517 research outputs found

    Modern computing: Vision and challenges

    Get PDF
    Over the past six decades, the computing systems field has experienced significant transformations, profoundly impacting society with transformational developments, such as the Internet and the commodification of computing. Underpinned by technological advancements, computer systems, far from being static, have been continuously evolving and adapting to cover multifaceted societal niches. This has led to new paradigms such as cloud, fog, edge computing, and the Internet of Things (IoT), which offer fresh economic and creative opportunities. Nevertheless, this rapid change poses complex research challenges, especially in maximizing potential and enhancing functionality. As such, to maintain an economical level of performance that meets ever-tighter requirements, one must understand the drivers of new model emergence and expansion, and how contemporary challenges differ from past ones. To that end, this article investigates and assesses the factors influencing the evolution of computing systems, covering established systems and architectures as well as newer developments, such as serverless computing, quantum computing, and on-device AI on edge devices. Trends emerge when one traces technological trajectory, which includes the rapid obsolescence of frameworks due to business and technical constraints, a move towards specialized systems and models, and varying approaches to centralized and decentralized control. This comprehensive review of modern computing systems looks ahead to the future of research in the field, highlighting key challenges and emerging trends, and underscoring their importance in cost-effectively driving technological progress

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    SUTMS - Unified Threat Management Framework for Home Networks

    Get PDF
    Home networks were initially designed for web browsing and non-business critical applications. As infrastructure improved, internet broadband costs decreased, and home internet usage transferred to e-commerce and business-critical applications. Today’s home computers host personnel identifiable information and financial data and act as a bridge to corporate networks via remote access technologies like VPN. The expansion of remote work and the transition to cloud computing have broadened the attack surface for potential threats. Home networks have become the extension of critical networks and services, hackers can get access to corporate data by compromising devices attacked to broad- band routers. All these challenges depict the importance of home-based Unified Threat Management (UTM) systems. There is a need of unified threat management framework that is developed specifically for home and small networks to address emerging security challenges. In this research, the proposed Smart Unified Threat Management (SUTMS) framework serves as a comprehensive solution for implementing home network security, incorporating firewall, anti-bot, intrusion detection, and anomaly detection engines into a unified system. SUTMS is able to provide 99.99% accuracy with 56.83% memory improvements. IPS stands out as the most resource-intensive UTM service, SUTMS successfully reduces the performance overhead of IDS by integrating it with the flow detection mod- ule. The artifact employs flow analysis to identify network anomalies and categorizes encrypted traffic according to its abnormalities. SUTMS can be scaled by introducing optional functions, i.e., routing and smart logging (utilizing Apriori algorithms). The research also tackles one of the limitations identified by SUTMS through the introduction of a second artifact called Secure Centralized Management System (SCMS). SCMS is a lightweight asset management platform with built-in security intelligence that can seamlessly integrate with a cloud for real-time updates

    Intégration des méthodes formelles dans le développement des RCSFs

    Get PDF
    In this thesis, we have relied on formal techniques in order to first evaluate WSN protocols and then to propose solutions that meet the requirements of these networks. The thesis contributes to the modelling, analysis, design and evaluation of WSN protocols. In this context, the thesis begins with a survey on WSN and formal verification techniques. Focusing on the MAC layer, the thesis reviews proposed MAC protocols for WSN as well as their design challenges. The dissertation then proceeds to outline the contributions of this work. As a first proposal, we develop a stochastic generic model of the 802.11 MAC protocol for an arbitrary network topology and then perform probabilistic evaluation of the protocol using statistical model checking. Considering an alternative power source to operate WSN, energy harvesting, we move to the second proposal where a protocol designed for EH-WSN is modelled and various performance parameters are evaluated. Finally, the thesis explores mobility in WSN and proposes a new MAC protocol, named "Mobility and Energy Harvesting aware Medium Access Control (MEH-MAC)" protocol for dynamic sensor networks powered by ambient energy. The protocol is modelled and verified under several features

    Internet-of-Things Streaming over Realtime Transport Protocol : A reusablility-oriented approach to enable IoT Streaming

    Get PDF
    The Internet of Things (IoT) as a group of technologies is gaining momentum to become a prominent factor for novel applications. The existence of high computing capability and the vast amount of IoT devices can be observed in the market today. However, transport protocols are also required to bridge these two advantages. This thesis discussed the delivery of IoT through the lens of a few selected streaming protocols, which are Realtime Transport Protocol(RTP) and its cooperatives like RTP Control Protocol(RTCP) and Session Initiation Protocol (SIP). These protocols support multimedia content transfer with a heavy-stream characteristic requirement. The main contribution of this work was the multi-layer reusability schema for IoT streaming over RTP. IoT streaming as a new concept was defined, and its characteristics were introduced to clarify its requirements. After that, the RTP stacks and their commercial implementation-VoLTE(Voice over LTE) were investigated to collect technical insights. Based on this distilled knowledge, the application areas for IoT usage and the adopting methods were described. In addition to the realization, prototypes were made to be a proof of concept for streaming IoT data with RTP functionalities on distanced devices. These prototypes proved the possibility of applying the same duo-plane architect (signaling/data transferring) widely used in RTP implementation for multimedia services. Following a standard IETF, this implementation is a minimal example of adopting an existing standard for IoT streaming applications

    Multi-Agent Modelling of Industrial Cyber-Physical Systems for IEC 61499 Based Distributed Intelligent Automation

    Get PDF
    Traditional industrial automation systems developed under IEC 61131-3 in centralized architectures are statically programmed with determined procedures to perform predefined tasks in structured environments. Major challenges are that these systems designed under traditional engineering techniques and running on legacy automation platforms are unable to automatically discover alternative solutions, flexibly coordinate reconfigurable modules, and actively deploy corresponding functions, to quickly respond to frequent changes and intelligently adapt to evolving requirements in dynamic environments. The core objective of this research is to explore the design of multi-layer automation architectures to enable real-time adaptation at the device level and run-time intelligence throughout the whole system under a well-integrated modelling framework. Central to this goal is the research on the integration of multi-agent modelling and IEC 61499 function block modelling to form a new automation infrastructure for industrial cyber-physical systems. Multi-agent modelling uses autonomous and cooperative agents to achieve run-time intelligence in system design and module reconfiguration. IEC 61499 function block modelling applies object-oriented and event-driven function blocks to realize real-time adaption of automation logic and control algorithms. In this thesis, the design focuses on a two-layer self-manageable architecture modelling: a) the high-level cyber module designed as multi-agent computing model consisting of Monitoring Agent, Analysis Agent, Self-Learning Agent, Planning Agent, Execution Agent, and Knowledge Agent; and b) the low-level physical module designed as agent-embedded IEC 61499 function block model with Self-Manageable Service Execution Agent, Self-Configuration Agent, Self-Healing Agent, Self-Optimization Agent, and Self-Protection Agent. The design results in a new computing module for high-level multi-agent based automation architectures and a new design pattern for low-level function block modelled control solutions. The architecture modelling framework is demonstrated through various tests on the multi-agent simulation model developed in the agent modelling environment NetLogo and the experimental testbed designed on the Jetson Nano and Raspberry Pi platforms. The performance evaluation of regular execution time and adaptation time in two typical conditions for systems designed under three different architectures are also analyzed. The results demonstrate the ability of the proposed architecture to respond to major challenges in Industry 4.0

    Context-aware and user bahavior-based continuous authentication for zero trust access control in smart homes

    Get PDF
    Orientador: Aldri Luiz dos SantosDissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa : Curitiba, 24/02/2023Inclui referências: p. 96-106Área de concentração: Ciência da ComputaçãoResumo: Embora as casas inteligentes tenham se tornado populares recentemente, as pessoas ainda estão muito preocupadas com questões de segurança, proteção e privacidade. Estudos revelaram que questões de privacidade das pessoas geram prejuízos fisiológicos e financeiros porque as casas inteligentes são ambientes de convivência íntima. Além disso, nossa pesquisa revelou que os ataques de impersonificação são uma das ameaças mais graves contra casas inteligentes porque comprometem a confidencialidade, autenticidade, integridade e não repúdio. Normalmente, abordagens para construir segurança para Sistemas de Casas Inteligentes (SHS) requerem dados históricos para implementar controle de acesso e Sistemas de Detecção de Intrusão (IDS), uma vulnerabilidade à privacidade dos habitantes. Além disso, a maioria dos trabalhos depende de computação em nuvem ou recursos na nuvem para executar tarefas de segurança, que os invasores podem atacar para atingir a confidencialidade, integridade e disponibilidade. Além disso, os pesquisadores não consideram o uso indevido de SHS ao forçar os usuários a interagir com os dispositivos por meio de seus smartphones ou tablets, pois eles costumam interagir por qualquer meio, como assistentes virtuais e os próprios dispositivos. Portanto, os requisitos do sistema de segurança para residências inteligentes devem compreender percepção de privacidade, resposta de baixa latência, localidade espacial e temporal, extensibilidade de dispositivo, proteção contra impersonificação, isolamento de dispositivo, garantia de controle de acesso e levar em consideração a verificação atualizada com um sistema confiável. Para atender a esses requisitos, propomos o sistema ZASH (Zero-Aware Smart Home) para fornecer controle de acesso para as ações do usuário em dispositivos em casas inteligentes. Em contraste com os trabalhos atuais, ele aproveita a autenticação contínua com o paradigma de Confiança Zero suportado por ontologias configuradas, contexto em tempo real e atividade do usuário. A computação de borda e a Cadeia de Markov permitem que o ZASH evite e mitigue ataques de impersonificação que visam comprometer a segurança dos usuários. O sistema depende apenas de recursos dentro de casa, é autossuficiente e está menos exposto à exploração externa. Além disso, funciona desde o dia zero sem a exigência de dados históricos, embora conte com o passar do tempo para monitorar o comportamento dos usuários. O ZASH exige prova de identidade para que os usuários confirmem sua autenticidade por meio de características fortes da classe Something You Are. O sistema executa o controle de acesso nos dispositivos inteligentes, portanto, não depende de intermediários e considera qualquer interação usuário-dispositivo. A princípio, um teste inicial de algoritmos com um conjunto de dados sintético demonstrou a capacidade do sistema de se adaptar dinamicamente aos comportamentos de novos usuários, bloqueando ataques de impersonificação. Por fim, implementamos o ZASH no simulador de rede ns-3 e analisamos sua robustez, eficiência, extensibilidade e desempenho. De acordo com nossa análise, ele protege a privacidade dos usuários, responde rapidamente (cerca de 4,16 ms), lida com a adição e remoção de dispositivos, bloqueia a maioria dos ataques de impersonificação (até 99% com uma configuração adequada), isola dispositivos inteligentes e garante o controle de acesso para todas as interações.Abstract: Although smart homes have become popular recently, people are still highly concerned about security, safety, and privacy issues. Studies revealed that issues in people's privacy generate physiological and financial harm because smart homes are intimate living environments. Further, our research disclosed that impersonation attacks are one of the most severe threats against smart homes because they compromise confidentiality, authenticity, integrity, and non-repudiation. Typically, approaches to build security for Smart Home Systems (SHS) require historical data to implement access control and Intrusion Detection Systems (IDS), a vulnerability to the inhabitant's privacy. Additionally, most works rely on cloud computing or resources in the cloud to perform security tasks, which attackers can exploit to target confidentiality, integrity, and availability. Moreover, researchers do not regard the misuse of SHS by forcing users to interact with devices through their smartphones or tablets, as they usually interact by any means, like virtual assistants and devices themselves. Therefore, the security system requirements for smart homes should comprehend privacy perception, low latency in response, spatial and temporal locality, device extensibility, protection against impersonation, device isolation, access control enforcement, and taking into account the refresh verification with a trustworthy system. To attend to those requirements, we propose the ZASH (Zero-Aware Smart Home) system to provide access control for the user's actions on smart devices in smart homes. In contrast to current works, it leverages continuous authentication with the Zero Trust paradigm supported by configured ontologies, real-time context, and user activity. Edge computing and Markov Chain enable ZASH to prevent and mitigate impersonation attacks that aim to compromise users' security. The system relies only on resources inside the house, is self-sufficient, and is less exposed to outside exploitation. Furthermore, it works from day zero without the requirement of historical data, though it counts on that as time passes to monitor the users' behavior. ZASH requires proof of identity for users to confirm their authenticity through strong features of the Something You Are class. The system enforces access control in smart devices, so it does not depend on intermediaries and considers any user-device interaction. At first, an initial test of algorithms with a synthetic dataset demonstrated the system's capability to dynamically adapt to new users' behaviors withal blocking impersonation attacks. Finally, we implemented ZASH in the ns-3 network simulator and analyzed its robustness, efficiency, extensibility, and performance. According to our analysis, it protects users' privacy, responds quickly (around 4.16 ms), copes with adding and removing devices, blocks most impersonation attacks (up to 99% with a proper configuration), isolates smart devices, and enforces access control for all interactions

    Current applications and challenges of the Internet of Things

    Get PDF
    The concept of the Internet of Things is capable of making a giant leap in the economy, including research in the field of computer science, network technologies, microelectronics and sensor technology. Combined with the technological developments of nanotechnology and robotics, IoT can play a central role in the industrial revolution by creating economic relations between machines and connecting the economy of people and machines, solving a number of problems that humanity is facing. All devices controlled via the Internet are elements of the Internet of things. The IoT has allowed various possibilities for all countries to improve life quality and the technological ideas for efficiency, productivity, security, and profit. An integrated security system is a giant step towards the improved economy. The concept of IoT plays a decisive role in the further development of the infocommunication industry. This is confirmed both by the position of the International Telecommunication Union (ITU) and the European Union on this issue, and by the inclusion of the Internet of Things in the list of breakthrough technologies in the United States, China and other countries. Thus, this article will go over the current state of the IoT as well as describe which devices and industries stand to benefit from the advantages it brings. Additionally, statistical data on the actual trends and investments into IoT across the world are also provided
    corecore