to as RG (Gonźalez et al., 2005), andcompressed, referred to
as RRR (Raman et al., 2002). Both bitmaps can be parameterized with asampling valuewhich will be
referred in each experiment. All sources are compiled on g++ 4.7.2 with-09 optimization.

10.5.1 Analyzing Compressed String Dictionaries for RDF

We analyze space/time tradeoffs of each technique from compressed string dictionaries (§9.2) applied
to the subsets of URIs, blank nodes (referred to as Bnode hereinafter), and literal dictionaries. These
techniques are setup as follows. TheHash technique reserves a table with a size overhead of10% and
compacts it with a bitmap RG, using a sampling of20. Note that tests performed on other load factors
reported comparable results. ThePFCandHTFCtechniques are setup on different bucket sizes:b = 2x,
for all x ∈ [1, 10]. Thus, we obtain results for buckets containing from21 to 210 terms. Finally, the FM-
Index (FMI) technique is implemented by using plain (FMI-RG) and compressed (FMI-RRR) bitmaps.
FMI-RG is parameterized with sampling valuess = {4, 20, 40}, andFMI-RRR with s = {16, 64, 128}.

Compression.Table10.2summarizes the compression ratios obtained in each vocabulary partition
of the datasets. Note again that we give compression ratios assc/sr, wheresc andsr are thecompressed
and the originalraw dictionary sizes respectively. The well-knowngzip compressor is shown as a
reference of our compression achievements.

We provide the best and the worst ratios for all parameterizable techniques. As we will show below,
these parameters affect the query performance. Note that all techniques scale in size, yet some of the
considered implementations fail for large corpora. This is marked as a null value in Table10.2.

Results forURI vocabularies define a clear scenario. On the one hand,Hash achieves a poor com-
pression of around78% of the original raw size. This result is mainly due to the Huffman code, which
performs a character-based compression and obviates the longer-range correlations existing between the
terms in the vocabulary. This discourages its use for large vocabularies of URIs. On the other hand,
Re-Pair andHTFCobtain the best ratios for all datasets. Whereas the latter effectively compresses the
long common prefixes, the first one takes advantage of all repeated substrings.

As expected,HTFCoutperformsPFC thanks to the Hu-Tucker compression. Both maximize their
effectiveness for increasing bucket sizes. As can be seen, theHTFCrepresentations take between2.53%
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URIs sr (MB) gzip Hash PFC HTFC Re-Pair FMI
2011 Australian Census 2.80 4.52% 72.97% 5.43% - 54.99% 2.53% - 36.48% 5.55% 19.85% - 72.50%

Jamendo 19.36 6.23% 77.89% 11.40% - 58.37% 7.74% - 40.60% 9.21% 21.76% - 75.60%
AEMET 36.80 3.46% 69.68% 6.99% - 55.05% 4.47% - 37.19% 3.69% 19.44% - 76.13%
Dbtune 281.54 19.47% 78.42% 68.30% - 30.88% 20.09% - 48.23% 26.26% 31.47% - 80.39%

2000 US Census 7.52 6.23% 67.15% 27.01% - 65.10% 16.01% - 40.70% 8.53% 20.20% - 71.88%
Dbpedia 3585.31 14.36% 79.73% 27.88% - 67.24% 20.75% - 49.43% - 26.97% - 66.12%

Bnodes sr (MB) gzip Hash PFC HTFC Re-Pair FMI
Dbtune 623.73 9.69% 71.14% 22.83% - 64.08% 14.50% - 42.66% 7.30% 20.75% - 72.92%

2000 US Census 534.50 11.13% 92.89% 17.09% - 66.20% 7.72% - 47.45% - 28.20% - 70.83%

Literals sr (MB) gzip Hash PFC HTFC Re-Pair FMI
2011 Australian Census 0.26 7.55% 84.24% 92.30% - 98.84% 64.30% - 72.00% 9.64% 27.45% - 83.76%

Jamendo 11.90 28.93% 71.37% 95.98% - 98.81% 66.23% - 69.00% 35.46% 34.59% - 82.99%
AEMET 44.47 5.54% 75.07% 18.92% - 62.07% 12.44% - 43.84% 6.55% 20.70% - 75.60%
Dbtune 79.39 20.99% 90.37% 70.05% - 89.02% 52.04% - 68.36% 27.97% 32.56% - 87.52%

2000 US Census 9.06 5.18% 78.70% 91.55% - 98.62% 61.64% - 69.59% 7.09% 21.73% - 77.99%
Dbpedia 4513.11 22.48% - 78.31% - 89.13% 53.78% - 64.01% - 30.29% - 82.62%

Table 10.2: Compression of general techniques for string dictionaries (sr is the dictionary raw size).

(for the small2011 Australian census) and20.75% (for Dbpedia) of the raw size. In the first case, it
even surpasses the effectiveness ofgzip , being comparable in all datasets. This is a very significant
achievement because it demonstrates that these techniques can represent the vocabulary in a space close
to that used by a universal compressor and also providelocate andextract operations.

Note that theFMI technique is less effective for URIs.FMI-RRR always obtains more compressed
representations thanFMI-RG, beingFMI-RRR with samplings = 128, andFMI-RG with sampling
s = 4, the best and worst cases respectively. Thus, the range of compression ratios presented in the table
corresponds to theFMI-RRR variant.

This analysis for URIs can be extrapolated to theBnodesvocabulary, presented inDbtuneand the
2000 US Census. However, a less clear situation arises forLiterals . As can be seen,FMI is the best
choice forJamendo and Dbpedia , whereasRe-Pair is the most effective for the other datasets.
Nevertheless, the effectiveness ofFMI is the most uniform. Experiments show thatFMI-RRR largely
outperformsFMI-RG, and larger sampling values improve compression in both cases. In turn,PFCand
Hash obtain very poor results for literals. This fits our initial expectations: in general, literal vocabularies
show less regularities than URIs or Bnodes, hence their poor compression ratio. Nonetheless, some
particular cases such as the two census datasets andAEMETalso present regularities in literals (repetition
of words or literal tags) which is clearly exploited byRe-Pair .

These results entail several remarks. URIs and Bnodes can be highly compressed, beingHTFCand
Re-Pair the most effective techniques. However, the compression of literals becomes more compli-
cated as they can contain any type of information. In this case, a prefix-based compression is not always
sufficient and a general technique, such asFMI, arises as an interesting solution. In fact,FMI-RRR
outperformsHTFCin most cases. As shown,Hashing is clearly discouraged when compact represen-
tations are required. Finally, note that the classic Front-Coding (PFC) achieves limited success, but we
will show below that it excels in query performance.

Querying. Next, we evaluate the performance of thelocate and extract operations on the
considered techniques. To do so, we design specific micro-benchmarksfor testing querying operations
on each vocabulary partition: i)locate is studied through a batch of 10,000 terms randomly chosen
for each vocabulary, and ii) another batch containing 10,000 random IDs are used forextract . We
run50 independent executions of each batch and average totalusertimes to isolate our measurements of
external events. These averaged times per batch are then divided by thenumber of queries (10,000) to
obtain the time per query.

The results forDbtuneand the2000 US Censusare reported in Figures10.8and10.9respectively.
The graphics comparelocate (left) andextract (right) performance for theURI (upper),blank
nodes(middle) andliteral (bottom) vocabularies. Each graphic draws compression ratios on the X axis
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Figure 10.8: locate and extract times for URIs (top), blanks (middle) andliterals (bottom) of
Dbtune.

and querying times (inµs/query) on the Y axis (in logscale). All the conclusions below can be extended
to the other datasets in the current setup.

A general conclusion is achieved from all the graphics: the space/time tradeoffs forHash are never
the best choice, neither for compression (as shown in Table10.2) nor at querying times. In general terms,
we can state that hashing is not an option for representing RDF dictionariesat large scale. Nonetheless,
this compressed hashing technique could always be a choice in simple scenarios without scalability
problems: the performance oflocate andextract are around 1-3µs/query.

The performance results reported for URIs (top) and blank nodes (middle) are very clear:PFC
always outperformsHTFCin querying because the latter pays the price of the Hu-Tucker decompression.
However, as commented above,PFCpays a spatial overhead with respect toHTFC. With a similar setup,
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Figure 10.9:locate andextract times forURIs (top), blanks (middle) andliterals (bottom) of the
2000 US Census.

the HTFCcompression ratio is around 8-10 percentage points better than the obtainedfor PFC, but its
performance is 1.5 to 10 times slower thanPFC. The only exception presenting comparable times is
the blank nodes performance of the2000 US Census(Figure10.9, middle). Note that the performance
difference betweenPFCandHTFC is always more noticeable inextract . In this operation, all the
strings have to be decompressed up to the position of the desired string.

RegardingRe-Pair , which presented very competitive compression ratios, itslocate perfor-
mance shows a clear degradation with respect to the other techniques, particularly in comparison with
PFC. In contrast,Re-Pair remains competitive inextract except for the blank nodes performance
of the2000 US Census.

Thus,HTFCandRe-Pair are well-suited for scenarios focused on compression, butPFC is the
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Dataset sr (MB) RDF3X D
(C)
comp D

(Q)
comp

2011 Australian Census 3.05 147.98% 8.54% 17.52%
Jamendo 31.26 133.66% 18.55% 37.01%
AEMET 81.27 148.33% 14.25% 44.69%
Dbtune 984.66 145.15% 20.73% 43.16%

2000 US Census 551.08 230.54% 13.54% 28.96%
Dbpedia 8098.42 130.71% 30.32% 64.11%

Table 10.3: Compression results ofDcomp versus RDF3x dictionaries.

best choice if spatial requirements are slightly relaxed. Finally, note thatFMI performance is never
competitive for URIs.

The analysis for literals is, again, more complex.PFCachieves excellent times (1−10µs/query), but
its space is3−10 times larger than that used by the most effective techniques,FMI-RRR andRe-Pair .
In turn,HTFClargely improvesPFCcompression, but querying times evolve to3− 7 µs/query for com-
petitive tradeoffs. Finally,FMI takes between25 and75 µs per query. Thus,Re-Pair achieves the
most competitive tradeoffs for literals (although the considered implementation suffers from scalability
problems in large corpora). In general,FMI-RRR andRe-Pair must be chosen for optimizing space,
but PFCmay be the option in scenarios where time prevails. Nevertheless, note thatFMI is still the pre-
ferred choice when more sophisticated queries (such as substring-based ones) are desired (Brisaboa et al.,
2011). This is consistent with the devised SPARQL filter resolution.

10.5.2 Dcomp Performance

As explained above, two functional configurations forDcomp are evaluated. Based on our previous evalu-
ation, we choose those techniques (and their setup parameters) optimizing either the query performance
or the dictionary size. In both cases, we keep a competitive space/time tradeoff. The resultant configura-
tions are as follows:

• D(C)
comp is optimized for compression. It implements URI and blank node dictionaries onHTFC

(b = 16), and represents literals withFMI-RRR, samplings = 128.

• D(Q)
comp is optimized for querying. It implements URI and blank node dictionaries onPFC(b = 8),

and represents literals withFMI-RG, samplings = 4.

Table10.3shows compression effectiveness forDcomp. In this case, the raw size of the dictionaries
(columnsr) considers the raw dump of allDcomp partitions (§10.2). We also include the sizes of the
dictionaries used in RDF-3X (Neumann & Weikum, 2010) to compare our results with respect to a
real-world solution (note that we measure the space thatDcomp takes in memory, but RDF-3X size is
measured on disk).

As can be seen, our configuration aimed at compression,D
(C)
comp, takes more than half of the space

used by the configuration optimized for query performance,D
(Q)
comp. This difference allows for some

other configurations whose size can be tuned in accordance to specific application requirements. The
comparison of our two variants with respect to RDF-3X gives a magnitude ofour achievements with
regard to the representation of RDF dictionaries. Whereas RDF-3X always uses more space than the
original raw dictionary, our worstD(Q)

comp result for the largeDbpedia dataset uses64.11% of the origi-

nal space, while the best one forD(C)
comp is only30.32%. Thus,Dcomp reduces the space taken by RDF-3X

between2 and18 times for the studied datasets.
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Figure 10.10:locate times ofDcomp versus RDF3x dictionaries, inDbtune(left) and the2000 US
Census(right). Y-axis is represented in logarithmic scale.
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Figure 10.11:extract times ofDcomp versus RDF3x dictionaries, inDbtune(left) and the2000 US
Census(right).

These results guarantee thatDcomp can be finely tuned to achieve highly-compressed dictionaries.
This saves processing resources and enables larger dictionaries to bemanaged in a fixed main memory.
Next, we studyDcomp efficiency at querying.

We design a similar random corpora oflocate andextract queries, following the procedure
used in the previous experiments. In this case, forlocate performance evaluation, we consider a batch
of 10, 000 random queries for each subdictionary ofDcomp, and average it in50 independent repetitions.
Figure10.10shows thelocate times inDbtune(left) and the2000 US Census(right) compared to
RDF3X (note that the y-axis is in logarithmic scale). As can be seen,D

(Q)
comp always outperformsD(C)

comp,
achieving significant differences. It is worth noting that times obtained by our twoDcomp configurations
are always less than10µs per query except for literals. In this case, the use ofFMI, a more general
representation, slightly reduces the performance obtained by the other techniques.

The RDF-3X performance is also analyzed. To do so, we run the query batch and measure the
performance time in two different scenarios: “cold” (no data is preloadedin the system main memory)
and “warm” (each query is run 5 times prior to the final measure, hence the required data are available
in main memory). The comparison is unfair in the cold scenario because RDF-3X needs data to be
transferred from disk; these operations are performed in some milliseconds (one order of magnitude
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Figure 10.12:Dcomp locate time per occurrence of the substrings (lengths 5, 10, 15, 20, 25 and 30).

above our technique). Thus, the graphics always report a warm scenario which reduces the times to
the level of microseconds. As can be seen, RDF3X performance neverimproves our approaches for
locate , except for general literals. Note that, RDF3X is unable to handle tagged literals (it erases the
tags when loading the dataset), whereas our approaches give specificsupport for them.

In turn, we evaluateextract performance in Figure10.11. In this case, we design similar mi-
crobenchmarks of 10,000 random queries but restricted to each role: Subjects, predicates and objects.
This way, we emulate a real-world extraction of SPARQL results, in which the ID-term solution and its
role are known. Results show thatextract is faster than the previouslocate operation in all cases.
As expected,D(Q)

comp remains faster thanD(C)
comp, obtaining around1µs per query except for theDbtune

literals (that are potentially long). This is the only case in which RDF3X outperformsD(Q)
comp. Finally,

note thatD(C)
comp is competitive forextract , although the performance in general literals ofDbtuneis

degraded for the same reason.

Thus, in general terms, we can state thatD(Q)
comp achieves the best performance for the most used

operation in SPARQL engines, remaining highly compressed. In addition, its space/time tradeoff can be
finely tuned, bringing it closer toD(C)

comp if compression requirements prevail.

10.5.3 Dcomp Regex Resolution

As stated, theFMI self-index could not excel for literal compression, but it is the choice for resolving
sophisticated queries such as the required for SPARQLregexresolution. Thus, we aim at evaluating the
performance of substring retrieval on theD(Q)

comp andD(C)
comp configurations. We design a batch of random

substring queries of theDbtuneliterals. To do so, we randomly choose 2,000 substrings of length 5, 10,
15, 20, 25 and 30, and we perform substringlocate using theFMI functionality.

Figure10.12shows the results of the evaluation (in microseconds per occurrence of each substring
in the dictionary). As can be seen,D(Q)

comp clearly outperforms theD(C)
comp configuration.D(Q)

comp performs
significant fast, in the range [13-35]µs per occurrence. As expected, the larger is the substring pattern,
the more time is needed to locate. This remains a direct consequence of theFMI operation, which
performs the pattern matching character by character.

Finally, it is worth noting that this result is obtained with anFMI internal sampling of suffixes,
by means of a bitmap index. In the current implementation, this bitmap is compressedwith a RRR
configuration and parameter 64. Figure10.13shows the performance considering other configurations
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Figure 10.13:Dcomp locate time of substrings (lengths 5, 10, 15, 20, 25 and 30) with different
FMI-RG samplings, showing a similar performance.

for this sampling. In particular, we evaluate the sameD(Q)
comp configuration with a sampling bitmap

RG(parameter=4),RRR(parameter=64) andRRR(parameter=128). The graphic reports that, although
the sampling with a bitmapRGis slightly faster, the difference is not significant. In addition, the size
of the literal dictionary with theRGsampling becomes 9% and 10% more than theRRRalternatives.
Nevertheless, note that this time is given “per occurrence” and, thus, thissampling could be an important
tradeoff to take into account if resolution time prevails. Finally, note that, in all the alternatives of Figure
10.13, thelocate times present a linear growthw.r.t the length of the substring patterns.





It’s not a question of where he grips it! It’s
a simple question of weight ratios! A five
ounce bird could not carry a one pound
coconut.

Monty Python and the Holy Grail (1975) 11
Discussion

This chapter briefly summarizes the contributions (§11.1) of this part of the thesis devoted to RDF dic-
tionaries. We also devise future work and applications (§11.2).

11.1 Contributions

Through the previous chapters, we have addressed compressed representations for RDF dictionaries.
First of all, in Chapter9, we have introduced the problem of effective representations of RDF dictionaries
in the novel scenario of Big Semantic Data. We stated that current techniques used for their representation
suffer from scalability issues. We then reviewed existing techniques for compressed string dictionaries.

Next, in Chapter10, we applied these techniques to the specific case of RDF and obtained simple
compressed representations for URI, blank node and literal dictionaries. This experience was integrated
within a novel RDF dictionary, calledDcomp, which addresses specific management of compressed RDF
dictionaries.Dcomp reorganizes the RDF dictionary into subdictionaries according to its role andterm
vocabulary, allowing for specific compression of each part. We detailed itsdata structures and algorithms
able to perform typical querying (locate andextract ) and we introduced advanced filter resolution
leveragingDcomp features.

Finally, we performed a deep evaluation on real-world datasets, showing many interesting remarks:

• The application of the techniques from compressed string dictionaries to RDF dictionaries is able
to achieve high compression ratios. These ratios are, in general, comparable to that achieved by
universal compressors. In addition, these techniques provide queryfunctionality (locate and
extract operations) on compressed space.

• Traditional hashing is discouraged for large RDF vocabularies as its space/time tradeoff is never
the best choice. Nonetheless, it presents comparable performance, remaining a simple solution for
basic scenarios.

• A prefix-based compression,HTFC, and a grammar-based compression,Re-Pair , are the most
effective techniques for compressing URIs and blank nodes.Re-Pair and theFM-Index self-
index, are the best techniques for compressing literals.

• Dcomp achieves highly-compressed dictionaries, between9−64% of its original size, and it excels
in query performance, answering queries in1− 60µs.

• Compared to theB+− tree proposal in RDF-3X,Dcomp reduces its space between 2 and 18 times.
Dcomp performs significant faster except for literals, being comparable in this case.

• TheFM-Index self-index used for literals inDcomp resolves SPARQLregexqueries in the range
of microseconds per occurrence (with a linear growthw.r.t the length of the substring pattern).
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All this experience guarantees thatDcomp is an innovative technique which i) achieves highly-compressed
dictionaries, ii) is highly parameterizable, allowing to configure its space/time tradeoff, iii) achieves an
extraordinary performance for the most used dictionary operations in SPARQL engines; and iv) opens
up further optimizations for filter resolution.

11.2 Future Work and Applications

As stated, our proposalDcomp perfectly fits the philosophy ofHDT, and it can be directly plugged as
the representation of the dictionary component. However, we have shownthat RDF dictionaries are
commonly used in all kind of applications performing on the Web of Data. Our future work focuses on
elaborating a toolkit of RDF dictionaries and a set of best practices to different domains. The idea is
to be able to easily integrateDcomp as a dictionary index within an existing application performing on
Big Semantic Data, such as a SPARQL engine. A (semi-) automatic analysis of thetype of data and the
expected functionality would help recommend the correct parametrization.

Besides, the use ofDcomp provides interesting features for filtering which can be further exploited.
First, a line of future work is to integrateDcomp features into a SPARQL query planner to fully exploit
its organization and characteristics, in particular for early filter evaluation.In turn, theregexresolution
in compressed space opens up many interesting applications. In this respect, we have managed multi-
media metadata (Arias, Corcho, Ferńandez, Mart́ınez-Prieto, & Súarez-Figueroa, 2013) in practice: we
made use ofDcomp (andHDT) to provide full-text search of multimedia metadata in compressed space.
Performance experiments reported that our solution overcame Virtuoso for all queries in the setup (see
Arias et al.(2013) for further details).

Finally, an additional line of future work focuses on evolvingDcomp to support dynamic operations
of insert, delete, and update. These operations are essential to integrateDcomp in semantic databases
in which dictionaries evolve according to triples management. Nevertheless, we devise two lines of
work. On the one hand, one could work on making the original techniques from compressed string
dictionaries also dynamic. This would help in theDcomp evolution, although some problems (such as the
efficient movement of terms between subdictionaries), should be treated aside. On the other hand,Dcomp

modification could be studied as a subproblem of the alteration of Big Semantic Data. In other words,
one could work in infrastructures allowing to modify Big Semantic Data, and incorporate the dictionary
component as a problem to contend with. We will provide some notes on these potential infrastructures
in future chapters.



Part IV

Compact RDF Triple Indexes





You’re gonna need a bigger boat.

Jaws (1975)

12
Introduction

This part of the thesis completely focuses on triple indexes. The current chapter first motivates the
scalability problems of RDF triple indexes (§12.1), and reviews the state-of-the-art techniques (§12.2).
Their drawbacks help define our goals (§12.3) which mainly comprises the design of compact triple
indexes on top of HDT-encoded datasets.

12.1 Motivation

The ID-triples in anHDT-encoded dataset can be directly accessed once its components are loaded into
the memory hierarchy of any computational system. As we review below (§12.2), the state of the art in ID-
triple indexes is large. Nonetheless, we first highlight some interesting remarks pointed out throughout
this thesis.

First of all, some consumption processes does not need to resolve complexSPARQL queries, but a
minimum set of operations. For instance, if the entity< e > is dereferenced in accordance to the third
Linked Data principle, one should perform a query such as:

CONSTRUCT{ < e > ?predicate ?object .}
WHERE{ < e > ?predicate ?object .}

or, at most, one could also retrieve all the resources pointed to this same entity(if < e > is playing as an
object), or the triples in with< e > is playing as an object (if exist). Then:

CONSTRUCT{ e ?predicate ?object .
?subjectP< e > ?objectP .}

?subjectO predicateO< e > . }
WHERE{ < e > ?predicate ?object .}
UNION{ ?subjectP< e > ?objectP .}
UNION{ ?subjectO predicateO< e > . }

We can find another simplified scenario in the area of RDF streaming, in which alimited set of
queries is repeated over a stream of data. Thus, in some scenarios suchas the presented above it is
interesting to provide small indexes with partial functionality regarding SPARQL. This was also pointed
out in HDT triples encoding , classifying four levels of triple functionality (§7.1.3). However it
is clear than state-of-the-art indexes are guided by an intensive-querying perspective, corresponding to
L2-Join Resolutionor L3-Full Sparqllevels.

In addition, RDF indexes suffer from scalability issues in Big Semantic Data asthey barely address
compression notions. The space optimization achieved inHDT-encoded datasets is not fully exploited if it
is then loaded into burdensome structures. In contrast, one could argue that succinct data structures could
be added to theHDT-encoded dataset in order to provide direct access to the triple information. Moreover,
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if complex SPARQL resolution is needed, advanced succinct indexes could also be constructed on top of
theHDT-encoded dataset. In other words, theHDT-encoded data is not parsed to pre-built RDF indexes,
but RDF indexes are built for theHDT-encoded data at consumption time.

This goal is detailed at the end of this chapter (§12.3), and developed in the next chapter. We first
review the state of the art in RDF triple indexes and stores.

12.2 State of the Art

Several RDF indexes and RDF stores explore efficient RDF retrieval and SPARQL resolution. As RDF
does not prevent any technique, the implementation of these proposals hasa direct effect on the retrieval
efficiency, and therefore on the success of SPARQL-based solutionsin the Web of Data. We review
below the existing techniques for modeling, partitioning, and indexing RDF, and discuss their use in
some real RDF stores.

Although the explosion of novel RDF engines could make this review uncompleted, we focus on
showing the main achievements and shortcomings in the state of the art. We first summarize those
approaches (and their techniques) based on a relational infrastructure. Then, we show solutions natively
designed for RDF.

12.2.1 Relational Solutions

Some logical schemes have been proposed for representing RDF over the infrastructure provided by
relational databases. Although they leverage the “strictness” of the relational model for handling the
semi-structured RDF features, there is still room for optimizations (Sakr & Al-Naymat, 2010). We
describe below the most used schemes.

Single three-column table. This is the most straightforward scheme modeling RDF over a relational
infrastructure. It represents RDF as a huge single table of three columns, holding an RDF triple (S,P,O).
Systems such as 3store (Harris & Gibbins, 2003) or the popular Virtuoso1 implement this scheme.

Virtuoso (Erling & Mikhailov, 2007, 2009) is probably the main representative of these approaches.
In particular, Virtuoso extends each triple in the three-column table with an additional column holding
the graph (G) it belongs2. To minimize redundancy, Virtuoso makes use of an RDF dictionary, hence the
S, P, O and G columns store IDs. Another (dictionary) table holds the mappingbetween each ID and the
term representing it from the subject, predicate, object or graph vocabulary.

As can be seen, SPARQL resolution involves many expensive self-joins on the huge single four-
column table. Nevertheless, Virtuoso uses two indexes: (G,S,P,O) and (O,G,P,S). From version 6, it also
includes 3 partial indexes (SP, OP and GS). Note that, if there are frequent updates, keeping this amount
of indexes fresh would affect performance. Instead, Virtuoso keeps the full-indexes updated and can i)
completely drop and recreate the partial indexes or even ii) disable the use of partial indexes for intensive
updates. In any case, Virtuoso indexes are optimized for workloads of bulk-load and read-intensive
access patterns with few deletes3.

Several compression techniques are considered. First, each database page store only distinct values
and, then, gzip is applied to these pages (Erling & Mikhailov, 2009). In addition, from version 7,
indexes are column-wise stored (Erling, 2012), saving 1/3 of space. This latter version introduces
other important improvements to boost query parallelization, such as vectorized execution of queries
(Sompolski, Zukowski, & Boncz, 2011). As can be seen in the BSBM evaluation, Virtuoso (version 7)
is one of the most scalable solutions. It excels in performance and remains very competitive in space.

1http://www.openlinksw.com/
2Note that multiple graphs (datasets) can be managed in a single scheme. This fits the notion of N-quads (Carothers, 2013).
3Seehttp://virtuoso.openlinksw.com/dataspace/doc/dav/wi ki/Main/VirtRDFPerformanceTuning .
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Property tables. This model arises as a natural practical scheme for RDF organization in relational
databases as it proposes to create relational-like property tables of RDF data. Each table holds multi-
ple predicates (properties) over a list of subjects. Thus, a given property table has many columns as
different predicates (one per column) are used for describing the subjects that it stores (in rows). Al-
though this model reduces significantly the number of self-joins, the cost ofthe query resolution remains
high. Besides, the use of property tables induces two additional problems.On the one hand, note that
subjects can appear in one table even if some columns (predicates) are missed. In other words, storage
requirements increase because NULL values must be explicitly stored if the represented subject is not
described for a given property in the table. On the other hand, multi-valuedattributes are abundant in
semantic datasets and they are somewhat awkward to express in property tables (Abadi et al., 2007).
Thus, property tables are a competitive choice for representing well-structured datasets, but they lose
potential in a general case. Systems like Jena (Wilkinson, 2006; Wilkinson et al., 2003) or Sesame
(Broekstra, Kampman, & van Harmelen, 2003) use property tables for modeling RDF.

Jena TDB4 is a persistent module to implement a high performance RDF store for the in-memory
Jena. A dataset is stored in persistent data structures by a custom implementation of threaded B+Trees
for triples and triples plus graphs. A dictionary of ID-terms is also used. Inthis case, the ID is a hash of
the term (a 128 bit MD5 hash), indexed by a B+Tree.

Of all Sesame-based implementations, we highlight BigOWLIM (recently renamed OWLIM-SE)
belonging to the family of OWLIM native semantic repositories (Bishop et al., 2011). It is a commercial
Java implementation designed as a database management system implementing the Sesame’s SAIL APIs.
BigOWLIM holds two main indexes, (P,O,S) and (P,S,O). It can also enable indexes by graph (context)
and partial indexes similar to Virtuoso. In addition, the data on disk can be compressed using ZIP with a
compression parameter to manage the space/time tradeoff.

Vertical partitioning. The vertical partitioning (VP) scheme (Abadi et al., 2007) is based on the fact
that few predicates are used to describe a dataset. This way, VP uses many tables as different predicates
are used in the dataset, each one storing tuples(S,O) that represent all (subject,object) pairs related
through a given predicate. Each table is sorted by the subject column, in general, so particular subjects
can be located quickly, and fast merge joins can be used to reconstruct information about multiple prop-
erties for subsets of subjects (Abadi et al., 2007). In the absence of other indexes, though, this decision
penalizes queries by object.

Nevertheless, the main weakness of VP-based solutions is the lack of efficiency for queries with
unbounded predicates. In this case, all tables must be queried and their results must then be then merged
to obtain the final results. This cost increases linearly with the number of different predicates used in
the dataset. Thus VP is not the best choice for representing datasets with many predicates, unless other
partial indexes are used.

In contrast, VP-based solutions avoid the weaknesses previously reported for property tables because
only non-NULL values are stored, and multi-valued attributes are listed as successive tuples in the corre-
sponding table. Moreover, VP can be perfectly used in combination with column-oriented databases.

Abadi et al.(2007) andAbadi, Marcus, Madden, and Hollenbach(2009) report that querying perfor-
mance in column-oriented databases is up to one order of magnitude better thanthat obtained in row-
oriented ones. This fact motivates the implementation of their system SW-Store as an extension of the
column-oriented database C-Store (Stonebraker et al., 2005). SW-Store leverages all the advantages re-
ported above, but also suffers from a lack of scalability for queries withunbounded predicate. SW-Store,
also perform a dictionary encoding that maps long URIs and literal values tointeger IDs. In addition to
the VP scheme, SW-Store also indexes some materialized path expressions. This speeds up path expres-
sions resolution at the price of increasing storage requirements.Sidirourgos et al.(2008) show additional

4http://jena.apache.org/documentation/tdb/index.html
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experiments on VP. They replace C-Store by MonetDB5 in the database layer; these systems show a cou-
ple of differences (Schmidt, Hornung, K̈uchlin, Lausen, & Pinkel, 2008): i) data processing in C-Store
is disk-based while it is memory-based in MonetDB; and ii) C-Store implements carefully optimized
merge joins and makes heavy use of them, whereas MonetDB uses merge joinsless frequently. Even so,
MonetDB arises as a competitive choice in this scenario (Sidirourgos et al., 2008). The findings reported
in these works differ from each. WhereasAbadi et al.(2007) andAbadi et al.(2009) conclude that VP
overcomes property tables,Sidirourgos et al.(2008) refute this conclusion and show that the comparison
depends on the dataset features.

12.2.2 Native Solutions

Native solutions are designed from scratch to better address RDF peculiarities. Although some works
(Anglés & Gutíerrez, 2005; Bönstr̈om, Hinze, & Schweppe, 2003; J. Hayes & Gutíerrez, 2004) pro-
pose different graph-based models, the main line of research focusesonmulti-indexing solutions. YARS
(Harth & Decker, 2005; Harth, Umbrich, Hogan, & Decker, 2007) proposes a six B+-tree indexes for
managing N-quads: (S,P,O,C), (P,O,C), (O,C,S), (C,S,P), (C,P) and (O,S).This scheme allows all quads
conforming to a given query pattern (in which the context can also be a variable) to be quickly retrieved.
This experience has been integrated in many systems within the current state of the art for RDF man-
agement. Note also that YARS performs on a dictionary encoding, then the quads (enhanced with the
contexts) are regarded as ID groups.

Hexastore (Weiss, Karras, & Bernstein, 2008) adopts the rationale of VP and multi-indexing. In
contrast to VP, Hexastore treats subjects, predicates, and objects equally. That is, whereas VP prioritizes
predicates and indexes pairs (subject,object) around them, Hexastore builds specific indexes around each
dimension and defines a priority between the other two. This way, Hexastoremanages six indexes:
(S,P,O) , (S,O,P) , (P,S,O) , (P,O,S) , (O,S,P) , and (O,P,S) . In a naive comparison, the
VP scheme (sorted by subject) can be seen as an equivalent representation to the index(S,P,O) in
Hexastore. Thus, Hexastore stores triples in a combination of sorted sequences that requires, in the worst
case, 5 times the space used to index the full dataset in a single triples table. This is because some
sequences can be shared between different indexes (for instance,the object sequence is interchangeably
used in the indexesSPOandPSO). The Hexastore organization ensures primitive resolution for all triple
patterns and also that the first step in pairwise joins can be always implementedas fast merge joins.
However, its large storage requirements slow down Hexastore when representing large datasets, because
it is implemented as anin-memorysolution.

RDF3X (Neumann & Weikum, 2010) goes one step further and introduces index compression to
reduce the spatial requirements reported above. In contrast to Hexastore, RDF3X creates its indexes over
a single “giant triples table” (with columnsv1,v 2,v 3), and stores them in a (compressed) clustered B+-
tree. Triples, within each index, are lexicographically sorted6 allowing SPARQL patterns to be converted
into range scans.

The collation order implemented in the RDF3X table causes neighboring triples to be very simi-
lar. In most cases, neighboring triples share the values inv1 andv2, and the increases inv3 are very
small. This fact facilitates differential compression to represent a given triple with respect to the pre-
vious one. This scheme is leaf-oriented within the B+-tree, so the compression is individually applied
on each leaf. Although the authors test some well-known bitwise codes (γ-codes,δ-codes, and Golomb
codes (Salomon, 2007b)), they finally apply a bytewise code specifically designed for differential triples
compression. This technique ensures highly-efficient decompression with a slight spatial overhead with
respect to the most effective codes. Finally, it is worth noting that RDF3X also manages aggregated in-
dexes(SP) , (PS) , (SO) , (OS) , (PO) , and(OP) , which store the number of occurrences of each pair

5http://www.monetdb.org/
6RDF3X also performs dictionary encoding, so the ordering is carried out on the element IDs.
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in the dataset. RDF3X also contributes with a RISC-style query processor that mainly relies on merge
joins over the sorted indexes. Besides, it implements a query optimizer mostly focused on join ordering
in its generation of execution plans.

RDF3X reports a very efficient performance that outperforms SW-Store by a large margin. These
results make it a leading reference in the area. However, despite its compression achievements, the
spatial requirements in RDF3X remain very high. This involves an indirect overhead to the querying
performance because large amounts of data need to be transferred from disk to memory, and this can be
a very expensive process with respect to the query resolution itself (Schmidt, Hornung, K̈uchlin, et al.,
2008; Sidirourgos et al., 2008).

BitMat (Atre et al., 2010) follows the idea of managing compressed indexes, but it goes another
step further and proposes querying algorithms that directly perform on the compressed representation.
BitMat introduces an innovative compressed bit-matrix to represent the RDFstructure. It is conceptually
designed as a bit-cubeS×P×O, but its final implementation slices to get two-dimensional matrices:SO
andOSfor each predicateP, POfor each subjectS, andPS for each objectO. These matrices are run-
length (Salomon, 2007b) compressed by taking advantage of their sparseness. Two additional bitarrays
are used to mark non-empty rows and columns in the bitmatsSOandOS. The results reported for BitMat
show that it only overcomes the state of the art for low selectivity queries. However, it is an interest-
ing achievement because it demonstrates that avoiding materializaton of intermediate results is a very
significative optimization for these queries.

A novel solution (Tran et al., 2013) explore the RDF structuredness and index groups of predicates
and their instantiated data. Its performance for large datasets is still pending.

Finally, we highlight the novel hybrid (Sakr, Elnikety, & He, 2012) and the full in-memory RDF
stores (Binna, Gassler, Zangerle, Pacher, & Specht, 2011; Janik & Kochut, 2005) which represent an
emerging alternative in this scenario. Nevertheless, their current resultsare often limited to manage small
datasets. Their scalability is clearly compromised by the use of structures, likeindexes and hash tables,
that demand large amounts of memory. However, some semantic applications, such asinference-based
ones, claim for scalable in-memory stores because they perform ordersof magnitude faster if the entire
dataset is in memory (Huang, Abadi, & Ren, 2011), and they also support a higher degree of reasoning.

A recent VP-based approach, called k2-triples (Álvarez-Garćıa et al., 2011), uses compact data struc-
tures to compress and index the triples full in-memory. It represents the graph as|P | adjacency matrices
of S×O cells. Each matrix is represented with a k2-tree (Brisaboa, Ladra, & Navarro, 2014), a com-
pact structure leveraging the very sparse 1 distributions to achieve an ultra-compressed representation.
A recent improvement, k2-triples+ (Álvarez-Garćıa, Brisaboa, Ferńandez, Mart́ınez-Prieto, & Navarro,
2013), enhances the vertical partitioning with additional SP and OP indexes. Thismitigates the main
VP drawback (inefficiency in queries with unbounded predicates) at thecost of a limited space overhead.

New opportunities arise also thank to the advances in distributed computing. This class of solutions,
recently studied (Huang et al., 2011; Urbani et al., 2010) on the MapReduce framework, allows arbi-
trarily large RDF data to be handled because more nodes can be added to a cluster when more resources
were necessary. BigData7 is an horizontally scaled storage inspired by the Google bigtable architecture.
It can be deployed in a single machine as well as over a cluster of machines,with a dynamic key-range
partitioning. This latter allows to manage larger datasets once the federation can scale incrementally
adding new machines without reloading the data.

The underlying RDF representation reflects the YARS2 (Harth et al., 2007) scheme, using three
indexes, (S,P,O), (P,O,S) and (O,S,P), scaling up to six if graph (context) information is managed.

BigData uses a concurrency control for readers and writers. Thus,writers are absorbed onto specific
pre-sized nodes, which are migrated to optimized read-only B+Tree files when they are filled. Caching
is also used to reduce inter-node communications8.

7http://www.systap.com/bigdata.htm
8More details on specific distributed indexes can be found inhttp://www.systap.com/pubs/graph databases.pdf .

http://www.systap.com/pubs/graph_databases.pdf
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Nevertheless, these distributed systems still require further research to ensure efficient RDF exchang-
ing (Ferńandez et al., 2011; Ferńandez et al., 2013), as well as efficient performance in each node.

In summary, the vast majority of these approaches suffers from lack of scalability (specially no-
ticeable using vertical partitioning (Sidirourgos et al., 2008)), and uses naive compression approaches.
There is still a large interest in querying optimization (Schmidt et al., 2010), whose performance is
diminished when the RDF stores manage very large datasets.

12.3 Our Goal

We have presented current scalability problems arising in RDF triple indexesfor Big Semantic Data. In
turn, we have shown that several scenarios require an index structure that keeps the compactness of the
encoding providing basic or complex queries over triples. These are, in summary, our main objectives:

• To designtriple indexes on top ofHDT-encoded datasets, leveraging its compression ability.

• To provide afast index constructionprocess at consumption time.

• To allow forspecific tuningto perform basic or complex queries.

• To provide differentspace/time tradeoffsfor different purposes.

• To make use ofsuccinct data structuresfor such indexes, achieving several advantages:

1. To reduce the size of indexes, thus mitigating scalability problems.

2. To perform in main memory on large compressed datasets, thanks to the compression and
functionality of these succinct data structures.

3. To take advantage of the memory hierarchy to improve performance time.

Although these indexes are aimed atHDT-encoded datasets, one could argue that a standalone config-
uration is equally efficient. The only difference lies on the workflow of events. In the original proposal
we leverage the previousexchangedHDT to build an index on top, “as fast, compressed, and perfor-
mance efficient as possible” for the scenario one wish to play. In contrast, a standalone configuration
stands for an RDF index whose “file system” isHDT, no matter if data is or not exchanged after o before
the consumption process.



I am big! It’s the pictures that got small.

Sunset Boulevard (1950)

13
Compact RDF Indexes on top ofHDTEncodings

As stated, several Triples encoding are feasible with different trade-offs between the compression ratio
(exchanging) and some natively supported operations over the triples (consumption). We first revisit
our HDTTriples encoding, proposing a more practical Bitmap Triples (BT) configuration (§13.1). This
encodes the structure of the graph in two correlated bitsequences which can be indexed by means of
succinct data structures at consumption time (§13.1.2). This provides a basic retrieval feature which can
perfectly fit simple scenarios (such as the proposed in the motivation of Section 12.1). Next, we consider
the use of additional compressed succinct data structures to resolve all kind of SPARQL triple patterns
(§13.2). This sets the basis of full SPARQL resolution. Finally, we experiment the compressibility and
query performance of all indexes on a testbed (§13.3).

13.1 HDTBitmap Triples Encoding

As stated, the triples in RDF could be represented as adjacency lists, one per subject. InHDT, the
proposed Compact Triples encoding used this conceptualization. However, note that an adjacency list
can also be seen as a tree, and then an RDF dataset comprises a forest of trees, one per subject. This is
represented in the top of Figure13.1. A graph, then, contains one tree per subject ID, the firstS level of
the tree. As stated, subject IDs are sequential, hence the first level of subjects is implicitly represented.
Then, the second level lists all predicates (also sorted IDs) related to the subject, and finally the leaves
organize all objects (sorted) for each pair(subject, predicate).

Compact Triples encoded this conceptualization roughly. The0’s were auxiliary values denoting a
change of list, hence they represent, implicitly, the tree-shaped structure.However, these values were
embedded in each stream, mixing data and structure.

Bitmap Triples (BT) follows this idea and encodes the forest of trees in a moreintelligent way, shown
in 13.1(C). First, subjects are again implicitly represented. Two structures are then used for predicates:

• An ID sequence (Sp) concatenates predicate lists following the tree ordering.

• A bitsequence (Bp) uses one bit per element inSp: 1-bits mean that this predicate is the last one
for a given tree, whereas0-bits are used for the remaining predicates.

For instance, in Figure13.1(C), the second1-bit in Bp marks the end of the predicate adjacency list
for the second subject which is{2, 3, 5}.

In turn, object encoding is performed in a similar way:

• An ID sequence (So) concatenates object lists following the tree ordering.

• A bitsequence (Bo) uses one bit per element inSo: 1-bits represent the last object related to the
corresponding(subject,predicate)pair, and0-bits the remaining ones.
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Figure 13.1: The proposed practicalHDTtriple encodings.

In Figure13.1(C), the third1-bit inBo refers the end of the object adjacency list for the third predicate
in Sp which is related to the second subject as we have previously explained. Thus, this adjacency list
stores all objects related to the(subject,predicate)pair (2, 3).

Note also that the characterization of the lists with the proposed metrics remains valid for Bitmap
Triples as well as Compact Triples (see characterization in §7.2.3). In short:

• The length of predicates for a given subjecti in Sp is exactly its labeled out-degree,degL−(i).

• The expected mean and maximum length of the predicates lists inSp are given bydegL−(G) and
degL−(G) respectively. Remember that the empirical evaluation in Section4.3.3shows that few
predicates are related to the same subject, less than20 on average.

• For a given (subject, predicate) pair, (i, j), its partial out-degree,deg−−(i, j), denotes the size of
the corresponding list inSo.

• The expected mean and maxim values of the object lists in theSo are given bydeg−−(G) and
deg−−(G) respectively. The evaluation in Section4.3.4states that the mean partial out-degree is
slightly bigger than 1, which implies short object lists for each (subject,predicate) pair.

13.1.1 BT Conceptual Navigability

The proposedHDTBitmap Triples encoding (§7.2.3) allows the RDF graph to be largely compressed by
isolating ID-terms from the link structure, which is represented in two coordinated bitmaps. Thus, these
bitmaps are the core for accessing and querying the RDF graph at consumption.

For illustration purposes, we show in Figure13.2an excerpt from the previous example in Figure
13.1. As can be seen, adjacency lists draw tree-shaped structures containing the subject ID in the root,
the predicate IDs in the middle level, and the object IDs in the leaves (note that each tree has as many
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leaves as occurrences of the subject in the dataset). Each triple in the dataset is now represented as a full
path root-to-leave in the corresponding tree.

The structure is encoded in the bitsequence and it can be interpreted as follows (Ferńandez et al.,
2013). LetPi be the list of predicates (i.e. the predicate adjacency list) for the i-th subject.

• The i-th 1-bit in Bp marks the end ofPi.

• The number of predicates inPi can be obtained by subtracting the positions1 of two consecutive
1-bit in Bp.

For instance, the second1-bit in Bp marks the end of the predicate adjacency list for the second
subject (P2). There are three positions between the second and the first1-bit in Bp. Thus,P2 contains
three predicates, which are represented by the second, third and fourth IDs inSp, henceP2 = {2, 3, 5}.

In turn, object encoding is performed in a similar way, hence the interpretation follows an analogous
approach. LetOn be the list of objects (i.e. the object adjacency list) for the n-th (subject,object)pair.

• The n-th 1-bit in Bo marks the end ofOn.

• The number of objects inOn can be obtained by subtracting the positions of two consecutive1-bits
in Bo.

For example, the third1-bit in Bo refers the end of the object adjacency list for the third predicate in
Sp, which is the ID3. This predicate is related to the second subject as we have previously explained.
Thus, this adjacency list stores all objectso related to the(subject,predicate)pairs(2, 3).

13.1.2 BT Succinct Index

BT gives a practical representation of the graph structure which allows triples to be sequentially listed.
However, direct accessing to the triples in thei-th list would require a sequential search until thei-th 1-
bit is found in the bitsequence. Thus, we propose to exploit the basic concepts of succinct data structures
presented in Chapter2 (§2.4). In particular, we aim at building one succinct index per eachBp andBo
binary sequences, at consumption time.

As we have already introduced, there exist practical approaches which providesrank , select
andaccess operations (described in §2.4) over the bitsequences in constant time, with a little spatial
overhead. This overhead depends on the particular implementation but canbe sized ino(n), being n the
original size of each bitsequence. In the following, we provide formalisms on how to access the encoded

1Note that we always consider that positions are numbered from “1”,i.e. beinga an array,a[0] is the position number “1”.
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ID-graph through these primitives. We assume that BT keeps the original ordering by subject-predicate-
object (SPO), but an analogous reasoning could be made for distinct orderings.

We denoteB∗p andB∗o to the binary sequences with the succinct index already incorporated an loaded
into memory at consumption time. The final configuration is then referred to asBT∗.

Definition 30 (BT∗) The Bitmap Triples configuration at consumption time, denotedBT∗, is the set of
succinct bitsequence indexesB∗p andB∗o together with the integer streamsSp andSo.

We show below that this configuration provides efficient resolution for basic triple patterns. In par-
ticular, letG be an ID-triples graph, withs ∈ SG, p ∈ PG, o ∈ OG andv a SPARQL variable,v ∈ V ,
BT∗ resolves:

• (s, p, o), which is equivalent to test the existence of a triple.

• (s, p, v), that is, retrieve all the objects for a given pair(subject, predicate).

• (s, v, p), retrieving all predicates with which the given subject and object are related.

• (s, v, v), which means to retrieve all the information from a given subject.

• (v, v, v) is trivially achieved with an in-order scan.

As can be seen, all these triple pattern provide the subject and, from it, they navigate its corresponding
tree. For explanation purposes, these triple patterns are given as terms,but it is clear that BT∗ manages
an ID-graph. Thus, a pattern like(s, p, o) is equivalent to(i, j, k) after an ID replacement:s = i, p = j
ando = k.

Intuitively, the triple pattern resolution is based on usingselect operations to localize the adja-
cency list of predicatesPi for the i-th subject and the adjacency list of objects for the(i,j) pair. We first
provide an example of resolution, and next we generalize the process.

Example. Let us illustrate the resolution of checking the existence of the triple(2, 3, 4) in our running
example (Figure13.2). First, one has to locate the adjacency list of predicates for the second subject:P2.
This is equivalent to locate the initial (beginP ) and final (endP ) positions of the list. Note that the 2-nd
1-bit in B∗p marks the end ofP2. Thus, the final position is achieved with aselect operation overB∗p:

endP = select1(B
∗
p, 2) = 4

In turn, as every list begins at the end of the previous list (or zero if this isthe first list),beginP is:

beginP = select1(B
∗
p, 1) + 1 = 1 + 1 = 2

Then,P2 is retrieved fromSp[beginP, endP ], which returnsSp[2, 4] = {2, 3, 5}. In this list of
predicates, we look for the predicate3, as we are checking the existence of the triple(2, 3, 4). This search
can be performed on a binary search, which actually returnsposition = 2 as the predicate3 actually is
in the second position. Thus, we are positioned on the third(subject,predicate)pair, Sp[3] = 3. Note
that we calculate that this is the third pair withbeginP + position− 1 = 2+2-1 = 3.

Next, the third list of objects,O3 is marked in the third1-bit in B∗o , then we retrieve their delimiting
positions as:

endO = select1(B
∗
o , 3) = 4

beginO = select1(B
∗
o , 2) + 1 = 2 + 1 = 3

Therefore, the listO3 is retrieved asSo[beginO, endO], which returnsSo[3, 4] = {3, 4}. Again,
we perform on it a binary search to look for the object4 as we are checking the existence of the triple
(2, 3, 4). It actually exists, an therefore the final result istrue. �
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Algorithm 1 findPredicate(i)
1: function FINDPREDICATE(i)
2: endP ← select1(B

∗
p, i);

3: beginP ← select1(B
∗
p, i− 1) + 1;

4: sizePi
← endP − beginP ;

5: Pi ← Sp[beginP, endP ];
6: return (Pi, beginP );
7: end function

Algorithm 2 findObject(x)
1: function FINDOBJECT(x)
2: endO ← select1(B

∗
o , x);

3: beginO ← select1(B
∗
o , x− 1) + 1;

4: sizeOx ← endO − beginO;
5: On ← So[beginO, endO];
6: return Ox;
7: end function

The previous example shows how to test the existence of a triple by means of i)select operations2

overB∗p andB∗o , ii) access to given positions inSp andSo, and iii) binary searches over the intermediate
retrieved adjacency lists. In fact, the rest of the presented triple patternscan be resolved in a similar way.
For instance, if no object is given, such as(2, 3, v), the process runs exactly the same until the last step,
in which all the list of valid objects,O3, is returned. In turn, a pattern(2, v, 4) starts in the same way, but
it repeats the last step for every predicate in the adjacency list of predicates.

We generalize this process and distinguish below four primitives which are sequentially performed
to test a ID-triple existence and therefore they constitutes the basis to resolve the aforementioned triple
patterns inBT ∗.

• findPredicate (i) → (Pi, beginP ). This function returns the list of predicates related to the
subjecti , Pi, and the positionbeginP in which this list begins inSp. For instance, as we showed
in our running example,findPredicate(2) = ({2, 3, 5}, 2).

Algorithm 1 generalizes the required operations that we have illustrated in the example. First, we
obtain the delimiting positions ofPi (Lines 2-3). The size of the list is also calculated for future
estimation purposes (Line 4). Then, we retrieve the list of predicate IDs from Sp (Line 5) and
return the result (Line 6).

• filterPredicate (Pi, j) → position. It performs a binary search onPi and returns the
position of the predicatej in Pi, or0 if it is not in the list. For instance,filterPredicate(P2, 3) =
2 in our running example, as the predicate3 is located in the second position of{2, 3, 5}.

Note that the predicatej is located then inSp[n] wheren = beginP + position − 1. In other
words, the objects for the(i, j) pair is represented in the n-th list in So.

• findObject (x)→ Ox. This function returns the x-th list of objects,Ox, which is related to the
x-th (subject,predicate)pair represented inSp[x]. For instance, as shown in our running example,
findObject(3) = {3, 4}.

Algorithm 2 generalizes the required operations. First, we obtain the delimiting positions ofOx

(Lines 2-3). Similarly to the previous case, the size of the list is also calculatedfor future estimation
purposes (Line 4). Finally, the list of objects is retrieved fromSo (Line 5) and returned (Line 6).

• filterObject (On, k)→ position: performs a binary search onOj and returns the position of
the objectk in Oj , or 0 if it is not in the list. In our example,filterObject({3, 4}, 4) = 2.

2Note that norank operations are used, though aselect operation can be performed which successiverank operations
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Algorithm 3 (i,j,k) TP resolution
1: (Pi, beginP )← FINDPREDICATE(i);
2: position← FILTERPREDICATE(Pi, j);
3: n← beginP + position− 1;
4: On ← FINDOBJECT(n);
5: pos← FILTEROBJECT(On, k);
6: if (pos 6= 0) then
7: output(true);
8: else
9: output(false);

10: end if

Algorithm 4 (i,j,v) TP resolution
1: (Pi, beginP )← FINDPREDICATE(i);
2: position← FILTERPREDICATE(Pi, j);
3: n← beginP + position− 1;
4: On ← FINDOBJECT(n);
5: output(On);

The resolution of the triple patterns (TP)by means of these four primitives is performed as follows:

• (i, j, k) - Algorithm 3: As shown in the previous example, the four primitives are called in order
(Lines 1-5). The last operation,filterObject returns the position of the given object in its adja-
cency list, if present. A value of 0 stands for the nonexistence of the triple pattern and then the
output is false (Line 9). Otherwise the output is true (Line 7).

• (i, j, v) - Algorithm 4: The firsts three function calls (Lines 1-4) are exactly equal to the previous
case. The last step does not check an object, but it directly outputs all theadjacency list of objects
(Line 5).

• (i, v, k) - Algorithm 5: First, the process runs similar to the previous cases, obtaining the list of
predicates for the given subject,Oi (Line 1). Then, for each predicate (Line 2), it retrieves the
corresponding list of objects (Line 4) and tests the existence of thek object (Line 5). A nonzero
value stands for the existence of the object and thus the predicate is outputted(Lines 5-6). We
assume here a stream of output values matching the predicate variable.

• (i, v, v) - Algorithm 6: First, we retrieve the list of predicates for the given subject,Oi (Line 1).
Then, for each predicate in the list (Line 2), we retrieve the corresponding list of objects (Lines
3-4). We assume here a stream of pairs as output values (Line 5), composed of the matching
predicate and the list of objects for this predicate.

• (v, v, v) - Algorithm 7: This pattern retrieves all the dataset in order, and it is performed with a
double loop. For every subject3 (Line 1), we perform as the previous pattern, retrieving the list of
predicates (Line 2) and, for each predicate (Line 3), the corresponding list of objects (Lines 4-5).
In this case, we assume to output a stream of three elements composed of the subject, predicate,
and list of objects for this(subject,predicate)pair (Line 6).

Algorithmic costs. The aforementioned metrics enables an accurate estimation of the TP resolution
in Bitmap Triples. Table13.1summarizes the cost of each TP and the average cost in a general case.
Agreeing an O(1) cost forselect operations, and logarithmic costs of binary searches, the explanation
of the algorithmic cost is straightforward. First, let us detail the cost of the four primitives:

• findPredicate(i): It performsselect operations , O(1), and basic retrieval on an array,
O(1). Thus, this operation runs in time O(1).

3We assume that we know the maximum subject ID, which is always possiblegiven a basic mapping.
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Algorithm 5 (i,v,k) TP resolution
1: (Pi, beginP )← FINDPREDICATE(i);
2: for (it:=0 toPi.size()); do
3: n← beginP + it;
4: On ← FINDOBJECT(n);
5: if (FILTEROBJECT(On, k) 6= 0) then
6: output(Pi[it]);
7: end if
8: end for

Algorithm 6 (i,v,v) TP resolution
1: (Pi, beginP )← FINDPREDICATE(i);
2: for (it:=0 to Pi.size()); do
3: n← beginP + it;
4: On ← FINDOBJECT(n);
5: output(Pi[it], On);
6: end for

Algorithm 7 (v,v,v) TP resolution
1: for (i:=0 to maxSubjectID); do
2: (Pi, beginP )← FINDPREDICATE(i);
3: for (it:=0 to Pi.size()); do
4: n← beginP + it;
5: On ← FINDOBJECT(n);
6: output(i, Pi[it], On);
7: end for
8: end for

• filterPredicate(Pi, j): It performs a binary search on the list of predicates related to the subject
i. As stated, the size of this list is delimited by the labeled degreedegL−(i), and thus it runs in
time O(log(degL−(i))). In the general case, we take into account the mean value of all predicates,
hence this operation runs in an average time O(log(degL−(G)))4.

Remember that, in all the considered datasets, the value of the labeled degreewas less than 20
(even in the biggest datasets).

• findObject(n): It performs similar tofindPredicate, with select and basic operations, run-
ning in time O(1).

• filterObject(On, k): It performs similar tofilterPredicate, but with a binary search on the list
of objects related to the given(subject, predicate) pair. The size of this list for (i, j) is exactly
delimited by the partial degreedeg−−(i, j), hence this operation runs in O(log(deg−−(i, j))).
Remember that, in all the evaluated datasets, this partial degree was close to 1.In such case, a
binary search is even unnecessary (there is only one element in the list). In any case, the general
case runs in an average time O(log(deg−−(G))).

As shown, all these operations runs efficiently and they are well delimited bythe presented metrics.
Thus, TP resolution costs can be summarized as follows:

• (i, j, k) - Algorithm 3: As the four primitives are called in order (Lines 1-5), this TP runs in a
logarithmic time with respect to the size of the involved predicate list and object list.Formally,
it runs in time O(log(degL−(i)) + log(deg−−(i, j))). For the general case, this TP runs in an
average time O(log(degL−(G)) + log(deg−−(G))).

4Note that we always consider hereinafter that the logarithm of an average is an upper limit due to the Jensen’s inequality
(Kuczma, 2008). In short, for a concave functionf and numbersx1, x2, · · · , xn in its domain, it is true thatf(

∑
xi

n
) ≥

∑
f(xi)
n

.
Thus, it remains true in our case whenf(x) = log(x), being x one of the degrees in our metrics.
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Triple Pattern Average time

(i, j, k) O(log(degL−(G)) + log(deg−−(G)))
(i, j, v) O(log(degL−(G)))
(i, v, k) O(degL−(G) ∗ log(deg−−(G)))
(i, v, v) O(degL−(G))
(v, v, v) O(|S| ∗ degL−(G))

Table 13.1: Triple pattern resolution times on BT∗.

• (i, j, v) - Algorithm 4: It runs similar to the previous case, but it obviates the last binary searchon
objects (the operationfilterObject) as it returns all the list. Thus, it runs in time O(log(degL−(i))).
For the general case, this TP runs in an average time O(log(degL−(G))).

• (i, v, k) - Algorithm 5: As shown, for each predicate related to the subjecti, it retrieves the
object list and check the existence of the given object. As this number of predicates is the la-
beled degreedegL−(i), it is clear that it performs in time O(degL−(i) ∗ log(deg−−(i))), where
deg−−(i) is the maximum partial degree of all pairs(i, v). The average time is then O(degL−(G)∗
log(deg−−(G))).

• (i, v, v) - Algorithm 6: The resolution performs similar to the previous case, but it obviates the last
binary search on objects (the operationfilterObject) as it returns all the list. Thus, the resolution
of this TP runs in time O(degL−(i)). In other words, the algorithm performsdegL−(i) iterations,
and the cost of each iteration is in O(1). In the general case, the average time is then O(degL−(G)).

• (v, v, v) - Algorithm 7: This pattern retrieves all the dataset in order with a double loop. One
can see that the cost of each iterations run in time O(1) (find operations). Thus, it performs in an
average time O(|S| ∗ degL−(G)).

13.1.3 Application

HDTwas originally intended for publication and exchange but, as shown above, its Bitmap Triples compo-
nent provides enough information for efficient RDF retrieval once loaded. The so-called Bitmap Triples
configuration at consumption time (BT∗), provides anSP-O index which allows some triple patterns to
be efficiently resolved (Table13.1). In fact, one could argue that these TP cover a vast range of real
SPARQL queries. As we stated in an empirical study of real-world SPARQL queries (Arias et al., 2011),
most SPARQL queries contains just one simple triple pattern. The proportion of such simple queries
reaches up to 66% inDbpediaand 97% in theSemantic Web Dog Foodlogs. If we analyze the TP com-
binations used in all queries (including those from BGPs), the combination ofpatterns resolved by BT∗

cover the 89% of the TP combinations in the Dbpedia query logs, and the 50% of those from SWDF.
If we combine these results we can state that, in plain words, the exchangedHDTBitmap Triples, after

a lightweight loading process at consumption time (resulting in the so-called BT∗) can resolve about the
50% of the most common queries in SPARQL.

Note that, in some scenarios, the resolved TP could cover all the requirements. For instance, that
could be the case of applications a) checking triple existence, b) making simplerestrictions over subjects
or b) traversing all the graph.
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Figure 13.3: BTW∗: The proposed encoding of Bitmap Triples with a Wavelet TreeWp in predicates.

13.2 Additional Compressed Succinct Data Structures

The original Bitmap Triples (BT) representation draws adjacency lists prioritized by subject. This deci-
sion addresses fast querying for the patterns providing the subject, aspresented above, but makes retrieval
by predicate and object difficult.

This section presents howHDTcan be enhanced with additional indexes at consumption time in order
to resolve all kind of triple pattern in SPARQL. In particular, we propose a Wavelet Tree-based solution
for PS-O indexing (§13.2.1) and an additional adjacency list forOP-S indexing (§13.2.2).

13.2.1 A Wavelet Tree-based Solution forPS-O Indexing

In this section we focus on enabling access by predicate on top of BT∗. That is, we address the resolution
of the Triple Patterns presented below:

• (v, p, v), which means to retrieve all the information from a given predicate.

• (v, p, o), that is, retrieve all the subjects for a given pair(predicate, object).

In both cases, the occurrences of each predicate must be quickly located and this operation demands
a direct access to the predicate streamSp. However, as predicates are scattered along the stream, locating
all predicate occurrences in BT∗ demands a full scanning of the sequence, resulting in poor performance.

Thus, the predicate-based retrieval demands indexed access toSp at consumption time, which could
be satisfied with multiple alternatives. For instance, an additional B+ index could be built once BT∗ is
loaded. Nevertheless, in order to keep the same compact conception of therepresentation, one should
consider thatSp can be seen as a general sequence of symbols and then succinct indexes providing
efficientrank /select andaccess operations can be build on top of this sequence.

In particular, we propose the consumer to loadSp on a Wavelet Tree structure (see the definition and
basic concepts in Section2.4.2). WhereasSp lists plain predicates, the Wavelet Tree,Wp, represents
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Algorithm 8 occsPred(j)
1: function OCCSPRED(j)
2: numOccs← rankj(Wp,Wp.size());
3: for (x = 1 to numOccs); do
4: posPred[ ]← selectj(Wp, x);
5: end for

return posPred;
6: end function

them by a balanced tree of heighth = ⌈log|P |⌉. Figure13.3shows the schema of the representation for
the example in Figure13.2. The configuration is then referred to asBTW∗.

Definition 31 (BTW∗) The Bitmap Triples configuration at consumption time enhanced with a Wavelet
Tree index, denotedBTW∗, is the set of succinct bitsequence indexesB∗p andB∗o , the succinct Wavelet
TreeWp together with the integer streamSo.

In the following, let us treatWp as a black box holding the predicates and serving the aforementioned
operations (described in detail in §2.4.2):

• rank j(Wp,m) counts the occurrences of the predicatej inWp[1,m].

• select j(Wp,m) locates the position for them-th occurrence of the predicatej inWp.

• access (Wp,m) returns the symbol inWp[m].

Note that theWP structure adds an additional overhead ofo(n)log|P | bits to the space used in the
originalSp, and serves all these operations in timeO(log|P |) (see §2.4.2). This is an acceptable cost for
our purposes because of the small number of predicates used, in practice, for RDF modeling (see §4.2).

The Wavelet Tree structure allows access by predicate to be supported on one new primitive retrieving
the position of each predicate occurrence in the subject adjacency lists:

• occsPred(j) : returns the positions of the predicatej in Wp. This operation is described in
Algorithm 8. First, a simplerank (Line 2) counts the number of occurrences of the predicatej
along the full size ofWp. Then, for each occurrence ofj (Line 3), it makes use of aselect
operation to get the position of the occurrence (Line 4), storing an arrayof positions which is
finally returned as result.

For instance, in the example in Figure13.3, the operationoccPred(1) runs as follows. First, it
counts the number of total occurrences of the predicate 1, which are actually 2. Then, we iterate
obtaining each position: the operationsselect1(Wp, 1) andselect1(Wp, 2) obtain the position 5
and 6 respectively which are returned in an array as result.

Thus, the resolution of the triple patterns by predicate is performed as follows:

• (v, j, v) - Algorithm 9: First, the process obtains the list of occurrence positions of the given
predicatej, posPred (Line 1). Then, for each occurrence (Line 2), it retrieves the corresponding
subject (Line 3) and list of objects (Line 4), which are outputted as result(Line 5). Note that it
is simple to obtain the related subject of a predicate position, as it is marked with thenumber of
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Algorithm 9 (v,j,v) TP resolution
1: posPred[ ]← OCCSPRED(j);
2: for (x = 1 to posPred.size()); do
3: subject← rank1(B

∗
p , posPred[x]− 1) + 1;

4: On ← FINDOBJECT(posPred[x]);
5: output(subject, On);
6: end for

Algorithm 10 (v,j,k) TP resolution
1: posPred[ ]← OCCSPRED(j);
2: for (x = 1 to posPred.size()); do
3: On ← FINDOBJECT(x);
4: posObject← FILTEROBJECT(On, k);
5: if (posObject 6= 0) then
6: subject← rank1(B

∗
p , posPred[x]− 1) + 1;

7: output(subject);
8: end if
9: end for

1-bits inBp up to the previous position plus one5. This is simply retrieved with arank operation
over theB∗

p component6 (Line 3).

For instance, let us explain the resolution of the pattern(v, 1, v) in the example in Figure13.3.
The process first uses the Wavelet Tree operationoccsPred(1) to retrieve the predicate positions
5 and 6 in which the predicate1 occurs. Next, it iterates over these positions. For position 5,
rank1(B

∗
p , 4) + 1 returns 3, which means that the subject ID3 is related with this position. The

object list for position 5 is retrieved byfindObject(5) = {1}. The first outputted solution is then
(3, 1), i.e., subject=3 and object=1. The process is similar for position 6, obtaining the result(4, 1).

• (v, j, k) - Algorithm 10: It performs similar to the previous case, but it restricts to those objects
equal to the given objectk. First, the process obtains the list of occurrence positions of the given
predicate (Line 1). Then, for each occurrence (Line 2), it retrievesthe list of objects (Line 3), and
tests the existence of thek object (Line 4). A nonzero value stands for the existence of the object
and thus the subject is retrieved similarly to the previous case (Line 5) and outputted as a valid
result (Line 7).

For instance, let us briefly present the resolution of the pattern(v, 3, 4) in the example in Figure
13.3. The process starts making use ofoccsPred(3) to retrieve the position in which the predicate
ID 3 takes place in the Wavelet Tree. In this case, the retrieved position is 3. Next, we obtain
the list of objects related to the third subject-predicate pair withO3 = findObject(3) = {3, 4}.
Then, we test if the object4 is in such list withfilterObject(O3, 4). The object actually exists
(in position2), and the related ID of the subject is obtained, as stated, withrank1(B

∗
p , 2) + 1 = 2.

Thus, the outputted value is2 stating that the subject ID2 is solution for this pattern.

5It is easy to see that this formula allows to discount the intermediate zeros denoting repetitions.
6We assume here thatrank1(0) = 0.
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Algorithmic costs. The Wavelet Tree contributes with aPS-O index which allows the TP by predicate
to be efficiently resolved. Nevertheless, it is worth noting that the Wavelet Tree runs in timeO(log|P |)
for all rank , select and access operations. As shown in the TP resolution onBT ∗ (§13.1.2),
the sequence of predicatesSp is always accessed. In particular, it is easy to see that it is accessed by
the findPredicate(i) function (Algorithm1, Line 5) which is called by all TP resolution algorithms
(Algorithms3 to 7, Line 1). Whereas this access was previously performed in BT∗ in time O(1) (we have
assumed the sequence has been loaded into an array), in BTW∗ the substitution ofSp by the Wavelet
TreeWp makes this timeO(log|P |).

Table13.2 updates this overhead of time for the previous patterns working on BTW∗. Note that
for the special case of(v, v, v) this overhead is a multiplicative factor as we iterate over the number of
subjects. Nevertheless, we have previously justified the reduced time overhead in the limited number of
different predicates per dataset (see §4.2).

The latest two rows on Table13.2show the estimation of time for the novel patterns(v, j, o) and
(v, j, v) which can now be resolved thanks to the Wavelet Tree. The explanation ofthese costs is also
simple. We first detail the cost of theoccsPred(j) primitive:

• occsPred(j): It performs arank operation over the Wavelet Tree,O(log|P |) and for each occur-
rence it retrieves its position with aselect operation,O(log|P |). The number of occurrences
of a predicate in the stream is perfectly describe by its “predicate in-degree” deg+P (j), hence this
primitive runs in time O(log|P | + (log|P | ∗ deg+P (j))), that is, time O(log|P | ∗ (deg+P (j) + 1)).

The general case runs in an average time O(log|P | ∗ (deg+P (G) + 1)).

As expected, the cardinality of each predicate has a strong influence in theefficient performance of
the primitive, and consequently of the TP resolutions. The cost of these resolution can be summarized as
follows:

• (v, j, v) - Algorithm 9: This algorithm first calls theocssPred(j) primitive (Line 1), O(log|P | ∗
(degP (j) + 1)). Next, for each retrieved position, it uses arank operation over the bitmaps,
O(1), and calls afindObject primitive, O(1). We can assume an efficient implementation which
obviates the loop over the positions (Line 2) as it can be done directly as soon as we get the
positions in theoccPreds code (line 4). Thus, formally, it runs in time O(log|P | ∗ (deg+P (j)+ 1)).

For the general case, this TP runs in an average time O(log|P | ∗ (deg+P (G) + 1)).

• (v, j, k) - Algorithm 10: The algorithm performs similar to the previous case. It first calls the
ocssPred(j) primitive (Line 1), O(log|P | ∗ (deg+P (j) + 1)). Next, for each retrieved position, it
calls afindObject primitive, O(1), and afilterObject primitive, O(log(deg−−(x, j)) beingx
the subject involved in each case. Finally, whenever the objectk is found, it uses arank operation
over the bitmaps, O(1). Assuming again an efficient implementation obviating the loop (Line 2) as
part ofoccPreds code (line 4), the general case runs in an average time O(log|P |∗(deg+P (G)+1)+

log(deg−−(G))). Note that the latest component,log(deg−−(G)), computes all thefilterObject
calls. In practice, this mean partial out-degree is close to 1 in our evaluated datasets (see §4.3.4).

Application. We have shown that a Wavelet Tree can effectively replace the predicate stream at con-
sumption time, conforming the so-called BTW∗ configuration. The integratedPS-O index provides
access by predicate, allowing efficient resolution of two novel TP (latesttwo rows in Table13.2).

It is worth mentioning that these novel possibilities are, as stated, at the costof a slightO(log|P |)
overhead in time for the rest of patterns and an extra space ofo(n)log|P | bits to the space used in the
originalSp.
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Triple Pattern Average time

(i, j, k) O(log|P |+ log(degL−(G)) + log(deg−−(G)))

(i, j, v) O(log|P |+ log(degL−(G)))
(i, v, k) O(log|P |+ degL−(G) ∗ log(deg−−(G)))

(i, v, v) O(log|P |+ degL−(G))

(v, v, v) O(|S| ∗ log|P | ∗ degL−(G))

(v, j, v) O(log|P | ∗ (deg+
P
(G) + 1))

(v, j, o) O(log|P | ∗ (deg+
P
(G) + 1) + log(deg−−(G)))

Table 13.2: Triple pattern resolution times on BTW∗.

Thus, consumer applications should consider this configuration over previous BT∗ in scenarios in
which a) Triple patterns by predicate(v, j, v) or (v, j, k) are required or b) efficient access by predicate
is required. Nevertheless, the study on SPARQL query logs byArias et al.(2011) shows that accesses
by predicate are less common for the first pattern(v, j, v) than for(v, j, k). For instance, 3.45% of the
TPs inDbpediaare of type(v, j, v), versus 7% of(v, j, k). In SWDF, up to 4.21% are of type(v, j, v),
versus a significant 46.08% of(v, j, k).

These results shows that, in some scenarios such as the one pointed in this study, the complete BTW∗

can resolve about the 99% of those queries with one simple TP. Averaging over the total types of queries
(including BGPs), we can state that BTW∗ can cover the 80% of the total queries asked to a dataset.

13.2.2 An Additional Adjacency List for OP-S Indexing

The Wavelet-Tree based enhancement in BTW∗ leaves object-based access as the only non-efficient
retrieval in our approach. As we illustrated in Figures13.2and13.3(for BT∗ and BTW∗ respectively),
objects are always represented as leaves of the tree drawn for each adjacency list. Thus, all the occurrence
of an object are scattered throughout the sequenceSo which prevent this from efficient access by object.

In this case, we require an additional indexOP-S which allows adjacency lists to be traversed from
the leaves in an efficient manner and supports the following not addressed TP:

• (v, v, o), retrieving all the information from a given object.

In addition, theOP-S index would also help in efficient resolution of the TP(v, i, k). Although this
TP was addressed by means of the Wavelet TreeWp in the BTW∗ configuration, its resolution was not
straightforward. In fact, the previous approach run in time proportionalto the product of the logarithm
of the different number of predicates and the number of triples in which the predicatei is present (see
Table13.2). Note thatWp contributes with aPS-O index, whereas the TP(v, i, k) would benefit from a
more appropriatedOP-S index.

One could be tempted to address thisOP-S index with an structure like another Wavelet Tree sub-
stituting the sequenceSo. However, this would become highly inefficient: the operations in the Wavelet
Tree run in time proportional to its height, which is the logarithm of the involved vocabulary. In this case,
the vocabulary consists of all different objects of a datasets, and it canbe massively big (see experimental
results in Section4.2). Thus, it would result in very expensive operations.

We propose to replicate instead an adjacency list of objects occurrences, referred to asO-Index. This
representation is illustrated in the example in Figure13.4. TheO-Indexdraws an adjacency list with one
list per different object. Each list stores the positions inSo in which this object appears. In other words,
each list clusters all the occurrences of objects, each one related to a(subject, predicate) pair.

As in BT, the underlying adjacency list ofO-Indeximplicitly represents the objects and makes use of
an integer sequence and a bitsequence:SoP stores the list of positions inSo for each object, whereas the
bitsequenceBoP is used for representing the cardinalities of the lists as in the upper levels. For instance,
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Figure 13.4: BTWO∗: Bitmap Triples encoding enhanced with two additional indexes by predicate (Wp)
and object (O-Index).

in Figure13.4, the first 1-bit inBoP delimits the end of the list for the first object. This list stores the
values{6,7,2 }, which, as can be seen, are the positions inSo in which the first object occurs.

The only difference between a common adjacency list is that we sort the positions in ascending order
of the related predicate. That is, in the previous example, the positions{6,7,2 } corresponds to related
predicates{1,1,2 }. As we will explain below, this does not affect the rest of operations andit allows
for query performance optimizations.

The complete configuration in Figure13.4is referred to asBTWO∗.

Definition 32 (BTWO∗) The Bitmap Triples configuration at consumption time enhanced with a Wavelet
Tree index and aO-Index, denotedBTWO∗, is the set of succinct bitsequence indexesB∗p, B∗o andB∗oP ,
the succinct Wavelet TreeWp, and the integer streamsSo andSoP .

In relative terms, thisO-Indexhas a significant impact in the total configuration of BTWO∗. In
particular, note thatSoP andBoP are of sizen (beingn the total number of triples) as they hold one
element per occurrence.BoP stores bits and theo(n) overhead for the operations on the bitsequences,
whereasSoP is an array of positions, each of them represented with⌈log|n|⌉ bits. Thus, it is clear that the
O-Indexadds an overhead ofn⌈log|n|⌉ + o(n) bits. However, in absolute terms, the total size required
by BTWO is small in comparison to that required by the other competitive solutionsin the state of the
art (as we will see in Section13.3).

This indexOP-S enables efficient object-based retrieval trough one new primitive which traverses
adjacency lists from the leaves:

• occsObj(k) : returns the positions of the objectk in Sp. This operation is described in Algorithm
11. First, twoselect operations onBoP delimit the list of positions inSo for the given object
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Algorithm 11 occsObj(k)
1: function OCCSOBJ(k)
2: endO ← select1(B

∗
oP , k);

3: beginO ← select1(B
∗
oP , k − 1) + 1;

4: for (x = beginO to endO); do
5: posObj[ ]← rank1(B

∗
o ,S

∗
oP [x]− 1) + 1;

6: end for
return posObj;

7: end function

Algorithm 12 (v,v,k) TP resolution
1: posObj[ ]← OCCSOBJ(k);
2: for (x = 1 to posObj.size()); do
3: predicate← access(W ∗

p , posObj[x]);
4: subject← rank1(B

∗
p , posObj[x]−1)+1;

5: output(subject, predicate);
6: end for

Algorithm 13 (v,j,k) TP resolution in BTWO∗

1: posObj[ ]← OCCSOBJ(k);
2: for (x = 1 to posObj.size()); do
3: predicate← access(W ∗

p , posObj[x]);
4: if (predicate = j) then
5: subject← rank1(B

∗
p , posObj[x]−1)+1;

6: output(subject);
7: end if
8: end for

(Line 2-3). Note that the position isSp of a position inSo can be obtained the counting the number
of 1-bits inBp up to the previous position plus one (in order to discount intermediate zero-values).
Thus, for each occurrence ofk (Line 4), it makes use of arank operation onBo to get the position
of the occurrence inSp (Line 5), storing an array of positions which is finally returned as result.

For instance, in the example in Figure13.4, the operationoccsObj(1) runs as follows. First,
the select operations delimit the list of positions for the object1, being this list{6,7,2 }.
We iterate obtaining each position: the operationsrank1(Bo, 5) + 1, rank1(Bo, 6) + 1 and
rank1(Bo, 1) + 1 returns 5, 6 and 2 respectively. These are the positions inSp of those predi-
cates related with the object 1, which are returned in an array as result.

The resolution of triple patterns by object is performed as follows:

• (v, v, k) - Algorithm 12: First, the process obtains the positions of the objectk in Sp, posObj (Line
1). Then, for each occurrence (Line 2), it retrieves the corresponding predicate (Line 3) and subject
(Line 4), which are outputted as result (Line 5). Note that the related predicate is achieved directly
accessing each position in the Wavelet Tree. In turn, as previously stated, the related subject of a
predicate position is simply retrieved with arank operation over theB∗

p component.

For instance, let us explain the resolution of the pattern(v, v, 1) in the example in Figure13.4. The
process first uses theO-IndexoperationoccsObj(1) to retrieve theSo positions 5, 6 and 2 in which
the object1 occurs. Next, it iterates over these positions. For position 5,access(W ∗

p , 5) returns
1, which means that the predicate ID1 is related with this position. In turn, the related subject is
retrieved withrank1(B∗

p , 4) + 1 = 3. Then, the first outputted solution is(3, 1), that is, subject=3
and predicate=1. The process is similar for position 6 and 2, obtaining the results(4, 1) and(2, 2)
respectively.

• (v, j, k) - Algorithm 13: The process runs almost similar to the previous case. The only difference
is that it does not retrieve all the subjects, as it previously check if the related predicate is equal to
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Triple Pattern Average time

(i, j, k) O(log|P |+ log(degL−(G)) + log(deg−−(G)))

(i, j, v) O(log|P |+ log(degL−(G)))
(i, v, k) O(log|P |+ degL−(G) ∗ log(deg−−(G)))

(i, v, v) O(log|P |+ degL−(G))

(v, v, v) O(|S| ∗ log|P | ∗ degL−(G))

(v, j, v) O(log|P | ∗ (deg+
P
(G) + 1))

(v, v, k) O(deg+(G) ∗ log|P |)
(v, j, k) O(log deg+(G) ∗ log|P |)

Table 13.3: Triple pattern resolution times on BTWO∗.

Index Order Triple Patterns
SP-O PS-O OP-S (i,j,k) (i,j,v) (i,v,k) (i,v,v) (v,v,v) (v,j,k) (v,j,v) (v,v,k)

BT∗ √
- - SP-O SP-O SP-O SP-O SP-O - - -

BTW∗ √ √
- SP-O SP-O SP-O SP-O SP-O PS-O PS-O -

BTWO∗ √ √ √
SP-O SP-O SP-O SP-O SP-O OP-S PS-O OP-S

Table 13.4: Summary of indexes and Triple Pattern resolution through incremental proposals.

the given predicatej (Line 4). In such case, it actually retrieves the related subject (Line 5) and
outputs it as result.

For instance, the resolution of the pattern(v, 2, 1) in the example in Figure13.4starts similar to
the previous case, and iterates over theSo positions 5, 6 and 2 in which the object1 occurs. For
each one, it access the predicate to retrieve the related predicate. If this predicate is equal to the
given predicate2, it retrieves and outputs the subject as results. In the first two positions, itfails
retrievingaccess(W ∗

p , 5) = 1 andaccess(W ∗
p , 6) = 1, as the predicate in both cases is 1. In

contrast, the latter 2 position is valid asaccess(W ∗
p , 2) = 2, the second asked predicate. Thus, it

retrieves the related subject by means ofrank1(Bo, 1) + 1 = 2, hence returningsubject = 2.

Finally, note that, although the predicate test is made sequentially on the list of positions of the
objectk, one could reduce the number of checks: Once the elements inSoP are ordered by pred-
icate ID, a binary search can be made in the list for objectk. The condition of this search, is that
the retrieved predicate of each position is less, equal, or higher to the given predicatej. This way
we can reduce the number of comparison logarithmically with respect to the number of the size of
lists inSoP .

Algorithmic costs. TheOP-S costs are perfectly described by the aforementioned in-degree metrics,
as they characterize the cardinality of objects. In particular, the cost of the occsObj(j) primitive can be
parametrizes as follows:

• occsObj(k): It performs twoselect operations over the bitsequenceBoP , O(1), and for each
occurrence it retrieves its position with arank operation on the bitsequenceBo, O(1). The
number of occurrences of an object is perfectly parametrized by its “in-degree”deg+(k), hence
this primitive runs in time O(deg+(k)).The general case runs in an average time O(deg+(G)).

As can be seen, the cost of retrieving all occurrences of an object is proportional to the number of
occurrences. This was obviously expected as the adjacency list inO-Indexgroups all these occurrences.
Then, the cost of the TP resolution presented above can be summarized asfollows:

• (v, v, k) - Algorithm 12: This algorithm first calls theocssObj(k) primitive (Line 1), O(deg+(k)).
Next, for each retrieved position, it accesses the Wavelet Tree Wp, O(log|P |) and uses arank op-
eration over the bitmaps, O(1). As for previous cases, we can assume anefficient implementation
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which obviates the loop over the positions (Line 2) as part ofoccsObj code (line 4). Thus, this
resolution runs in time O(deg+(k) ∗ log|P |). For the general case, this TP runs in an average time
O(deg+(G) ∗ log|P |).

• (v, j, k) - Algorithm 13: The algorithm performs similar to the previous case. It first calls the
ocssObj(k) primitive (Line 1), O(deg+(k)). Next, for each retrieved position, it accesses the
Wavelet Tree Wp, O(log|P |). In contrast to the previous resolution, it only retrieve subjects, in
O(1) when the predicate is exactlyj. Nevertheless, the time remains in O(deg+(k) ∗ log|P |). For
the general case, this TP runs in an average time O(deg+(G) ∗ log|P |).

Note that, the aforementioned optimization performing a binary search in the object occurrences
can significantly reduce this time. With this optimization, we do not iterate on all thedeg+(k)
occurrences of the objectk, but we perform a binary search in logarithmic time. Thus, the time
decreases to O(log deg+(k) ∗ log|P |). For the general case, this optimization runs in an average
time O(log deg+(G) ∗ log|P |).

Table13.3 represents the resolution times of all TP in BTWO∗. Note that, compared to the times
for BTW∗ (Table13.2) we have updated the cost of resolving(v, j, k), as As we have shown, theO-
Indexprovides a more efficient time. In particular, one can see that this time was previously O(log|P | ∗

(deg+P (G) + 1) + log(deg−−(G))) versus the novel O(log deg+(G) ∗ log|P |) with theO-Index.

One could effectively assume thatlog deg+(G) << (deg+P (G) + 1) + log(deg−−(G)). In plain
words, the logarithm of the mean number of triples in which an object appearsis much less than the
average number of subjects in which a predicate occurs.

Application. TheO-Indexenhancement contributes with an indexOP-S and allows access and TP by
object to be efficiently performed (latest two rows in Table13.3). Two remarks should be done. First, we
have stated that this efficient performance is at the cost of a non-negligible space overhead. In particular,
the O-Indexadds an overhead ofn⌈logn⌉ + o(n) bits, although we will justify in the empirical study
(Section13.3) that the total size remains small in comparison to other competitive solutions. We also
remark that thisO-Indexaccesses the Wavelet Tree and this adds an extralog|P | term in the resolution.
This extra term is present in the latest two rows in Table13.3. Thus, if access by predicate is not required,
one configuration could maintain the stream of predicatesSp loaded in an array (with access O(1)).

Table13.4summarizes the included indexes as well as the main index used to resolve eachTP variant.
In short, BTWO∗ resolves all combination of TP. Note that, in accordance withArias et al.(2011), it
covers a mean of up to 66% of all queries inDbpediaand 97% in theSemantic Web Dog Foodlog. That
is, the presented BTWO∗ configuration, without additional optimizations nor query planners, is able to
efficiently resolve more than all 80% of the SPARQL queries7.

In addition, resolving all TP variants implies that BTWO∗ holds the basis to resolve joins of triple
patterns (the SPARQL BGPs formalized in Definition4) and thus all SPARQL queries from the point of
view of triple indexing.

A compressed alternative for theO-Index. We end this section with an additional remark on theO-
Index. Note that this index does not replace the original stream of objects, but itis constructed on top of it
with a significant space overhead. Thus, we point out that other alternative structures could be considered
for the requiredOP-S index, exploiting the space/performance tradeoff. In the following, we provide
brief notes on BTWO-GMR∗, a more compact representation at the cost of performance degradation.

BTWO-GMR∗ substitutes the previousO-Index, using instead a succinct structure performingrank ,
select andaccess operations on the objects inSo. In particular, we propose to loadSo on aGMR

7This is the average inDbpediaand theSemantic Web Dogin tune withArias et al.(2011).
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Algorithm 14 occsObj(k) in BTWO-GMR∗

1: function OCCSOBJ(k)
2: numOccs← rankk(Go,Go.size());
3: for (x = 1 to numOccs); do
4: posObj[ ]← selectk(Go, x);
5: end for

return posObj;
6: end function

structure (Golynski et al., 2007) (see the definition in Section2.4.2). As we stated, this structure per-
forms efficiently on large alphabets (in contrast to other alternatives suchas the Wavelet Trees).

Definition 33 (BTWO-GMR ∗) The Bitmap Triples configuration at consumption time enhanced with a
Wavelet Tree index and aGMR structure, denotedBTWO-GMR∗, is the succinct bitsequence indexesB∗p
andB∗o , the succinct Wavelet TreeWp and theGMR structureGo.

Similar to the Wavelet Tree, theGMRstructureGo serves the following operations :

• rank k(Go,m) counts the occurrences of the objectk in Go[1,m].

• select k(Go,m) locates the position for them-th occurrence of the objectk in Go.

• access (Go,m) returns the symbol inGo[m].

TheGo structure usesnlogσ + o(nlogσ) bits, but it fully replaces the originalSo stream. Regarding
its performance, we consider theGMRrepresentation which supportsaccess andrank in O(loglogσ),
beingσ = |O|, andselect in O(1) (see our basic concepts in Section2.4.2and the original proposal
by Golynski et al.(2007) for additional details). This decision is based on the resolution shown in the
following, which makes extensive use ofselect operations.

It is worth noting that the resolution of triple patterns by object in BTWO-GMR∗ is performed very
similar than in BTWO∗. In fact, Algorithms12 and13 run exactly similar. The only difference is that
we replace theoccsObj(k) function by the corresponding object retrieval inGo. This substitution is
illustrated in Algorithm14, and the operative is very similar to the previousoccsPred function in the
Wavelet Tree (see Algorithm8). As can be seen, arank operation over the sequence returns the number
of occurrences (Line 2) and, for each one (Line 3), we retrieve the position of the occurrence inGo with
aselect operation.

Without going into more details, one can easily see that the general performance degradation in
BTWO-GMR∗, compared with BTWO∗, is due to two main reasons:

• In BTWO∗ we directly retrieve an object in O(1) by accessing the array of objects inSo. In contrast,
BTWO-GMR∗ has to perform anaccess operation overGo in O(loglogσ), beingσ = |O|.

• The operationoccsObj is also slightly faster in BTWO∗. It runs in an average time O(deg+(G)),
that is, proportional to the mean number of occurrences of an object. In contrast, BTWO-GMR∗

performs onerank operation and then oneselect operation per occurrence. Thus, the general
case in BTWO-GMR∗ runs in an average time O(loglogσ + deg+P (G))).

As we will show in the experiments (§13.3.5), the BTWO-GMR∗ performance degradation is mod-
erate and it can be perfectly assumed by many solutions. In particular, BTWO-GMR∗ provides a good
space/tradeoff opportunity for those applications which show more restricted spatial requirements.
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Dataset
Original Size Triples

(MB) PT CT BT

SWDF 16 2.93% 2.65% 1.76%
2011 Australian Census 52 2.82% 2.63% 1.99%
Jamendo 144 3.73% 3.51% 2.18%
AEMET 726 2.56% 2.49% 1.54%
LinkedMDB 850 4.22% 4.12% 2.60%
Wordnet 974 3.75% 3.57% 2.23%
Affymetrix 6,526 4.20% 3.67% 2.49%
Flickr 6,714 4.53% 3.80% 2.55%
Dbtune 9,566 4.19% 4.02% 2.49%
DBLP 9,799 3.80% 3.32% 2.15%
2000 US Census 21,796 4.81% 4.87% 3.00%
Linked Geo Data 39,423 5.58% 5.47% 3.46%
Dbpedia 3-8 63,053 5.55% 3.77% 2.92%
Ike 102,662 3.47% 3.31% 1.95%

Table 13.5: Compression ratio of Bitmap Triples (BT) componentw.r.t the original size of each dataset,
in comparison with Plain and Compact Triples.

13.3 Experimental Evaluation

In this section, we evaluate the size and TP query performance of the proposed indexes on top ofHDT.
We make use of the corpora we are employing in the rest of the thesis, described in Section4.2.

First, we briefly study the size of the Bitmap Triples representation in comparison with Plain and
Compact Triples (§13.3.1). We also measure the space overhead of theBT∗, BTW∗, andBTWO∗ succinct
indexes (§13.3.2). Next, we compare theBTWO∗ performance at consumption with two indexes from
the state of the art (§13.3.3). These tests are performed on the “consumer” computer presented in Section
7.4, reportingusertimes. Finally, we analyze the impact of alternative orderings for the triples (§13.3.4)
and the BTWO-GMR∗ variation (§13.3.5), in size and query performance.

All sources are developed in C++ and compiled on g++ 4.7.2 with-09 optimization. We use the
bitmap and Wavelet Tree structure fromlibcds (Compact Data Structures Library (libcds), 2012).
The parametrization will be referred in each experiment.

13.3.1 Bitmap Triples Compression

We first analyze the impact of our Bitmap Triples (BT) configuration in theHDTrepresentation. Table
13.5shows the compression ratio of BT over the total size of the dataset (in N-Triples). We compare
BT with respect to the Plain Triples (PT) and Compact Triples (CT) representations presented in Section
7.2.3. As can be seen, BT achieves the most compressed representation for the underlying graph, clearly
outperforming Compact Triples: BT size is about 60% the size of CT and up to50% the size of PT.

We take up again the evaluation performed in Section7.4.1, establishing a comparison when using
Bitmap Triples in theHDTrepresentation. Thus, Table13.6comparesHDTwith universal compressors
(gzip and bzip2). Note that we do not use an advanced functional dictionary (such asDcomp), but a plain
dictionary encoding of references (see Section7.2.2). We also codify the ID-triples withlog bits (of
the corresponding number of elements). As expected, Table13.6shows thatHDTwith Bitmap Triples
achieves the most compressed ratios, being 10% smaller (on average) thanHDTwith the Compact Triples
variant. Again, compression ratios are only around 2 times bigger (on average) than those for gzip,
demonstrating the ability ofHDTto obtain compact representations of RDF .
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Dataset
Triples Size HDT Universal Compressors
(millions) (MB) PT CT BT gzip bzip2

SWDF 0.1 16 18.21% 17.92% 17.02% 9.68% 6.63%
2011 Australian Census 0.4 52 8.70% 8.51% 7.87% 2.80% 1.33%
Jamendo 1.0 144 24.87% 24.64% 23.31% 5.83% 4.16%
AEMET 3.5 726 13.77% 13.69% 12.74% 2.57% 1.20%
LinkedMDB 6.1 850 15.89% 15.79% 14.26% 4.75% 2.79%
Wordnet 6.3 974 12.85% 12.66% 11.32% 4.97% 3.22%
Affymetrix 44.2 6,526 16.17% 15.64% 14.46% 5.42% 3.43%
Flickr 49.1 6,714 16.58% 15.84% 14.60% 9.03% 7.40%
Dbtune 58.9 9,566 14.57% 14.41% 12.87% 11.24% 7.65%
DBLP 60.1 9,799 20.62% 20.14% 18.97% 5.42% 3.49%
2000 US Census 149.2 21,796 7.45% 7.50% 5.63% 4.62% 2.27%
Linked Geo Data 274.7 39,423 27.07% 26.96% 24.95% 5.90% 4.13%
Dbpedia 3-8 431.4 63,053 18.32% 16.55% 15.70% 8.01% 5.90%
Ike 514.8 102,662 11.86% 11.71% 10.34% 3.22% 1.08%

Table 13.6: Compression ratio ofHDTwith Plain, Compact and Bitmap Triples, and universal compres-
sors results.

It is worth mentioning that, to boost exchanging, two methods can achieve the most compressed
representation forHDT (outperforming traditional text compression for RDF). On the one hand, we
proposed an “additionalHDTCompression” in Section7.4.3, which applies text compression of theHDT
representation. This already outperformed text compression, and can also be applied when using Bitmap
Triples. On the other hand, compressed RDF dictionaries, such asDcomp, can encode the Dictionary
component. We experiment with this possibility in the next part of this thesis.

13.3.2 Analyzing the Space Overhead ofBTWO∗

Table13.7reflects the space requirements of the particular indexes in BTWO∗ when loaded at consump-
tion time. We provide the size of the indexes with respect to the Bitmap Triples size ineach dataset.
Thus, the second column corresponds to the size of the bitmaps (B∗p andB∗o) introduced since the BT∗

configuration. The third column considers the size of the Wavelet Tree (W∗
p ) introduced since the BTW∗

configuration. Finally, theOP-S index of BTWO∗ is presented in the fourth column. Note that our
implementation uses RG bitmaps (sampling of20) both for our bitmap indexes and the Wavelet Tree.

Several comments can be drawn from these results. First, the BT∗ bitmaps required to act as an SP-O
index (as summarized in Table13.4) are only 8% (on average) the size of the Bitmap Triples. That is, the
consumer can resolve about 50% of the most common queries in SPARQL (see Section13.1.3), with a
little 8% overhead over the transferred triples representation.

In turn, the third column in Table13.7shows that a mean of 20% of space overhead is required to
build the Wavelet Tree (PS-O index). As stated, in the final BTWO∗ configuration, this index contributes
to resolve the (v,j,k) patterns which, in practice, are not massively used (see Arias et al.(2011)). In
addition, it adds a logarithmic cost to access the predicates. We will discuss inthe next Chapter that this
index could be obviated if such type of access is not required.

Finally, theO-Indexsize is provided in the fourth column. It is easy to see, though, that this index
supposes a significant space overhead, around 84% of the original BT size. TheO-Indexsize covers the
array of positions (SoP ) of lengthn (the number of triples) and its bitmap index (BoP ). Nonetheless,
theO-Indexi) completes the index structure at consumption time, ii) it resolves the common (v,j,v)and
(v,v,k) patterns (Arias et al., 2011), and iii) it performs efficiently (see the evaluation in Section13.3.3).
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Dataset
Bitmap Triples Indexes

(MB) BT∗ bitmaps BTW∗ Wavelet Tree BTWO∗ O-Index

SWDF 0.28 10.41% 27.08% 80.44%
2011 Australian Census 1.04 11.45% 21.87% 84.92%
Jamendo 3.14 9.99% 17.27% 85.05%
AEMET 11.18 9.82% 17.65% 88.39%
LinkedMDB 22.10 8.64% 24.91% 80.84%
Wordnet 21.70 8.84% 21.99% 83.79%
Affymetrix 162.24 7.52% 16.33% 85.67%
Flickr 171.37 7.77% 11.74% 90.10%
Dbtune 237.98 7.61% 24.43% 80.80%
DBLP 210.46 7.83% 12.00% 93.25%
2000 US Census 654.24 7.39% 25.08% 79.85%
Linked Geo Data 1,362.76 6.12% 32.77% 69.68%
Dbpedia 3-8 1,841.18 5.47% 19.95% 82.06%
Ike 1,997.88 7.98% 11.46% 93.31%

MEAN - 8.35% 20.32% 84.15%

Table 13.7: Space requirements of the indexes BT∗ bitmap indexes, the BTW∗ Wavelet Tree and the
BTWO∗ O-Index, given as ratios (in %)w.r.t the original Bitmap Triples size of each dataset.

Table13.8shows the total sizes of the incremental configurations, which are a directconsequence of
the index sizes presented above. Thus, BT∗ adds the bitmap overhead directly to the BT size, resulting
in a mean of 8% space overhead. In turn, the Wavelet Tree may contribute with an important overhead in
BTW∗ but, as can be seen, BTW∗ only adds a 9.33% overhead over the BT size (on average). The reason
is simple: the Wavelet Tree do not append its overhead but it completely replaces8 the integer sequence
Sp by the Wavelet Tree Wp. This assures that, thanks to this succinct structure, we can provide aPS-O
index with a very limited overhead. Finally, theOP-S index overhead is also directly added to the BT
size, resulting in a total of around 93% space overhead (on average) with respect to the BT size.

In summary, the final BTWO∗ configuration adds three indexes (SP-O, PS-O and OP-S) and provides
total TP resolution with a mean of 93% space overhead of the exchanged Bitmap Triples component.

13.3.3 BTWO∗ Performance Comparison

In the following, we analyze the performance of BTWO∗ with respect to the state of the art. In particular,
we compare and analyze the representation space and the triple pattern resolution performance against
RDF3X (Neumann & Weikum, 2010) and k2-triples (Álvarez-Garćıa et al., 2011). Section12.2.2in-
cludes a detailed review of both solutions. RDF3X is a native multi-indexing solution on the basis of
B+-trees. k2-triples follows a vertical partitioning strategy, creating a K2-tree index per predicate. We
also test the improved k2-triples+ (Álvarez-Garćıa et al., 2013) which includes additional SP and OP
indexes. Thus, it addresses better performance at the cost of additional space overheads.

We first compare the space requirements of each solution. We choose again a subset of six datasets
from our evaluation setup in Section4.2. These datasets correspond to that used for evaluatingDcomp

as they cover different application domains and number of triples. Table13.9shows the space ratio with
respect to the original Plain Triples size, that is, three IDs per triple (in log bits). As can be seen, the k2-
triples solution takes advantage of the sparse distributions per predicate, leading to the most compressed
solution for RDF triple indexing. On average, k2-triples outperforms 7 times our BTWO∗ compression
and up to 42 times the results of RDF3X. The improved k2-triples+ proposal, including SP and OP

8Note that Sp is destroyed after the creation of the Wavelet Tree.
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Dataset
Bitmap Triples Triples

(MB) HDTBT∗ HDTBTW∗ HDTBTWO∗

SWDF 0.28 110.41% 111.91% 192.35%
2011 Australian Census 1.04 111.45% 112.51% 197.42%
Jamendo 3.14 109.99% 110.82% 195.87%
AEMET 11.18 109.82% 110.66% 199.05%
LinkedMDB 22.10 108.64% 109.83% 190.67%
Wordnet 21.70 108.84% 109.89% 193.67%
Affymetrix 162.24 107.52% 108.30% 193.97%
Flickr 171.37 107.77% 108.33% 198.43%
Dbtune 237.98 107.61% 108.78% 189.57%
DBLP 210.46 107.83% 108.40% 201.65%
2000 US Census 654.24 107.39% 108.58% 188.43%
Linked Geo Data 1,362.76 106.12% 107.69% 177.37%
Dbpedia 3-8 1,841.18 105.47% 106.43% 188.49%
Ike 1,997.88 107.98% 108.52% 201.83%

MEAN - 108.35% 109.33% 193.48%

Table 13.8: Total space requirements of BT∗, BTW∗ and BTWO∗ w.r.t the original Bitmap Triples size.

Dataset
Plain Triples In-memory configuration
Size(MB) HDTBTWO∗ k2-Triples k2-Triples+ RDF3X

2011 Australian Census 1.47 139.33% 13.83% 15.84% 681.81%
Jamendo 5.38 114.48% 13.52% 23.61% 993.74%
AEMET 18.61 119.64% 8.07% 11.13% 665.20%
Dbtune 400.36 112.68% 38.06% 46.85% 673.46%
2000 US Census 1,049.25 117.49% 33.09% 39.50% 508.73%
Dbpedia 3-8 3,497.36 99.23% 38.56% 51.00% 570.97%

Table 13.9: Space requirementsw.r.t the original Plain Triples size (in log. bits) of each dataset.

indexes, is 5 times more compressed than BTWO∗. Nonetheless, we will show below that BTWO∗

performs several orders of magnitude better than both k2-triples proposals. In turn, the BTWO∗ solution
uses almost 6 times less space than RDF3X, on average. Note also that BTWO∗ is only slightly bigger
than the Plain Triples size, except forDbpediawhich is even smaller (99.23%).

Then, we analyze the retrieval ability of our BTWO∗ solution. To do so, we evaluate the performance
on triple pattern solution as it is the core for BGP resolution in SPARQL. The query testbed consists
of randomly generated TP: for each dataset, we consider 1,000 randomtriple patterns of each type.
Nonetheless, note that the type (v,p,v) is limited by the number of different predicates9.

Figures13.5and13.6show the resolution times forDbtuneandDbpediarespectively. We design a
warm scenario for the RDF3X on-disk solution in order to reduce the penalization of the I/O transactions
w.r.t. the in-memory solutions k2-triples and BTWO∗. Thus, RDF3X figures report the mean resolution
time of six consecutive repetitions of each query, forcing results to be available in main memory.

Several remarks can be drawn from Figures13.5and13.6. The most important remark is that, in gen-
eral terms, BTWO∗ clearly outperforms k2-triples and RDF3X on both datasets. In particular, BTWO∗

excels in most triple patterns, improving RDF3X by 1 level of magnitude and up to3 for k2-triples. Let
us particularize the analysis by BTWO∗ indexes and the triple pattern resolution.

9For Dbpedia, we test all the 57,986 predicates as the random generation could resulttoo limited.



13.3. Experimental Evaluation 169

 0.001

 0.01

 0.1

 1

 10

 100

 1000

spo spV sVV sVo Vpo VVo VpV

T
im

e 
(m

ili
se

co
nd

s)

Querying time for triple patterns (dbtune)

BTWO*
k2−triples

k2−triples+
RDF3X

Figure 13.5:HDT BTWO∗ TP query performance inDbtune.
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Figure 13.6:HDT BTWO∗ TP query performance inDbpedia.

• BT∗ index -access by subject. This corresponds to the triple patterns (s,p,o), (s,p,V), (s,V,V), and
(s,V,o) in the figures. As stated, BT∗ SP-O ordering favors the access by subject, hence BTWO∗

excels in these triple patterns. For instance, inDbtune, BTWO∗ resolves (s,p,V) 9 and 66 times
faster than k2-triples and RDF3X respectively. As expected, k2-triples pays its vertical partitioning
overload with unbounded predicates, as all matrix have to be queried in these cases: inDbpedia,
k2-triples performs 2397 and 246 times slower than BTWO∗ in (s,V,V) and (s,V,o) respectively.
However, the additional indexes in k2-triples+ significantly reduce this difference. In fact, k2-
triples+ resolves (s,V,o) 7 times faster than BTWO∗. In addition, one can see that k2-triples also
outperforms BTWO∗ in (s,p,o) resolution,i.e., those queries checking the existence of a triple. In
this case, BTWO∗ performs two binary searches (see Section13.1.2) whereas k2-triples uses its
optimized operation of checking a cell in the S-O adjacency matrix of the givenpredicate.
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• O- index -access by object. This index accesses the triples by object and, thus, it helps resolve the
triple patterns (V,p,o) and (V,V,o) in the figures. As can be seen, BTWO∗ clearly emerges as the
fastest solution resolving these triple patterns, beating the other proposalsby several orders of mag-
nitude. For instance, inDbpedia, BTWO∗ is 1979 and 43 times faster than k2-triples and RDF3X
respectively for the (V,V,o) triple pattern. Although the additional indexes ink2-triples+ improve
its performance, BTWO∗ is still one order of magnitude faster. Note that, as explained in Section
13.2.2, theO-Indexfinds the adjacency list of the given object in constant time (proportional toits
number of occurrences).

• Wavelet Tree index -access by predicate. The Wavelet TreeWp in predicates provides aPS-O
index in BTWO∗, resolving the (V,p,V) triple pattern in the figures. As expected, the higher costs
of the Wavelet Tree index (logarithmic with the number of predicates as shownin Section13.2.1)
have a noticeable effect in the reported times for (V,p,V): BTWO∗ is 3 to 6 times slower than the
other solutions in both datasets. In this case, k2-triples reports the best performance once it has to
“dump” the adjacency matrix of the given predicate.

Thus, in general, BTWO∗ reports the best overall performance for RDF retrieval. Taking the mean
of the performance (in times faster) per triple pattern and dataset10, BTWO∗ runs 33.25 times faster than
RDF3X, 344.80 than k2-triples and 15.32 than k2-triples+.

13.3.4 BTWO∗ Order Comparison

We had assumed that BT always keeps the original ordering by Subject-Predicate-Object (SPO) up until
now. In fact, this is the logical order according to the notion of RDF triple (orstatement). We then
study other alternative orders for the BT representation and the subsequent indexes: BT∗, BTW∗ and
BTWO∗. We first analyze the space requirements of each alternative. Then, wechoose the most efficient
alternatives to compare the query performance against the traditional SPOordering.

Space requirements. The space requirements of all the alternative orders are shown in Figure13.7, in
which each bar draws the ratio against the size of the corresponding structure in SPO order. The given
ratio is the average of the presented fourteen datasets (see experimentalframework in Section4.2). We
summarize below the most important implications of the alternative orders:

• Subject-Object-Predicate (SOP).In this case, we swap the order of the adjacency lists in BT. That
is, in the top level of BT we list all the objects related to each subject, and the bottom level
represents all the predicates for a given(subject,object)pair. Regarding the indexes at consumption,
the original Wavelet Tree of predicates is substituted by a Wavelet Tree ofobjects. In such case,
the alphabet of symbols is the number of different objects, which is much bigger than the number
of predicates. This overhead is reflected in the size of BTW∗ and BTWO∗ in Figure13.7. For
instance, the BTWO∗ index in SOP order is1.42 times bigger than those in SPO order.

• Predicate-Subject-Object(PSO) and Predicate-Object-Subject(POS).In both cases, BT acts simi-
lar to a Vertical Partitioning technique. For each predicate, its related elementsare listed. Note
that, as in the previous case, the middle index for POS will be an overloading Wavelet Tree of
objects. In contrast, a Wavelet Tree of subjects will be constructed for PSO, which also becomes
much bigger than the original Wavelet Tree of predicates. This results in morespace requirements,
as shown in Figure13.7: Although the BT structure and the BT∗ index are comparable in size
to those in SPO, the Wavelet Tree overhead in PSO and POS is predominant. Thus, BTW∗ and
BTWO∗ demand more space than the originals in SPO.

10This is equivalent to choosing a TP at random inDbtuneor Dbpedia.
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Figure 13.7: Comparison of alternative orders for BT and its indexes at consumption. Each graph repre-
sents the ratio against the size of the corresponding structure in SPO order.

Note that all the structures are smaller in POS than in PSO. One should find the cause of this differ-
ence in the BT adjacency lists, characterized by our metrics. That is, the size of the lists of objects
in POS are delimited by the predicate out-degree: the number of different objects related to given
predicates. The bigger is the predicate out-degree, the larger are the listsof objects in POS. In turn,
larger lists group more triples and, thus, they yield to more compact representations. Regarding
the lists of subjects in PSO, they are delimited by the predicate in-degree, and similar reasoning
can be made. In general terms, the mean predicate out-degree is smaller thanthe corresponding
in-degree (see Section4.3.5), i.e., a predicate is related to more objects than subjects. Thus, the
grouping lists in POS are larger than in PSO, resulting in more compact BT and BT∗.

• Object-Subject-Predicate(OSP).This ordering places the objects at the top of the BT represen-
tation, and keeps the lists of subjects related to each object, relegating the predicates at the bot-
tom. As we stated in our experiments, it is common that only one predicate is relatedto a (sub-
ject,predicate)pair (see Section4.3.4). Thus, the BT compact structure is poor (it does not group
references) and its size is significant bigger than the SPO ordering, as can be seen in Figure13.7. In
addition, the middle index should be again a Wavelet Tree of subjects which yields to a significant
overhead: the BTWO∗ index is1.33 times bigger than the corresponding in SPO order.

• Object-Predicate-Subject(OPS).The OPS ordering is, surprisingly, the most compact alternative.
As shown in Figure13.7, it improves the size of all structures in SPO order, being around 10% more
compact. Note that in OPS, as in SPO, the predicate is in the middle position and its adjacency list
is indexed with a Wavelet Tree on a short alphabet. The improvement over SPO can be explained
simply by the codification of the elements. In BT, the bottom stream always stores n elements,
beingn the number of triples. These are encoded with a given number of bits: the logarithm of
the number of different elements. In SPO, BT codifiesn objects with the logarithm of different
objects, whereas in OPS it codifiesn subjects with the logarithm of different subjects. In general,
the number of different subjects is significant smaller than the number of different objects (see
Section4.2). This is the main reason OPS ordering demands smaller space than SPO.
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Query performance. We choose the two most compact alternatives from the previous study: POS
and OPS. The first one is almost as compact as SPO, and it is the representative of a Vertical Partitioning
technique in BT. The latter, OPS, is 10% more compact than SPO, and it has exactly the same philosophy
but it reverses the order of the elements. Figures13.8and13.9show the TP resolution time of these two
alternative in comparison with the original SPO ordering, inDbtuneandDbpediarespectively. Note that
we perform over the same previous TP testbed (see Section13.3.3). The rightmost tables in the figures
show, for each dataset, the ratio of the orders against the size in SPO order.

The POS performance reports similar figures in both datasets. As can be seen, it is the worst solution
in all cases except for (V,p,V) resolution. In this particular case, the resolution takes advantage of the
Vertical Partitioning by predicate, outperforming the other solutions a mean on2.6 times. In addition,
as shown in the rightmost tables, the BTWO∗ indexes in POS always demands more space requirements
than both SPO and OPS orderings. It is also worth noting that (s,p,V) resolution is extraordinary slow
with a POS order: the algorithm would retrieve the list of objects related to the given predicate and,
for each object, it checks if the given subject is related to the(predicate,object)pair. This operation is
extremely low once many objects can be related to each predicate (see Section4.3.5).
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All these facts implies that POS is discouraged in favor of the other solutions.Nevertheless, we
outline that the POS order could be chosen in some scenarios demanding excellent times in (V,p,V)
resolution in spite of the other weakness: a little overhead in space and certain degradation in the rest of
queries, in particular for (s,p,V) resolution.

The analysis of OPS performance is more complex. Note that the resolution time inOPS forDbtune
is slightly better than SPO, whereas this is not the case forDbpedia. Let us analyze the following cases
of triple patterns:

• (V,p,o) and (V,V,o). In these triple patterns the OPS ordering always report the best performance as
it indexed the triples by object. In the SPO ordering, both cases are accessed through the BTWO∗

O-Index, in contrast with the faster BT∗ index used in the OPS case. Algorithmically speaking,
one can easily note that the degrees are multiplier factors when resolving (V,p,o) and (V,V,o) in
SPO (See Table13.3). The costs are additive, though, using BT∗ in OPS.

• (V,p,V). Its resolution in OPS also improves the SPO ordering in the studied datasets. In this case,
one can find the reason in the asymmetric degrees of the predicates. That is, (V,p,V) resolution first
retrieves all the occurrences of the given predicate in the first stream. Then, for each occurrence,
it locates the associated top element in the structure (subjects in SPO or objectsin OPS). Last,
the corresponding adjacency list of elements (objects in SPO or subjects in OPS) is retrieved.
The algorithmic cost is proportional to the number of occurrences of the predicate in the stream,
denoted by its predicate in-degree in SPO (see Section13.2.1), and then to the predicate out-degree
in OPS. In general terms, the mean predicate in-degree is bigger than the predicate out-degree (see
Figure4.12 in our experiments),i.e. a predicate is related to more subjects than objects. Thus,
(V,p,V) resolution costs are also bigger for SPO ordering than for OPS.

• (s,p,o) and (s,V,o). In these patterns, OPS ordering is slightly worse thanSPO in both datasets.
Note that, in the traditional SPO order, the resolution performs binary searches which depend on
the number of predicates per subject and the number of objects related to a(subject, predicate)pair
(see costs in Table13.3). In turn, in OPS, this corresponds to costs which are proportional to the
number of predicates per object and the number of subjects related to a(object, predicate)pair. In
Dbpedia, an object can appear related to many subjects. This resulted in such poorresults that, in
fact, we decide to resolve these patterns in OPS starting from the subjects upto top objects. With
this decision, performance results are close in SPO and OPS as we perform identically over the
same elements, but they are represented in different indexes. SPO ordering slightly outperforms
OPS because the latter pays the overload of searching the predicates related to a subject in the
bottom index of references.

• (s,p,V) and (s,V,V). Again, OPS improves SPO resolution times inDbtunebut they suffer from
performance degradation inDbpedia. The reason is partially different than the previous case. In
these triple patterns, SPO uses the BT∗ index whereas the bottom index of subject positions is
used in OPS ordering (anS-Indexin tune with the originalO-Indexin SPO). The resolution with
this latter depends on the number of triples in which the subject takes part (thedegree as seen in
Table13.3). In a scenario such asDbpedia, with potentially frequent subjects, the OPS is clearly
discouraged over SPO.

In summary, as expected, OPS order should be chosen if access by object is prioritized over access by
subject. Nonetheless, the rightmost tables in the Figures13.8and13.9show that OPS ordering is slightly
more compact than SPO. This tradeoff places OPS as an interesting candidate in many scenarios at the
price of some performance degradation in (s,p,V) and (s,V,V) whenever objects tend to be massively
repeated (such inDbpedia).
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Figure 13.10: Comparison of theGo index and the originalO-Index. Each bar represents the ratio against
the size of theO-Indexstructure (theO-Index+ the object arraySo) (in SPO order).

13.3.5 The BTWO-GMR∗ Alternative

We end this evaluation with a brief study on the aforementionedO-Indexalternative, BTWO-GMR∗ (see
Section13.2.2). We first analyze its space requirements in the normal SPO configuration. Once we have
shown the OPS achievements in the previous section, we verify the BTWO-GMR∗ compressibility on an
OPS ordering. We finally test the query performance of BTWO-GMR∗ on both SPO and OPS orderings.

Space requirements. Figure13.10shows the size ratio of theGo index against the originalO-Index
structure, in the evaluated datasets (see details in Section4.2). That is, a value of0.68 in Dbpediastates
that the substituteGo structure inDbpediarequires68% the space of the replacedO-Indexstructure. Note
that under the size of the replacedO-Indexstructure we include, in fact, the size of all the object structure,
that is,So, SoP , andBoP . The last column in Figure13.10computes the mean of all the datasets.

As can be seen, theGo alternative achieves significant space savings: it takes a mean of86% and up
to 57% w.r.t the originalO-Index. In large datasets, these savings can be crucial to scale up applications.
For instance, inDbpedia, theGo index saves almost 1 GB of consumer main memory.

Nevertheless, it is worth mentioning that, with this alternative, only three particular datasets achieve
slightly bigger figures than theO-Index(up to 111%):Jamendo, DBLPandLinked Geo Data. We stated
that theO-Indexadds an overhead ofn⌈logn⌉+o(n) bits (see Section13.2.2) to the representation. In to-
tal, for the original object structure in BTWO∗, we also have to considern+o(n) bits forBo andnlog|O|
for So. In turn, theGo index usesnlog|O| + o(nlog|O|) bits. One can easily see that the difference is
comparable. Thus, one should find the reason in theGMRconstruction which implicitly hides some pa-
rameters (see our basic concepts in Section2.4.2and the original proposal byGolynski et al.(2007) for
additional details). Without going into too much details, theGMRstructure used in theGo index builds
a virtual matrix of|O| rows andn columns. In these three datasets, the vocabulary of different objects is
extremely bigger with respect to the total number of triples. For instance, inLinked Geo Datathere are
more than 121 millions of different objects in 274 million triples (see Table4.2 in Section4.2) (almost 1
different object each 2 triples). In such special cases, theGMRvirtual matrix is almost as long as wide,
hence theGo index achieves comparable ratios than the originalO-Index.
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Figure 13.11: Comparison between the BTWO-GMR∗ and the BTWO∗ configuration in SPO and OPS
orderings. Each graph represents the ratio against the size of BTWO∗.

Figure13.11first compares the final BTWO-GMR∗ configuration size, which makes use of theGo
index instead of the originalO-Index. This corresponds to the first bar in Figure13.11for all datasets,
given as a ratio against the original BTWO-GMR∗ configuration size. The last group of bars represents
the mean of all datasets. As expected, the ratios follow the same tendency of the Go savings: BTWO-
GMR∗ takes a mean of 88% of the space of the original BTWO∗.

Finally, we study the impact of BTWO-GMR∗ on an OPS ordering, once we established that this
ordering also achieves large savings (§13.3.4). Note that, in OPS, theGMR index is built on the subjects
(at the bottom of the representation). Thus,GMR also acts on a large alphabet and a good behavior
could also be expected. The second and third bars in Figure13.11represent the respective space ratios
of BTWO∗ and BTWO-GMR∗ both in OPS order. These ratios are given against BTWO∗ on SPO order.
As can be seen, BTWO-GMR∗ on OPS order (referred to asBTWO-GMR∗-OPS) largely outperforms
BTWO∗ whether on OPS or on SPO order. In fact, it achieves an extraordinarymean compression: in
general, BTWO-GMR∗ on OPS order uses 70% of the original BTWO∗ size (in SPO order). InDbpedia,
for instance, this saves up 1.1 GB of consumer main memory. In turn, inLinked Geo Data, which was a
corner case for theGMRsolution in SPO order, BTWO-GMR∗-OPS saves more than 744 MB. All this
makes BTWO-GMR∗, and particularly BTWO-GMR∗-OPS, the best candidate for those applications
with tight space requirements.

In the following, we test if theGMRsavings are, as expected, at the cost of performance degradation.

Query performance. We end this section evaluating theGMR alternative in TP resolution. To do
so, we use the same previous TP testbed (see Section13.3.3), and we perform on BTWO-GMR∗ (SPO
ordering), as well as over the OPS ordering, BTWO-GMR∗-OPS. Figures13.12and13.13show the
TP resolution times. To establish a comparison, the figures also include the aforementioned results for
BTWO∗ and BTWO∗-OPS. The rightmost tables in the figures represent the size ratio of each solution
against the size of the common BTWO∗ approach (similar to Figure13.11).

Let us compare first the results of BTWO∗ and BTWO-GMR∗. We analyze two categories: triple
patterns by object, thus making use of the particularities of theGo index, and the rest of TPs.
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Figure 13.12:HDT BTWO∗ TP query performance of BTWO-GMR∗ in Dbtune.
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Figure 13.13:HDT BTWO∗ TP query performance of BTWO-GMR∗ in Dbpedia.

• (V,p,o) and (V,V,o). In these triple patterns, the BTWO-GMR∗ alternative uses theGo index to
retrieve the object occurrences, in contrast to theO-indexused in the traditional BTWO∗ configu-
ration. Thus, the difference in the resolution time is solely due to the differentperformance of both
indexes. As can be seen, the theoretical degradation of this alternative (studied in Section13.2.2)
is shown in practice. Nonetheless, the degradation is very moderate in both datasets: the resolution
time of these patterns is 40% slower in BTWO-GMR∗ than in BTWO∗, on average.

• (s,p,o), (s,p,V), (s,V,V), (s,V,o) and (V,p,V). As stated, in the rest of thetriple patterns, theGo
index introduces a theoretical slight degradation when accessing the objects (see Section13.2.2).
Obviously, the more objects are accessed in a TP, the more important is the degradation. This can
be appreciated in the figures, as the degradation of BTWO-GMR∗ is noticeable bigger inDbpedia
TPs, which access more objects, than inDbtune. On average, the resolution time of these patterns
is 63% slower in BTWO-GMR∗ than in BTWO∗.

Surprisingly, the performance degradation due to theGo index is slightly more pronounced in those
triple patterns which do not access by object. Averaging over all the TP resolutions in both datasets,
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Structure
Size Ratio Mean Performance Performance Ratio by Triple Pattern

(in %) Ratio (s,p,o) (s,p,V) (s,V,V) (s,V,o) (V,p,o) (V,V,o) (V,p,V)

BTWO-GMR ∗ 84% 1.8 1.5 1.3 1.9 1.8 3.3 1.6 1.4
BTWO∗-OPS 87% 0.8 1.0 1.0 1.0 1.0 0.9 0.7 0.3
BTWO-GMR ∗-OPS 70% 2.1 3.4 3.3 2.0 2.0 2.0 1.2 0.6

Table 13.10: Space/performance tradeoffs of BTWO∗ variants. Average of six datasets (see Table10.1).

BTWO-GMR∗ is 56% slower than BTWO∗. In any case, the reported times are comparable and this
BTWO-GMR∗ performance degradation could be perfectly assumed by many applications. The size
ratios shown in the rightmost tables in Figures13.12and13.13complete the analysis of the interesting
space/performance tradeoff of BTWO-GMR∗. For instance, BTWO-GMR∗ only demands 72.05% of the
space required by BTWO∗ in Dbpedia. Thus, an application running onDbpediacan save up to 970 MB
of consumer main memory at the cost of 60% slower TP resolution.

Next, we compare the results on OPS ordering represented in Figures13.12and13.13. Note that, in
this case, theGMR-basedGo index is built on the subject stream, replacing it.

• (s,p,o), (s,p,V), (s,V,V) and (s,V,o). In OPS ordering, all these casesare resolved accessing the
index structure by subject (see Section13.3.4). That is, the BTWO-GMR∗-OPS alternative uses the
bottomGMR-based index to retrieve all the subject occurrences. As can be seen,in both datasets
the reported times of all four TPs are close. In fact, the performance on BTWO-GMR∗-OPS for
(s,p,o) and (s,p,V) is noticeable worse than on BTWO∗-OPS. Note that, on average, a subject has
more occurrences than an object (see Table4.2 in Chapter4). As we perform proportional to the
number of occurrences, thus the degradation of theGMR-based index is more pronounced in OPS
(acting on subjects) than in SPO ordering (acting on objects). Taking the mean of the performance
in both datasets, BTWO-GMR∗-OPS is 2.5 times slower than the BTWO∗-OPS configuration, but
3.7 times slower than BTWO-GMR∗ (in SPO ordering).

• (V,p,o), (V,V,o) and (V,p,V). In the first two cases, an OPS ordering makes use of the BT∗ index
to first retrieve the object occurrences. In the latter, the predicate Wavelet Tree is used. Thus, in
any case the theoretical degradation is due to the subject access of theGMR-based index. This
is actually reported in the figures: On average, the BTWO-GMR∗-OPS alternative is 60% slower
than the BTWO∗-OPS configuration, and only 8.5% slower than BTWO-GMR∗ (in SPO ordering).

As can be seen, theGMR-based index on OPS ordering suffers from performance degradation spe-
cially for those TP accessing by subject. Averaging over all TPs, the BTWO-GMR∗-OPS configuration is
2.5 times slower than BTWO∗-OPS, and 2.1 times slower than the BTWO∗ (in SPO order). Nevertheless,
the rightmost tables in Figures13.12and13.13show the high compression ratios of BTWO-GMR∗-OPS:
it takes 73.64% and 67.48% the size for BTWO∗ in DbtuneandDbpediarespectively.

Finally, we summarize the most important tradeoffs in Table13.10. We represent the space ratio
(in %) and the performance ratio (in each TP as well as the total mean) over the BTWO∗ proposal. We
average over six datasets (described in Table10.1): 2011 Australian Census, Jamendo, AEMET, Dbtune,
2000 US CensusandDbpedia. This table should be interpreted carefully. For instance, attending to
these results, the BTWO∗-OPS could be the candidate representation in most scenarios: it takes 87% the
size of BTWO∗ and its performance is 0.8 times the corresponding in BTWO∗ (it performs 20% faster).
However, we have described the resolution algorithms in detail, and we haveshown that BTWO∗-OPS
strongly depends on the particular distribution of objects. In practice, we verified that it suffers from
significant degradation in (s,p,V) and (s,V,V) whenever objects tend to be massively repeated (see Section
13.3.4): in Dbpedia, the resolution of (s,p,V) and (s,V,V) in BTWO∗-OPS is 53% and 50% slower than
BTWO∗ respectively, in contrast to the mean 1.0 values shown in the table.

Therefore, although these results can vary on specific datasets, Table13.10provides, though, a good
indicator of the space/performance tradeoffs of the proposed triple indexes at consumer.
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Discussion

We briefly summarize the main contributions of this part devoted to RDF triple indexing (§14.1). We
also depict potential uses besidesHDT(§14.2).

14.1 Contributions

This part of the thesis is focused on scalability problems arising in RDF triple indexes for Big Semantic
Data. Chapter12 motivated this problem and provided a summary of the state of the art in RDF indexes
and stores. We documented that most approaches suffer from scalabilityissues and use naive compres-
sion. With that in mind, we established the main goals of compact triple indexes on top of HDT-encoded
datasets. These goals are addressed in Chapter13, proposing lightweight indexes built efficiently at
consumption time.

We employed succinct data structures for such indexes. First, we proposed a novel structure, referred
to as Bitmap Triples (BT), which codifies the structure of the graph throw two correlated bitsequences.
Its main advantage is that BT encoding can be enhanced (always at consumer) with a succinct index
over the bitsequences, providing efficient (constant) SP-O access. Then, we introduced a Wavelet Tree
which can replace the sequence of predicates, operating as a PS-O index in logarithmic time (w.r.t the
number of predicates). Finally, an additional adjacency list of objects contributes with an OP-S index-
ing, completing the so-called BTWO∗ proposal for efficient RDF retrieval on top ofHDT. One of the
main contributions in this sense is that the resolution of all triple patterns in BTWO∗ was described
algorithmically, and the costs were clearly detailed with the metrics proposed in Chapter4.

We also presented aGMR-based alternative for the OP-S index. This configuration, BTWO-GMR∗,
is aimed at obtaining a more compact representation at the cost of performance degradation.

In our tests, we experimented the compressibility and query performance of all indexes on a testbed
of real-world datasets, reporting important remarks:

• BT is the most compressed configuration for theHDTtriples: in the considered datasets, BT size is
about 60% the size of Compact Triples (CT) and up to 50% the size of Plain Triples. In turn,HDT
with BT is 10% smaller thanHDTwith CT, on average.

• The SP-O index is a little 8% overhead over the transferred triples representation, whereas a mean
of 20% of space overhead is required to build the Wavelet Tree (PS-O index). In contrast, the
OP-S index could represent a cost of around 84% space overhead.

• The final BTWO∗ configuration provides total TP resolution with a mean of 93% space overhead
of the exchanged BT.

• In general, our approach BTWO∗ reports the best overall performance for RDF retrieval, in com-
parison with k2-triples and RDF3X proposals.

• BTWO∗ reports the worst performance in (V,p,V) patterns in which we pay the logarithmic costs
of accessing the Wavelet Tree.
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• On average, the k2-triples solution outperforms 7 times our BTWO∗ compression. In contrast,
BTWO∗ performs most triples patterns several order of magnitudes faster, beinga mean of 344.80
times faster than k2-triples. The improved k2-triples+ solution is 5 times more compressed than
BTWO∗, but 15.32 times slower in query performance.

• BTWO∗ uses 6 times less space than RDF3X, and performs a mean of 33 times faster.

In addition, we analyzed other ordering variants for the triples. In particular, we show that OPS
ordering demands a mean of 10% less space than SPO, and it excels in thosetriple patterns providing
a constant object. In addition, it is competitive in the rest of the queries, hence some scenarios could
choose this ordering instead of the SPO by default. In turn, POS orderingis slightly less compact than
SPO, it excels retrieving by predicate but suffers significant degradation in the rest of the queries.

Finally, we studied the BTWO-GMR∗ interesting space/performance tradeoffs on both SPO and OPS
orderings. This latter configuration, BTWO-GMR∗-OPS, constitutes our most compressed solution: it
takes a mean of 70% the size of BTWO∗, at the cost of doubling the TP resolution time.

14.2 Other Applications

It is clear than all proposed indexes on top ofHDTare closely tight to its particular representation. In
particular, all them require i) a dictionary+triples partitioning and ii) a bitmap triples configuration (or a
similar representation separating the data streams, predicates and objects, from the structure). Nonethe-
less, one might well wonder if these indexes could work out ofHDTor with other diverse purposes.

In fact, all the proposed indexes could potentially be used off-HDTas additional structures comple-
menting other systems. We summarize below the applicability with respect to SPARQLresolution and
we briefly devise some applications. The coverage of the queries is always reported with respect to the
aforementioned empirical study of real-world SPARQL queries (Arias et al., 2011).

• BT∗ resolves the most used TP combinations. For instance, it covers the 89% ofthe TP combina-
tions in the Dbpedia query logs. As BT∗ is much smaller than other solutions (such as RDF3X as
seen in the experimentation in Section13.3), one could perfectly substitute (or complement) part
of the indexes of the other solutions with BT∗.

• We have shown that the Wavelet Tree pays a logarithmic time and performs slower than other
solutions resolving (V,p,V). Nonetheless, only 3.45% of the TPs in theDbpediaquery logs are of
this type. In addition, if this TP is part of a SPARQL BGP, a query planner could probably tend
to avoid its early resolution, as it can provide too many results. All this states that i) the Wavelet
Tree construction could potentially be obviated, or ii) another variant of indexes can be raised.
Alternatively, the POS ordering could be chosen in some scenarios prioritizing (V,p,V) resolution.

• Although theO-Indexresults in the most overloaded structure inHDT, its size can also compete
with the indexes of other approaches. Thus, theO-Indexcould be integrated within other solutions,
as it also provides constant time in object accessing. ItsGMRalternative provides noticeable space
savings in conjunction with an OPS ordering at the cost of performance degradation.

• Our study of the impact of alternative triples orderings, as well as the proposedGMR-based index,
provides a full set of flexible configurations to exploit those space/performance tradeoffs required
by particular solutions.

• The demonstrated scalability in size and performance makes out indexes good candidates to take
part of hybrid stores in-memory/disk in order to minimize I/O transactions.
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Querying HDT-encoded Datasets
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HDTFocusing on Querying (HDT-FoQ)

As we have motivated in the previous chapters, anHDT-encoded dataset can be directly accessed once its
components are loaded into the memory hierarchy. Part III and IV of this thesis provided compact dictio-
nary and triples components both for exchanging, as well as enhanced triple indexes built at consumption
time. Thus, the next step was obvious: the integration of both research branches into an integrated pro-
posal for RDF consumption.

This part of the thesis simply presents this integration, the so-calledHDTFocusing on Querying
(HDT-FoQ). In plain words,HDT-FoQ is the result of post-processingHDT for RDF consumption
(Mart́ınez-Prieto, Arias, & Ferńandez, 2012).

This chapter briefly presents some minor remarks on this integration (§15.1), as most of the work
involves the development of the components described in the previous partsof this thesis. After these
remarks, we evaluate the Publication-Exchange-Consumption workflow using HDTandHDT-FoQ on a
real-world setup (§15.2). We analyze the performance of each step as well as the overall process and the
query resolution.

15.1 Towards an HDT-FoQ Engine

HDT-FoQ is built, at consumption, on top of the exchangedHDTand exploits the presented dictionary
and triple indexes to allow exchanged RDF to be directly consumed at large scale.

Previous chapters have shown that both dictionary and triples can be tuned carefully by considering
the volume of the datasets and the retrieval velocity needed by specific applications. Nonetheless, we
provide in the following a set of general decisions for post-processingand querying.

15.1.1 HDT-FoQGeneration

HDT-FoQ starts out from the idea of exchangingHDTwith theDcomp dictionary (see Chapter10) and
the Bitmap Triples (see Chapter13). Then, at consumption time, two processes are performed:

• It loadsDcomp into the memory structures required to be functional. That is, it retrieves the data
of all the compressed dictionary partitions inDcomp, and loads them in the appropriated succinct
data structures. Note that theDcomp pointers (ptr) and the language and type indexes (lang and
dtype) have to be incorporated.

• It builds the BTWO∗ enhanced triple indexes. First, the object structure in Bitmap Triples is
scanned to build theO-index. Then, the Wavelet Tree is constructed, deleting the previous predi-
cate stream in Bitmap Triples.

The result is a compact RDF representation optimized to be managed and queried in main memory.
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15.1.2 HDT-FoQQuerying

HDT-FoQinfrastructure enables basic triple patterns to be resolved, in compressedspace, at higher levels
of the hierarchy of memory. Note thatDcomp provides the lookup operations (locate andextract )
whereas BTWO∗ efficiently performs ID-triples retrieval. The conjunction of both components leads to
resolve all SPARQL triples patterns.

Although this kind of queries are massively used in practice (Arias et al., 2011), the SPARQL core
is defined around the concept of Basic Graph Pattern (BGP) and its semantics to build conjunctions,
disjunctions, and optional parts involving more than a single triple pattern. Thus, HDT-FoQ must pro-
vide more advanced query resolution to reach a full SPARQL coverage.At this moment, we focus on
resolving conjunctive queries by using specific implementations of the well-knownmergeandindexjoin
algorithms (Ramakrishnan & Gehrke, 2000). Additional operations and optimizations are relegated to
future work.

BGP resolution. Efficient BGP resolution relies on i) the performance achieved for individual triple
pattern resolution, ii) the efficiency of the join algorithms, and iii) the optimization strategies used
for triple pattern reordering within the BGP. Query optimization is orthogonal toRDF retrieval, thus
HDT-FoQ could take advantage of any existing technique within the state of the art. In thefollowing,
we provide insights into efficient join implementations on top ofHDT-FoQ triple pattern resolution.

Merge and Index joins can be directly resolved inHDT-FoQ. Merge join is used when the
results of both triple patterns are sorted by the join variable. It is worth notingthat triple pattern results
are given in the order provided by the index used (see Table13.4). If the results of one triple pattern are
not sorted by the join variable,index join can always be performed. It first retrieves all results for
the join variable in one triple pattern and replaces them in the other one.

In our HDT-FoQ implementation (evaluated in Section15.2), we follow a simple approach and our
algorithm always performs index join. To do so, we first resolve the less expensive pattern, in terms of
the expected number of results, substituting the join variable by the obtained values, and continue with
the rest of the TPs. As we show below, the BTWO∗ indexes allow to obtain an expected number of
results efficiently:

• (i,v,v) or (i,j,v) : we pre-process the triple pattern making use offindPredicate(i)
Bitmap Triples functionality (see Section13.1.2). The range of positions inSp indicates the ex-
pected object results.

• (v,v,k) or (v,j,k) : we pre-process the triple pattern by means ofoccsObj operation of
theOP-S index (see Section13.2.2). If the predicate is given, in (v,j,k), we restrict the number of
expected results to the number of predicate-object pairs.

• (i,v,k) : this is the less tight estimation, we estimate it as (i,v,v). Nonetheless, note that his
estimation should be very close to the real value, if we consider the results ofour structural metrics;
the out- and in-degrees were comparable to their corresponding direct degrees, stating that if a
subject and an object are related, only one predicate brings these nodes together, on average (see
results in Section4.3.4).

• (v,j,v) : due to the high Wavelet Tree costs, we store an histogram with the number oftriples
for each predicate beforehand, accessing it when deciding for the less expensive pattern. The size
of this histogram is depreciable.

As mentioned, there is room for other optimizations on top ofHDT-FoQ, but the presented approach
sets the basis of BGP resolution and, thus, full SPARQL support.
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Dataset Original size gzip HDT HDT+gzip

2011 Australian Census 52 1.46 1.57 0.35
Jamendo 144 8.41 14.71 6.17
AEMET 726 18.67 47.50 9.50
Dbtune 9,566 1,074.79 662.94 259.73

2000 US Census 21,796 1,007.79 813.85 209.44
Dbpedia 3-8 63,053 5,049.22 6,792.55 2,767.91

Table 15.1: Compressed sizes (MB).

15.2 Experimental Evaluation

This section analyzes the Publication-Exchange-Consumption workflow. The setup is similar to the
configuration presented in Chapter7: thedata publisher is implemented on a powerful computational
configuration whereas theconsumer is slightly more limited (see Section7.4 for complete details). In
addition, we consider here a third involved agent, the network:

• Thenetwork is regarded as an ideal communication channel for a fair comparison. It isconsidered
free of errors and any other external interference. We assume a transmission speed of 2Mbyte/s.

We make use of the corpora we are employing in the rest of the thesis, described in Section4.2. As
usual, we report “user” times in all experiments. TheHDT-FoQ prototype is also developed in C++,
compiled usingg++-4.6.1 -O3 -m64 and is publicly available athttp://www.rdfhdt.org .

We first analyze the impact of usingHDTas a basis for publication, exchange and consumption within
the studied workflow, and compare its performance with respect to traditionalmethods currently used in
each process. Then, we focus on studying the performance ofHDT-FoQ as the querying infrastructure
for SPARQL: we measure response times for triple pattern and join resolution.

15.2.1 Analyzing the Publication-Exchange-Consumption Workflow

Our analysis always considers that the publication is a one-time process (performed only once), whereas
exchanging and preprocessing costs are paid each time that any consumer retrieves the published dataset.
The publication policy affects the size of the datasets and, thus, i) the time for exchange but also ii) the
decompression time, as this should be the initial consumption step when traditionalcompression is used
for publication. We analyze the use a gzip compression as it reported goodcompression ratios in our
previous evaluation (see Section7.4.1) while providing the best size/time tradeoff.

We assume that the publication process begins with the dataset already serialized. Thus, gzip-based
publication only considers the compression time, whereas processes based onHDTcomprise the times
required for generating theHDTrepresentation (always at publisher) and its subsequent gzip compression
(to obtain higher compression ratios). For theHDTdictionary, we make use of theD(Q)

comp configuration,
optimized for querying (see Section10.5). The triples are encoded in Bitmap Triples (see Chapter13).

Table15.2shows the time used for publication in the data provider:gzip is the faster choice and
largely outperforms theHDT-based publication. Nevertheless, remember that this process is only per-
formed once, hence size is a more important factor due to its influence on the subsequent processes.
The publication size is drawn in Table15.1, showing thatHDT+gzip is the best choice. It achieves
highly-compressed representations. For instance,HDT+gzip takes 1.8 times less space thangzip for
Dbpedia and less than 3 times averaging all datasets. This spatial improvement determines the subse-
quent exchange and decompression (for consumption) times as shown in Tables15.3and15.4.

In turn, the combination ofHDTandgzip excels in exchange due to its high compressibility. Its
transmission costs are clearly smaller than the other alternatives, being a noticeable saving in the largest
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datasets:HDT+gzip saves 1141 seconds (19 minutes) downloadingDbpedia and 399 seconds (almost
7 minutes) for the2000 US Census . Moreover, thanks to its compressibility,HDT+gzip is also more
efficient at decompression than universal compression over plain RDF(see Table15.3). Note thatHDT
(not gzipped) does not need decompression, hence the 0-second column in Table15.3.

Thus,HDT-based publication and its subsequent compression arises as the most efficient choice for
exchanging RDF within the Web of Data.

Dataset gzip HDT HDT+gzip

2011 Australian Census 0.73 2.19 2.25
Jamendo 1.65 12.18 12.93
AEMET 5.66 47.79 49.81
Dbtune 142.33 512.12 536.88

2000 US Census 201.66 990.41 1,012.51
Dbpedia 3-8 861.61 7,209.55 7,521.63

Table 15.2: Publication times (seconds).

Dataset gzip HDT HDT+gzip

2011 Australian Census 0.73 0.79 0.18
Jamendo 4.21 7.36 3.09
AEMET 9.34 23.75 4.75
Dbtune 537.39 331.49 129.87

2000 US Census 503.90 406.93 104.72
Dbpedia 3-8 2,524.61 3,396.28 1,383.96

Table 15.3: Exchange times (seconds).

Dataset gzip HDT HDT+gzip

2011 Australian Census 0.18 0.00 0.01
Jamendo 0.52 0.00 0.13
AEMET 2.29 0.00 0.36
Dbtune 87.27 0.00 4.46

2000 US Census 165.70 0.00 4.94
Dbpedia 3-8 540.81 0.00 61.64

Table 15.4: Decompression times (seconds).

Dataset Virtuoso RDF3X HDT-FoQ

2011 Australian Census 1.53 2.45 0.11
Jamendo 4.88 8.84 0.28
AEMET 18.98 33.65 0.87
Dbtune 324.46 846.57 16.27

2000 US Census 699.00 1,977.60 29.52
Dbpedia 3-8 12,900.00 10,712.00 54.83

Table 15.5: Indexing times (seconds).
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Dataset gzip->RDF3x gzip->Virtuoso HDT+gzip->HDT-FoQ

2011 Australian Census 3.36 2.44 0.29
Jamendo 13.56 9.60 3.50
AEMET 45.28 30.60 5.98
Dbtune 1,471.23 949.13 150.60

2000 US Census 2,647.20 1,368.60 139.18
Dbpedia 3-8 13,777.42 15,965.42 1,500.43

Table 15.6: Overall times for exchanging+decompressing+indexing (seconds).

The next step focuses on making the exchanged RDF datasets queryablefor consumption. As stated,
the traditional process relies on indexing the plain RDF through any RDF store. We test this approach
with two systems:Virtuoso 7 (relational solution) andRDF3X (multi-indexing solution). These
solutions are reviewed in Section12.2. We compare their performance againstHDT-FoQ, which builds
additional structures on theHDT-serialized datasets previously exchanged.

Table 15.5 compares these times. As can be seen,HDT-FoQ excels for all datasets:HDT-FoQ
indexing time is at least one order of magnitude faster than that obtained for the other techniques. For
Dbpedia, HDT-FoQ loads in less than a minute, whereas Virtuoso and RDF3X performs in the range of
3 hours. This demonstrates howHDT-FoQ leverages the binaryHDTrepresentation to efficiently create
its additional indexes and make RDF quickly queryable. This fact also shows that we successfully reduce
the computation required by the consumer to make queryable RDF obtained withinthe Web of Data.

Overall Performance. We analyze, in the following, the time of the overall process for a consumer.
Note that the publication process is decoupled from this analysis because itis performed only once, and
its cost is attributed to the data provider. Thus, we consider the times for exchanging and consumption.
These times are shown in Table15.6, which compares the time needed for a conventional implementa-
tion against theHDTdriven approach. In the traditional approach, the RDF is exchanged ingzip, decom-
pressed at consumption and indexing with RDF3X or Virtuoso. WithHDT, we takeHDT-gzipped datasets
for exchanging and the subsequent fast decompression andHDT-FoQgeneration at consumption.

As can be seen, this workflow is completed faster using theHDTdriven approach. In particular,
theHDTsolution finishes the workflow a mean of 7 and 10 times faster, on average, than Virtuoso and
RDF3X respectively. This states that the consumer can start using the datain a shorter time (7-10 times
faster on average), but also with a more limited computational configuration.

15.2.2 HDT-FoQ in Consumption: Performance for SPARQL Querying

Once the consumer has at his disposal theHDT-FoQ infrastructure, we study the performance of our
HDT-FoQproposal as the basis for SPARQL querying. We first show the spatial needs ofHDT-FoQ to
be efficiently loaded in the consumer configuration. Then, we measure the performance of triple pattern
resolution, expecting good results on the basis of the triple indexes andDcomp dictionary (see Chapters
13 and10). Additionally, we test our basic join query resolution, presented in Section15.1.2. Our main
goal is to show theHDT-FoQefficiency for RDF retrieval, but also to envision the potential for joins and
thus to demonstrate its capabilities for SPARQL resolution on top ofHDT-FoQ. We compare our results
with respect to the indexing systems presented above, Virtuoso and RDF3X.

Table15.7 summarizes the sizes of the indexes of each studied solution. The rightmost columns,
HDTandHDT-FoQ respectively, show the size of the originalHDTrepresentation (after decompression)
and the resultant in-memory configuration built on top of it. It is worth remembering that the figures
reported forHDT-FoQalso include the overhead required for managing it in main memory. In turn, we
emphasize that the sizes reported forRDF3XandVirtuoso are in-disk figures.
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Dataset Original Size (MB) Virtuoso RDF3X HDT HDT-FoQ

2011 Australian Census 52 38.46% 27.91% 3.02% 4.96%
Jamendo 144 109.72% 66.15% 10.22% 12.31%
AEMET 726 65.33% 33.67% 6.55% 8.07%
Dbtune 9,566 41.48% 43.13% 6.93% 9.16%

2000 US Census 21,796 25.40% 30.32% 3.73% 6.39%
Dbpedia 3-8 63,053 73.91% 48.46% 10.77% 13.36%

MEAN - 59.05% 41.61% 6.87% 9.04%

Table 15.7: Indexing sizes (% over the original).
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Figure 15.1:HDT-FOQTP query performance inDbtune.

These results placeHDT-FoQ as the most compact index in this evaluation. Note that we have
shown, in the evaluation in Section13.3.3, that k2-triples was the most compressed solution for RDF
triple indexing. However, it performed significant slower thanHDT-FoQ, and it lacks of a functional
dictionary, hence it was not a potential candidate, at this moment, for SPARQL evaluation.

As can be seen in Table15.7, HDT-FoQ takes a mean of 39% of extra space on top ofHDTrepre-
sentations, and around 9% the original size of the dataset (in N-Triples).In summary, one could see that
HDT-FoQ excels in size: the consumer can manage more than 431 million triples (inDbpedia) using
HDT-FoQ, sizing slightly more than 8GB in memory.

Finally, query performance is evaluated overDbtuneand the2000 US Census. For each one, we
design a testbed of randomly generated queries which covers the entire spectrum of triple patterns and
joins. We consider5000 random triple patterns of each type ((?S,P,?O) is limited by the number of
different predicates). To test conjunctive queries, we split joins into Subject-Subject (SS), Object-Object
(OO) and Subject-Object (SO) categories. These represent the most used variants in which the variable
of the join appears (Arias et al., 2011). For each category, we generate1000 random queries with the
appropriate constant values in the non-join positions. The join variable is theselected projection,i.e. the
expected result of the query.

Querying times are obtained by running 5 independent executions of the testbed and averaging total
user times. We compareHDT-FoQagainst RDF3X and Virtuoso in a warm scenario (we run 5 previous
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Figure 15.2:HDT-FOQTP query performance in the2000 US Census.

executions before measuring time).
Figures15.1and15.2show the triple pattern resolution time inDbtuneand the2000 US Censusre-

spectively. It is worth noting thatHDT-FoQexcels for almost every individual triple pattern. It speeds-up
their resolution up to 2 orders of magnitude, only losing performance in (V,p,V), in which a logarithmic
cost is paid for accessing predicates in the Wavelet Tree. Even in such case, only RDF3X performs faster
thanHDT-FoQ in both datasets.

The analysis of join performance is based on the results reported in Figures 15.3and15.4. These
results show that i)HDT-FoQ is faster than RDF3X for the three considered categories of two-ways
joins, in both datasets. In fact, it clearly outperforms RDF3X resolution, being a mean of 8 times faster.
This difference is slightly reduced in SS joins: as the join variable is in the subject position, all accesses
are by object, and thus the potential walks over the Wavelet Tree are penalized. In contrast, ii)HDT-FoQ
is slower than Virtuoso (version 7) in joins. AlthoughHDT-FoQ is the most efficient choice for triple
pattern resolution, the join queries in Virtuoso are clearly optimized. Nonetheless, optimized join algo-
rithms implemented on top ofHDT-FoQwould allow it to compete fairly in this latter case by leveraging
HDT-FoQperformance for triple pattern resolution.
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Figure 15.3:HDT-FOQjoin performance inDbtune.
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Thesis Summary





Maybe some day you forget what it’s like
to be human and maybe then, it’s ok.

Mystic River (2003) 16
Conclusions and Future Work

This chapter concludes summarizing the most important contributions of this thesis (§16.1) as well as
devising future work (§16.2). Note that detailed discussions are also provided in the final chapters of
each part of the thesis (Chapters5, 8, 11and14).

16.1 Summary of Contributions

This thesis presents basic foundations for Big Semantic Data management. First, we trace a route from
the current data deluge, the concept of Big Data and the need of machine-processable semantics on the
WWW. The Resource Description Framework (RDF) and the Web of (Linked) Data naturally emerge in
this well-grounded scenario. The former, RDF, is the natural data model for semantic data, combining
the flexibility of semantic networks with a graph data structure that makes it an excellent choice for
describing metadata at Web Scale. The latter, the Web of (Linked) Data, provides a set of rules to publish
and link Big Semantic Data.

Nonetheless, the Web of Data suffers from diverse scalability problems when moving to a RDF
data-intense processing era. We justify the different and various management problems arising in Big Se-
mantic Data by characterizing their main stakeholder. Then, we define a commonworkflow Publication-
Exchange-Consumption, existing in most applications in the Web of Data. Traditional verbose RDF
formats remain as one of the main bottlenecks at exchanging and post-processing. Inherent scalability
drawbacks of huge RDF graphs discourage their consumption due to the space they take up, the powerful
resources and the large time required to process them.

This thesis addresses these problems i) studying the underlying RDF structure essence, ii) proposing
a novel RDF binary format (HDT) iii) giving compact RDF dictionaries and iv) succinct triple structures
which can be efficiently serialized for exchanging and can be enhancedwith additional indexes to be
queried at consumption without decompression.

We propose and define novel metrics characterizing real-world RDF data. We provide a toolkit of
parameters determining common and particular features in RDF modeling. Thesemetrics are used in
the thesis to finely parametrize our proposed indexes. We hope they becomea useful handbook when
developing or optimizing any kind of semantic data structures.

The scalability problems arising to the current state-of-the-art managementsolutions within this sce-
nario set the basis of our integrated proposalHDT. HDTis designed as a binary RDF format to fulfill the
requirements of portability (from and to other formats), compact ability, parsing efficiency (readiness for
post-processing) and direct access to any piece of data in the dataset. We detail the design ofHDTcom-
ponents (Header, Dictionary and Triples), their different operations and intended use. We also instantiate
a concrete practical deployment ofHDTfor publication and exchanging and we develop anRDF/HDT
syntax specification.

Next, we focus on optimizing both dictionary and triples components, with efficient consumption in
mind. We first address compressed representations for RDF dictionaries, adapting existing techniques for
compressed string dictionaries. The proposed solution, a novel RDF dictionary calledDcomp, achieves
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the best compression ratios in the experimentation. Besides, its space/time can be finely tuned, outper-
forming the lookup performance of traditional approaches. Moreover,the organization of subdictionaries
in Dcomp and itsregexresolution features open up further optimizations for filter resolution.

Regarding the RDF structure encoded in the triples component, we focus onboosting its navegability
and ulterior consumption processes. To do so, we first propose a novel triple organization and encoding
called Bitmap Triples: it sees the graph as a forest of trees and codifies its structure in two correlated
bitsequences. This decision improves size but, more important, allows succinct data structures to operate
in the encoded structure.

We argue thatHDT-encoded datasets can be directly consumed within the presented workflow. Thus,
we show that novel indexes, on the basis of succinct data structures, can be created once the different
components are loaded into the memory hierarchy at the consumer. This allowsto provide a compressed,
in-memory solution which resolves all kind of SPARQL triple patterns. Moreover, the final configuration
of triple indexes at consumer, called BTWO∗, is perfectly described algorithmically, and the costs were
clearly detailed with the metrics proposed. Our experimentation shows that, in general, our approach
BTWO∗ reports the best overall performance for RDF retrieval. We also present different variants (in
triples ordering and alternative indexes) to provide a complete set of configurations exploiting space/per-
formance tradeoffs.

Finally, we integrate theDcomp dictionary in the core ofHDT-based solutions, and we consider the
creation of the BTWO∗ indexes at consumption. This compact infrastructure, calledHDT-FoQ (HDT
Focused on Querying) is evaluated toward the traditional combination of universal compression (for
exchanging) and RDF indexing of the plain RDF (for consumption).

Experiments show howHDTexcels at almost every stage of the Publication-Exchange-Consumption
workflow. Experiments reports that the publisher could spend a bit more time toencode the Big Semantic
dataset inHDT, but in return, this hugely favours the consumption; consumer is able to exchange it
three times faster (on average), and, more important, the indexing time is largelyreduced to just a few
seconds for huge datasets with a limited configuration of resources. Therefore, the time since a machine
or human client discovers the dataset until she is ready to start querying itscontent is reduced up to 19
times by usingHDTinstead of the traditional approaches (8.66 times on average). Furthermore, the query
performance is very competitive compared to state-of-the-art RDF stores; the aggressive size reduction
allows to operate a vast amount of triples in main memory, avoiding slow I/O transferences.HDT-FoQ
excels in triple pattern resolution and remain competitive in basic join resolution, setting the base of an
HDT-based store serving SPARQL.

In short,HDT-based solutions arises as the most efficient choice for publication and exchange of Big
Semantic Data, and set the basis of optimal consumption in the Web of Data.

16.2 Future Work

These results open up interesting issues for future work. We should work on improving predicate-based
retrieval because it reports the less-competitive performance. Our on-going work relies on the optimiza-
tion of the predicate index by tuning the trade-off between access time and spatial needs. In addition,
we plan to optimize our join algorithms withSideways Information Passing(SIP) mechanisms, proposed
by Neumann and Weikum(2009). SIP is about passing on-the-fly information between both TPs, hence
the join is interactively evaluated without materialization of intermediate results. Webelieve that our
efficient resolution of TPs as well as early cardinality estimations can perfectly fit the SIP mechanism.

In parallel, there are several areas whereHDTcan be further exploited. We foresee a huge potential
of HDTto support many aspects of the workflow Publication-Exchange-Consumption. HDT-based tech-
nologies can emerge to provide supporting tools for both publishers and consumers. For instance a very
useful tool for a publisher is setting up a SPARQL endpoint on top of anHDTfile. As the experiments
show,HDT-FoQ is very competitive on queries, but there is still plenty of room for SPARQL optimiza-
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tion, by leveraging efficient resolution of triple patterns, joins and query planning. Another useful tool
for publishers is configuring a dereferenceable URI materialization froma givenHDT. Here the experi-
ments also show that performance will be very high becauseHDT-FoQ is really fast on queries with a
fixed RDF subject.

Finally, although the use of succinct data structures allows more data to be managed in the main
memory, it could still remain excessive for consumers with limited memory. Under this scenario, we
devise an evolution ofHDT-FoQ to perform as an in-memory/on-disk system providing dynamic data
management,i.e., efficient insertion, updating and deletion of triples at consumption. In this sense, we
works on a particular architecture for Big Semantic Data management in real-time. Our initial proposal
is called SOLID (Cuesta, Mart́ınez-Prieto, & Ferńandez, 2013). This tiered architecture separates the
complexities of Big Semantic Data management from their real-time data generation and consumption.
Whereas the Big Semantic Data can be stored followingHDTand indexed asHDT-FoQ, the dynamics
of real-time are addressed using NoSQL technology. Two additional layers are required to integrate
both worlds i) when resolving questions, as both novel and historic data should be queried and their
results have to be integrated and ii) when merging, at a given moment, the real-time data with theHDT
information (HDT-FoQ indexes must be rebuilt as well). We hope this architecture to fully accomplish
the requirements of Big Semantic management in most practical scenarios.
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– Mario Arias, Javier D. Ferńandez, Miguel A. Mart́ınez-Prieto. Aplicaciones Semánticas
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Summary (in Spanish)

B.1 Hip ótesis y Objetivos

El actual estado del arte confirma la necesidad de disponer de una representacíon binaria de RDF, con
el objetivo de reducir los altos niveles de verbosidad/redundancia y lasbajas capacidades operativas
actuales de los conjuntos de datos. Anivel f́ısico, dicho formato binario de representación debe facilitar
que el procesamiento, el manejo y el intercambio de información (tanto entre sistemas como intercambio
memoria-disco) sean eficientes a gran escala. Por ello, dicho formato debeminimizar la redundancia
al tiempo que garantice lamodularidadde la representación. A nivel operacional, las caracterı́sticas
esperadas incluyen un soporte nativo para verificar la simple existencia de sentencias (lookups) aśı como
la resolucíon de otros patrones simples de consulta.

Nuestra hiṕotesis, por tanto, puede resumirse en:

Dado un conjunto de datos RDF, potencialmente grande, un formato de RDF, binario y ligero,
puede codificar los datos aprovechando la estructura sesgada delos grafos RDF, con el objetivo
de conseguir (i) un notable ahorro de espacio, (ii) una publicación centrada en los datos, f́acil y
modular, aśı como (iii) soportar operaciones para la recuperacíon de datos.

Con esta hiṕotesis, proclamamos la necesidad de avanzar hacia sintaxis de RDF centradas en los
datos. Proponemos un formato binario de serialización, HDT, que organiza la información y usa la
estructura sesgada de los grafos RDF (Ding & Finin, 2006; Oren et al., 2008) para conseguir notables
ahorros de espacio. Presentamos, a continuación, los principales requisitos de un formato de serialización
RDF, que seŕan por tanto los objetivos de nuestra propuesta:

• Deber ser generado eficientemente desde otro formato RDF y serigualmente sencilla su con-
versión a otras representaciones. Por ejemplo, un publicador de datos que mantiene la infor-
macíon en un almaćen de datos seḿanticos debe ser capaz de realizar un volcado eficiente a un
formato de intercambio optimizado para tal operación. De igual modo, el proceso de conversión
a otro formato (potencialmente binario) puede completarse de manera más eficaz si el formato de
serializacíon permite un recorrido de los datos eficiente.

• Debe basarse en un esquema de publicación claro. El formato debe mantener un esquema
est́andar que incluya metadatos acerca de la publicación y su contenido, junto con información
relevante para recuperar el conjunto de datos.

• Debe ser eficiente en t́erminos de espacio. El formato de intercambio deberı́a generar tamãnos
tan reducidos como fuera posible, introduciendo para ello nociones de compresíon de datos. El
hecho de reducir tamaño no śolo minimiza los costes de ancho de banda para el servidor, sino que
tambíen ahorra tiempo de espera para el consumidor que desea recuperar el conjunto de datos para
cualquier tipo de consumo.
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• Debe estar preparado para su posterior procesamiento. Un caso de uso tı́pico en casi cualquier
tarea de procesamiento consiste en ejecutar una serie de lecturas secuenciales sentencia a sentencia.
Aunque pueda parecer trivial, esta lectura, claramente, consume una ingente cantidad de tiempo
cuando procesemos grandes volúmenes de datos en el consumidor.

• Debeŕıa ser capaz de localizar ciertos datos concretos dentro del conjunto de datos completo.
Ante tales voĺumenes de datos, serı́a ciertamente deseable poder evitar realizar una lectura com-
pleta de todo el conjunto de datos para localizarúnicamente un dato concreto. Para ello, el formato
de serializacíon debe contener las claves necesarias para permitir la localización de datos concretos.
En particular, un formato de serialización debeŕıa ser capaz de resolver la mayorı́a de las combi-
naciones de patrones de sentencias SPARQL (combinaciones posibles deconstantes o variables
en sujetos, predicados u objetos). Por ejemplo, un patrón t́ıpico es proveer,́unicamente, un sujeto
concreto, estableciendo como resultado esperado las variables predicado y objeto. En este caso, se
pretende localizar todas las sentencias que hablan de un sujeto especı́fico1. En otras palabras, este
requisito contiene una intención subyacente; los datos deben codificarse de tal manera que “los
datos sean elı́ndice”.

B.2 Metodologı́a

Para conseguir los objetivos perseguidos, se ha llevado a cabo una metodoloǵıa de investigación en cuatro
etapas ćıclicas. Se ha realizado una iteración completa por ãno. A continuacíon resumimos los pasos
dados en cada una de ellas a lo largo de las distintas fases.

1. Estudio del contexto y las soluciones existentes. Se estudío los formatos RDF existentes, las posi-
bilidades de indexación y consulta. Para ello, se estudian en profundidad los procesos existentes
en la Web de Datos, identificando un flujo de datos común de Publicacíon-Intercambio-Consumo,
y se centra la investigación en abordar esta problemática.

2. Deteccíon de problemas. En esta etapa se detectó que el rendimiento del flujo de datos anterior se
encuentra muy influenciado por i) el formato de intercambio de datos y ii) losı́ndices existentes de
RDF. En primer lugar, se detectó que los formatos existentes de RDF sobrecargan de verbosidad
a la representación, siendo inmanejables para grandes volúmenes de datos. Del mismo modo,
la indexacíon y consulta de RDF se basan en estructuras auxiliares que no aprovechan todas las
caracteŕısticas de la esencia de RDF como grafo etiquetado, y su distribución sesgada.

3. Propuesta de solución. En primer lugar, se estudia la compresibilidad de RDF, proponiendo una
separacíon en Diccionario y Triples y una compresión espećıfica para cada componente. Se de-
muestra que mejora sustancialmente a los compresores existentes. En segundo lugar, se propone
una estructura de representación HDTóptima para su publicación e intercambio eficientes. Dicha
representación no śolo permite mejorar la compresibilidad (por tanto optimizando el intercam-
bio) sino que proporciona las herramientas adecuadas para la consulta básica de RDF sin grandes
estructuras auxiliares. Por ello, a continuación se propone usarHDTpara el consumo de datos, apli-
cando t́ecnicas de estructuras de datos compactas que permiten consultar los datossin necesidad
de descompresión. Se proponen dosı́ndices complementarios creados en el consumidor de datos
para poder realizar todas las operaciones básicas de consulta requeridas en SPARQL, el lenguaje
est́andar para consumir RDF.

4. Desarrollar la nueva solución. En esta etapa se implementa la propuesta existente. En concreto
se formaliza el estándarHDT, y se implementan sus componentes en un prototipo de herramienta

1Nótese que esta consulta puede emplearse paradereferenciaruna entidad siguiendo el tercero de los principios de Linked
Data.
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HDTpara dar cabida a la creación deı́ndices en el consumidor. Ası́, se implementa un compo-
nente de diccionario comprimido y dosı́ndices complementarios para los triples: el primero de los
ı́ndices se implementa sobre una propuesta deárbol balanceado mientras que el segundo es una
lista ordenada compacta de referencias objeto.

5. Evaluar la nueva solución. Finalmente, se muestra como la solución mejora las propuestas exis-
tentes, y se evalúan las propuestas con artı́culos presentados ante la comunidad cientı́fica nacional
e internacional.

B.3 Principales Resultados del Trabajo

La principal contribucíon de esta tesis es un formato novedoso para representar RDF de manerabinaria,
denominadoHDT: Header-Dictionary-Triples, que aborda la publicación, intercambio y consumo (in-
dexacíon/consulta) de RDF a gran escala.HDTrepresenta la información de un conjunto de datos RDF
mediante tres componentes optimizados:

• La cabecera (Header), incluye todo tipo de metadatos para describir el (potencialmente grande)
conjunto de datos seḿanticos.

• El diccionario (Dictionary), organiza todos los identificadores (IDs) en el grafo RDF. Provee un
cat́alogo de las entidades de información en el grafo RDF, con altos niveles de compresión.

• La estructura de sentencias RDF (Triples), comprende la estructura pura del grafo RDF subya-
cente, mitigando el ruido producido por los términos textuales, en su mayorı́a de gran longitud y
ampliamente repetidos.

Junto con varios artı́culos y publicaciones cientı́ficas importantes que se detallan en el anexo de pub-
licaciones de la tesis (ver AnexoA), cabe mencionar especialmente que la propuesta de formato estándar
HDTfue presentada al Consorcio de la Web (W3C) en calidad de “Member Submission”. Esta propuesta
fue apoyada por ocho socios internacionales, siendo aceptada en Mayo de 2011 (Ferńandez et al., 2011),
lo que representó un hito por el reconocimiento global de la comunidad cientı́fica y t́ecnica en la Web
Seḿantica.

Otras contribuciones especı́ficas de la tesis pueden resumirse en:

1. Marco téorico de la estructura de RDF. En primer lugar, abordamos la problemática de compren-
der la estructura real de los grandes grafos RDF. Para ello, llevamos a cabo un estudio detallado
de estos grafos, revelando su estructura y composición subyacentes. El principal objetivo no es
otro que poder aislar caracterı́sticas comunes que nos permitan caracterizar de manera objetiva
los datos RDF del mundo real. Esta caracterización puede ser de utilidad a la hora de realizar
mejores disẽnos de conjuntos de datos, ası́ como en el desarrollo de estructuras de datos,ı́ndices y
compresores de RDF ḿas eficientes.

Con este objetivo en mente, proponemos parámetros especı́ficos para caracterizar los datos RDF.
Nos centramos, especı́ficamente, en aflorar la redundancia de cada conjunto, ası́ como sus posibil-
idades de compresión. Dichos paŕametros han sido evaluados en conjuntos de datos reales.

2. Especificacíon de RDF binario. Baśandonos en nuestro análisis previo de los principales prob-
lemas de escalabilidad en el manejo de grandes volúmenes de datos semánticos, disẽnamos, anal-
izamos, desarrollamos y evaluamos el mencionado formato binario de RDF, denominadoHDT, que
da respuesta a nuestra hipótesis.
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3. Diccionarios RDF comprimidos y funcionales. Sobre la base del diccionarioHDTdefinido pre-
viamente, proponemos técnicas especı́ficas para diccionarios RDF. En particular, abordamos el
disẽno de diccionarios RDF altamente comprimidos y que, al mismo tiempo, nos proporcionen
una resolucíon de consultas eficiente. Para ello, adaptamos técnicas existentes en el campo de dic-
cionarios comprimidos de cadenas. La solución propuesta, un nuevo diccionario RDF denominado
Dcomp, se demuestra sobresaliente en espacio (consigue las mejores tasas de compresíon en nues-
tra evaluacíon) y en rendimiento (frente a diccionarios tradicionales del estado del arte). Adeḿas,
su rango de funcionamiento, en término de espacio/tiempo puede ser ajustado de acuerdo a las
necesidades particulares, gracias a la organización en subdiccionarios que realizaDcomp. Final-
mente, se propone una funcionalidad más avanzada para ayudar a resolver filtros SPARQL desde
el propio diccionario.

4. Índices compactos de la estructura de sentencias RDF. Abordamos la creación y uso déındices
compactos de la estructura del grafo codificado enHDT. Disẽnamos implementaciones prácticas
que emplean estructuras de datos sucintas y ciertas nociones de compresión. En primer lugar, con-
sideramos una nueva estructura de grafo para intercambio, denominadaBitmap Triples(BT) que
codifica el grafo como un bosque deárboles, uno por cada sujeto y sus relaciones. A continuación,
proponemośındices ligeros que el propio consumidor puede construir sobre la información HDT
intercambiada. La configuración final deı́ndices de la estructura del grafo (en el consumidor) se
denomina BTWO∗. Describimos en detalle los algoritmos para la resolución de patrones de senten-
cias a trav́es de estośındices y, áun más importante, detallamos los costes operacionales a través
de las ḿetricas propuestas previamente. Todas las configuraciones han sido estudiadas y evaluadas
en escenarios reales.

5. Implementacíon práctica de RDF binario. Una vez se han asentado los objetivos sobre el dic-
cionario y la estructura del grafo, abordamos la integración eficiente de ambos componentes.
Consideramos, por tanto, queHDTse serializa con sus componentes en formatoDcomp, para el
diccionario, y BT, para la estructura del grafo. Sobre ellos, en el consumidor, se cargan las es-
tructuras requeridas para consultarDcomp, y se construyen lośındices BTWO∗. Esta propuesta
se implementa y evalúa frente a otras soluciones existentes en elárea de los almacenes de RDF.
Nuestros experimentos muestran comoHDTsobresale en casi todos los pasos del flujo publicación-
intercambio-consumo, manteniéndose competitivo en la resolución de consultas.
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Mart́ınez-Prieto, M. A., Arias, M., & Ferńandez, J. D. (2012). Exchange and Consumption of Huge RDF
Data. InProc. of ESWC(pp. 437–452).
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