research

Time-Space Trade-Offs for Computing Euclidean Minimum Spanning Trees

Abstract

In the limited-workspace model, we assume that the input of size nn lies in a random access read-only memory. The output has to be reported sequentially, and it cannot be accessed or modified. In addition, there is a read-write workspace of O(s)O(s) words, where s∈{1,…,n}s \in \{1, \dots, n\} is a given parameter. In a time-space trade-off, we are interested in how the running time of an algorithm improves as ss varies from 11 to nn. We present a time-space trade-off for computing the Euclidean minimum spanning tree (EMST) of a set VV of nn sites in the plane. We present an algorithm that computes EMST(V)(V) using O(n3log⁑s/s2)O(n^3\log s /s^2) time and O(s)O(s) words of workspace. Our algorithm uses the fact that EMST(V)(V) is a subgraph of the bounded-degree relative neighborhood graph of VV, and applies Kruskal's MST algorithm on it. To achieve this with limited workspace, we introduce a compact representation of planar graphs, called an ss-net which allows us to manipulate its component structure during the execution of the algorithm

    Similar works