

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

SPACE-EFFICIENT REPRESENTATION

OF SEMI-STRUCTURED DOCUMENT

FORMATS UTILIZING SUCCINCT DATA

STRUCTURES

간결한 자료구조를 활용한 반구조화된 문서 형식들의 공간

효율적 표현법

FEBRUARY 2021

DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Junhee Lee

Abstract

Space-efficient Representation of

Semi-structured Document Formats

Utilizing Succinct Data Structures

Junhee Lee

Department of Electrical Engineering

and Computer Science

College of Engineering

The Graduate School

Seoul National University

Numerous big data are generated from a plethora of sources. Most of the

data stored as files contain a non-fixed type of schema, so that the files are

suitable to be maintained as semi-structured document formats. A number of

those formats, such as XML (eXtensible Markup Language), JSON (JavaScript

Object Notation), and YAML (YAML Ain’t Markup Language) are suggested

to sustain hierarchy in the original corpora of data. Several data models struc-

turing the gathered data – including RDF (Resource Description Framework)

– depend on the semi-structured document formats to be serialized and trans-

ferred for future processing.

Since the semi-structured document formats focus on readability and ver-

bosity, redundant space is required to organize and maintain the document.

Even though general-purpose compression schemes are widely used to compact

the documents, applying those algorithms hinder future handling of the corpora,

owing to loss of internal structures.

i

The area of succinct data structures is widely investigated and researched in

theory, to provide answers to the queries while the encoded data occupy space

close to the information-theoretic lower bound. Bit vectors and trees are the

notable succinct data structures. Nevertheless, there were few attempts to apply

the idea of succinct data structures to represent the semi-structured documents

in space-efficient manner.

In this dissertation we propose a unified, space-efficient representation of

various semi-structured document formats. The core functionality of this repre-

sentation is its compactness and query-ability derived from enriched functions

of succinct data structures. Incorporation of (a) bit indexed arrays, (b) succinct

ordinal trees, and (c) compression techniques engineers the compact represen-

tation. We implement this representation in practice, and show by experiments

that construction of this representation decreases the disk usage by up to 60%

while occupying 90% less RAM. We also allow processing a document in partial

manner, to allow processing of larger corpus of big data even in the constrained

environment.

In parallel to establishing the aforementioned compact semi-structured doc-

ument representation, we provide and reinforce some of the existing compression

schemes in this dissertation. We first suggest an idea to encode an array of inte-

gers that is not necessarily sorted. This compaction scheme improves upon the

existing universal code systems, by assistance of succinct bit vector structure.

We show that our suggested algorithm reduces space usage by up to 44% while

consuming 15% less time than the original code system, while the algorithm

additionally supports random access of elements upon the encoded array.

We also reinforce the SBH bitmap index compression algorithm. The main

strength of this scheme is the use of intermediate super-bucket during opera-

tions, giving better performance on querying through a combination of com-

pressed bitmap indexes. Inspired from splits done during the intermediate pro-

cess of the SBH algorithm, we give an improved compression mechanism sup-

ii

porting parallelism that could be utilized in both CPUs and GPUs. We show

by experiments that this CPU parallel processing optimization diminishes com-

pression and decompression times by up to 38% in a 4-core machine without

modifying the bitmap compressed form. For GPUs, the new algorithm gives

48% faster query processing time in the experiments, compared to the previous

existing bitmap index compression schemes.

Keywords: Semi-structured Document Formats, Succinct Data Structures,

Compression Algorithms, Space-efficient Algorithms, Integer Arrays, Bitmap

Indexes, Big Data Processing.

Student Number: 2013-23134

iii

Contents

Abstract i

Contents iv

List of Figures vii

List of Tables x

Chapter 1 Introduction 1

1.1 Contribution . 3

1.2 Organization . 5

Chapter 2 Background 6

2.1 Model of Computation . 6

2.2 Succinct Data Structures . 7

Chapter 3 Space-efficient Representation of Integer Arrays 9

3.1 Introduction . 9

3.2 Preliminaries . 10

3.2.1 Universal Code System 10

3.2.2 Bit Vector . 13

3.3 Algorithm Description . 13

3.3.1 Main Principle . 14

iv

3.3.2 Optimization in the Implementation 16

3.4 Experimental Results . 16

Chapter 4 Space-efficient Parallel Compressed Bitmap Index

Processing 19

4.1 Introduction . 19

4.2 Related Work . 23

4.2.1 Byte-aligned Bitmap Code (BBC) 24

4.2.2 Word-Aligned Hybrid (WAH) 27

4.2.3 WAH-derived Algorithms 28

4.2.4 GPU-based WAH Algorithms 31

4.2.5 Super Byte-aligned Hybrid (SBH) 33

4.3 Parallelizing SBH . 38

4.3.1 CPU Parallelism . 38

4.3.2 GPU Parallelism . 39

4.4 Experimental Results . 40

4.4.1 Plain Version . 41

4.4.2 Parallelized Version . 46

4.4.3 Summary . 49

Chapter 5 Space-efficient Representation of Semi-structured Doc-

ument Formats 50

5.1 Preliminaries . 50

5.1.1 Semi-structured Document Formats 50

5.1.2 Resource Description Framework 57

5.1.3 Succinct Ordinal Tree Representations 60

5.1.4 String Compression Schemes 64

5.2 Representation . 66

5.2.1 Bit String Indexed Array 67

5.2.2 Main Structure . 68

v

5.2.3 Single Document as a Collection of Chunks 72

5.2.4 Supporting Queries . 73

5.3 Experimental Results . 75

5.3.1 Datasets . 76

5.3.2 Construction Time . 78

5.3.3 RAM Usage during Construction 80

5.3.4 Disk Usage and Serialization Time 83

5.3.5 Chunk Division . 83

5.3.6 String Compression . 88

5.3.7 Query Time . 89

Chapter 6 Conclusion 94

Bibliography 95

요약 109

Acknowledgements 111

vi

List of Figures

Figure 4.1 A set of bitmaps in a column City. 20

Figure 4.2 Four cases of BBC header. 25

Figure 4.3 A bit vector with BBC compression process. 27

Figure 4.4 A bit vector with WAH compression process. 28

Figure 4.5 A bit vector with SBH compression process. 34

Figure 4.6 A bit vector with SBH decompression process. 37

Figure 4.7 Tendency of compression with cardinality on synthetic

data (one billion rows). 42

Figure 4.8 Tendency of compression size on synthetic data, along

with the number of rows. 43

Figure 4.9 Tendency of compression time on synthetic data, along

with the number of rows. 44

Figure 4.10 Tendency of query processing time with cardinality on

synthetic data (one billion rows). 45

Figure 4.11 Tendency of query processing time on synthetic data,

along with the number of rows. 46

Figure 4.12 Compression time of synthetic data (one billion rows)

with respect to the number of CPU processes. 47

Figure 4.13 Query processing time of synthetic data (one billion rows)

with respect to the number of CPU processes. 47

vii

Figure 5.1 Example XML document [79]. 52

Figure 5.2 Example JSON document. 55

Figure 5.3 Example YAML document [14]. 57

Figure 5.4 Example RDF/XML document [13]. 59

Figure 5.5 Example RDF/JSON document [39]. 60

Figure 5.6 An ordinal tree with the succinct representations. 64

Figure 5.7 A bit string index built on top of the example heteroge-

neous array A = {2189, 3.141592, true, 322000}. 68

Figure 5.8 Overall encoded representation of the sample JSON from

file Figure 5.2. 71

Figure 5.9 Document tree structure corresponding to the sample

JSON document shown in Figure 5.2 divided into 2 chunks. 72

Figure 5.10 Construction time of the representation compared to dif-

ferent libraries, for synthetic data. 79

Figure 5.11 Relative construction time (with respect to corpus disk

size) of the representation compared to different libraries,

for real world corpora. 80

Figure 5.12 Memory usage of the representation compared to differ-

ent libraries, for synthetic data. 81

Figure 5.13 Relative memory usage of the representation (with re-

spect to corpus disk size) compared to different libraries,

for real world corpora. 82

Figure 5.14 Disk usage of the representation compared to the origi-

nal file size and to gzip, for synthetic data. 84

Figure 5.15 Disk usage of the representation compared to the origi-

nal file size and to gzip, for real world corpora. 85

Figure 5.16 Construction time with string compression enabled. . . . 89

Figure 5.17 Disk usage with string compression enabled. 90

viii

Figure 5.18 Query time of navigational queries compared to different

libraries, for the Twitter corpus. 93

ix

List of Tables

Table 3.1 Application of code system in the synthetic data. 17

Table 3.2 Application of code system in the real data. 17

Table 3.3 Application of code system with different number of par-

titions. 18

Table 4.1 Comparison of synthetic data with cardinality 10 (one

billion rows). 48

Table 4.2 Comparison of synthetic data with cardinality 1,000 (one

billion rows). 48

Table 5.1 Operations on ordinal trees [11]. 61

Table 5.2 Operation details of tree operations in BP and DFUDS

representations [11]. A dash is used to indicate operations

that require additional auxiliary structures. 63

Table 5.3 Encodings of JSON types and respective sizes. 70

Table 5.4 Overview of the real world datasets used in our experiments. 77

Table 5.5 Serialization time of the representation. 85

Table 5.6 Construction time with chunk division enabled. 86

Table 5.7 Memory usage with chunk division enabled. 87

Table 5.8 Disk usage of with chunk division enabled. 87

x

Table 5.9 Query time of existence queries in the SNLI corpus, with-

out bitmap indexes. 90

Table 5.10 Query time of existence queries in the SNLI corpus, with

compressed bitmap indexes. 91

Table 5.11 Query time of navigational queries. Units are in microsec-

onds. 92

xi

Chapter 1

Introduction

Every minute, a plethora of instruments from a variety of areas gather and

accumulate data. It is known that 2.5 quintillion bytes of the data are created

every day [114]. Velocity of data accumulation exceeds that of storage incre-

ment. In other words, tremendous amount of information is produced on a daily

basis, and the storage needed to save this is increasing significantly.

Given the limitations of the situation of available storage, it is becoming

crucial for data to be compressed as much as possible. On the other hand, on the

advent of Big Data, modern systems are still expected to execute operations and

relevant analyses of data efficiently, even on large amounts of data. This requires

functional compression approaches to be adopted, thereby allowing data to be

compactly stored while permitting the efficient execution of operations.

In the real world, data are rarely a large sequence of random numbers, and

real-world string data tend to exhibit foreseeable characteristics, structural reg-

ularities, and often subject to domain constraints. This predictability enables

compression schemes to represent the same information in a space-efficient man-

ner, while still permitting the original data to be retrieved in full. This property

necessitates a new type of compression scheme that allows a set of queries be-

1

ing extracted from encoded data, which in turn differs from general-purpose

compression schemes [117].

A common method for storage and exchange of the data in modern sys-

tems is through data exchange languages. These languages tend to be formats

designed to describe data in ways that permit it to be read, parsed, and un-

derstood by the most diverse set of languages and platforms, decoupling data

from particularities of its processing environment.

Over the course of the years, several data exchange formats were suggested,

including XML (eXtensible Markup Language) [19], JSON (JavaScript Object

Notation) [18], and YAML (YAML Ain’t Markup Language) [14]. Many modern

systems such as CouchDB [4] and MongoDB [32] have reported using JSON or

BSON (Binary JSON) [1] as their native format for data storage and in-memory

representation; while web service APIs – Twitter [104], Facebook, Google [57]

– commonly adopt those formats as their data interchange language for trans-

ferring information between servers and clients.

Nevertheless, to the best of our knowledge, there are only few schemes in the

literature specifically suggested for efficient compression or efficient in-memory

representation of semi-structured documents. Some sets of libraries including

JSONC [26], written in Javascript, focus on the compression of documents trans-

ferred between clients and web service APIs by employing traditional text com-

pression methods. Those sets of encoding libraries do not integrate querying

functionality, so that the entire document needs to be decompressed again for

future analyses.

On the other hand, a separate research area known as succinct data struc-

tures has studied how the data could be compacted in terms of space, while

supporting a set of operations. This research area is initiated by Jacobson [62],

and as of current a plethora of data structures such as indexable dictionar-

ies [93], trees [86, 15], permutations [85], and range minimum queries [51] are

maintained using succinct data structures. We focus on this research area to

2

make semi-structured documents compact, while one can retrieve answers to

the data analyses queries, agreeing upon an initial idea suggested by Rincy and

Rajesh [96].

One notable work to mention is the one by Ottaviano and Grossi [92]: they

proposed a scheme that supports random access to the JSON document stored

on the disk, more efficiently, using a semi-index. The semi-index enables users to

navigate the file by encoding the document structure succinctly. The semi-index

is basically a bit vector in which bits are set for specific locations that separate

the elements. This scheme is feasible since a different separator is employed for

each possible type. At the cost of a space overhead for storing a succinct rep-

resentation of the document tree structure, their semi-index allows for random

access of specific values without having to load the JSON file entirely into the

main memory. Furthermore, the semi-index includes pointers that indicate the

position of the corresponding element in the JSON file stored on disk.

Unfortunately, their representation neither actually compresses the docu-

ment, nor strives to represent the JSON content succinctly in memory, but

rather offers a layer of indirection for accessing the underlying stored data. In

this respect, the total amount of disk space required by their approach is strictly

higher, though not by much, than the original document, as it additionally re-

quires the storage of the semi-index.

These intuitions have led to the research aim of space-efficient representation

of semi-structured document formats utilizing succinct data structures, which

this dissertation.

1.1 Contribution

In this dissertation, we suggest a compact, memory-efficient representation of

semi-structured document formats, and its practical implementation engineered

by leveraging ideas of diverse succinct data structures. Our scheme saves RAM

and disk usage in three aspects of those document formats. First, we model the

3

document structure as an ordinal tree, and encode it through succinct ordinal

tree representations [62, 86, 15]. Second, redundancies in attributes are removed

and the remaining unique strings are stored in a simple contiguous array, which

can be compressed using space-efficient data structures for strings, including

compressed suffix arrays [81, 109, 80]. Lastly, values of the documents are en-

coded compactly and stored in a heterogeneous structure named as bit string

indexed array. Users can store this set of representations, either on RAM or on

the disk. For the RAM and disk representations we allow users to query gen-

eral information of a semi-structured document, without retaining the original

document.

Along with this main contribution, we provide subsidiary implementations

of space-efficient data structures and algorithms whose idea is incorporated onto

the main representation.

• We propose an idea to compress an integer array which needs not be

sorted [71]. This algorithm optimizes Elias Gamma coding system [45], a

type of universal code system, by using a compact bit vector structure [90].

Experiments show that the proposed scheme reduces space usage by up to

44% while consuming 15% less time than the original code system, while

this scheme additionally supports accessing an arbitrary element in the

compressed array without whole decompression.

• We improve SBH, one of the byte-based bitmap index compression algo-

rithms [70]. The core contribution of this algorithm is the existence of

intermediate super-bucket during compression and decompression. This

data structure assists querying through compressed bitmap indexes. In-

spired from splits done during the intermediate process of the SBH al-

gorithm, we give an improved compression mechanism supporting par-

allelism that could be utilized in both CPUs and GPUs. We show by

experiments that this CPU parallel processing optimization diminishes

4

compression and decompression times by up to 38% in a 4-core machine

without modifying the bitmap compressed form. For GPUs, the new al-

gorithm gives 48% faster query processing time in the experiments, com-

pared to the previous existing bitmap index compression schemes.

1.2 Organization

The rest of this dissertation is organized as follows. Chapter 2 introduces basic

concepts used throughout the dissertation. The following three chapters discuss

intermediate space-efficient data structures and algorithms whose idea is uti-

lized in the main representation. Chapter 3 goes over an approach to represent

an array of increasing integers, in compact manner. In Chapter 4 we suggest

and reinforce the bitmap index compression scheme. The overall contribution

of this dissertation – space-efficient representation for semi-structured docu-

ments – is elaborated in Chapter 5. Finally, we re-summarize our contribution

in Chapter 6.

5

Chapter 2

Background

In this chapter we introduce common concepts dealt in the following chapters.

2.1 Model of Computation

Throughout the dissertation we consider the standard word RAM (Random

Access Memory) model [83] as the model of computation. In this model, a

memory cell stores a word of size w. The algorithm can read and write any arbi-

trary cell in the memory, as well as perform arithmetic and boolean operations

in a cell, in O(1) time.

In theoretic point of view, the word size w is set to Θ(log n) bits, where we

use log n to denote log2 n in the entire dissertation. While we focus on practical

performance of the algorithms, we set w to be 64 bits, following the tendency

of modern machines.

Other than the word RAM model, cell probe model [83] and external mem-

ory model [108] are also often considered in literature. Additionally, there exists

more constrained models, such as ROM model and in-place model [27, 66].

6

2.2 Succinct Data Structures

In succinct data structures [63], we strive to solve algorithmic problems by

designing data structures that use amounts of space close to the information-

theoretic lower bound, while still supporting the operations efficiently. One can

think of succinct data structures as an extension of data compression, in which

space is close to the information-theoretic lower bound and queries are efficient.

Succinct data structures for a wide range of fundamental problems have been

designed in the past couple of decades.

One of the fundamental structures employed when devising a new succinct

data structure solution is the bit string. A bit string is a string over the alphabet

Σ = {0, 1}. A bit string by itself has limited use. Although its compactness

provides us a framework upon which information can be concisely represented,

few useful operations can be efficiently performed on raw bit strings. To enhance

its usability, bit strings can be extended in terms of functionality with auxiliary

structures for rank and select operations.

Given a string S of length n over the alphabet Σ, the rank and select

operations are defined as follows:

• rankα(S, i): the number of occurrences of α in the first i positions of S,

for any α ∈ Σ.

• selectα(S, i): the position of the i-th α in S, for any α ∈ Σ.

In the case that S is a bit string and, thus, Σ = {0, 1}, we have the

operations rank0, rank1, select0 and select1. For instance, if S = 110101,

then rank0(S, 4) = 2 and select1(S, 2) = 1. Extensive research has been con-

ducted on succinct implementations of rank and select structures over bit

strings [33, 84, 62, 87]. One can support both operations in O(1) time while

using o(n) additional bits of space.

On the same vein, a second auxiliary structure built around bit strings is

7

the balanced parentheses. This data structure conceptually interprets set bits

(i.e., 1s) and unset bits (i.e., 0s) of a bit string as open and close parentheses,

respectively. When this resulting sequence of opening and closing parentheses

is balanced, it is considered as a balanced parentheses structure.

Just as it was the case with rank and select, the core operations in bal-

anced parentheses over an n length bit string can be performed in constant

time with additional o(n) bits [87]. For convenience we can define rank and

select operations over balanced parentheses bit strings as rankopen(S, i) ≡

rank1(S, i), rankclose(S, i) ≡ rank0(S, i), selectopen(S, i) ≡ select1(S, i), and

selectclose(S, i) ≡ select0(S, i).

8

Chapter 3

Space-efficient Representation of
Integer Arrays

In this chapter we propose a space-efficient representation of integer arrays,

regardless of the sorted-ness of arrays. This work is based on a combined work

of Lee and Satti [71].

3.1 Introduction

Tremendous amounts of numerical data are generated on a daily basis, from

numerous sources. The era of big data has emerged, numerous data are created

every day. Increment of those data is more rapid than that of the storage. In

most of the programming languages, a numeric variable occupies fixed amount

of memory space. For instance, in the C++ programming language, an integer

variable defined as long long type uses 8 bytes of space, regardless of its digits.

To alleviate this circumstance, a plethora of compression algorithms are being

studied.

Intensive amount of studies are done to support fast access to specific el-

ements in the compressed integer array, not requiring decompression but still

9

occupying lesser space than maintaining the ordinary array. It is shown that in-

teger arrays can be compacted using universal lossless compression schemes that

most text compression schemes rely on. Nevertheless, applying those algorithms

eradicates inherent properties of integers and necessitates whole decompression

of the arrays to process even an single element. Therefore, this mechanism is not

appropriate for processing queries operated by accessing an arbitrary location,

extracting the element and performing computations needed.

In this chapter we suggest an alternate, space-efficient representation of Elias

Gamma coding [45] using succinct data structures [90]. We suggest an improved

code system to represent an integer array by utilizing concepts of succinct data

structures. This system is based on a scheme of succinct bit vector that allows

compression of delimiter bit array while supporting access queries in constant

time. Experimental results show that the encoded array in fact uses lower space,

while not sacrificing time efficiency.

3.2 Preliminaries

In this section we briefly describe various universal code systems that the new

scheme is based on, and a succinct data structure supporting operations needed

for the new representation.

3.2.1 Universal Code System

Prefix code is a code system satisfying prefix property. Prefix property indicates

that a code in a code system is not able to be a prefix of any other codes in

the system. By using prefix codes, one can decode any continuous messages

encoded in the code system without existence of the delimiter, which marks

either beginning or ending location of any individual messages.

An universal code is a binary representation of prefix codes storing positive

integers, considering probabilistic distribution. When a ratio between the actual

code length and the ideal code length predicted by the distribution is bounded

10

by the entropy function, universal codes get the maximum performance. Well-

known universal codes include Elias Gamma coding, Elias Delta coding [45]

and Fibonacci coding [53].

Elias Gamma Code

Elias Gamma code for a positive integer x is computed using the following

procedures:

1. Compute N = blog2 xc.

2. Attach N 0s to the code.

3. Attach x in binary form to the code.

By the above operations, it is clear that 2N + 1 = 2 blog2 xc + 1 bits are

needed to represent x.

Elias Delta Code

Elias Delta code for a positive integer x is computed using the following proce-

dures:

1. Compute N = blog2 xc.

2. Encode N + 1 using Elias Gamma code.

3. Attach x in binary form, but without the MSB, to the code.

To represent x in Elias Delta code, N + 2 blog2(N + 1)c + 1 = blog2 xc +

2 blog2(log2 x+ 1)c+ 1 bits are needed.

11

Fibonacci Code

Fibonacci code for a positive integer x is computed using the following proce-

dures:

1. Find the largest Fibonacci number F (i) that is not larger than x. Note

that F (0) = 1, F (1) = 2, F (n) = F (n − 1) + F (n − 2) (n ≥ 2). Let

remainder be x− F (i).

2. Change the i− 2th leftmost bit in the code to 1.

3. Repeat the former two steps, setting the remainder to x until remainder

becomes 0.

4. Attach 1 to the rightmost location in the code.

Since no continuous 1s can exist in all codes in the aforementioned coding

systems, we can distinguish each code in the array.

Other code systems used to compress integer arrays, although not universal,

include Golomb code [56] and Rice code [95]. These two systems divide each

integer into two parts using parameters, and consider those parts using different

types of codes.

Moreover, there are works to store integer arrays compactly by maintain-

ing difference between two incident elements, utilizing relationship between

them [107, 98]. However, these works are only able to handle monotonically

increasing arrays, extra sorting needs to be applied for those algorithms to

work. This requires additional O(n log2 n) time.

Lastly, DAC supports random access by considering only digits of an integer

with values and storing those hierarchically [22].

12

3.2.2 Bit Vector

We have defined a bit vector as a set of bits (either 0 or 1) in Chapter 2. Given

a bit vector S with n elements, the following operations are defined [35]:

• access(S, i): return the i-th element in S. (0 ≤ i ≤ n− 1)

• rank(S, a, i): return number of a (either 0 or 1)s until the i-th location in

S. (0 ≤ i ≤ n− 1)

• select(S, a, p): return the location of pth a (either 0 or 1) in S.

A well-known research area using bit vectors is bitmap indexing which will

be discussed in Chapter 4, where database is indexed using bit vectors. By

using this indexing scheme, one can process OR or AND queries in fast speed.

Nevertheless, extra space needed to maintain those indices is proportional to

the multiplication of cardinality and number of elements, which is a significant

overhead.

There exists approaches to process the aforementioned operations using

lower time, while occupying lesser space. If the raw bit vectors are uncom-

pressed, rank and select operations are done in O(1) time [62]. Several suc-

cinct data structures are suggested to compress the bit vectors while support-

ing the operations in constant time. Notably, works by Raman et al. [93] and

Okanohara and Sadakane [90] do not alter the time complexity while signifi-

cantly compressing the bit vectors if they contain many more 0s than 1s.

3.3 Algorithm Description

We illustrate our new way to represent integer arrays in this section. First, we

introduce the proposed code system. Following the introduction, we design an

optimization on the system.

13

3.3.1 Main Principle

The code system we suggest is derived from the phenomenon that N bits of 0s

are unneeded while producing Elias Gamma code. When an integer x is repre-

sented using N + 1 bits, its MSB (Most Significant Bit) is always 1. Therefore,

this code system considers code c of an integer x without its MSB, being N

necessary to maintain c. To also represent 0 and 1, this code system encodes

x+ 2.

Unfortunately, this breaks the prefix property mentioned in the previous

section, so an additional maintenance of delimiter is needed. A delimiter d of

an integer x needs N bits of space. Every bits of d is initialized to 0, except the

N − 1th bit which is set to 1. When a sequence of delimiters is constructed, by

calling select operation, one can access location of any arbitrary integers in

the integer array.

This may seem as a contradiction to the discussion, neglecting necessity of

delimiters being a core strength of most code systems. Fortunately, existence

of succinct bit vector representation proposed by Okanohara and Sadakane [90]

enables compaction of a vector of delimiters. This is mainly because we assume

delimiters contain much less 1s than 0s, since at most 62 0s can be matched to

a single 1.

The representation in [90] uses m dlog2(n/m)e+2m bits to store a bit vector

of length n with m set bits. Utilization of this representation onto the delimiter

allows an integer array of n elements to use T+n log2 log2 x̂i+2n bits in average,

where T =
∑n

i=1 blog2 xic and x̂i is average value of integers inside the array.

Proof. Each entry in the delimiter vector contains blog2 xc bits, with a single

set bit. When the integer array contains n elements with an average value

of element being x̂i, by [90] the succinct delimiter representation occupies

n dlog2(T/m)e + 2n + o(n) ≈ 2n + n log2 log2 x̂i bits. Thus, the overall rep-

resentation uses T + 2n+ n log2 log2 x̂i bits. �

14

This is less than the space occupied by ordinary Elias Delta code which is

T + 2n log2 log2 x̂i + n bits, even considering both the code and the delimiter

vector, since, 2 log2 log2 x+1−(log2 x log2 x+2) = log2 log2 x−1 ≥ 0 for x ≥ 1.

Since the succinct representation of delimiter vector supports select(x, 1, p)

operations in theoretically constant time, random access to the space-efficient

integer arrays is also supported in constant time. This is not possible in the

ordinary Elias Gamma code and other coding systems.

For instance, an encoding of the array {20, 16, 21, 19} using Elias Gamma

code occupies 36 bits as follows:

0000 10110 0000 10010 0000 10111 0000 10011

The proposed code system encodes the array with two different structures

as follows:

• C: 0110 0010 0111 0011

• D: 0001 0001 0001 0001 (shown in uncompressed form)

Since most elements in D are 0s, this uses lesser space than the ordinary 16

bits if compressed using the succinct representation. To access the 3rd element

21 in the encoded array, we need to perform two select operations. In detail, by

running select(D, 1, 2) = 8 and select(D, 1, 3) = 12, we retrieve the encoded

form C[8, 11] = 0111. To summarize, the proposed code system supports the

following two operations:

1. (C,D) =encode(A): encode an integer array A with n elements. Encoded

result B contains a code vector C and a delimiter vector D.

2. x = access(B, l): retrieve the l(1 ≤ l ≤ n)th element x in B.

15

3.3.2 Optimization in the Implementation

Additionally, if the number of elements in array is known a-priori, we are able

to partition D or combination of C and D in P chunks. Although additional

128P bits are needed to mark the first location each chunk maintains, this

is negligible compared to the length of the entire code or delimiter. If two

partitions have equal digits, then the relevant Ds are identical. Then, we do

not need to maintain both the Ds altogether, but we may store a single D (let

it be D1) and let another D point to D1. This optimization saves extra space.

Note that this does not alter C, so result of access is not affected.

For example, when P = 2, encoding of the array {20, 16, 21, 19} is as follows:

• C: 0110 0010 0111 0011

• D1: 0001 0001

• D2: 0001 0001

Since D1 and D2 are identical, we only maintain D1 and point D2 to D1.

3.4 Experimental Results

The suggested code system is implemented in the C++ programming language.

We use SDSL (Succinct Data Structure Library) [55] that implements suc-

cinct data structures from various literature. For representing a code vector C,

bit vector in the SDSL library is used. Delimiter vector D is implemented

using sd vector following the idea of [90].

Experimental environment for testing performance is equipped with Intel

i7-6700 CPU, 16GB DDR4 RAM, 256GB SSD, and Linux kernel 4.9 is oper-

ated. The entire program code is compiled using g++ version 6.3.0 with O3

optimization. We compared the performance of the proposed code system with

Elias Gamma, Elias Delta and DAC algorithms dealt in Section 3.2.1. These

are pre-implemented in the SDSL as vlc vector<elias gamma>,

16

vlc vector<elias delta>, and dac vector, respectively.

We performed experiments based on two types of data: synthetic and real.

Synthetic data are generated using uniform int distribution and

default random engine in C++, consisting of 30,000,000 random unsigned

integers (0 ≤ x ≤ 263 − 1). Real data are extracted from the trade volume of

S&P 500 index (47 ≤ x ≤ 21, 474, 836), with n = 122, 574. Arrays generated

from both synthetic and real data are not sorted in any specific order.

Code System Code size (KB) Encoding time (ms) Decoding time (ms)

Elias Gamma 441 3.3 -

Elias Delta 258 1.9 -

DAC 284 16 8.6

Simple 249 1.6 7.9

Table 3.1 Application of code system in the synthetic data.

Code System Code size (KB) Encoding time (ms) Decoding time (ms)

Elias Gamma 454 7 -

Elias Delta 341 6 -

DAC 322 16 26

Simple 325 6 19

Table 3.2 Application of code system in the real data.

Tables 3.1 and 3.2 indicate experimental results of encoding and decoding

synthetic and real data, respectively. Our representation is marked as simple in

the two tables. Code size denotes the encoded data stored in disk, and includes

the delimiter for our scheme. Decoding time records extracting i-th arbitrary

element in the entire encoded sequence. Since Elias Gamma coding and Elias

Delta coding do not support this functionality, the relevant values are not in-

cluded in the tables. Optimization described in Section 3.3.2 is not included in

simple.

17

Elem / Part Code size (KB) Encoding time (ms) Decoding time (ms)

2 244 14 15

3 294 14 17

6 778 22 22

93 642 20 22

186 491 15 21

659 379 9 20

3,954 326 6 18

Table 3.3 Application of code system with different number of partitions.

We can see that the enhanced scheme occupies lesser space than the orig-

inal Elias-based code systems. Furthermore, the scheme takes similar or lesser

encoding time than the two algorithms. When comparing the two code systems

supporting random access in the encoded form, the simple scheme uses about

1% more space than DAC, but takes about 27% lesser decoding time in the

real data. Our algorithm gives better performance by all means in the synthetic

data.

Applying Optimization

Utilizing optimization discussed in Section 3.3.2, we tested with different num-

ber of partitions while encoding and decoding the real data.

Table 3.3 represents the experimental result. If the number of elements per

partition gets lower, then we can see that the code size decreases. This is because

possibility of the identical delimiter character increases. In contrast, when the

number of elements per partition becomes higher, efficient compression of the

delimiter is achieved, so the code size also becomes lower. For the intermediate

cases, overhead of maintaining the partition information occurs, so efficiency

diminishes.

18

Chapter 4

Space-efficient Parallel
Compressed Bitmap Index
Processing

In this chapter we illustrate processing compression and decompression of the

bitmap indexes in parallel, which could be utilized to process bit vectors effi-

ciently in the querying phase of the proposed semi-structured document repre-

sentation. The compression scheme is based on the SBH compression scheme [70],

which is a byte-based compression algorithm.

This chapter is based on, and an extended work of Kim et al. [70].

4.1 Introduction

Many enterprise applications generate a massive volume of data through logging

transactions or collecting sensed measurements, which brings up the need for

effective indexing methods for efficient storage and retrieval of data. To support

some of the retrieval queries efficiently, database management systems make

use of indexes such as B-trees and bitmap indexes [72, 99]. The index schemes

based on B-tree are efficient for a wide variety of data, since they support both

19

searches and updates with nearly the same complexity. However, for most data

warehousing applications, search operations are more frequent than updates.

For such applications, bitmap indexes may improve the overall performance.

Besides, when the number of unique values of an attribute is small (e.g., gender),

one can achieve much better performance than B-trees by using bitmap indexes.

A bitmap index is a collection of bit vectors created for each distinct value

in the indexed column. The number of bit vectors in a bitmap index for a given

indexed column, also referred to as cardinality, is equal to the number of distinct

values that appear in the indexed column. For a column with cardinality m, the

i-th bit vector in the designated bitmap index corresponds to the i-th distinct

value (in any order) and the j-th bit in the i-th bit vector is set to 1 if and only

if the value of the j-th element in the column is equal to i. Thus, if an indexed

column of n elements has cardinality m, then its bitmap index consists of m

bit vectors with length n, occupying mn bits in total.

Seoul 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0

Paris 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0

NewY ork 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

London 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 1 0 0 1

Seoul ∨ London 1 0 0 0 1 1 0 1 1 0 1 0 1 1 1 0 1 0 1 1

Figure 4.1 A set of bitmaps in a column City.

Figure 4.1 shows a set of bitmaps for an attribute City, along with a bit

vector generated by an OR query. Cardinality of this attribute is four, since it

contains four distinct values. Each bit vector represents whether the value of

City is one of the four available values.

SELECT *

20

FROM T

WHERE City=Seoul OR City=London

The main operation performed in the bitmaps is a bitwise operation BSeoul∨

BLondon, where Bc is a bitmap corresponding to a city c. Standard SQL selection

queries on bitmap indexes can be emulated by performing bitwise operations

on the bit vectors. Since modern computers are optimized to perform bitwise

operations, dealing with bitmap indexes is easy and efficient [28, 29, 91].

One of the main drawbacks of bitmap indexes is that their space usage is

high when compared to the raw data or a B-tree index, especially when their

cardinality is high. To overcome this issue, several bitmap index compression

algorithms have been proposed. The simplest way to compress a bitmap index

is to compress each individual bit vector using a standard text compression

algorithm, such as LZ77 [117]. This drastically improves the space usage. Nev-

ertheless, general text compression algorithms do not consider properties of

bitmap indexes, so the whole decompression of the compressed data is required

before queries are done. Therefore, performing logical operations on the com-

pressed bit strings is usually much slower than uncompressed bit strings.

As a result, compression schemes that apply some form of Run-Length En-

coding (RLE) are suggested to be used for compressing bitmaps. RLE is a

lossless compression method that encodes a string by splitting it into sequences

of runs, and then encoding the runs efficiently. Since a typical bitmap index

used in database applications is assumed to have sparsely-distributed set bits

(i.e., most bits are set to zero) forming long sequences of zeros, RLE-based

schemes are expected to achieve decent compression ratio and so are commonly

used to compress bitmaps.

Two of the most popular compression schemes, based on the run-length en-

coding method, are Byte-aligned Bitmap Code (BBC) [8, 9] and Word-Aligned

Hybrid (WAH) bitmap compression [112]. Both the schemes divide the original

21

bit vectors to be compressed into blocks of a specific unit size. The main dif-

ference between these two schemes is that BBC uses a unit size of 8 bits, while

WAH uses either 32 or 64 bits as unit size. In terms of performance, BBC typi-

cally consumes less space, while WAH supports faster query processing. Several

derivatives are also suggested in literature, which we introduce in the following

section.

Kim et al. [70] proposed an improved version of bitmap index compression

scheme, mainly following BBC, called Super Byte-aligned Hybrid (SBH) bitmap

compression. It uses a new feature that enhances time performance in processing

logical operations so that its byte-aligned encoding can lead to better compress-

ibility in comparison with a word-aligned scheme. Specifically, the superiority

of SBH in compressibility becomes more pronounced when the cardinality of

an indexed column grows larger than 50. The query processing time of SBH is

about five times faster than that of WAH, while the size of compressed bitmap

indexes was retained nearly close to that of BBC.

Since bitmap indexes are incorporated into a plethora of database man-

agement systems such as PostgreSQL and MonetDB, needs to process bitmap

indexes in parallel to boost query performance are also more in demand. The

main merit of controlling bitmap indexes in parallel is that the result of queries

performed in a partial range of the bitmap is not dependent on the remaining

parts while querying the relevant bitmaps, so the processing time is inversely

proportional to the number of processes, in theory. This property affects both

compression and querying (decompression) phases. While this observation is

prevalent, little consideration is given for compressing bitmap indexes in paral-

lel using CPU.

The use of Graphics Processing Unit (GPU) is well established to handle

multiple calculations efficiently, thus a wide range of industries such as big

data processing and machine learning utilize GPUs. In addition, some NoSQL

database management systems such as OmniSci and SQream actively use GPUs

22

for data management. Recently, several works [89, 103] discuss GPU utilization

over query processing in bitmap indexes. A well-known computing platform to

employ GPUs is Compute Unified Device Architecture (CUDA) proposed by

NVIDIA. This architecture enables software engineers to directly access GPU

instructions, and provides a wide set of bitwise operations as well as shared

memory. Two notable bitmap index compression algorithms – GPU-WAH [5]

and GPU-PLWAH [6] – are proposed for GPUs. Both schemes run on the CUDA

platform.

In this chapter, we suggest a parallelized version of SBH that works in both

CPU and GPU, which significantly enhances the time performance compared

to the plain version. We show that the processing time is almost proportional

to the number of CPU cores the algorithms use. For the GPUs, we show that

the optimized algorithm gives better performance in the query processing time.

Both the algorithms produce the identical compressed form as well as the equiv-

alent query result to the plain version.

The rest of this chapter is organized as follows. We first describe other

bitmap compression schemes that were proposed in literature, including SBH,

and how they were implemented in Section 4.2. In Section 4.3, we describe

our parallelized optimization details of SBH. Section 4.4 discusses experimental

results and comparison with the existing schemes.

4.2 Related Work

Several compression schemes based on run-length encoding have been proposed

in the literature. The main merit of these schemes is that logical operations

could be done without decompressing the whole bitmaps. One of the earliest

such schemes that have been successful is the Byte-aligned Bitmap Code [9], or

BBC for short. BBC is effective in compressing bit sequences, and in particular

for representing bitmap indexes.

To improve runtime performance of BBC, a word-based bitmap compres-

23

sion algorithm, called the Word-Aligned Hybrid (WAH) scheme has been in-

troduced [112], which takes advantage of the word-level bitwise operations.

Subsequently, many other compressed bitmap indexing schemes have been pro-

posed [25, 30, 40, 54, 61, 74, 101, 105, 111]. Some of the compression schemes

are surveyed by Chen et al. [31] and mathematically analyzed by Guzun and

Canahuate [60] and Wu et al. [115].

In fact, most of these schemes are variants of WAH, and perform better

than WAH in terms of either time or space or both. They also often achieve

better time performance than BBC, but not in space. As mentioned in the later

experiments, SBH performs better than both BBC and WAH, in terms of both

time and space. For this reason, we compare plain version of SBH only with

these two schemes.

4.2.1 Byte-aligned Bitmap Code (BBC)

Byte-aligned Bitmap Code (BBC) [9] is a byte-based bitmap compression scheme

that encodes an uncompressed sequence of bits by a sequence of bytes. More

specifically, a run of bits (i.e., sequence of bits having the same value) followed

by a small number of bytes are compressed into a header byte, optionally fol-

lowed by one or more counter bytes followed by zero or more literal bytes, as

explained below.

Two variants of BBC scheme have been proposed: a one-sided version that

only compresses runs of zeros, and a two-sided version that compresses runs of

both zeros and ones [113]. In this dissertation, we only describe the two-sided

version since it can compress almost as well as the one-sided version [65]. In the

two-sided version of the BBC scheme, there are four types of distinguishable

runs. These four types are distinguishable by their header bytes, which are

shown in Figure 4.2.

• Case 1: a run of length at most 3 bytes followed by a tail of length up to

15 bytes is encoded by a header byte followed by a sequence of tail bytes.

24

1 0/1 fill len tail len

bits: 1 1 2 4

(a) Case 1. Fill<4 bytes, Tail<16 bytes.

0 1 0/1 fill len odd bit pos

bits: 1 1 1 2 3

(b) Case 2. Fill<4 bytes, odd bit position.

0 0 1 0/1 tail len

bits: 1 1 1 1 4

(c) Case 3. Fill≥4 bytes, Tail<16 bytes.

0 0 0 1 0/1 odd bit pos

bits: 1 1 1 1 1 3

(d) Case 4. Fill≥4 bytes, odd bit position.

1 fill len

bits: 1 7

0 fill len

bits: 1 7

(e) Counters used for Case 3 and Case 4

Figure 4.2 Four cases of BBC header.

25

The Most Significant Bit (MSB) of the header byte is set to 1 to indicate

this case. The bit following the MSB stores a fill-bit, which is either 0

or 1 depending on whether the run it encodes is a sequence of zeros or

ones. This is followed by a two-bit representation storing the length of

the run (in bytes), which in turn is followed by a four-bit representation

indicating the length of the tail (again, in bytes). If k is a value stored

in the last four bits of this header byte (where 0 ≤ k ≤ 15), the k bytes

following the header byte store the next k bytes following the run that is

encoded by the header byte.

• Case 2: a run of at most 3 bytes, followed by a single odd byte is encoded

by a single header byte. The odd byte has a property that all bits, except

one, in the byte are set to the same bit as the run preceding it. The first

two most-significant bits in the header byte are set to 01 to indicate this

case. The next bit stores the fill bit, and the two bits following it store

the length of fill. The remaining three bits store the odd position (i.e.,

position that has a different bit in the odd byte).

• Case 3: this case is similar to case 1, except that the length of fill is at least

4. Instead of putting the fill length in the header byte, it uses one or more

counter bytes to encode the fill length. The MSB of a counter byte is set to

1 if there are more counter bytes, and is set to 0 otherwise. The remaining

seven bits in the counter byte store the bit sequence corresponding to the

fill length (spread over all the counter bytes).

• Case 4: this case is similar to Case 2, except that the length of the fill

is at least 4. Again, counter bytes are used to store the fill length (as in

Case 3).

An example bit sequence and its result of compression is shown in Figure 4.3.

The BBC scheme compresses nearly as well as gzip [65]. However, in the

26

10110010000...00000000001000...0000000110010000000000...000

(a) Uncompressed bit sequence of 1736 bits.

10110010︸ ︷︷ ︸
8

000...00000000001︸ ︷︷ ︸
14×8

000...0000000110010000000︸ ︷︷ ︸
145×8

000...000︸ ︷︷ ︸
57×8

(b) Consideration of literals and runs.

10000001 10110010 00010000 00001101

Case 1 Case 4

00100010 10000001 00001111 00001100 10000000 00100000 01110001

Case 3 Case 3

(c) BBC encoding.

Figure 4.3 A bit vector with BBC compression process.

worst case, the total time required to perform a logical operation on two BBC

compressed bitmaps can still be longer than that on two uncompressed bitmaps.

4.2.2 Word-Aligned Hybrid (WAH)

Another compression scheme based on run-length encoding is Word-Aligned

Hybrid (WAH) scheme [112]. This scheme is similar to BBC, except that unit

of compression is a word (of length either 32 or 64 bits) instead of a byte.

Throughout this chapter we consider size of a word to be 32 bits.

The scheme is much simpler compared to the two-sided BBC described in

the earlier section. The input bitmap is divided into blocks of length 31 bits

each. Each word in the compressed bitmap encodes one or more of these blocks.

If a block contains both zeros and ones, then it is encoded as a literal block by

setting the MSB to 0, and writing the 31 bits of the block as remaining bits in

the word. For k ≤ 230 − 1, if there is a run of k blocks of zeros (or ones), then

this run is encoded by setting the MSB to 1, the bit following the MSB to 0 (or

1), and the remaining bits to the value of k in binary. Runs that are at least

27

230 blocks are encoded by splitting them into shorter runs that can be encoded

in one word in a greedy manner.

An example bit sequence and its result of compression is shown in Figure 4.4.

101100100...0000...000000...00100..0000...000000...00001100010...0000...0000

(a) Uncompressed bit sequence of 1736 bits.

101100100...00︸ ︷︷ ︸
31

00...0000︸ ︷︷ ︸
2×31

00...00100..00︸ ︷︷ ︸
31

00...0000︸ ︷︷ ︸
36×31

00...0000110︸ ︷︷ ︸
31

0010...00︸ ︷︷ ︸
31

00...0000︸ ︷︷ ︸
14×31

(b) Grouping literals and runs.

0101100100...00 100...00010 00...010000

100...100100 00...00110 0010...000 100...1110

(c) WAH encoding.

Figure 4.4 A bit vector with WAH compression process.

4.2.3 WAH-derived Algorithms

We give a brief overview of the schemes whose idea is from the WAH compres-

sion scheme.

Enhanced Word-Aligned Hybrid (EWAH)

Enhanced Word-Aligned Hybrid (EWAH) [74] is a variant of WAH. This algo-

rithm improves the WAH scheme but the most important difference from WAH

is that EWAH never generates a compressed bitmap larger than (within 0.1%

of) the uncompressed bitmap.

The EWAH compression scheme works as follows. The given bitmap is di-

vided into 32-bit groups. These groups are classified as two types: clean word

and dirty word. A clean word contains all equal bits, either all zeros or all

ones. On the other hand, a dirty word cannot be compressed since it consists

of heterogeneous bits (0 and 1). A marker word is a kind of header indicating

28

a type of next words. The marker word consists of three parts. The first part

(one bit) is type of clean words (zero or one), half of a word (16 bits) store the

number of clean words and the rest of bits (15 bits) store the number of dirty

words. Thus, the maximum number of clean words and dirty words that can be

compressed using a single marker word are 216 − 1 and 215 − 1, respectively.

Position List WAH (PLWAH)

Prior WAH-based schemes consider a word with only a single odd bit as a literal,

which makes the word incompressible. Position List WAH (PLWAH) [40] tries

to alleviate this, by storing location of an odd bit explicitly in a fill word using

s log2w bits, where w is the size of a single word and s is the number of odd

bits.

PLWAH compresses a bitmap by four steps: (i) divide the original bitmap

into w − 1 bit groups; (ii) identify groups that are either 0-fills or 1-fills which

can be merged; (iii) for non-mergeable groups, append a 0 to MSB to indicate

that they are literals. Otherwise, put the length of a merge to w − 2− s log2w

Least Significant Bit (LSB)s, put 1 to MSB and put either 0 (for 0-fill) or 1 (for

1-fill) to the bit next to the MSB to represent the type of a merge; (iv) identify

a nearly-identical literal following the merge, calculate the location of the odd

bit and put it in a fill word.

Partitioned WAH (PWAH)

Partitioned WAH (PWAH) [105] divides a single word into P partitions, while

a header of P bits exists to specify the type of a certain partition, whether it

is a fill or a literal. Compared to WAH and EWAH, PWAH has the efficiency

of storing bitmaps that have a sequence of literal and 0-fill. Depending on the

word size, PWAH has fixed value of P . In case of w = 32, there are two different

values of P : 2, 4, whose partition occupies 32−P
P bits.

PWAH uses extended fill to save the space needed to represent contiguous

29

zeros that exceeds the maximum value of a run to indicate. Rather than adding

up the number of fill length consecutively, extended fills concatenate numbers

in a bitwise manner.

COMPressed Adaptive indeX (COMPAX)

Different from three WAH-based compression schemes, COMPressed Adaptive

indeX (COMPAX) [54] only considers 0-fills compressible. Nevertheless, COM-

PAX merges a sequential combination of 0-fills and literals to a single chunk

(run), which is known as piggybacking approach. This applies when only a

single byte in a word is not a 0-fill.

There are two more types of a single chunk other than a literal and a 0-fill.

One is LFL, which stands for Literal-Fill-Literal, and another is FLF represent-

ing Fill-Literal-Fill. For each literal inside this merged form, only a single byte

in a single word differs from 0-fills. Compression of bitmap is done on-the-fly

with a look-back of at most two words for merging components of FLF and

LFL.

Variable-Aligned Length WAH (VAL-WAH)

The Variable-Aligned Length WAH (VAL-WAH) [61] scheme proposes a frame-

work that optimizes both compression and query time by allowing bitmaps to

be compressed using variable-length encoding while maintaining alignment. The

size of a word w is a power of 2 and it is fixed by a certain machine-dependent

factor. However, setting an unit of compression different from w− 1 is possible.

Based on this, dividing a word with segments and putting compressed results

there is suggested.

Assuming a word with size w bits, this scheme stores compressed results in

blocks of size s, which is known as the segment factor. When s = w − 1, this

algorithm can be considered same as WAH. Otherwise, more than two blocks

appear in a single word. Given w and an alignment factor b, possible values of

30

s are determined by:

s = 2i × (b− 1)

where 0 ≤ i ≤ log2w − log2 b

An input bitmap is first inspected by segment length selector. Upon the

possible values of s and another user-tuning factor λ, the selector calculates

the compressed size using a specific value of s and returns the one with the

lowest probable size. After this process is finished, actual bitmap compression

is done. A header is generated for each word, with the w/b most significant bits

indicating the content of each segment.

Run-Length Huffman (RLH)

Run-Length Huffman (RLH) [101] is a combination of run-length encoding and

Huffman encoding. Firstly, this scheme calculates distances between 1s in the

bitmap and gets frequency of the distance. For instance, a bit sequence 0000001

can be represented as 6 and the frequency of 6 is one. After this process finishes,

the result is compressed by Huffman encoding.

In the first step, distances between successive 1s are calculated. Frequencies

of the gathered values are computed and are used to build the Huffman tree.

The codes generated from this Huffman tree are used to compute the encoding.

4.2.4 GPU-based WAH Algorithms

We now describe two of the WAH-derivated bitmap index compression algo-

rithms that focus on GPUs.

GPU Version of WAH (GPU-WAH)

GPU-WAH [5] is a modified version of the WAH scheme mentioned in the

earlier section. The entire algorithm consists of three procedures – extension,

compression, and decompression. First of all, for efficient computation, the input

31

bitmap is extended to a multiple of 32 bits, while considering each unit as a

31-bit word. This could be thought as a sequence of 32-bit words, with the first

31-bits being the original content and a zero afterwards.

Let n be the number of units in the input bitmap. The compression proce-

dure first allocates an array F of size n in GPU. If the i-th unit of the extended

bitmap is a literal, or type of the fill differs from the i + 1-th unit, then the

i-th element of F is set to 1, or 0 otherwise. The last element of F is fixed to

1. Exclusive scan on F generates another array SF . Next, by using the value

m = F [n− 1] +SF [n− 1], an array T with size of the (a-priori) output bitmap

is allocated. T maintains the number of words up to the designated location

SF [i]. Finally, the output compressed bitmap C is generated in parallel, by

referring to T and the original bitmap.

Decompression procedure is done in reverse manner. The compressed bitmap

is also considered as a sequence of 32-bit words. An array S of size being the

number of units (m) is allocated. i-th element of S records either 1 (literal)

or the number of fills. Once S is calculated, exclusive scan is done to compute

another array SS. Number of words in the original bitmap n is then fixed to

SS[m− 1] +S[m− 1]. Utilizing this information, F and SF are recovered, and

then the original bitmap is allocated and decompressed from the two arrays.

GPU-WAH mainly assumes that all of the relevant queries are done in GPU,

to prevent overhead of transfers between host (RAM) and device (GPU).

GPU Version of PLWAH (GPU-PLWAH)

GPU-PLWAH [6] is a parallel implementation of the PLWAH scheme described

earlier. This algorithm performs all of the three procedures – compression, de-

compression, and querying – in GPU.

Extension of the input bitmap is done identical to that of the GPU-WAH

algorithm. When the number of subbitmaps n is calculated, dedicated GPU

memory is allocated. When traversing the bitmap, the algorithm marks whether

32

a word is a fill using the remaining bit. Once this procedure is completed,

the algorithm determines whether the unit is identical to the upcoming unit

and stores relevant information in an array F , so that they are able to be

compressed. By these information, size of the compressed bitmap index m is

known a-priori, by F [m−1]+SF [m−1] where SF is the result of exclusive scan.

Two subsidiary arrays T1, T2 with size m is allocated. SF [i]-th element of T1

stores i + 1, while i-th element of T2 is set to
⌈
(T1[i]− T1[i− 1])/(225 − 1)

⌉
.

After all the computations are done, the algorithm allocates and generates the

compressed bitmap using values of T1, T2, and the original bitmap.

Decompression algorithm does the reverse process. The overall procedure is

identical to that of GPU-WAH, though an odd bit is directly negated by the

stored position in the compressed bitmap.

This scheme also allows parallel bitwise operations between two PLWAH-

encoded bitmaps. Nevertheless, to perform such operations, this algorithm needs

to convert the bitmaps into WAH-encoded bitmaps. The result of the bitwise

operations is encoded again in PLWAH compression.

4.2.5 Super Byte-aligned Hybrid (SBH)

Super Byte-aligned Hybrid (SBH) [70] is a byte-based compression scheme sim-

ilar to BBC. It uses a concept denoted as super-bucket to speed up logical

operations, at the expense of a slight increase in the space when compared with

BBC.

Unlike BBC and WAH, SBH first divides the bit sequence into blocks, called

super-buckets, of length lb, for some integer parameter lb. It then applies a byte-

based compression scheme to retrieve the compressed bitmap. In the following,

we describe compression and decompression algorithms for the SBH scheme in

more detail.

33

101100100...0010000000...0000...00001100100...00

(a) Uncompressed bit sequence of 1736 bits.�� ��101100100...001000000...00
�� ��00...001100100...00

(b) Putting sequence to super-buckets.�

�
	1011001︸ ︷︷ ︸

7

00...00︸ ︷︷ ︸
16×7

1000000︸ ︷︷ ︸
7

00...00︸ ︷︷ ︸
110×7

�

�
	00...00︸ ︷︷ ︸

53×7

0110010︸ ︷︷ ︸
7

00...00︸ ︷︷ ︸
67×7

(c) Consideration of literals and runs.

01011001 10010000 01000000 10101110 10000001

10110101 00110010 10000011 10000001

(d) Result of compression.

Figure 4.5 A bit vector with SBH compression process.

Compression Process

SBH first divides the input bitmap into super-buckets of length lb, and further

divides each super-bucket into buckets of length 7 bits each. When all the seven

bits in a bucket are zeros (or ones), we call that a 0-fill (or 1-fill) bucket.

Otherwise, it is considered as a literal bucket. The algorithm chooses lb to be a

multiple of 7, so that each super-bucket holds an integer number of buckets.

A literal bucket is stored as-is in a byte, with an added 0 in the MSB position.

Any other bytes in the compressed bitmap that do not encode a literal bucket

have their MSBs set to 1 to distinguish them from literal buckets. In particular,

if there exists a run of zeros (or ones) that spans k buckets in the uncompressed

bitmap, for 1 ≤ k ≤ 212 − 1, it is encoded by writing the value of k in binary

using either one or two bytes (as explained later).

If the value k is at most 63 (= 26 − 1), it is simply wrote down as binary

representation of k using six bits, and either 10 for 0-fill or 11 for 1-fill in the

most significant positions are added. On the other hand, if k is larger than 63,

34

then binary representation of k is written using 12 bits. The procedure is: (i)

split k into two equal halves; (ii) add 10 (or 11) at the beginning of both halves;

(iii) write the resulting bytes in reverse order (i.e., second byte followed by the

first byte).

For instance, suppose there is a run of zeros that spans 91 buckets (i.e., 91

× 7 consecutive 0s). The algorithm encodes this run by writing the two bytes

10011011 and 10000001, which is obtained by writing the binary representation

of 91 with leading zeros to make its length equal to 12 (namely, 000001 011011),

splitting it into two equal halves, adding 10 to both (to indicate that they

represent a run of zeros), and finally, reversing the two resulting bytes. The

reversal is done so that we can decode the compressed sequence without any

look-ahead. In the example, the first byte is decoded as a run of 27×7 zeros, and

the next byte (because it follows a byte with the same header part) is decoded

as a run of 64×7 zeros, which are then added to decode a run of 91×7 zeros.

A detailed example of a bit sequence and its corresponding SBH-compressed

bitmap are shown in Figure 4.5, and the algorithm describing the compression

for SBH is described in Algorithm 1. Algorithms dealing with 0-fills and 1-fills

are explained in Algorithms 2 and 3, respectively. For Figure 4.5, the length of

super-bucket is arbitrarily set to 7× (27 − 1).

Decompression Process

The basic flow of decompression is the opposite of the compression process.The

algorithm first reads bytes from a compressed bitmap (from left to right) and

decodes them one by one. In addition, this algorithm uses super-bucket that

reduces the query processing time. Initially, bits inside super-bucket are set to

all zeros.

The MSB of each byte in the bitmap tells us whether it encodes a literal or a

fill. If the MSB is zero, the scheme performs an OR operation between the byte

and the current position inside super-bucket. On the other hand, if the MSB

35

Algorithm 1: Compression algorithm of SBH.

Input: Uncompressed bitmaps, size of super-bucket (lb)

Output: Compressed bitmaps.

for x = 1 to cardinality do

for y = 1 to length of bitmaps/lb do

for z = 1 to number of groups within super-bucket do

// consider a group is whether a literal or a fill (zero or

one);

if group = zero-fill then

MakeZeroFill (the number of zero-fill);

else if group = one-fill then

MakeOneFill (the number of one-fill);

else if group = literal then

append one bit = 0 and literal to compressed bitmaps;

Process the next bitmap.

Algorithm 2: MakeZeroFill.

Input: The number of zero-fills (count0).

Output: The compressed zero-fills format.

while count0 > 0 do

append two bits 10 and first 6 bits of count0 to compressed bitmaps;

count0 = count0 � 6;

count0 = 0;

is one, then that byte stores a fill. The bit next to the MSB represents the fill

bit, either 0 or 1. The last six bits represent the counter value from which the

scheme gets the length of the run. When decoding a fill, the scheme remembers

the first two bits of that and check whether they match the first two bits of the

following byte. If they match, then the scheme multiplies the value in second

byte by 64 (26) and adds it to the counter represented by the previous byte.

36

Algorithm 3: MakeOneFill.

Input: The number of one-fills (count1).

Output: The compressed one-fills format

while count1 > 0 do

append two bits 11 and first 6 bits of count1 to compressed bitmaps;

count1 = count1 � 6;

count1 = 0;

010110011001000001000000101011101000000110110101001100101000001010000001

(a) Compressed form.

Super-bucket (896 bits) Super-bucket (840 bits)

Literal 16 × 7 0s Literal 110 × 7 0s 53 × 7 0s Literal 66 × 7 0s

10110010000000...000000010000000000000...00000000000000...000000001100100000000...0000000

(b) Expansion till the size of super-bucket.

Super-bucket (896 bits) Super-bucket (840 bits)

1011001000...0001000...000 000...00011001000...000

(c) Merged form, result of decompression.

Figure 4.6 A bit vector with SBH decompression process.

If the byte represents a 0-fill, the corresponding byte is not needed to be

decompressed. That is, because bits inside this byte are all zeros, the original

bitmap should only contain zeros. Thus, the next x number of bits can be

skipped, where x is the value of counter. For example, assume the decompression

position in the bucket is 8 and the number of the counter on the 0-fill is 6. The

decompression position on the bucket is set to 8 + 42 (6× 7). Between the bit

position 9 and 49, the algorithm does not perform any operations because bits

inside the relevant position in super-bucket are not affected by the result of

decompression.

Decompressing process of the result sequence in Figure 4.5 is shown in

Figure 4.6.

37

Algorithm 4: Compression algorithm of SBH, with CPU parallelism.

Input: Uncompressed bitmaps (size of super-bucket (lb)), number of

processes (nc).

Output: Compressed bitmaps.

for t = 1 to nc in parallel do

for x = 1 to dcardinality/nce do

for y = 1 to length of bitmaps/lb do

for z = 1 to number of groups within super-bucket do

if group = zero-fill then

MakeZeroFill (the number of zero-fill);

else if group = one-fill then

MakeOneFill (the number of one-fill);

else if group = literal then

append one bit = 0 and literal to compressed

bitmaps;

Process the nc-th next bitmap.

4.3 Parallelizing SBH

We consider the parallelized version of the aforementioned compression and de-

compression algorithms. SBH scheme supports both CPU and GPU for parallel

processing.

4.3.1 CPU Parallelism

The overall compression algorithm, described in Algorithm 4, is identical to that

of the plain version. Instead, not only processing a single bitmap per iteration,

the process handles nc number of bitmaps, where nc is the number of cores in the

CPU. Each compression is handled independent of the other nc − 1 concurrent

executions.

The super-bucket in the decompression phase is maintained in the shared

38

memory region, so that the concurrent transactions may perform queries in

parallel without maintaining individual super-buckets. We atomically modify

the super-bucket. Skips in the concurrent phase do not affect the content of

the shared super-bucket, but the range of a skip may exceed the length of the

super-bucket. We maintain a flag per process to indicate whether the process

completed decompressing the bitmap index until the length of the super-bucket.

Once all the processes set their flags, then the relevant row IDs are extracted

as the query result.

4.3.2 GPU Parallelism

For GPUs, the compression algorithm is modified to process a single bitmap

in parallel manner, instead of compressing a set of bitmap indexes. This is

mainly because GPU has limited amount of memory to store all the bitmap

indexes that could be processed in parallel. Although the statement is valid for

processing large scale of indexed data, to support compressing multiple short

bitmap indexes concurrently we allocate a bitmap index per single CUDA block.

In order to get concurrent compression work in a single bitmap, we logically

divide a bitmap index into length of a super-bucket while compressing it. Each

thread in a block handles the divided chunk, thus all the threads independently

process compression. This way is identical to the compression algorithm de-

scribed in Figure 4.5, so the parallelized algorithm guarantees that the division

does not alter the compression result.

Algorithm 5 explains the modified compression algorithm. Two-level paral-

lelism following the CUDA structure is applied in the algorithm. We assume in

the algorithm that the relevant bitmap indexes need to be uploaded to GPU

memory, and the result of compression is downloaded to RAM after encoding

of a single bitmap index completes.

Since we have controlled compressed form of bitmap indexes to be fit into

a single super-bucket, it is easier for to handle decompression even in GPU.

39

Algorithm 5: Compression algorithm of SBH, with GPU parallelism.

Input: Uncompressed bitmaps (size of super-bucket (lb)), number of

blocks (nb), number of threads per block (nt).

Output: Compressed bitmaps.

for b = 1 to nb in parallel do

for x = 1 to dcardinality/nbe do

for y = 1 to nt in parallel do

for s = 1 to dnumber of groups /nte do

for z = 1 to number of groups within super-bucket do

if group = zero-fill then

MakeZeroFill (the number of zero-fill);

else if group = one-fill then

MakeOneFill (the number of one-fill);

else if group = literal then

append one bit = 0 and literal to compressed

bitmaps;

Process the nt-th next group.
Process the nb-th next bitmap.

Nevertheless, since the SBH-compressed form occupies smaller size than the or-

dinary bitmap, the decompression phase processes one bitmap index per thread.

This assumption allows the super-bucket residing in a shared memory which is

shared among threads in a block.

4.4 Experimental Results

In this section, we compare practical performance of our scheme with the other

bitmap compression schemes. As mentioned earlier, we use two of the well-

known bitmap compression schemes, for CPU and GPU, to compare with SBH.

In addition, we also show how parallelization of the algorithm affects the overall

performance.

40

Experiments were conducted on a PC with Intel i7-6700K 4.2GHz, 64GB

RAM and 4TB hard disk. The machine ran Linux kernel 4.4 64-bit. For the

GPU version experiments, a single NVIDIA Titan Xp GPU is attached to the

machine. All tested compression techniques are implemented in C++. Two

main factors we want to improve are the size of the compressed bitmap index

and the time required to perform the boolean operations. In addition, we also

consider optimization of compression time in terms of CPU parallelization.

The size of the compressed bitmap indexes is measured using the Linux

command wc to compute the overall size of bitmaps. Query time is measured for

range queries which execute bitwise-OR operations. Even though other bitwise

operations are also commonly used, we assume that time for these other Boolean

operations is similar to that of OR operation. std::chrono in C++ for CPU

and cudaEventElapsedTime in CUDA for GPU are used to measure the running

time.

In our experiments, an OR operation can be described as a sequence of

bitwise OR operations in the relevant bitmap indexes.

We use synthetic data for the experiments. The synthetic data are generated

using srand and rand functions which are in the stdlib.h header provided by

the GNU C Library.

4.4.1 Plain Version

We first evaluate the performance of SBH scheme in several ways by comparing

it with BBC and WAH, as in [70]. First, we compare the schemes in terms of

compression time by varying the cardinality of the attribute. he performance

of the schemes is analyzed with respect to the cardinality and the number of

rows. Finally, we check the relationship between data size and query processing

time, where a query consists of bitwise-OR operations.

41

 0

 5

 10

 15

 20

 25

 30

 500 1000 1500 2000 2500 3000

C
om

pr
es

se
d

S
iz

e
(G

B
)

Cardinality of Attribute

BBC
WAH
SBH

(a) Compression size.

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500 3000

C
om

pr
es

si
on

 T
im

e
(s

)

Cardinality of Attribute

BBC
WAH
SBH

(b) Compression time.

Figure 4.7 Tendency of compression with cardinality on synthetic data (one

billion rows).

42

 0

 20

 40

 60

 80

 100

 120

 140

 0.1 1 10 100

C
om

pr
es

se
d

S
iz

e
(G

B
)

Number of Rows (Billion)

BBC
WAH
SBH

(a) 10 cardinality.

 0

 200

 400

 600

 800

 1000

 0.1 1 10 100

C
om

pr
es

se
d

S
iz

e
(G

B
)

Number of Rows (Billion)

BBC
WAH
SBH

(b) 1,000 cardinality.

Figure 4.8 Tendency of compression size on synthetic data, along with the

number of rows.

Compression Size and Time

Figure 4.7 shows the size of bitmap indexes and compression time in relation

to the cardinality of attribute, for one billion rows. Note that except WAH, the

compression ratio of all techniques gets better while having similar tendency.

In Figure 4.7a, we notice that the index size of WAH increases rapidly until

around 100 cardinality, but the graph grows smoothly after that. In terms of

compression time shown in Figure 4.7b, SBH is the fastest.

Figure 4.8 shows the tendency of compressed index size on randomly-generated

synthetic data. We measured the compression time with only these two cardi-

nalities, since bitmap indexes are hardly compressed for small (10) cardinality,

while for large (1,000) cardinality, bitmap indexes are compressed well. In both

cases, the graph is linearly increased with respect to the number of rows. As

we mentioned before, in 10 cardinality, compressing bitmap indexes is poorly

done.

Figures 4.9 shows the tendency of compression time for cardinalities 10 and

1,000. It shows that the compression time of all techniques increases linearly.

Intuitively, it is clear that the larger the number of rows gets, the longer time

it takes to compress the bitmap indexes.

43

 1

 10

 100

 1000

 0.1 1 10 100

C
om

pr
es

si
on

 T
im

e
(s

)

Number of Rows (Billion)

BBC
WAH
SBH

(a) 10 cardinality.

 100

 1000

 10000

 100000

 0.1 1 10 100

C
om

pr
es

si
on

 T
im

e
(s

)

Number of Rows (Billion)

BBC
WAH
SBH

(b) 1,000 cardinality.

Figure 4.9 Tendency of compression time on synthetic data, along with the

number of rows.

In terms of size, SBH and BBC schemes take significantly less space than

WAH, since byte-based schemes have better compressibility than word-based

schemes, in general. The relative performance does not change even though the

size of data increases. To summarize, the compression time is proportional to

the number of rows, while the size of compressed bitmap indexes using SBH is

relatively small.

Query Processing Time

Figure 4.10 shows the query processing time with cardinality of attribute at

one billion rows. After 50 cardinality, the query processing time of SBH is the

fastest, regardless of cardinality and number of bitwise operations. The query

processing time of SBH does not lag behind.

Figure 4.11 shows the experimental results measuring query processing time

executed in 10 and 1,000 cardinality, where a query consists of eight OR opera-

tions. In high cardinality range denoted in Figure 4.11b, SBH is 50 times faster

than BBC, and 5 times faster than WAH. Nevertheless, in low cardinality range

shown in Figure 4.11a, query processing time of WAH is faster than that of SBH.

This is because SBH is seldom compressible when cardinality is low, and WAH

44

 0.01

 0.1

 1

 10

 100

 1000

 0 500 1000 1500 2000 2500 3000

Q
ue

ry
 P

ro
ce

ss
in

g
T

im
e

(s
)

Cardinality of Attribute

BBC
WAH
SBH

Figure 4.10 Tendency of query processing time with cardinality on synthetic

data (one billion rows).

mostly considers only literals so that the query processing time gets lower. Thus,

SBH may provide poor query processing time of the scheme in the low cardi-

nality range, which is not as good as our expectation. Nonetheless, when the

bitmap indexes are in range of high cardinality where SBH compression could

be efficiently applied, we come to the conclusion that query processing time of

SBH is also efficient.

To summarize, when the cardinality of bitmap is less than 50, all the tech-

niques have similar sizes for the compressed bitmap indexes and also similar

query processing times, because bitmap indexes are not compressed well in this

interval. Thus, better performance of the SBH compression scheme comes when

the cardinality of bitmap is above 50.

45

 0.1

 1

 10

 100

 1000

 0.1 1 10 100

Q
ue

ry
 P

ro
ce

ss
in

g
T

im
e

(s
)

Number of Rows (Billion)

BBC
WAH
SBH

(a) 10 cardinality.

 0.01

 0.1

 1

 10

 100

 1000

 0.1 1 10 100

Q
ue

ry
 P

ro
ce

ss
in

g
T

im
e

(s
)

Number of Rows (Billion)

BBC
WAH
SBH

(b) 1,000 cardinality.

Figure 4.11 Tendency of query processing time on synthetic data, along with

the number of rows.

4.4.2 Parallelized Version

We implemented the SBH scheme in parallel fashion, both for CPU and GPU.

In this subsection we compare the performance of the optimized algorithm, with

the plain version (CPU) or the two WAH-based competitive algorithms (GPU).

CPU Parallelism

Figures 4.12 and 4.13 exhibit the compression time and the query processing

time, respectively. We performed 32 OR operations per query, so we measured

both the compressing and query processing performance until nc = 8 when

cardinality is 10.

We can see from Figure 4.12 that the compression time follows inversely

proportional relationship to the number of concurrent processes. As aforemen-

tioned, this is mainly because the main compression process is independent

of other concurrent executions. One of the reasons that the tendency is not

completely inversely proportional is that disk accesses are needed to store the

compressed result, that are dependent among the concurrent processes. Unfor-

tunately, the CPU used in the experimental environment contains 4 cores, so

the performance gain of parallelism gets diminished when nc > 4.

46

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10

C
om

pr
es

si
on

 T
im

e
(s

)

Number of Processes

SBH

(a) 10 cardinality.

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20

C
om

pr
es

si
on

 T
im

e
(s

)

Number of Processes

SBH

(b) 1,000 cardinality.

Figure 4.12 Compression time of synthetic data (one billion rows) with respect

to the number of CPU processes.

 0

 5

 10

 15

 20

 0 2 4 6 8 10

Q
ue

ry
 P

ro
ce

ss
in

g
T

im
e

(s
)

Number of Processes

SBH

(a) 10 cardinality.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5 10 15 20

Q
ue

ry
 P

ro
ce

ss
in

g
T

im
e

(s
)

Number of Processes

SBH

(b) 1,000 cardinality.

Figure 4.13 Query processing time of synthetic data (one billion rows) with

respect to the number of CPU processes.

Query processing time shown in Figure 4.13 also satisfies the correlation

explained above. For all cardinality ranges, the parallelism reduces query pro-

cessing time compared to the plain version, until nc becomes closer to the

number of cores. The super-bucket decompression in the plain version already

provides skipping functionality, meaning that the entire bitmap index needs not

be decompressed while processing relevant queries. This property is also valid

in the parallel version, but keeping the flags hinders the consecutive processes

in the decompression phase.

47

Algorithm Compression Time (s) Query Processing Time (s)

GPU-SBH 27.03 0.889

GPU-WAH 1.324 3.228

GPU-PLWAH 1.459 5.793

Table 4.1 Comparison of synthetic data with cardinality 10 (one billion rows).

Algorithm Compression Time (s) Query Processing Time (s)

GPU-SBH 224.5 0.682

GPU-WAH 83.72 1.295

GPU-PLWAH 88.24 1.528

Table 4.2 Comparison of synthetic data with cardinality 1,000 (one billion rows).

GPU Parallelism

We compare the performance between the two aforementioned algorithms for

GPU – GPU-WAH and GPU-PLWAH. Tables 4.1 and 4.2 show compression

and decompression time occurred to encode the synthetic bitmap indexes. For

all the algorithms, default parameters for parallelization are used. The two

compared algorithms first compute the information in the bitmap index while

modifying content of the index, whereas our GPU version does not alter the

original bitmap index and outputs compressed result to RAM. Therefore, GPU-

SBH does not have a-priori information available for fast compression process,

giving relatively poor compression performance.

Fortunately, instead of the entire decompression of the queried bitmap in-

dexes needed for query processing in GPU-WAH and GPU-PLWAH, GPU-SBH

has skipping functionality which is handled by shared memory in a CUDA block.

This gives at most 4 times faster query processing time than GPU-WAH, or 7

times faster time than GPU-PLWAH. Note that GPU-PLWAH involves conver-

sion of the bitmap indexes into WAH before queries.

It is worth notable that the query processing time for high cardinalities takes

48

longer than that of the CPU, because all the algorithms involve data transfers

between CPU and GPU. In contrast, the GPU compression time takes lesser

than CPU for at most 80%, performance boost on the parallelized compression

is remarkable.

4.4.3 Summary

• In all three techniques, the time to compress bitmap indexes increases

linearly with the cardinality of the indexed column.

• The time to compress bitmap indexes is also proportional to the number of

rows in all three techniques. For cardinalities less than 50, the compression

ratio of all techniques is not high, i.e., all three schemes do not achieve

good compression. For this reason, query processing time in all techniques

is high.

• SBH scheme gets better performance for cardinalities larger than 50, and

its compressed index size is lower than that of the other schemes, and is

comparable to that of BBC.

• Parallelism for the SBH scheme gives the performance boost, close to

either the number of concurrent processes for CPU.

• GPU-parallelized version of the SBH scheme gives better query processing

time than the compared schemes.

49

Chapter 5

Space-efficient Representation of
Semi-structured Document
Formats

This chapter elaborates the core contribution of this dissertation: represent-

ing diverse semi-structured documents in space-efficient manner. Concepts dis-

cussed in the previous chapters are integrated in this representation. This chap-

ter includes an extended work of Anjos et al. [7].

5.1 Preliminaries

5.1.1 Semi-structured Document Formats

Data exchange (also called data interchange) is the process of taking data struc-

tured under a source schema and transforming it into data structured under a

target schema, in a systematic way such that the target data are an accurate

representation of the source data [43]. A data exchange language, or format,

is a language that is domain-independent and can be used for diverse types of

data. Its semantic expression, capabilities, and qualities are largely determined

in comparison with the capabilities of natural languages. A common charac-

50

teristic of such formats is that they can be parsed and correctly interpreted

independently of programming language, running environment, and platform.

A realization of the data exchange language is known as semi-structured

data [23]. Semi-structured datum, in general, is a form of structured data that

does not follow tabular data model which is mainly used in the relational

databases, but contains various forms of marker character to distinguish se-

mantic elements. These markers control hierarchical information residual in the

original data. A core property of semi-structured data is that the entities with

equivalent class may include different sets of attributes.

Semi-structured document is a textual document that includes semi-structured

data. Several types of semi-structured document formats exist, which we intro-

duce some of those below.

XML

XML (eXtensible Markup Language) is a text-based data exchange language

derived from SGML (Standard Generalized Markup Language), being a simpler

alternative that is both human-readable and machine-readable [19]. While its

original goal is to meet the challenges of large-scale electronic publishing, XML

also plays a major role in the data exchange and storage of a wide variety of

systems and web services. This position is attained primarily due to its higher

level of application-independence compared to other data interchange formats

of its time.

An XML document is a string of unicode characters. These are then divided

into markups and contents. Markups are strings that begin with a less-than sign

(<) and end with a greater-than sign (>). A component in the document is called

an element, which has a start tag in the front and an end tag in the end. Inside

the start tag, name-value pairs called attributes can exist.

Figure 5.1 depicts an example XML document.

One of the advantages of the XML format is that it is possible to check the

51

<Books >

<Book ISBN ="055321419" >

<title >Sherlock Holmes: Complete Novels </title >

<author >Sir Arthur Conan Doyle </author >

</Book >

<Book ISBN ="0743273567" >

<title >The Great Gatsby </title >

<author >F. Scott Fitzgerald </author >

</Book >

<Book ISBN ="0684826976" >

<title >Undaunted Courage </title >

<author >Stephen E. Ambrose </author >

</Book >

<Book ISBN ="0743203178" >

<title >Nothing Like It In the World </title >

<author >Stephen E. Ambrose </author >

</Book >

</Books >

Figure 5.1 Example XML document [79].

validity of a document with respect to a given schema. More than one XML

documents can be associated with a single DTD (Document Type Definition).

DTD is a schema language that contains a set of markup declarations defining

elements and attributes, which in turn can be tested against XML documents

for validity. Based on the schema, the structure of an XML document could be

modeled into a tree of components, namely elements, attributes, and textual

data. Due to this characteristic, XML is also known as a semi-structured data

interchange format.

Furthermore, there are two major query languages for working with XML

endorsed by the W3C. XPath is a query language for selecting nodes from an

XML document using location paths that resemble tree navigation [34]. XQuery

52

is a more functional language that is designed to query and transform collections

of data in XML documents [44].

Although advantages exist, the XML data exchange format is utterly ver-

bose, cluttering the resulting file with nonessential structural information and

metadata, which hinders the efficiency of the language in terms of usability,

readability, and compactness. In an attempt to mitigate this size overhead, sev-

eral algorithms implementing XML compression have been suggested in the

literature, including XMill [77], TREECHOP [73], XQueC [10] and XBZipIn-

dex [48]. These compressors are commonly classified with respect to whether

or not the resulting compressed file support queries as it is; and whether struc-

ture and data content are stored alongside or separately. An XML compression

method is called non-queryable if it necessitates the entire XML document to

be decompressed before querying can take place. Homomorphic compressors

encode both the structure and content of a document in a single container,

while permutation-based compressors try to improve the compression ratio by

differentiating the structural and content sections of a document.

For parsing XML documents, some libraries such as pugixml [68] provide

DOM (Document Object Model)-like interface to manipulate the original docu-

ment, though for pugixml it only supports documents that could be fit in main

memory and it does not reduce the size of the processed representation. The

SiXDOM library suggested by Delpratt et al. [41] utilizes succinct data struc-

tures while constructing the DOM structure in RAM, which supports some

navigational queries. However, this library does not consider storing compo-

nents other than the tree structure.

JSON

JSON (JavaScript Object Notation) is an open standard document format that

uses human-readable structured text to represent data objects [18]. Designed as

an alternative to XML, JSON is originally based on a subset of the JavaScript

53

programming language. Even though its name includes a specific language,

JSON is a programming language-independent format widely used nowadays

to exchange data on the web and to represent structured information.

The JSON interchange format is designed around two types of entities –

objects and arrays. An object is an unordered list of name-value pairs, i.e.,

an associative array. Names are strings, and values are one of the possible

JSON value types. Objects are wrapped around curly brackets (“{” and “}”),

and successive name-value pairs are separated with commas (“,”). Though the

specification states that pairs inside an object are, in fact, unordered, JSON

parsers commonly assume some implicit ordering. There could be pairs with

identical names inside an object, and in our representation we explicitly allow

it. An array is an ordered list of values. It is enclosed in square brackets (“[”

and “]”) and subsequent values are separated by comma. Values in an array

do not have associated names.

Core types of JSON values, beside the two s discussed above, include number

(integer and real), string, boolean and null. Figure 5.2 shows an example of a

small but complete JSON document.

Similar to XPath for XML, there are some standards for JSON querying.

Google devised a functional query language Jaql [16] which is based on a flexible

data model inspired by JSON, supporting manipulation of arrays and user-

provided functions. A statement consists of a source, a sink, and pairs of an

operator and a parameter. Some of the operators this language supports are

FILTER, GROUP and JOIN. JSONiq [52] is another functional query language

which can also process unstructured documents. This language has two different

behaviors: its independent syntax and XQuery-like grammar. Since JSONiq

is highly influenced by XQuery, its data model and list of supported queries

resemble those in XQuery.

As opposed to XML, there are no well-known compression schemes to both

encode and query JSON documents. Additionally, existing JSON libraries, such

54

{

"id": 35420 ,

"name": "Toaster",

"tags": [" Kitchen", "Appliances "],

"price": 32.99 ,

"on_sale ": true ,

"stock": {

"warehouse ": 300,

"store ": 20

}

}

Figure 5.2 Example JSON document.

as JSONC [26], naively apply well-known generic text compression methods

(e.g, gzip [117]) in a JSON document, so that the entire document needs to be

decompressed for querying. Another approach commonly used when transfer-

ring JSON files is stripping unnecessary whitespaces in a process called JSON

minification. This, however, does not constitute an actual compression tech-

nique. BSON [1] derived from MongoDB aims high processing speed by en-

coding documents in binary format and including additional information for

traversals. Nevertheless, although this may reduce size of a JSON document,

no actual compression is performed during the conversion. Thus, this represen-

tation also does not compose a compression scheme.

The most popular arguments in favor of XML are around the benefits of

its interoperability and openness. However, none of these are inherent to XML

itself. JSON offers the same qualities while improving in a number of aspects,

especially with respect to conciseness, human-readability and ease of parsing

and processing by a machine. JSON represents data as collections of arrays

and records, which is what data actually are. XML represents data based on

elements, attributes, content text, entities, and other metadata. Furthermore,

55

XML is document-oriented, while JSON is data-oriented. Data-oriented formats

can be more easily mapped to object-oriented systems.

YAML

YAML (YAML Ain’t Markup Language) is a human-readable readable data

serialization language [14]. This language is also designed as an alternative of

XML, targeting communication applications but only with a minimal syntax.

Other design goals include portability between programming languages, one-

pass processing and easy implementation.

YAML achieves cleanness by minimizing the amount of structural charac-

ters, and allowing the data to show themselves in a natural way. This format

utilizes colons (“:”) for separating key-value pairs, and dashes (“-”) for rep-

resenting lists. YAML focuses on encoding scalar data (strings and numbers),

sequences (lists and arrays), and mappings. Nesting is implemented as whites-

pace indentations inside a YAML document. Other custom data formats are

also able to be encoded by a combination of those primitives.

Two major differences between YAML and other semi-structured document

formats are structures and data typing. Structures assist storing multiple doc-

uments inside a single file, and data typing allows users to explicitly define a

designated type for an element in the document.

Recent YAML specification officially defines the format as a superset of

JSON. Some of the functionalities YAML additionally supports include com-

ments, extensible data types, relational anchors, strings without quotation marks,

and mapping types preserving key order. Therefore, a JSON document could

be considered as a valid YAML document. In contrast, the specification claims

that YAML has no direct correlation between XML. For instance, YAML –

as well as JSON – does not support attributes inside tags which are native in

XML.

Figure 5.3 shows an example YAML document.

56

Time: 2001 -11 -23 15:01:42 -5

User: ed

Warning:

This is an error message

for the log file

Date: 2001 -11 -23 15:03:17 -5

User: ed

Fatal:

Unknown variable "bar"

Stack:

- file: TopClass.py

line: 23

code: |

x = MoreObject ("345\n")

- file: MoreClass.py

line: 58

code: |-

foo = bar

Figure 5.3 Example YAML document [14].

As of current, no specific query language dedicated to the YAML document

format exists. Instead, the specification considers node graphs and event trees

as an internal information model to process a YAML document. In addition,

there exists no YAML-specific compressors to efficiently compact documents.

5.1.2 Resource Description Framework

One of the popular data models which is represented in the semi-structured

document formats is RDF (Resource Description Framework) [3]. RDF is con-

sidered as a general method to describe and model web resources. The main

57

RDF resource is structured as a Subject-Predicate-Object triple. Subjects de-

note the resource, while predicates describe traits or aspects of the resource and

show relationship between subjects and objects. A collection of RDF could be

emulated into labeled, directed multigraph.

The subject of an RDF entity is either a URI (Uniform Resource Identifier)

or a blank node, indicating resources. Resources denoted by blank nodes are

called anonymous resources and are not directly identifiable. The predicate is

a URI which also indicates a resource, representing a relationship. The object

is a URI, blank node or a unicode string literal.

RDF itself is not a serialization format: it is rather an abstraction of en-

tities and their relationship. Therefore, it is up to the specific semi-structured

document format which determines rules of representation. Well-known seri-

alization formats include RDF/XML [13], RDF/JSON [39], Turtle [12], and

JSON-LD [100]. Out of those formats, RDF/XML is the initial representation

of the resource description framework serialization, so it is often denoted as

RDF itself. Nevertheless, note that this RDF serialization should be distin-

guished from the abstract RDF model. Throughout this dissertation we denote

RDF as a serialization viewpoint.

Figures 5.4 and 5.5 are excerpts of an example RDF/XML and RDF/JSON

serialization, respectively.

Various query languages to process RDF documents exist. SPARQL [2] is

the predominant query language for RDF which resembles SQL syntax. This

language is able to manipulate data stored in RDF format. Four different query

variations exist in SPARQL:

• SELECT: extracting raw values from a SPARQL endpoint, in a table for-

mat.

• CONSTRUCT: extracting information from the SPARQL endpoint and trans-

forming the results into valid RDF form.

58

<rdf:Description

rdf:about="http :// www.w3.org/TR/rdf -syntax -grammar">

<ex:editor >

<rdf:Description >

<ex:homePage >

<rdf:Description rdf:about ="http :// purl.org/net/dajobe/">

</rdf:Description >

</ex:homePage >

</rdf:Description >

</ex:editor >

</rdf:Description >

Figure 5.4 Example RDF/XML document [13].

• ASK: providing a boolean result for a query on a SPARQL endpoint.

• DESCRIBE: extracting an RDF graph from the SPARQL endpoint.

These query variations allow a set of analytic query operations – JOIN, SORT

and AGGREGATE – if the schema is intrinsic from the original data.

Other RDF query languages include RDQL [97] and RQL [69]. When serial-

ized in semi-structured document formats, connected query languages could be

to query the structure of the RDF serialization. For example, XQuery is able

to handle RDF/XML-serialized documents.

Several approaches to efficiently compress RDF serialization are introduced

in literature. Cure et al. [38, 37] devised WaterFowl, a compact, self-indexed

RDF store. This serialization is based on the utilization of succinct data struc-

tures which we introduce shWortly, following the main idea of this dissertation.

Brisaboa et al. [21] consider a different type of self-index that reduces space

usage while supporting basic SPARQL queries.

59

{

"_:anna" : {

"http :// xmlns.com/foaf /0.1/ name" :

[{ "value" : "Anna",

"type" : "literal" }],

"http :// xmlns.com/foaf /0.1/ homepage" :

[{ "value" : "http :// example.org/anna",

"type" : "uri" }]

}

}

Figure 5.5 Example RDF/JSON document [39].

5.1.3 Succinct Ordinal Tree Representations

Succinct data structures are fundamentally based on representing elements of

a given set in a compact form, in such a way that operations on its domain

can still be executed efficiently [63]. In general, succinct data structures aim for

representing instances of a set using space as close as possible to the information-

theoretic lower bound, while still supporting operations efficiently.

We outline two space-efficient ordinal tree representations – Balanced Paren-

theses (BP) and Depth-First Unary Degree Sequence (DFUDS). Both achieve

the optimal space of 2n bits for representing ordinal trees (since there are

Cn = 1
n+1

(
2n
n

)
ordinal trees on n nodes, we need at least 2n− O(log n) bits to

encode an arbitrary ordinal tree on n nodes), and are able to perform a number

of tree operations efficiently with the aid of rank and select, and balanced

parentheses auxiliary structures in total 2n+ o(n) bits of space. A summary of

some of the most significant tree operations is given in Table 5.1 [11].

The BP tree representation is first proposed by Jacobson [62] and later

improved by Munro and Raman [87]. In this method, a balanced parentheses

bit sequence is constructed from a depth-first traversal of the tree, by writing

60

Tree Operation Description

pre rank(x) preorder rank of node x

pre select(p) the node with preorder p

isleaf(x) whether node x is a leaf

ancestor(x, y) whether node x is an ancestor of y

depth(x) depth of node x

parent(x) parent of node x

first child(x) first child of node x

next sibling(x) next sibling of node x

subtree size(x) number of nodes in the subtree of node x

degree(x) number of children of node x

child(x, i) i-th child of node x

child rank(x) number of siblings to the left of node x

Table 5.1 Operations on ordinal trees [11].

an opening parenthesis when first arriving at a node, and a closing parenthesis

after visiting all of its children, namely all nodes in its subtree. In this way

every node has exactly two parentheses associated with it: an open parenthesis

“(” and a close parenthesis “)”. Thus, this encoding represents a tree with a

bit string composed of 2n balanced parentheses. This representation uses space

that is within lower-order terms of the information-theoretic lower bound (of

2n−O(log n) bits) for encoding trees.

To support operations in this tree representation we then need to make use

of the auxiliary structures equipped with rank, select, and balanced paren-

theses. Notice that in this encoding nodes of a subtree are stored contiguously

in the designated bit string. Therefore, the subtree size can be computed by

simply taking half the distance between the opening and closing parentheses

that correspond to a node.

From the core operations provided by the rank, select, and balanced paren-

61

theses structures we can derive several tree operations efficiently. In fact, it is

known that all of the core tree navigational operations presented in Table 5.1

can be performed in O(1) time utilizing this encoding.

The DFUDS tree representation [15, 64] is an alternate approach to LOUDS

(Level-Order Unary Degree Sequence) [62] and BP. To combine the virtues of

these two representations, DFUDS writes a unary degree sequence of each node

in a depth-first traversal of the tree. That is, whenever we arrive at a node

during a depth-first traversal, we append d open parentheses and one closing

parenthesis, where d is the number of children of the node being visited. A node

is represented by the position of its first open parenthesis.

With the addition of one artificial open parenthesis prepended at the begin-

ning of the bit string, the resulting encoding is also a balanced parentheses bit

sequence. As a result, each node has exactly two bits corresponding to it. A 1

bit (open parenthesis) is written in the bit string when visiting its parent, and

one 0 bit (close parenthesis) is written in the bit string when visiting the node

itself. This generates a 2n length bit string, which is again within lower-order

terms of the information-theoretic lower bound for representing a tree on n

nodes.

Tree operations can then be supported with an additional o(n) bits of space

through auxiliary structures. As it was the case with the BP representation,

nodes of a subtree are stored contiguously in the bit string generated through

the DFUDS representation. Thus, the subtree size can be computed by sim-

ply taking half the distance between the opening and closing parentheses that

correspond to a node.

From the core operations on parantheses, we can derive several tree op-

erations efficiently. In fact, all the tree operations presented in Table 5.1 can

be performed in O(1) time, using this set of succinct ordinal tree representa-

tions along with auxiliary data structures. Arroyuelo et al. [11] provide emu-

lation of navigational queries to preliminary operations supported in auxiliary

62

Tree Operation BP DFUDS

pre rank(x) rankopen(x) rankclose(x− 1) + 1

pre select(p) selectopen(p) selectclose(p− 1) + 1

isleaf(x) S[x+ 1] =′)′ S[x] =′)′

ancestor(x, y) x ≤ y ≤ findc(x) x ≤ y ≤ findc(enclose(x))

depth(x) excess(x) –

parent(x) enclose(x) prevclose(findo(x− 1)) + 1

first child(x) x+ 1 child(x, 1)

next sibling(x) findc(x) + 1 findc(findo(x− 1)− 1) + 1

subtree size(x) (findc(x)− x+ 1)/2 (findc(enclose(x))− x)/2 + 1

degree(x) – nextclose(x)− x

child(x, i) – findc(nextclose(x)− i) + 1

child rank(x) – nextclose(y)− y; y = findo(x− 1)

Table 5.2 Operation details of tree operations in BP and DFUDS representa-

tions [11]. A dash is used to indicate operations that require additional auxiliary

structures.

data structures. Table 5.2 summarizes those operations. findc and findo op-

erations find the position of matching close and open parenthesis of a paren-

thesis, respectively. excess operation finds the difference between the num-

ber of open and closing parenthesis before a position. enclose operation in an

open parenthesis returns the position of the open parenthesis corresponding

to the closest matching parenthesis pair enclosing the input open parenthe-

sis. For the DFUDS representation, prevclose(x) ≡ selectclose(rankclose(x)) and

nextclose(x) ≡ selectclose(rankclose(x) + 1).

Figure 5.6 shows an example ordinal tree, along with its BP and DFUDS

represented tree structure.

63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

((() (())) () (() (() ()) ()))BP
{

(((() (()) ())) ((()) (())))DFUDS
{

Figure 5.6 An ordinal tree with the succinct representations.

5.1.4 String Compression Schemes

General-purpose lossless compressors such as LZ77 [117], LZ78 [118],

and LZW [110] perform dictionary-based encoding to support compression.

These algorithms substitute contiguous length of text into the location of entry

inside the dictionary. Although dictionary-based compression algorithms may

provide high compression ratio, if one needs to randomly access and manipulate

the encoded content, the whole sequence of it should be decompressed again,

which can be a significant computation overhead. To alleviate this handicap,

string compression schemes have been suggested.

In the early ages, indexable data structures such as suffix trees [109] and

suffix arrays [81] are widely used to deal with string compression. Suffix trees are

compressed tries containing all the suffixes of the given text as their keys and

positions in the text as their values. The given text is terminated with a special

character $, which is considered the lexicographically smallest. Construction of

a suffix tree takes O(n) time, where n is the length of the given text. Each

constructed suffix tree occupies O(n) space. When a suffix tree is constructed,

64

string search and finding the longest substring queries can be done in either

Θ(m) or Θ(n) time, where m is the length of a substring.

Suffix arrays are sorted arrays of all suffixes of a given string. When the

length of a string is n, construction time and space usage are both O(n), similar

to suffix trees. Note that suffix arrays can be constructed by performing a depth-

first traversal of the relevant suffix tree. Locating every occurrence of a substring

pattern in the string using suffix arrays takes O(m log n) time, where m is the

length of the pattern. Constructing compressed suffix arrays [59] also takes

O(n) time, and when compressed space usage becomes O(nHk(T)) + o(n). The

operation to query a pattern in the compressed array takes O(m) or O(m+log n)

time.

Wavelet trees [58] and wavelet matrices [36] are also used as text indexing

schemes. Wavelet tree is a succinct data structure for strings, and it supports

access as well as rank and select operations for an alphabet in O(log σ) time,

where σ is size of the alphabet. A string S occupies nH0(S) + o(|S| log σ) bits

when encoded using compressed wavelet trees. Wavelet matrix is an alternative

representation of the balanced wavelet tree, also taking nH0(S) + o(|S| log σ)

bits when compressed.

Improving the conventional string compression algorithms, a plethora of

data structures known as compressed string dictionaries have been suggested

in literature. A string dictionary is a data structure acting as a bi-directional

mapping between strings and integer identifiers. This data structure supports

at least the following two operations:

• string-to-ID : given a string, locate its ID in the dictionary.

• ID-to-string : given an integer ID, extract its corresponding string in the

dictionary.

Ferragina and Manzini proposed a text indexing scheme known as the FM-

index [49]. This index relies on BWT (Burrows-Wheeler Transform) [24]. BWT

65

is a reversible transformation for strings for the preparation of efficient com-

pression. While the transformation itself does not reduce the size of the string,

it is able to convert the string to runs of repeated characters, feasible to be

compressed using run-length encoding schemes. FM-index supports counting

and locating operations in O(p) and O(p+ occ logε u) time, respectively, where

p is length of a pattern, u is length of a text, occ is number of the pattern

occurrence and 0 < ε < 1 is an arbitrary parameter.

In addition, a compressed representation of tries known as XBW [47] is used

to compress strings. This as well as the later version of the FM-index [50] utilize

wavelet trees to reduce space for large alphabets. XBW structure consists of

two parts when l internal nodes exist in the trie. An array is first constructed,

containing l sorted suffixes, First part is a sequence storing the labels of the

trie edges leading to the children of each internal node, considering the order

of the array. Second part is a bit sequence marking the last child of each of the

l internal nodes in the first part.

Martinez-Preto et al. [82] introduced and experimented a number of com-

pressed string dictionary schemes. Their data structures are mostly based on

front coding schemes. Kanda et al. [67] suggested a type of compressed string

dictionary based on double-array trie. They used XOR-based compression scheme

to further encode string dictionaries. Finally, Brisaboa et al. [20] combined hi-

erarchical front coding scheme and LCP algorithm used in suffix arrays.

5.2 Representation

This section further explores details of the representation components and re-

lated data structures. The goal of this section is to suggest a compact, space-

efficient representation for diverse semi-structured document formats, exploiting

bit strings and succinct ordinal tree data structures.

Before moving on, although the description in this section is mainly based on

compacting JSON documents, we claim that this representation could be easily

66

generalized into expressing XML and YAML document formats described in

Section 5.1.1. This is because both semi-structured formats follow the identical

components as those of JSON – content and DOM tree.

5.2.1 Bit String Indexed Array

In contiguous homogeneous arrays all entries are of a single type, and hence

have the same fixed size in bytes. In such arrays, indexing is easily computed

from the array’s starting position and the length of each array element. In

heterogeneous arrays, however, auxiliary structures are required for efficient

indexing, as the size of entries is variable. A common technique used in modern

programming languages to provide the illusion of heterogeneous arrays is to use

a homogeneous array of pointers to elements. Each element pointed to may be

of a different type, but the array is still homogeneous. This approach has the

downside of requiring additional pointers, which, in modern 64-bit computers,

correspond to 8 extra bytes per array entry.

We propose an indexing scheme based on bit strings along with the select

auxiliary structure, which we denote as bit string indexed array. Consider a

contiguous heterogeneous array A with n elements and a total size of m bytes.

We generate a bit string S of length m bits such that the i-th bit is set if and

only if the i-th byte of A corresponds to the beginning of one of its elements.

Notice the bit string S as generated above has exactly n set bits, and occupies

a total m/8 bytes. Now the problem of indexing the i-th entry of a bit string

indexed array is reduced to a call to select1(S, i), that is, the position of the

i-th 1 in S.

Figure 5.7 depicts how the bit string indexed array is structured on a sample

heterogeneous array. In this example booleans occupy 1 byte, numbers take

either 1, 2, 4 or 8 bytes based on their capacities.

The overall space overhead incurred by this scheme is m bits for the bit

string S and extra o(m) bits for the auxiliary select structure. More precisely

67

0 1 2 3 4 5 6 7 8 9 10

1 0 1 0 0 0 1 1 0 0 0S
{

2189 3.141592 T 322000A
{

Figure 5.7 A bit string index built on top of the example heterogeneous array

A = {2189, 3.141592, true, 322000}.

the bit string index requires m+ o(m) extra bits in addition to the input array.

If more compression is needed, one can encode the index using sdarray [90],

which is also used in Chapter 3. Since we can assume the bit vector is sparse

(i.e., number of set bits are extremely smaller than unset bits), sdarray structure

efficiently encodes the index in n(2 + log m
n) bits, while supporting select

queries in O(1) time.

5.2.2 Main Structure

One of the main points in which this representation improves memory usage

compared to other libraries lies in the fact that we devise a compact variable-

length encoding for elements. In order to store a series of variable length encod-

ings, we design a memory-efficient heterogeneous array discussed in the previous

section. This array is in turn used to compose the underlying data structures

used in this space-efficient representation.

In order to represent a given semi-structured document in a memory-efficient

manner, we deconstruct the document tree structure portion from its content

data. The two subdivisions are in turn separately encoded. This, in turn, allows

us to leverage the characteristics and patterns particular to each specific data

type, to achieve better memory usage.

We model the document structure using ordinal trees and implement encod-

ings through the DFUDS succinct tree representation discussed in Section 5.1.3.

Improvements in memory usage here derive from the fact that traditional li-

braries represent the tree structure through pointer-based implementations, in-

68

curring overhead of about 8 bytes per pointer in the semi-structured document

in 64-bit systems. Succinct trees allow us to reduce this overhead to 2 + o(1)

bits in our scheme.

A preliminary version of this representation [7] used the BP representation

to represent the document tree, however this representation lacks efficient sup-

port for child and degree operations needed for querying the document, as

denoted in Table 5.2. Therefore, we use the DFUDS ordinal tree representation

to store the document tree in the library. If the BP representation is needed

for operations such as depth, one can convert the existing DFUDS representa-

tion into BP representation, utilizing the technique of Farzan et al. [46]. This

technique shows a way to extract either BP or DFUDS substring of an ordinal

tree in O(1) time. Nonetheless, we leave this conversion as a future work in this

dissertation.

Given that the structure is dissociated from the document content, the raw

data that remain are a series of names and values. These two components are

also represented separately. According to the format specifications, names are

exclusively strings which are repeatable among objects. Thus, names container

may constitute lots of redundant entries. It is common for semi-structured doc-

uments with millions of nodes to have no more than a few dozen unique names.

In our scheme, we strip redundancies in names and store the unique strings in

a contiguous memory array. Values that have a name associated should encode

with itself the index of its corresponding name.

Finally, a value can be any of the JSON types, and may or may not have

a name associated with it. We encode a specific value according to its type

as described in Table 5.3. All encodings start with a byte identifying its type,

and whether the value has a name associated with it. If a JSON value has an

attribute associated, its encoding includes an extra 8-byte index that identifies

the corresponding entry in the attributes array. String values require special

treatment as their lengths are highly variable. We store all strings in an array,

69

Type Encoding Size (bytes)

null {type} 1

object {type} 1

array {type} 1

boolean {type} 1

string {type, index} 9+

number {type, value} 2, 3, 5, 9

Table 5.3 Encodings of JSON types and respective sizes.

and the main representation only stores the index of its corresponding entry

in an array stringValues. Number type encodings occupy 9 bytes for 64-bit

numbers and 5 bytes for 32-bit numbers. Smaller values may use 16-bit numbers

instead, for total encoding sizes of 3 bytes. Decimal numbers also follow this

notation, depending on their precision.

Initial version of the library [7] maintained strings in the stringValue array

as-is. This allows easy extraction of relevant value in a pair. Nevertheless, since

maintaining the original array does not actually involve compacting storage,

we give an option to apply additional compression to this array. When space

compaction needs to be considered in high priority, we provide apply additional

compression schemes discussed in Section 5.1.4.

The list of value encodings is then stored in a bit string indexed array

as outlined in Section 5.2.1 without further memory overhead. Each value is

indexed by order of discovery in the depth-first traversal step performed when

creating the succinct tree representation. That is, the i-th node in the succinct

tree corresponds to the i-th element in the values array. This characteristic

provides us with a lightweight and straightforward correspondence between tree

nodes and associated data, based merely on array indexes.

Figure 5.8 depicts example document tree of the JSON file given in Fig-

ure 5.2 (top) and contains an illustration of the data structure generated by

70

id: 32450 name: “Toaster” tags

“Kitchen” “Appliances”

price: 32.99 on sale: true stock

warehouse: 300 store: 20

(a) Document tree structure corresponding to the sample JSON file.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0tree
{

0 1 14 31 40 49

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0index front
{

O N
I

0 32650 N
S 1 0 N
A 2 S 1 S 2values front

{
0 13 22 31 42

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0index rear
{

N
F 3 32.99 N
T 4 N
O 5 N
s

6 300 N
s

7 20values rear
{

0 8 16 24 32 40 48

id name price tags on sale stock warehouse storenames
{

Toaster Kitchen AppliancesstringValues
{

(b) In-memory representation of the sample JSON file.

Figure 5.8 Overall encoded representation of the sample JSON from file Fig-

ure 5.2.

this representation to process that document (bottom). tree and index are bit

strings, while values, names, and stringValues are regular arrays. Entries in

the values array start with a byte representing type of an element, where O,

NA, NC, Ns, NI, NF, NS, and NT stand for Object, Named Array, Named Char,

Named Short, Named Integer, Named Float, Named String, and Named True,

respectively. Notice how named types include an additional 8-byte index to its

associated entry in the attributes array. Note that the stringValues array is

not converted to the compressed suffix array in these figures.

For manipulating other semi-structured document formats, we first provide

a way to convert those documents into corresponding JSON documents. XML

documents may contain attributes inside tags which JSON format does not

support. In this case, we allocate additional type Named Attribute, storing the

relevant key-value pair. For XML and YAML comment nodes, the representa-

tion adds a new Comment type. Those types are considered identical to Named

71

id: 32450 name: “Toaster” tags

“Kitchen” “Appliances”

price: 32.99 on sale: true stock

warehouse: 300 store: 20

Figure 5.9 Document tree structure corresponding to the sample JSON docu-

ment shown in Figure 5.2 divided into 2 chunks.

String.

Note that we use a byte to indicate a type in the bit indexed array, thus at

most 27 different types can exist. Therefore, no extra space is needed to record

the additional types.

5.2.3 Single Document as a Collection of Chunks

Inspired from structures defined in YAML, this space-efficient representation

also supports partial processing of a semi-structured document. Given a semi-

structured document D with n elements (which is given a-priori), this repre-

sentation can first be processed into c partial chunks of ordinal DOM tree and

bit indexed array. Each chunk maintains about n/c elements, if the elements

are evenly distributed with the same set of names. This collection of chunks is

virtually connected by each other, in a separate ordinal tree.

Figure 5.9 visualizes result of chunk division applied in the sample JSON

document (c = 2). Although depicted as a single tree, the representation con-

sists of two levels. The major tree contains three nodes, a root node (circle)

and two children nodes (square) pointing to a chunk. The compact represen-

tation is constructed per chunk: its DOM tree has a root node (square) and

five descendant nodes (rectangle). When users need to query the constructed

representation, the library first moves to the relevant chunk using the major

72

tree. Afterwards, it extracts and retrieves the relevant information from the bit

indexed array and DOM tree residing in the navigated chunk.

This way of processing is useful when repetitive name-value pairs appear

in the document. This ensures even distribution of chunk trees in the major

tree, meaning that level of the tree gets not too deep. Additionally, if an input

document is too big to be processed entirely in RAM, this chunk division assists

processing it, by storing the intermediate chunks in disk.

5.2.4 Supporting Queries

From the query languages dealt in Section 5.1, it could be understood that

it is indispensable for the document processing framework to support efficient

traversals of the DOM tree as well as retrieval of the relevant name-value pairs.

By utilizing the succinct tree structure as well as bit indexed arrays, our space-

efficient representation suits those two core query objectives.

We support the following query operations in the library.

• existsName(n): Given a string n, determine whether at least one element

with name n exists in the document.

• existsElement(n,v): Given a name n and value v, determine whether

at least one element with name n and value v exists in the document.

• countElements(n,v): Given a name n and value v, return number of

elements with name n and value v.

• listObjectNames(o): Given an JSON object o, return its list of names.

• getObjectValue(o,n): Given an JSON object o, return value of an entity

with name n. If multiple entities with identical names exist, return a list

of values.

• countArrayElements(a): Given an JSON array a, return its size.

73

• getArrayValue(a,i): Given an JSON array a, return value of its i-th

element.

For example, on the document in Figure 5.8, the answers to some of the

queries are shown below:

• existsName(‘‘warehouse’’): true

• existsElement(‘‘warehouse’’,200): false

• countElements(‘‘on sale’’,true): 1

• listObjectNames(0): id, name, tags, price, on sale, stock

• getObjectValue(8,‘‘store’’): 20

• countArrayElements(3): 2

• getArrayValue(3, 2): “Appliances”

In this dissertation we group the first three queries as existence queries, and

the remaining four queries as navigational queries.

For existsName query, full scan of the names array is required. Nevertheless,

since in the most real datasets the number of different names is lower than the

number of distinct values, so the overhead of scan is not significant.

Performance of the existsElement and countElements queries is enhanced

by maintaining bitmap indexes of the relevant names. In most cases when the

number of possible elements is high, the bitmap index contains continuous 0s

and sparse 1s, so it is feasible to apply bitmap index compression considered in

Chapter 4. If the dedicated bitmap index is not constructed, then we naively

need to scan the whole representation, which takes linear time to the number

of elements in the tree.

The following formulae provide the emulation of navigational queries using

the preliminary tree and bit indexed array operations.

74

• listObjectNames(o):

• getObjectValue(o,n):

• countArrayElements(a):

• getArrayValue(a,i):

The navigational queries first perform navigation of the succinct tree, using

child or parent operations. Once the relevant node is located, the queries

extract the desired information by either inquiring the bit indexed arrays or

calling additional degree tree operation. Locating the exact place for answering

queries in the bit indexed array takes theoretically constant time, by running

select operation in the index array. Additionally, the DFUDS representation

supports all of the aforementioned unit operations in theoretically constant

time.

Therefore, the overall query time for the listObjectNames and getObjectValue

operations is O(c), where c is the number of children in the given object.

To summarize, a combination of those libraries enables efficient query pro-

cessing of the semi-structured documents. Note that if users choose to compress

the string values in a compressed suffix array, then extracting dedicated char-

acters for answering queries takes O(v) time instead of constant, where v is the

length of the value.

5.3 Experimental Results

The library has been implemented in the C++ programming language and

compiled with g++ 10.1.0. The environment in which the tests were executed

features an Intel Core i7-6700K 4.20GHz CPU, 64GB DDR4 RAM, and 512GB

NVMe drive. The machine runs Linux kernel version 5.8. RAM usage readings

are done with valgrind, and elapsed time values for construction and querying

are measured with the C++ STL library chrono.

75

The library borrows core concepts of the popular JSON processing library

RapidJSON [102] while parsing a JSON document. For the two other semi-

structured document formats, we attempt to convert the document into sym-

metric JSON-formatted document. If this is not possible, then we use our own

parser library which is also engineered based on the RapidJSON library.

We make use of the SDSL [55] library to aid our implementation with bit

strings and auxiliary structures, employing the rank structure as proposed by

Vigna [106], select structure by Clark [33], balanced parentheses structure by

Navarro and Sadakane [88] and compressed suffix arrays structure. Balanced

parentheses structure is mainly used to query the succinct tree stored in bit

strings. For boosting performance of the exists query, the plain implementa-

tion of bitmap index compression discussed in Chapter 4 is used.

We evaluate our scheme against three popular JSON libraries – JsonCpp [75],

JSON for Modern C++ [78], and RapidJSON by measuring RAM usage and

elapsed time during construction. Since those libraries equipped with process-

ing JSON formats contain all the functionalities we support, thus we directly

consider the JSON file format as the candidate of the main experiments.

With respect to compression, we compare our scheme against the original

file size, blank-eliminated JSON file using JSONC [26], and gzip-applied [117]

result. For evaluating querying performance, we also consider semi-indexing

suggested by Ottaviano and Grossi [92].

In the following sections we denote SSD as our space-efficient representation

of semi-structured documents.

5.3.1 Datasets

The experiments were performed on a collection of datasets of both synthetic

and real world corpora. We generate synthetic datasets of single possible types

in JSON (array, bool, double, int, null, object and string) with number of

nodes from 2,000,000 to 100,000,000. With these datasets we intend to illustrate

76

Corpus Nodes XML Size (MB) JSON Size (MB)

Twitter 3,249,499 168 90

SNLI 6,757,124 634 465

Citylots 13,805,883 575 181

DBLP 64,714,826 1,975 1,741

150JS-evaluation 420,358,521 4,910

150JS-training 878,277,103 10,247

Table 5.4 Overview of the real world datasets used in our experiments.

the performance behavior of the libraries on different value types. Since addi-

tional types introduced in XML and YAML can be emulated into either string

or object, we only consider those types in the synthetic version of experiments.

More details of the real world corpora are described in Table 5.4. The orig-

inal document is based on JSON format, and converted to XML format for

equal comparison (without attribute-tag relationship). YAML size is of little

difference to that of JSON, so it is not included in the table.

• Twitter: A list of 20,000 tweets and metadata collected in 2015.

• SNLI [17]: The Stanford Natural Language Inference corpus is a collection

of human-written English sentences coupled with semantic metadata.

• Citylots [116]: This dataset is a JSON converted document of the City-

Lots spatial data layer, a representation of the City and County of San

Francisco’s Subdivision parcels.

• DBLP [42]: This dataset offers bibliography entries recorded in DBLP [76].

• 150JS [94]: For 150,000 JavaScript files, their corresponding parsed AST

(Abstract Syntax Tree)s are collected as two JSON documents: training

(100,000) and evaluation (50,000).

77

5.3.2 Construction Time

Figures 5.10 and 5.11 represent construction time of the libraries mentioned

above. For all libraries, construction time includes reading a document file from

disk and constructing auxiliary data structures based on that file in RAM.

By examining the tendency of construction time on synthetic documents

described in Figure 5.10b, it is clear that the time is proportional to the number

of nodes. As our parsing scheme is derived from that of RapidJSON, we can

observe that data structure construction takes most of the construction time.

Establishing tree structure is concurrently done while traversing the document.

Therefore, it is evident that preparing a succinct data structure for balanced

parentheses needs to be further optimized for construction.

Although construction time is an important factor to process a semi-structured

document in space-efficient manner, once the library supporting serialization

(other than the original JSON document) parses the document it needs not

reconstruct the whole representation. As mentioned later in Section 5.3.4, our

library supports serialization and deserialization of the representation which

significantly takes lesser time than construction shown above. Therefore, we

consider that serializing the encoded representation to disk will mitigate de-

merits of slower construction time.

The experimental environment could not handle 150JS corpora using third-

party parsers because of insufficient RAM. Also, all the external libraries except

RapidJSON could not run on the DBLP corpus, whereas our library is able to

handle those documents as well. Since this is one of the merits of processing

big data, we claim that our library has a strong point, suitable to handle larger

documents, even when the amount of RAM available is small. It is worth men-

tioning that semi-index could also handle those documents since this library

mainly focuses on constructing the tree structure while retaining the original

document on disk, not actually constructing the parsed representation.

78

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

array bool double int null object string

C
on

st
ru

ct
io

n
T

im
e

(s
)

Type of Data

RapidJSON
JsonCpp

ModernJSON
Semiindex

SSD

(a) n = 10, 000, 000.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 20 40 60 80 100

C
on

st
ru

ct
io

n
T

im
e

(s
)

Number of Nodes (million)

RapidJSON
JsonCpp

ModernJSON
Semiindex

SSD

(b) Varying n.

Figure 5.10 Construction time of the representation compared to different li-

braries, for synthetic data.

79

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Twitter SNLI CityLots DBLP 150JSe 150JSt

C
on

st
ru

ct
io

n
T

im
e

/ C
or

pu
s

D
is

k
S

iz
e

Corpus

RapidJSON
JsonCpp

ModernJSON
Semiindex

SSD

Figure 5.11 Relative construction time (with respect to corpus disk size) of the

representation compared to different libraries, for real world corpora.

5.3.3 RAM Usage during Construction

Figures 5.12 and 5.13 show the main memory usage of the library compared

to JsonCpp, JSON for Modern C++ and RapidJSON. For visual comparison

purposes, Figure 5.12 also includes the original file size on disk, while Figure 5.13

shows the relative ratio of the RAM usage compared to the original disk size.

It is evident from the experiments that RapidJSON performs best among the

third-party libraries evaluated, and JsonCpp is the worst. Our library, mostly

represents the input datasets in strictly less RAM than RapidJSON by up to

91% on synthetic data and 66% on real-world corpora, while outperforming

JsonCpp by up to 98% and 84% on synthetic and real-world corpora, respec-

tively. For corpora with pairs containing large string values, our library repre-

sentation uses more space than RapidJSON, when compression is not applied.

Our scheme offers a significant improvement in memory efficiency by encod-

80

 0

 200

 400

 600

 800

 1000

 1200

 1400

array bool double int null object string

R
A

M
 U

sa
ge

 (
M

B
)

Type of Data

Original
RapidJSON

JsonCpp
ModernJSON

Semiindex
SSD

(a) n = 10, 000, 000.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 20 40 60 80 100

R
A

M
 U

sa
ge

 (
M

B
)

Number of Nodes (million)

RapidJSON
JsonCpp

ModernJSON
Semiindex

SSD

(b) Varying n.

Figure 5.12 Memory usage of the representation compared to different libraries,

for synthetic data.

81

 0

 1

 2

 3

 4

 5

 6

 7

 8

Twitter SNLI CityLots DBLP 150JSe 150JSt

R
A

M
 U

sa
ge

 /
C

or
pu

s
D

is
k

S
iz

e

Corpus

RapidJSON
JsonCpp

ModernJSON
Semiindex

SSD

Figure 5.13 Relative memory usage of the representation (with respect to corpus

disk size) compared to different libraries, for real world corpora.

ing values according to its type and data in a compact manner, using total mem-

ory proportional to the amount of information contained in a semi-structured

file. On the other hand, common JSON libraries use fixed-length representa-

tions for all JSON values, leading to memory usage proportional to the total

number of nodes. RapidJSON, for example, allocates 48 bytes for most values,

regardless of type. Array entries are the exception, taking 24 bytes of memory.

This explains why RapidJSON uses the same amount of memory for most syn-

thetic datasets, except for array. JSON for Modern C++ and JsonCpp show

similar behavior. Similar to construction time, RAM usage between the two

succinct tree representations does not differ, reflecting the identical theoretic

bound.

Compared to the previous version [7], the new representation uses about

30% more RAM in some of the synthetic corpora. This is we allocate 8 bytes

instead of 4 for recording the IDs of the names and string values, to support

82

representing semi-structured documents with more than 232 different possible

strings. Nevertheless, by maintaining the string values efficiently in memory,

representations of most of the corpora with strings use less RAM.

As mentioned in the previous section, all other libraries except ours could

not process larger corpora.

5.3.4 Disk Usage and Serialization Time

In Figures 5.14 and 5.15 we illustrate the disk usage of our scheme compared

to the original file size and to gzip. Our scheme is able to compress a document

by up to 61% in synthetic files, and up to 28% in real-world corpora. From the

figure, we can observe that disk usage is also proportional to the number of

elements in the document. Our library effectively reduces file size especially for

array and object.

Although our compression is not as good as gzip with sizes about 2 to 9

times larger, it is easier to reload the compressed file generated by the scheme

back to memory than to decompress and parse the gzipped file. Note that once

deserialized in RAM, we do not need to maintain the content stored on disk

for future use. We also provide gzipped result of the serialization, which further

reduces the disk usage without penalizing the performance.

It is shown in the figure that BSON decreases disk usage by up to 33%.

Unfortunately, the BSON library provided by MongoDB was not able to convert

most of the real-world datasets, since it only supports UTF-8 characters.

Table 5.5 summarizes serialization time of processed result. We can see that

time needed to serialize corpora is proportional to their size.

5.3.5 Chunk Division

Even though maintaining large size documents is one of the merits of our rep-

resentation, to improve the RAM usage further, we also tested by splitting a

large semi-structured document into a collection of smaller chunks described

83

 0

 20

 40

 60

 80

 100

 120

 140

 160

array bool double int null object string

D
is

k
U

sa
ge

 (
M

B
)

Type of Data

Original
gzip

BSON
Semiindex

SSD
SSD+gzip

(a) n = 10, 000, 000.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100

D
is

k
U

sa
ge

 (
M

B
)

Number of Nodes (million)

Original
gzip

BSON
Semiindex

SSD
SSD+gzip

(b) Varying n.

Figure 5.14 Disk usage of the representation compared to the original file size

and to gzip, for synthetic data.

84

 0

 2000

 4000

 6000

 8000

 10000

 12000

Twitter SNLI CityLots DBLP 150JSe 150JSt

D
is

k
U

sa
ge

 (
M

B
)

Corpus

Original
gzip

BSON
Semiindex

SSD
SSD+gzip

Figure 5.15 Disk usage of the representation compared to the original file size

and to gzip, for real world corpora.

Corpus Time (s)

array 0.148

bool 0.204

double 0.255

int 0.238

null 0.214

object 0.211

string 0.338

Corpus Time (s)

Twitter 0.168

SNLI 1.345

CityLots 0.443

DBLP 3.168

150JS-evaluation 11.17

150JS-training 52.76

Table 5.5 Serialization time of the representation.

in Section 5.2.3. More specifically, we performed several experiments based on

chunk division, where a single JSON document acting as a corpus is divided

into multiple smaller chunks.

In all our datasets, the tree structure is fairly shallow, with small depth, and

85

hence this simple modification is enough to split the large document into several

smaller chunks. This enables efficient RAM usage and large-scale document

processing because we do not need to maintain and store all the intermediate

representations to make queries work. Nevertheless, this may increase the disk

size, given that representations of chunks do not share pre-constructed names

and stringValues arrays. By adding a virtual root node to the entire tree

structure, each part of a document is considered as a child tree with its own

suite of arrays.

We tested the effect of chunk division using both synthetic and real-world

corpora. For synthetic dataset (n = 10, 000, 000), we divided the corpora into

10 chunks. For real-world corpora, each corpus is divided into 25, 50 and 100

chunks, depending on its disk size.

Corpus # Chunks Time (s) Ratio

double 10 5.38 1.08

string 10 5.29 1.11

Twitter 25 2.18 1.15

SNLI 25 7.78 1.13

DBLP 25 43.4 1.25

DBLP 50 43.8 1.26

DBLP 100 45.5 1.31

150JS-evaluation 100 397 1.44

Table 5.6 Construction time with chunk division enabled.

Since no intermediate procedure other than the serialization is needed, the

construction time is almost identical to that of the original version, as in Ta-

ble 5.6. From Table 5.7 it is clear that chunk division allows only a portion of

RAM is needed to process the whole document. This intermediate representa-

tion is flushed to disk, so only a small amount of RAM is required even for a

big JSON document. Note that these ratios are not inversely proportional to

86

Corpus # Chunks RAM Usage (MB) Ratio

double 10 16 0.11

string 10 29 0.18

Twitter 25 9.1 0.06

SNLI 25 29 0.06

DBLP 25 108 0.05

DBLP 50 62 0.03

DBLP 100 35 0.02

150JS-evaluation 100 224 0.02

Table 5.7 Memory usage with chunk division enabled.

Corpus # Chunks Disk Usage (MB) Ratio

double 10 125 1.02

string 10 144 1.23

Twitter 25 74.2 1.14

SNLI 25 496 1.09

DBLP 25 1,869 1.03

DBLP 50 1,877 1.03

DBLP 100 1,892 1.04

150JS-evaluation 100 10,352 1.04

Table 5.8 Disk usage of with chunk division enabled.

the number of chunks, since duplicate values among two individual chunks are

not considered identical in the representation.

We have noticed negligible serialization and query time difference from the

original representation since only one extra tree operation needs to be done.

For queries, we assume that the entire data structure is already loaded into the

RAM so that no extra de-serialization is needed during query processing. But

as one can imagine, if the representation is not in the RAM, then the chunk

87

division approach will support the queries significantly faster as it only needs

to load a small portion of the data structure into the RAM to answer the query.

5.3.6 String Compression

We also integrated some of the string compression and compressed string dic-

tionary schemes to our library illustrated in Section 5.1.4, so that string values

could be compressed efficiently while naive query support is guaranteed. We

illustrate the details when the string compression is enabled, by comparing the

experimental result to the original representation.

All of those data structures experimented support extracting a dedicated

string in compressed form, but they act in different ways. A string could be

directly extracted when the compressed dictionary schemes are used, while the

remaining data structures support byte-based extract operations. For the latter

structures we record the starting position of each string in the bit indexed array,

rather than the ID. Note that this does not alter the theoretic time bound of

the query operations.

Figure 5.16 denotes construction time when various string compression schemes

are applied to some of the corpora. For the string corpus, n is equal to

10, 000, 000. Following the tendency of the theoretic time bounds suggested,

when a document contains a large portion of strings, constructing the rele-

vant compressed data structures takes most of the construction time. Since

compressed suffix trees and arrays are merged forms of different succinct data

structures, the construction involves more time than the pure wavelet tree con-

struction.

One alternative way to compress the stringValues array is to apply general-

purpose compression schemes, however, the core penalty of this method is that

the compressed form does not support random access without explicit decom-

pression, which is a significant overhead while querying. Fortunately, the double-

array based data structures provide decent compression time.

88

 0

 200

 400

 600

 800

 1000

 1200

string Twitter SNLI DBLP

C
on

st
ru

ct
io

n
T

im
e

(s
)

Corpus

Original
CSA
CST
WT
FM

XBW
RP

CDA
XCDAT

CSD

Figure 5.16 Construction time with string compression enabled.

Additional string compression drastically decreases the overall disk size –

even competitive to gzipped compression – if the original corpus contains a high

portion of strings, summarized in Figure 5.17.

We claim that most semi-structured documents contain a large number of

strings so that applying string compression to those guarantees less disk usage.

If no string compression is applied, extracting an arbitrary string value from

the stringValues array does not rely on the length of the value. Neverthe-

less, as dealt in the previous section, extracting a string from the compressed

representation takes linear time proportional to the desired length of the string.

5.3.7 Query Time

In Section 5.2.4 several types of queries are discussed, and our library imple-

ments those as either array traversals or tree operation emulations.

89

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

string Twitter SNLI DBLP

D
is

k
U

sa
ge

 (
M

B
)

Corpus

Original
CSA
CST
WT
FM

XBW
RP

CDA
XCDAT

CSD

Figure 5.17 Disk usage with string compression enabled.

Existence Queries

Query Type Time (ms)

existsName 0.012

existsElement 2,907

countElements 503,867

Table 5.9 Query time of existence queries in the SNLI corpus, without bitmap

indexes.

Table 5.9 shows time values (in milliseconds) took by existence queries per-

formed in the SNLI corpus when bitmap indexes are not constructed for the

dedicated name, while Table 5.10 indicates the values when relevant SBH-

compresseed bitmap indexes exist. Both existing and non-existing elements are

queried, and the average values are recorded in both the tables. Since only the

names array is needed for answering name existence (existsName), and the

90

Query Type Time (ms)

existsName 0.012

existsElement 14

countElements 38

Table 5.10 Query time of existence queries in the SNLI corpus, with compressed

bitmap indexes.

number of names in the corpus is small, the query only requires small amount

of time. Bitmap indexes do not affect the query time for existsName.

Nevertheless, for the remaining two queries, the library without bitmap

indexes needs to navigate all the representation from scratch in the worst case

to answer those. Therefore, the query time is proportional to the number of

elements in the entire document, which is infeasible for this library to process

these types of queries. Fortunately, when compressed bitmap indexes exist, the

two aforementioned queries can be substituted to loading and decompressing the

relevant bitmap index, respectively. If compression is not applied in the entire

bitmap indexes, then in the worst case 0.8 × cardinality MB of extra storage

is needed. When the desired element is sparse in the representation, then size

of the compressed bitmap index is decreased to 3 × cardinality = 20MB for

storing information of a single name entry in the entire SNLI corpus, which is

significantly less than the original document size. As in Table 5.10, we claim

that integrating bitmap index compression into the representation has strength

while processing the existence queries.

Navigational Queries

Table 5.11 exhibits the navigational query time experimental results. Queries

are invoked in various document locations, and their average time is calculated.

Queries are invoked in various document locations, and their average time is

calculated. For some corpora where arrays do not exist, only the object queries

91

Corpus listObjNames getObjValue cntArrElems getArrValue

string 209 17.2 - -

Twitter 89.3 16.8 9.8 19.8

SNLI 106 17.2 10.3 20.7

CityLots 135 16.7 9.8 20.6

DBLP 131 16.8 10.2 19.7

150JS-evaluation 92.6 17.1 9.9 20.9

150JS-training 94.4 17.3 10.1 20.8

Table 5.11 Query time of navigational queries. Units are in microseconds.

are run in the experiments.

The time is mostly the same regardless of the location each query han-

dles, because tree-navigational queries take constant time. Additionally, point-

ing the exact location in the bit indexed array takes constant time as well,

by the constant-time implementation rank and select operations. For the

listObjNames queries, the actual experimental time is highly affected by the

degree of each element accessed.

We have also emulated the relevant queries as the native operations sup-

ported by the other libraries. Figure 5.18 shows comparison of query time in

the Twitter corpus among the four libraries. Since the succinct tree representa-

tion are slower in supporting the tree navigational operations compared to the

pointer-based representations, our representation mostly gives the worse per-

formance in query time. Nonetheless, the new representation allows querying

through a large document which other frameworks fail to process, with almost

identical processing time regardless of the size of the document.

Semi-index supports retrieval of values in an arbitrary location when a name

is given. This is done by traversing the whole tree with the assistance of the

constructed index. Although our library does not explicitly support the whole

traversal as of now, it is remarkable that emulation of traversal would guarantee

92

 1

 10

 100

 1000

listObjNames getObjValue cntArrElems getArrValue

Q
ue

ry
 T

im
e

(m
ic

ro
se

co
nd

s)

Query Type

RapidJSON
JsonCpp

ModernJSON
SSD

Figure 5.18 Query time of navigational queries compared to different libraries,

for the Twitter corpus.

similar query time to that of semi-index.

93

Chapter 6

Conclusion

In this dissertation, we propose an unified space-efficient representation of var-

ious semi-structured document formats that mainly exploits compact and suc-

cinct data structures. While organizing this representation, we also give sub-

sidiary space-efficient implementations of several compact data structures.

In Chapter 3, we suggest an improved code system for integer arrays. This

system is based on the prefix code property, and heavily relies upon the succinct

bit vector data structure. Experiments show that this representation is feasible

for querying elements even in compressed manner, so that this structure could

act as a framework to process big data.

In Chapter 4, we provide a tuned version of the SBH bitmap index compres-

sion scheme for efficient processing. While SBH guarantees almost optimal com-

pressed size and decent query processing time by applying simpler byte-based

compression algorithm and maintaining a common bucket for decompression,

we prove that this algorithm is feasible to be converted in parallel fashion. We

show by experiments that this tuning works for both CPUs and GPUs.

Finally, in Chapter 5, we construct a queryable compact representation

handling a number of semi-structured document formats by combining two

94

space-efficient data structures – bit indexed array and succinct ordinal trees.

Empirical analyses provide that this representation is both space-efficient and

time-efficient, and is also suitable to the system containing less RAM. This rep-

resentation is suitable for computing environment with constrained memory, by

applying partial processing of the document.

We expect that the representation constructed in this dissertation can be

utilized in a plethora of data processing frameworks. We leave this as an open

research task as well as future work.

95

Bibliography

[1] BSON (Binary JSON): Specification. http://bsonspec.org/spec.html.

[2] SPARQL 1.1 Overview. https://www.w3.org/TR/sparql11-overview,

2013.

[3] RDF 1.1 Primer. https://www.w3.org/TR/rdf11-primer, 2014.

[4] J. C. Anderson, J. Lehnardt, and N. Slater. CouchDB: The Definitive

Guide Time to Relax. O’Reilly Media, Inc., 1st edition, 2010.

[5] W. Andrzejewski and R. Wrembel. GPU-WAH: Applying GPUs to Com-

pressing Bitmap Indexes with Word Aligned Hybrid. In International

Conference on Database and Expert Systems Applications, pages 315–329,

2010.

[6] W. Andrzejewski and R. Wrembel. GPU-PLWAH: GPU-based Imple-

mentation of the PLWAH Algorithm for Compressing Bitmaps. Control

and Cybernetics, 40(3):627–650, 2011.

[7] E. Anjos, J. Lee, and S. R. Satti. SJSON: A Succinct Representation for

JavaScript Object Notation Documents. In International Conference on

Digital Information Management, pages 173–178, 2016.

[8] G. Antoshenkov. Byte-aligned Data Compression, 1994. US Patent

5,363,098.

96

[9] G. Antoshenkov. Byte-aligned Bitmap Compression. In Data Compres-

sion Conference, page 476, 1995.

[10] A. Arion, A. Bonifati, G. Costa, S. D’Aguanno, I. Manolescu, and

A. Pugliese. XQueC: Pushing Queries to Compressed XML Data. In

International Conference on Very Large Data Bases, pages 1065–1068,

2003.

[11] D. Arroyuelo, R. Cánovas, G. Navarro, and K. Sadakane. Succinct Trees

in Practice. In Meeting on Algorithm Engineering & Expermiments, pages

84–97, 2010.

[12] D. Beckett, T. Berners-Lee, E. Prud’hommeaux, and G. Carothers. RDF

1.1 Turtle. World Wide Web Consortium, 2014.

[13] D. Beckett and B. McBride. RDF/XML Syntax Specification. World

Wide Web Consortium, 10(2.3), 2004.

[14] O. Ben-Kiki, C. Evans, and I. Dot. YAML 1.2 specification.

https://yaml.org/spec/1.2/spec.html, 2009.

[15] D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman, and S. S.

Rao. Representing Trees of Higher Degree. Algorithmica, 43(4):275–292,

2005.

[16] K. S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M. Eltabakh, C.-C.

Kanne, F. Ozcan, and E. J. Shekita. Jaql: A Scripting Language for Large

Scale Semistructured Data Analysis. In International Conference on Very

Large Data Bases, 2011.

[17] S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning. A Large An-

notated Corpus for Learning Natural Language Inference. arXiv preprint

arXiv:1508.05326, 2015.

97

[18] T. Bray. The JavaScript Object Notation (JSON) Data Interchange For-

mat. RFC 7159, 2014.

[19] T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, and F. Yergeau. Ex-

tensible Markup Language (XML) 1.0. World Wide Web Consortium,

1998.

[20] N. R. Brisaboa, A. Cerdeira-Pena, G. de Bernardo, and G. Navarro. Im-

proved Compressed String Dictionaries. In ACM International Confer-

ence on Information and Knowledge Management, pages 29–38, 2019.

[21] N. R. Brisaboa, A. Cerdeira-Pena, A. Farina, and G. Navarro. A Compact

RDF Store Using Suffix Arrays. In International Symposium on String

Processing and Information Retrieval, pages 103–115. Springer, 2015.

[22] N. R. Brisaboa, S. Ladra, and G. Navarro. Directly Addressable Variable-

length Codes. In International Symposium on String Processing and In-

formation Retrieval, pages 122–130. Springer, 2009.

[23] P. Buneman. Semistructured Data. In ACM Symposium on Principles of

Database Systems, pages 117–121, 1997.

[24] M. Burrows and D. Wheeler. A Block-Sorting Lossless Data Compression

Algorithm. Technical report, Digital Systems Research Center, 1994.

[25] G. Canahuate, M. Gibas, and H. Ferhatosmanoglu. Update Conscious

Bitmap Indices. In International Conference on Scientific and Statistical

Database Management, page 15, 2007.

[26] T. C. Casas. JSONC-JSON Compressor and Decompressor.

https://github.com/tcorral/jsonc, 2015.

[27] S. Chakraborty, A. Mukherjee, V. Raman, and S. R. Satti. A Framework

for In-place Graph Algorithms. In European Symposium on Algorithms,

2018.

98

[28] S. Chambi, D. Lemire, O. Kaser, and R. Godin. Better Bitmap Perfor-

mance with Roaring Bitmaps. Software: Practice and Experience, 2015.

[29] C.-Y. Chan and Y. E. Ioannidis. Bitmap Index Design and Evaluation.

In ACM SIGMOD Record, volume 27, pages 355–366, 1998.

[30] J. Chang, Z. Chen, W. Zheng, Y. Wen, J. Cao, and W.-L. Huang.

PLWAH+: A Bitmap Index Compressing Scheme Based on PLWAH. In

ACM/IEEE Symposium on Architectures for Networking and Communi-

cations Systems, pages 257–258, 2014.

[31] Z. Chen, Y. Wen, J. Cao, W. Zheng, J. Chang, Y. Wu, G. Ma, M. Hak-

maoui, and G. Peng. A Survey of Bitmap Index Compression Algorithms

for Big Data. Tsinghua Science and Technology, 20(1):100–115, 2015.

[32] K. Chodorow and M. Dirolf. MongoDB: The Definitive Guide. O’Reilly

Media, Inc., 1st edition, 2010.

[33] D. Clark. Compact Pat Trees. PhD thesis, University of Waterloo, 1997.

[34] J. Clark, S. DeRose, et al. XML Path Language (XPath) Version 1.0.

World Wide Web Consortium, 1999.

[35] F. Claude and G. Navarro. Practical Rank/select Queries over Arbitrary

Sequences. In International Symposium on String Processing and Infor-

mation Retrieval, pages 176–187. Springer, 2008.

[36] F. Claude, G. Navarro, and A. Ordónez. The Wavelet Matrix: An Efficient

Wavelet Tree for Large Alphabets. Information Systems, 47:15–32, 2015.

[37] O. Curé and G. Blin. An Update Strategy for the Waterfowl RDF Data

Store. 2014.

99

[38] O. Curé, G. Blin, D. Revuz, and D. C. Faye. Waterfowl: A Compact,

Self-indexed and Inference-enabled Immutable RDF Store. In European

Semantic Web Conference, pages 302–316, 2014.

[39] I. Davis, T. Steiner, and A. Hors. RDF 1.1 JSON Alternate Serialization

(RDF/JSON). World Wide Web Consortium, 2013.

[40] F. Deliège and T. B. Pedersen. Position List Word Aligned Hybrid: Opti-

mizing Space and Performance for Compressed Bitmaps. In International

Conference on Extending Database Technology, pages 228–239, 2010.

[41] O. Delpratt, S. Joannou, N. Rahman, and R. Raman. The SiXML Project:

SiXDOM 1.2. 2013.

[42] E. Demaine and M. Hajiaghayi. BigDND: Big Dynamic Network Data.

http://projects.csail.mit.edu/dnd/DBLP/, 2014.

[43] A. Doan, A. Halevy, and Z. Ives. Principles of Data Integration. Morgan

Kaufmann Publishers Inc., 1st edition, 2012.

[44] D. Draper, P. Fankhauser, M. Fernández, A. Malhotra, K. Rose, M. Rys,

J. Siméon, and P. Wadler. XQuery 1.0 and XPath 2.0 Formal Semantics.

World Wide Web Consortium, 2007.

[45] P. Elias. Universal Codeword Sets and Representations of the Integers.

IEEE Transactions on Information Theory, 21(2):194–203, 1975.

[46] A. Farzan, R. Raman, and S. S. Rao. Universal Succinct Representa-

tions of Trees. In International Colloquium on Automata, Languages and

Programming, pages 451–462, 2009.

[47] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Structuring

Labeled Trees for Optimal Succinctness, and Beyond. In Annual IEEE

Symposium on Foundations of Computer Science, pages 184–193, 2005.

100

[48] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Compressing

and Searching XML Data via Two Zips. In International Conference on

World Wide Web, pages 751–760, 2006.

[49] P. Ferragina and G. Manzini. Indexing Compressed Text. Journal of the

ACM, 52(4):552–581, 2005.

[50] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed

Representations of Sequences and Full-text Indexes. ACM Transactions

on Algorithms, 3(2):20, 2007.

[51] J. Fischer and V. Heun. A New Succinct Representation of RMQ-

Information and Improvements in the Enhanced Suffix Array. In In-

ternational Symposium on Combinatorics, Algorithms, Probabilistic and

Experimental Methodologies, pages 459–470, 2007.

[52] D. Florescu and G. Fourny. JSONiq: The History of a Query Language.

IEEE Internet Computing, 17(5):86–90, 2013.

[53] A. S. Fraenkel and S. T. Klein. Robust Universal Complete Codes as

Alternatives to Huffman Codes. 1985.

[54] F. Fusco, M. P. Stoecklin, and M. Vlachos. Net-fli: On-the-fly Compres-

sion, Archiving and Indexing of Streaming Network Traffic. In VLDB

Endowment, volume 3, pages 1382–1393, 2010.

[55] S. Gog, T. Beller, A. Moffat, and M. Petri. From Theory to Practice: Plug

and Play with Succinct Data Structures. In International Symposium on

Experimental Algorithms, pages 326–337, 2014.

[56] S. W. Golomb. Run-Length Encodings. IEEE Transactions on Informa-

tion Theory, 1966.

[57] Google. Using JSON in the Google Data Protocol.

https://developers.google.com/gdata/docs/json, 2014.

101

[58] R. Grossi, A. Gupta, and J. S. Vitter. High-order Entropy-compressed

Text Indexes. In Annual ACM-SIAM Symposium on Discrete algorithms,

pages 841–850, 2003.

[59] R. Grossi and J. S. Vitter. Compressed Suffix Arrays and Suffix Trees

with Applications to Text Indexing and String Matching. SIAM Journal

on Computing, 35(2):378–407, 2005.

[60] G. Guzun and G. Canahuate. Performance Evaluation of Word-aligned

Compression Methods for Bitmap Indices. Knowledge and Information

Systems, pages 1–28, 2015.

[61] G. Guzun, G. Canahuate, D. Chiu, and J. Sawin. A Tunable Compression

Framework for Bitmap Indices. In International Conference on Data

Engineering, pages 484–495, 2014.

[62] G. Jacobson. Space-efficient Static Trees and Graphs. In Annual Sympo-

sium on Foundations of Computer Science, pages 549–554, 1989.

[63] G. J. Jacobson. Succinct Static Data Structures. PhD thesis, Carnegie

Mellon University, 1988.

[64] J. Jansson, K. Sadakane, and W.-K. Sung. Ultra-succinct Representation

of Ordered Trees with Applications. Journal of Computer and System

Sciences, 78(2):619–631, 2012.

[65] T. Johnson. Performance Measurements of Compressed Bitmap Indices.

In International Conference on Very Large Data Bases, pages 278–289,

1999.

[66] F. Kammer and A. Sajenko. Linear-time In-place DFS and BFS on the

Word RAM. In International Conference on Algorithms and Complexity,

pages 286–298, 2019.

102

[67] S. Kanda, K. Morita, and M. Fuketa. Compressed Double-array Tries for

String Dictionaries Supporting Fast Lookup. Knowledge and Information

Systems, 51(3):1023–1042, 2017.

[68] A. Kapoulkine. pugixml. https://pugixml.org, 2006.

[69] G. Karvounarakis, A. Magkanaraki, S. Alexaki, V. Christophides, D. Plex-

ousakis, M. Scholl, and K. Tolle. RQL: A Functional Query Language for

rDF. In The Functional Approach to Data Management, pages 435–465.

Springer, 2004.

[70] S. Kim, J. Lee, S. R. Satti, and B. Moon. SBH: Super Byte-aligned Hybrid

Bitmap Compression. Information Systems, 62:155–168, 2016.

[71] J. Lee and S. R. Satti. A Simple Integer Sequence Code System Sup-

porting Random Access. KIISE Transactions on Computing Practices,

23(10):594–598, 2017.

[72] K. Lee and B. Moon. Bitmap Indexes for Relational XML Twig Query

Processing. In ACM Conference on Information and Knowledge Manage-

ment, pages 465–474, 2009.

[73] G. Leighton, T. Müldner, and J. Diamond. TREECHOP: a Tree-based

Query-able Compressor for XML. In Canadian Workshop on Information

Theory, pages 115–118, 2005.

[74] D. Lemire, O. Kaser, and K. Aouiche. Sorting Improves Word-aligned

Bitmap Indexes. Data & Knowledge Engineering, 69(1):3–28, 2010.

[75] B. Lepilleur. JsonCpp. https://github.com/open-source-parsers/jsoncpp,

2016.

[76] M. Ley. The DBLP Computer Science Bibliography: Evolution, Research

Issues, Perspectives. In International Symposium on String Processing

and Information Retrieval, pages 1–10, 2002.

103

[77] H. Liefke and D. Suciu. XMill: an Efficient Compressor for XML Data.

In ACM SIGMOD Record, volume 29, pages 153–164, 2000.

[78] N. Lohmann. JSON for Modern C++, 2016.

[79] F. Maddix. Books. http://www.cems.uwe.ac.uk/ fj-maddix/Books.xml.

[80] V. Mäkinen and G. Navarro. Succinct Suffix Arrays based on Run-length

Encoding. In Annual Symposium on Combinatorial Pattern Matching,

pages 45–56, 2005.

[81] U. Manber and G. Myers. Suffix Arrays: a New Method for On-line String

Searches. SIAM Journal on Computing, 22(5):935–948, 1993.

[82] M. A. Mart́ınez-Prieto, N. Brisaboa, R. Cánovas, F. Claude, and

G. Navarro. Practical Compressed String Dictionaries. Information Sys-

tems, 56:73 – 108, 2016.

[83] P. B. Miltersen. Cell Probe Complexity-a Survey. In Conference on the

Foundations of Software Technology and Theoretical Computer Science,

Advances in Data Structures Workshop, page 2, 1999.

[84] J. I. Munro. Tables. In International Conference on Foundations of

Software Technology and Theoretical Computer Science, pages 37–42.

Springer, 1996.

[85] J. I. Munro, R. Raman, V. Raman, and S. Rao. Succinct Representations

of Permutations and Functions. Theoretical Computer Science, 438:74–

88, 2012.

[86] J. I. Munro and V. Raman. Succinct Representation of Balanced Paren-

theses, Static Trees and Planar Graphs. In Annual Symposium on Foun-

dations of Computer Science, pages 118–126, 1997.

104

[87] J. I. Munro and V. Raman. Succinct Representation of Balanced Paren-

theses and Static Trees. SIAM Journal on Computing, 31(3):762–776,

2001.

[88] G. Navarro and K. Sadakane. Fully Functional Static and Dynamic Suc-

cinct Trees. ACM Transactions on Algorithms, 10(3):16, 2014.

[89] M. Nelson, Z. Sorenson, J. M. Myre, J. Sawin, and D. Chiu. Gpu Accelera-

tion of Range Queries over Large Data Sets. In IEEE/ACM International

Conference on Big Data Computing, Applications and Technologies, pages

11–20, 2019.

[90] D. Okanohara and K. Sadakane. Practical Entropy-compressed Rank/s-

elect Dictionary. In Meeting on Algorithm Engineering & Expermiments,

pages 60–70. Society for Industrial and Applied Mathematics, 2007.

[91] P. E. O’Neil and G. Graefe. Multi-Table Joins Through Bitmapped Join

Indices. SIGMOD Record, 24(3):8–11, 1995.

[92] G. Ottaviano and R. Grossi. Semi-indexing Semi-structured Data in Tiny

Space. In ACM International Conference on Information and Knowledge

Management, pages 1485–1494, 2011.

[93] R. Raman, V. Raman, and S. R. Satti. Succinct Indexable Dictionaries

with Applications to Encoding k-ary Trees, Prefix Sums and Multisets.

ACM Transactions on Algorithms, 3(4):43, 2007.

[94] V. Raychev, P. Bielik, M. Vechev, and A. Krause. Learning Programs

from Noisy Data. In ACM SIGPLAN Notices, volume 51, pages 761–774,

2016.

[95] R. Rice and J. Plaunt. Adaptive Variable-length Coding for Efficient

Compression of Spacecraft Television Data. IEEE Transactions on Com-

munication Technology, 19(6):889–897, 1971.

105

[96] T. Rincy and R. Rajesh. Space Efficient Structures for JSON Docu-

ments. International Journal of Computer Engineering and Technology,

5(12):148–153, 2014.

[97] A. Seaborne. RDQL-a Query Language for RDF. http://www. w3. org/-

Submission/RDQL/, 2004.

[98] J. Seo, M. Han, K. Park, M. E. Esmaili, R. Entezari-Maleki, A. Movaghar,

Y. Wang, H. An, Z. Liu, L. Li, et al. Efficient Accessing and Searching in

a Sequence of Numbers. In Korea-Japan Joint Workshop on Algorithms

and Computation, pages 95–103, 2014.

[99] R. Sinha, S. Mitra, and M. Winslett. Bitmap Indexes for Large Scien-

tific Data Sets: a Case Study. In International Parallel and Distributed

Processing Symposium, pages 10 pp.–, April 2006.

[100] M. Sporny, D. Longley, G. Kellogg, M. Lanthaler, and N. Lindström.

JSON-LD 1.0. World Wide Web Consortium, 16:41, 2014.

[101] M. Stabno and R. Wrembel. RLH: Bitmap Compression Technique based

on Run-length and Huffman Encoding. Information System, 34(4-5):400–

414, 2009.

[102] Tencent. Rapidjson. https://github.com/miloyip/rapidjson, 2015.

[103] B. Tran, B. Schaffner, J. Sawin, J. M. Myre, and D. Chiu. Increasing

the Efficiency of GPU Bitmap Index Query Processing. In International

Conference on Database Systems for Advanced Applications, pages 339–

355. Springer, 2020.

[104] Twitter. Twitter Developers Documentation on REST APIs.

https://dev.twitter.com/rest/public, 2016.

106

[105] S. J. van Schaik and O. de Moor. A Memory Efficient Reachability Data

Structure Through Bit Vector Compression. In ACM SIGMOD Interna-

tional Conference on Management of Data, pages 913–924, 2011.

[106] S. Vigna. Broadword Implementation of Rank/select Queries. In In-

ternational Workshop on Experimental and Efficient Algorithms, pages

154–168, 2008.

[107] S. Vigna. Quasi-succinct Indices. In ACM international Conference on

Web Search and Data Mining, pages 83–92, 2013.

[108] J. S. Vitter. External Memory Algorithms. In European Symposium on

Algorithms, pages 1–25, 1998.

[109] P. Weiner. Linear Pattern Matching Algorithms. In Annual Symposium

on Switching and Automata Theory, pages 1–11, 1973.

[110] T. A. Welch. A Technique for High-performance Data Compression. Com-

puter, 17(6):8–19, 1984.

[111] Y. Wen, Z. Chen, G. Ma, J. Cao, W. Zheng, G. Peng, S. Li, and W.-

L. Huang. SECOMPAX: A Bitmap Index Compression Algorithm. In

International Conference on Computer Communication and Networks,

pages 1–7, 2014.

[112] K. Wu, E. J. Otoo, and A. Shoshani. Optimizing Bitmap Indices with

Efficient Compression. ACM Transactions on Database Systems, 31(1):1–

38, 2006.

[113] K. Wu, E. J. Otoo, A. Shoshani, and H. Nordberg. Notes on De-

sign and Implementation of Compressed Bit Vectors. Technical report,

LBNL/PUB-3161, 2001.

107

[114] X. Wu, X. Zhu, G.-Q. Wu, and W. Ding. Data Mining with Big Data.

IEEE Transactions on Knowledge and Data Engineering, 26(1):97–107,

2014.

[115] Y. Wu, Z. Chen, Y. Wen, J. Cao, W. Zheng, and G. Ma. A General

Analytical Model for Spatial and Temporal Performance of Bitmap Index

Compression Algorithms in Big Data. In International Conference on

Computer Communication and Networks, pages 1–10, 2015.

[116] M. Zeiss. City Lots San Francisco. https://github.com/zeMirco/sf-city-

lots-json, 2012.

[117] J. Ziv and A. Lempel. A Universal Algorithm for Sequential Data Com-

pression. IEEE Transactions on Information Theory, 23(3):337–343,

1977.

[118] J. Ziv and A. Lempel. Compression of Individual Sequences via Variable-

rate Coding. IEEE transactions on Information Theory, 24(5):530–536,

1978.

108

요약

셀 수 없는 빅 데이터가 다양한 원본로부터 생성되고 있다. 이들 데이터의 대부분

은 고정되지 않은 종류의 스키마를 포함한 파일 형태로 저장되는데, 이로 인하여

반구조화된 문서 형식을 이용하여 파일을 유지하는 것이 적합하다. XML, JSON

및 YAML과같은종류의반구조화된문서형식이데이터에내재하는구조를유지

하기 위하여 제안되었다. 수집된 데이터를 구조화하는 RDF와 같은 여러 데이터

모델들은 사후 처리를 위한 저장 및 전송을 위하여 반구조화된 문서 형식에 의존

한다.

반구조화된 문서 형식은 가독성과 다변성에 집중하기 때문에, 문서를 구조화

하고 유지하기 위하여 추가적인 공간을 필요로 한다. 문서를 압축시키기 위하여

일반적인 압축 기법들이 널리 사용되고 있으나, 이들 기법들을 적용하게 되면 문

서의 내부 구조의 손실로 인하여 데이터의 사후 처리가 어렵게 된다.

데이터를 정보이론적 하한에 가까운 공간만을 사용하여 저장을 가능하게 하

면서 질의에 대한 응답을 제공하는 간결한 자료구조는 이론적으로 널리 연구되고

있는분야이다.비트열과트리가널리알려진간결한자료구조들이다.그러나반구

조화된 문서들을 저장하는 데 간결한 자료구조의 아이디어를 적용한 연구는 거의

진행되지 않았다.

본 학위논문을 통해 우리는 다양한 종류의 반구조화된 문서 형식을 통일되게

표현하는 공간 효율적 표현법을 제시한다. 이 기법의 주요한 기능은 간결한 자

료구조가 강점으로 가지는 특성에 기반한 간결성과 질의 가능성이다. 비트열로

인덱싱된 배열, 간결한 순서 있는 트리 및 다양한 압축 기법을 통합하여 해당 표

현법을 고안하였다. 이 기법은 실재적으로 구현되었고, 실험을 통하여 이 기법을

적용한 반구조화된 문서들은 최대 60% 적은 디스크 공간과 90% 적은 메모리 공

간을 통해 표현될 수 있다는 것을 보인다. 더불어 본 학위논문에서 반구조화된

문서들은 분할적으로 표현이 가능함을 보이고, 이를 통하여 제한된 환경에서도 빅

데이터를 표현한 문서들을 처리할 수 있다는 것을 보인다.

109

앞서 언급한 공간 효율적 반구조화된 문서 표현법을 구축함과 동시에, 본 학

위논문에서 이미 존재하는 압축 기법 중 일부를 추가적으로 개선한다. 첫째로, 본

학위논문에서는 정렬 여부에 관계없는 정수 배열을 부호화하는 아이디어를 제시

한다. 이 기법은 이미 존재하는 범용 코드 시스템을 개선한 형태로, 간결한 비트열

자료구조를이용한다.제안된알고리즘은기존범용코드시스템에비해최대 44%

적은 공간을 사용할 뿐만 아니라 15% 적은 부호화 시간을 필요로 하며, 기존 시스

템에서 제공하지 않는 부호화된 배열에서의 임의 접근을 지원한다.

또한본학위논문에서는비트맵인덱스압축에사용되는 SBH알고리즘을개선

시킨다.해당기법의주된강점은부호화와복호화진행시중간매개인슈퍼버켓을

사용함으로써 여러 압축된 비트맵 인덱스에 대한 질의 성능을 개선시키는 것이다.

위압축알고리즘의중간과정에서진행되는분할에서영감을얻어,본학위논문에

서 CPU및 GPU에적용가능한개선된병렬화압축매커니즘을제시한다.실험을

통해 CPU 병렬 최적화가 이루어진 알고리즘은 압축된 형태의 변형 없이 4코어

컴퓨터에서 최대 38%의 압축 및 해제 시간을 감소시킨다는 것을 보인다. GPU

병렬 최적화는 기존에 존재하는 GPU 비트맵 압축 기법에 비해 48% 빠른 질의

처리 시간을 필요로 함을 확인한다.

주요어: 반구조화된 문서 형식, 간결한 자료구조, 압축 알고리즘, 공간 효율적 알

고리즘, 정수 배열, 비트맵 인덱스, 빅 데이터 처리.

학번: 2013-23134

110

Acknowledgements

This dissertation could not have been published if there was no help by various

people.

First of all, I would like to send my all the best gratuity to my academic

advisor, professor Srinivasa Rao Satti. He has encouraged me during my the

life in the lab, both as an academic advisor and a gentle companion. He did

not hesitate to not only educate me to become a decent researcher, but also

listen to my trouble and give directions to solve it. His guidance to the diverse

research projects related to data structures and algorithms, as well as external

activities definitely boosted my entire career. I do not hold back to recommend

him to others for initiating future research.

I also sincerely appreciate professor Kunsoo Park, professor Inbok Lee, pro-

fessor Joongchae Na, and professor Seungbum Jo for supervising my work. They

had given tremendous amount of comments during the publication of this dis-

sertation, and based on their insights the idea of this dissertation as well as

my knowledge of the research area were enriched. I show special gratitude to

professor Park and Jo for their long-term instructions that positively affected

my life in the lab.

Some of my research contribution is reinforced by fruitful advice from pro-

fessor Bongki Moon, professor Bernhard Egger and professor Meng He, whom I

would like to express my gratitude as well. Professor Moon allowed me to take

111

part in the research tasks that produced subsidiary works in literature. Pro-

fessor Egger was willing to lend the research equipments for my experiments.

Professor He gave several future research directions during my short stay in

Canada.

Throughout my life in campus all of my family members – Sangku Lee,

Hyunjoo Kim, and Jungheun Lee – supported me by all means. When I fell in

chaos in the middle of my school life, their generous care alleviated negative

issues so that I could set focus on academics. They were always on my side and

acted as troubleshooters. I cordially appreciate their devotion. I also thank all

the family relatives, including Sunjoo Lee and Seungha Kim.

If there were no friends I could not finish this entire research. First, I was

fortunate to meet some mates from Canada, as a token of the national re-

searcher exchange grant. Among them, I would like to thank Serikzhan Kazi

who gave extreme assistance for both life and studies. I also send my gratituity

to Changsub Chang, Hyun Lee, Sejin Oh, Pyojin Kim, Taeyoul Kim, Jongcheon

Lim, and Younghyun Ryu who either stayed in campus or came to campus to

assist me.

I thank all the lab alumni and members – Sangchul Kim, Heejeong Kim,

Neha Dwivedi, Edman Anjos, Jeongsoo Shin, Yeonil Yoo, Wonil Jeong, Einass

Tahiri, Seungeun Lee, Seyoung Kim, Wooyoung Park, Seungwoo Kim and Mo-

hammadsadegh Najafi – for me to enjoy life in the lab. I also thank Sankardeep

Chakraborty for his kind support during his visit in the lab. In addition, I also

thank the members in the neighbor labs – Seounggook Sohn, Hanmin Lee, Tae-

hoon Kim, Bogyeong Kim, Chanho Lee, Jisan Song, Heeran Lee, Younghyun

Cho, Changyeon Jo, Chanseok Kang, Daeyong Shin, and Youngsu Cho.

It is my pity that I could not write every person’s name that gave me a bit

of help. As a wrap-up, I hope every single person I have during my academics

stay healthy and achieve everything they pursue. Wish everyone all the best.

112

	Chapter 1 Introduction
	1.1 Contribution
	1.2 Organization

	Chapter 2 Background
	2.1 Model of Computation
	2.2 Succinct Data Structures

	Chapter 3 Space-efficient Representation of Integer Arrays
	3.1 Introduction
	3.2 Preliminaries
	3.2.1 Universal Code System
	3.2.2 Bit Vector

	3.3 Algorithm Description
	3.3.1 Main Principle
	3.3.2 Optimization in the Implementation

	3.4 Experimental Results

	Chapter 4 Space-efficient Parallel Compressed Bitmap Index Processing
	4.1 Introduction
	4.2 Related Work
	4.2.1 Byte-aligned Bitmap Code (BBC)
	4.2.2 Word-Aligned Hybrid (WAH)
	4.2.3 WAH-derived Algorithms
	4.2.4 GPU-based WAH Algorithms
	4.2.5 Super Byte-aligned Hybrid (SBH)

	4.3 Parallelizing SBH
	4.3.1 CPU Parallelism
	4.3.2 GPU Parallelism

	4.4 Experimental Results
	4.4.1 Plain Version
	4.4.2 Parallelized Version
	4.4.3 Summary

	Chapter 5 Space-efficient Representation of Semi-structured Document Formats
	5.1 Preliminaries
	5.1.1 Semi-structured Document Formats
	5.1.2 Resource Description Framework
	5.1.3 Succinct Ordinal Tree Representations
	5.1.4 String Compression Schemes

	5.2 Representation
	5.2.1 Bit String Indexed Array
	5.2.2 Main Structure
	5.2.3 Single Document as a Collection of Chunks
	5.2.4 Supporting Queries

	5.3 Experimental Results
	5.3.1 Datasets
	5.3.2 Construction Time
	5.3.3 RAM Usage during Construction
	5.3.4 Disk Usage and Serialization Time
	5.3.5 Chunk Division
	5.3.6 String Compression
	5.3.7 Query Time

	Chapter 6 Conclusion
	Bibliography
	요약
	Acknowledgements

<startpage>15
Chapter 1 Introduction 1
 1.1 Contribution 3
 1.2 Organization 5
Chapter 2 Background 6
 2.1 Model of Computation 6
 2.2 Succinct Data Structures 7
Chapter 3 Space-efficient Representation of Integer Arrays 9
 3.1 Introduction 9
 3.2 Preliminaries 10
 3.2.1 Universal Code System 10
 3.2.2 Bit Vector 13
 3.3 Algorithm Description 13
 3.3.1 Main Principle 14
 3.3.2 Optimization in the Implementation 16
 3.4 Experimental Results 16
Chapter 4 Space-efficient Parallel Compressed Bitmap Index Processing 19
 4.1 Introduction 19
 4.2 Related Work 23
 4.2.1 Byte-aligned Bitmap Code (BBC) 24
 4.2.2 Word-Aligned Hybrid (WAH) 27
 4.2.3 WAH-derived Algorithms 28
 4.2.4 GPU-based WAH Algorithms 31
 4.2.5 Super Byte-aligned Hybrid (SBH) 33
 4.3 Parallelizing SBH 38
 4.3.1 CPU Parallelism 38
 4.3.2 GPU Parallelism 39
 4.4 Experimental Results 40
 4.4.1 Plain Version 41
 4.4.2 Parallelized Version 46
 4.4.3 Summary 49
Chapter 5 Space-efficient Representation of Semi-structured Document Formats 50
 5.1 Preliminaries 50
 5.1.1 Semi-structured Document Formats 50
 5.1.2 Resource Description Framework 57
 5.1.3 Succinct Ordinal Tree Representations 60
 5.1.4 String Compression Schemes 64
 5.2 Representation 66
 5.2.1 Bit String Indexed Array 67
 5.2.2 Main Structure 68
 5.2.3 Single Document as a Collection of Chunks 72
 5.2.4 Supporting Queries 73
 5.3 Experimental Results 75
 5.3.1 Datasets 76
 5.3.2 Construction Time 78
 5.3.3 RAM Usage during Construction 80
 5.3.4 Disk Usage and Serialization Time 83
 5.3.5 Chunk Division 83
 5.3.6 String Compression 88
 5.3.7 Query Time 89
Chapter 6 Conclusion 94
Bibliography 96
요약 109
Acknowledgements 111
</body>

