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EFFICIENT INFORMATION ACCESS IN DATA-INTENSIVE SENSOR

NETWORKS

Divyasheel Sharma, PhD

University of Pittsburgh, 2010

Recent advances in wireless communications and microelectronics have enabled wide de-

ployment of smart sensor networks. Such networks naturally apply to a broad range of

applications that involve system monitoring and information tracking (e.g., fine-grained

weather/environmental monitoring, structural health monitoring, urban-scale traffic or park-

ing monitoring, gunshot detection, monitoring volcanic eruptions, measuring rate of melting

glaciers, forest fire detection, emergency medical care, disaster response, airport security in-

frastructure, monitoring of children in metropolitan areas, product transition in warehouse

networks etc.).

Meanwhile, existing wireless sensor networks (WSNs) perform poorly when the appli-

cations have high bandwidth needs for data transmission and stringent delay constraints

against the network communication. Such requirements are common for Data Intensive

Sensor Networks (DISNs) implementing Mission-Critical Monitoring applications (MCM

applications).We propose to enhance existing wireless network standards with flexible query

optimization strategies that take into account network constraints and application-specific

data delivery patterns in order to meet high performance requirements of MCM applications.

In this respect, this dissertation has two major contributions: First, we have developed an

algebraic framework called Data Transmission Algebra (DTA) for collision-aware concurrent

data transmissions. Here, we have merged the serialization concept from the databases with

the knowledge of wireless network characteristics. We have developed an optimizer that uses

the DTA framework, and generates an optimal data transmission schedule with respect to
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latency, throughput, and energy usage. We have extended the DTA framework to handle

location-based trust and sensor mobility. We improved DTA scalability with Whirlpool data

delivery mechanism, which takes advantage of partitioning of the network. Second, we

propose relaxed optimization strategy and develop an adaptive approach to deliver data in

data-intensive wireless sensor networks. In particular, we have shown that local actions at

nodes help network to adapt in worse network conditions and perform better. We show that

local decisions at the nodes can converge towards desirable global network properties e.g.,

high packet success ratio for the network. We have also developed a network monitoring

tool to assess the state and dynamic convergence of the WSN, and force it towards better

performance.
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1.0 INTRODUCTION

1.1 MOTIVATION

Recent advances in wireless communications and microelectronics have enabled wide de-

ployment of smart sensor networks. Such networks naturally apply to a broad range of

applications that involve system monitoring and information tracking (e.g., airport security

infrastructure, monitoring of children in metropolitan areas, product transition in warehouse

networks, fine-grained weather/environmental measurements, etc.). Meanwhile, existing

wireless sensor networks (WSNs) perform poorly when the applications have high band-

width needs for data transmission and stringent delay constraints against the network com-

munication. Such requirements are common for Data Intensive Sensor Networks (DISNs)

implementing Mission-Critical Monitoring applications (MCM applications). As an exam-

ple of MCM application consider the task of Structural Health Monitoring (SHM) [36], [15]

concerned with monitoring the integrity of civil and military structures in order to reduce

ownership costs, improve operational lifetime, and protect human life. Another example is

a large team of cooperative mobile robots that can be considered to be a wireless network

composed of a number of mobile nodes, most of which are power-constrained. Such mobile

robots can be deployed in conjunction with stationary sensor nodes to acquire and process

data for surveillance and tracking, environmental monitoring for highly sensitive areas, or

execute search and rescue operations. Because a failure of the monitoring system is often

catastrophic, the associated costs are very high.

The MCM applications have stringent requirements for efficient mechanisms for querying

sensor data and delivering the query result. The amount of data collected from all relevant

sensors may be quite large and will require very high data transmission rates to satisfy time

1



constraints. It implies, in particular, in WSNs, that excessive packet collisions can lead to

packet losses and retransmissions resulting in significant energy costs and latency. It was

reported in [15] that the successful packet delivery ratio in 802.15.4 networks can drop from

95% to 55% as the load increases from 1 packet/sec to 10 packets/sec. Meanwhile, it is

common for sensors in the SHM system to generate 6-8 packets/sec of vibration data. The

residence time for a packet in a medium-scale multi-hop WSN could be tens of seconds,

which is unacceptable for critical monitoring applications. In addition, considerable network

variations and limitations on sensor node resources like battery power imply that excessive

transmissions in response to monitoring queries can lead to premature network death. At the

same time, the requirement of MCM applications must be met despite the random variations

in the network characteristics.

A major reason for above problems occurring is that general purpose WSNs with a lay-

ered design of the network protocol stack assumed that each layer operates independently

of the individual network constraints and applications [24]. It results in poor performance

for wireless networks especially when the applications have high bandwidth needs and strin-

gent delay constraints. This calls for novel approaches in designing special purpose WSNs

that support application-driven data interrogation patterns and optimization across multiple

network layers. Our major contribution of this research consists in developing methods and

techniques for efficient utilization of special-purpose WSNs for the task of mission-critical

monitoring. We believe that WSNs explicitly designed for the critical monitoring appli-

cations can gain significant performance improvements. We propose to enhance existing

wireless network standards with flexible query optimization strategies that take into account

network constraints and application-specific data delivery patterns in order to meet high

performance requirements of MCM applications. We make two major contributions here:

First, we have developed an algebraic framework called Data Transmission Algebra (DTA) for

collision-aware concurrent data transmissions. DTA is based on an algebraic query optimiza-

tion that utilizes information about how the lower network layers operate while processing

critical monitoring queries. As such, this research fuses techniques from different areas of

databases and networking. It is important to note that our technique can utilize existing

wireless network standards without introducing extra control and processing overheads or
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disruption of network protocol hierarchy. In order to prove high utility of our approach, we

apply it under real MCM application loads and requirements. They include non-intrusive

Structural Health Monitoring, - a procedure where the natural dynamics of structure are

observed for changes that indicate damage or instability [54], [63], [22]. We have extended

the DTA framework to handle location-based trust and for networks with mobile nodes. We

improved DTA scalability with Whirlpool data delivery mechanism, which takes advantage

of partitioning of the network. Second, we propose relaxed optimization strategy and de-

velop an adaptive, decentralized approach to deliver data in data-intensive wireless sensor

networks. In particular, we have shown that local actions at nodes help network to adapt in

worse network conditions and perform better. We show that local decisions at the nodes can

converge towards desirable global network properties e.g., high packet success ratio for the

network. We have also developed a network monitoring tool to assess the state and dynamic

convergence of a WSN, and force it towards better performance.

1.2 OBJECTIVE

We believe that the results from this research will be essential in the deployment of robust

special-purpose WSNs for MCM applications. The practical question that will be answered

is:

“What optimization strategies should be developed to provide the most efficient utilization of

wireless sensor networks in critical monitoring environments?”

This research combines both theoretical investigation and experimental evaluation. Specif-

ically, through this thesis, we will provide answers for the following fundamental questions:

1. How does the wireless network behavior affect the data access and query processing algo-

rithms for critical monitoring applications?

2. How can wireless query execution benefit from the synergy of application-driven query

optimization and lower network protocol layers?

3. How can the proposed optimization strategies be tuned to meet specific performance re-

quirements of mission-critical monitoring applications?
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4. How can we develop more scalable approaches that adapt to the varying conditions of the

wireless network?

1.3 ORGANIZATION OF THE DISSERTATION

The rest of this dissertation is organized as follows. In the next chapter, we introduce

background, related work and give an overview of the proposed research. In Chapter 3, we

present our basic algebraic optimization framework and its theory. In Chapter 4, we con-

sider practical implementation strategies for our algebraic framework, how we can integrate

this framework to efficient network interrogation strategies and justify our claims with ex-

perimental analysis. In Chapter 5, we discuss trust-based routing, which extends over our

algebraic framework. In Chapter 6, we develop relaxed optimization strategies for efficient

data delivery that adapt to the uncertain network conditions. We conclude with a discussion

of our research.
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2.0 BACKGROUND AND RELATED WORK

This research investigates application/query performance in data-intensive wireless sensor

networks (DISNs), although it is expected that the results are of general applicability to

resource constrained wireless environments.

2.1 INTRODUCTION TO COMMUNICATION IN SENSOR NETWORKS

Consider a wireless sensor network deployed in order to monitor structural integrity. An

example query over this network could request vibration data over a certain period of time.

Answering this query would result in a tree-like data delivery pattern (Figure 1). The trans-

missions between sensors are ad hoc dependent on the query and require the use of a medium

access control (MAC) layer to handle transmissions on the same medium and a routing al-

gorithm that enables the nodes to select the right neighbor to transmit data.

Figure 1: An example of a query tree.

Popular wireless MAC layer technologies are the IEEE 802.11 standard for wireless local
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area networks [7] and the IEEE 802.15 standards for wireless personal area networks [6].

IEEE 802.11 has several flavors, of which the 802.11b (maximum data rate of 11 Mbps) and

802.11g (maximum data rate of 54 Mbps) operate at 2.4 GHz and 802.11a (also 54 Mbps)

operates at around 5 GHz [67]. 802.11 devices typically use a transmission power of 250 mW

(24 dBm) (although other values, both lower and higher, are possible). For low power and

low data rate sensor networks, the 802.15.4 standard appears to be suitable. The data rates

with 802.15.4 are 20, 40 or 250 kbps in the 868, 915 or 2400 MHz bands respectively. The

transmission power with 802.15.4 is also expected to be very low (1 – 2 mW or 0 – 3.6 dBm).

The Zigbee industry standard [5] is developing network and application layer protocols to

operate over 802.15.4.

The operation of the MAC layer is slightly different depending on the technology. One

issue, which is common for all MAC layer protocols, is proper handling of packet collisions.

If we assume that all sensor nodes use the same frequency band for transmission, two trans-

missions that overlap will get corrupted (collide) if the sensor nodes involved in transmission

or reception are in the same collision domain. More formally, any two communicating nodes

ni and nj specify a collision domain CD(ni,nj ) defined as the union of the transmission

ranges of ni and nj. Consider two nodes n1 and n2 that wish to communicate (Figure 2).

In Figure 2, nodes n1, n2, n3, and n4 are in the same collision domain. This implies that

when n1 and n2 are communicating, n3 and n4 cannot participate in any communications.

Moreover, even though node n5 is outside the collision domain, if it sends a packet to n3

at the same time that n1 is sending a packet to n2 ; these two transmissions will collide at

n3. The information in both packets will be lost. Similarly, n4 and n6 cannot communicate

when n1 and n2 are communicating.

We can use Figure 2 to illustrate how collisions are handled in a typical wireless network

such as IEEE 802.11 using carrier sense multiple-access with collision avoidance (CSCMA-

CA) [7], [17]. In general, before starting a transmission, nodes must sense the channel for a

predetermined amount of time (waiting time). If the channel is busy, the nodes wait for the

predetermined amount of time after the channel becomes free. In addition, nodes back-off

for a random time to avoid the possibility that two or more nodes transmit at the same time

after the waiting period. For this entire period, the node must sense the channel and this
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consumes energy. Each packet also needs to be acknowledged by the receiver since wireless

channels are unreliable.

Figure 2: Collision domain of two communicating nodes.

If only basic carrier-sensing is employed, it can lead to the hidden terminal problem [17].

Consider Figure 2 again. Node n4 is outside the range of n1. When n1 is transmitting a

packet to n2, n4 cannot sense the energy on the air and may start a transmission, either to

n2 or n6. This transmission will collide with the transmission from n1 at node n2. The node

n1 is hidden from n4 and vice versa. In 802.11, an additional mechanism exists to avoid the

hidden terminal problem [7], [78]. In order for a sensor node n1 to communicate with sensor

node n2, n1 needs to send first a request for transmission packet (Rtx ) to n2, so that all other

nodes in its transmission range (n3 in Figure 2) become aware of the communication and

remain silent until n1 ends the transmission. Sensor n2 replies to n1 with a confirmation

packet (Ctx ), so that the nodes in its transmission range (n4 in Figure 2) also become aware

of the communication and avoid any transmission until the end of the current transmission.

The use of the request and clear messages adds to the overhead of the system. So, in 802.15.4,

messages such as Rtx and Ctx are not employed. Consequently, the number of collisions can

increase significantly if the load on the network increases. Collisions can be avoided in

802.15.4 to some extent by using contention free periods [6]. In 802.15.4, devices can be

fully functional or have reduced functionality. A fully functional device can participate in

multi-hop routing and can also act as a coordinator for a subset of nodes creating its own

local network. In this case, the coordinator employs a beacon mode that uses a superframe

structure to indicate a Contention Access Period (CAP) that uses CSMA and an optional
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contention free period (CFP) that specifies Guaranteed Time Slots (GTSs). The coordinator

allocates the GTS to some sensor nodes. GTS, however, can only be used for indirect data

transmission where sensor nodes first send data frames to coordinator.

2.2 RELATED RESEARCH

This research fuses the areas of database and networking. This section discusses major

projects and works in both these areas of query processing in wireless sensor networks.

Several techniques have been proposed to alleviate the problem of limited resources at

the network level such as energy-efficient routing, clustering and transmission scheduling

[29], [72], [30], [13]. Sensor networks can be viewed as a highly distributed database [4], [35],

[70] that requires novel resource-constrained and network-aware query execution strategies.

Sensor database research has also investigated special query strategies, such as sampling [47],

prediction [23], approximation [16], and in-network aggregation [35], [12], [48], [62]. Since

a tree query topology is susceptible to node and transmission failures, which are common

in sensor networks [48], several alternative approaches for data delivery in sensor networks

have been proposed recently. Data dissemination schemes like SPIN [31] using flooding

technique, interest gradient based Directed Diffusion [21]; clustering based LEACH [30] have

been proposed in literature. Synopsis Diffusion [52] proposes a multi-path routing scheme

which is more robust than tree topology based TAG [48] to avoid double-counting in sensor

readings. As discussed in the previous section, one of the major limiting factors in data

delivery is packet collisions in the network. Wave scheduling [66] minimizes packet collisions

by carefully scheduling the sensor nodes so that each node can stay idle for most of the

time, turning on its radio only at scheduled intervals during which it can receive or send

a message. It results in energy savings at the expense of increased message latency and at

present, it does not study irregular wave schedules. Another way of eliminating collisions

is to create an orthogonal transmission mechanism whereby a central authority, such as

a base station allocates specific time slots for nodes to transmit based on reservation or

polling that will be similar to time division multiple access (TDMA). This however requires
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a centralized mechanism that could be fairly complex to implement, consume significant

overhead for signaling and be difficult to implement in a multi-hop scenario. This issue is

properly addressed in our framework. Moreover, in the case of TDMA, each node is assigned

a time slot in a frame by a central authority and it can transmit only in that time slot in each

frame. If it has nothing to send, that time slot is wasted since other nodes cannot access

this slot. In contrast to TDMA, our approach assumes that a predefined schedule is sent to

a node and it is up to the node to decide how to behave within a set of constraint specified

by the schedule. It is not mandatory for every node to follow a schedule, so the scheduling

helps where it can, otherwise it utilizes MAC. Finally, our scheduling can be implemented

with different degrees of centralization/distribution.

Distributed TDMA scheme, for example, LMAC [32] was implemented as a distributed

time slot scheduling algorithm for collision-free communications. Chatterjea et al introduced

AI-LMAC [14] that uses captured local data about traffic patterns to modify operations ac-

cordingly. The protocol is an extension of the LMAC and adapts to the application require-

ments. Another distributed TDMA scheduling procedure was proposed in [10]. Its design

goal is to permit a mobile to move and then reallocate itself a time slot without involving

the entire network. Ali et al. [9] proposed distributed and adaptive TDMA algorithms for

multi-hop mobile networks. One concern with this design is that dynamic topology changes

may lead to frequent exchanges of control packets that could consume bandwidth and energy

resources.

The above distributed TDMA scheduling schemes have considerable control message

overhead for building data delivery schedules. Below, we provide a brief overview of other

contention and scheduling based functionalities [41] related studies, since, our first contribu-

tion in this thesis falls into the scheduling-based category. S-MAC [71] is a contention-based

energy saving protocol implemented in the MAC layer of sensor network. It allows neigh-

boring nodes to sleep for long periods and then to wake up, both in a synchronized fashion

to avoid possible wastage of idle listening, collisions and retransmissions. Thus, the neigh-

bors conserve energy when the other node is transmitting. However, S-MAC provides no

on-demand interaction with the receiver in case if there is a need to communicate between

sender and receiver. It uses a static sleep interval, regardless of dynamic wireless environ-
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ment and traffic load. Schurgers et al [61] proposed STEM, to save energy that implements a

two-radio architecture that lets the data channel sleep until communication is desired. Based

on the assistance from the monitoring channel, collisions and retransmission are alleviated.

However, in STEM a busy tone has to wakeup a node’s entire neighborhood since the in-

tended receiver’s identity is not included on the monitoring channel. Vaidya et al [65] tried

to improve STEM by introducing a rate estimation scheme on top of it. This work selectively

wakes up the data channel of nodes, which have previously involved in communication via

RE using an optimal wakeup interval to minimize the energy consumption. Both STEM and

rate-estimation take the two-radio architecture for granted. They ignore the complexity of

adopting the second radio on a tiny sensor that may result in difficult antenna receivers de-

sign and additional energy consumption on the second radio. Sivalingam et al. [64] proposed

an EC-MAC (Energy Conserving-Medium Access Control) protocol. Using this protocol a

central controller is responsible for reservation and scheduling strategies. The transmission

is organized by the controller into frames, and the time slots of the frame serve various

purposes. In consequence, collisions are reduced and retransmissions are avoided. Liu et al.

[42] proposed Enhanced 802.11. Here, a contention-free schedule is derived from overheard

ATIM frames, sent by neighbors, under the assumption of a fully connected network. Each

node must receive all transmitted ATIM frames within the network to ensure the complete

schedule. The ATIM frame includes information about the number of packets to be trans-

mitted by each node, so every node can calculate the transmission schedule. If the ATIM

and acknowledge packets are exchanged, the contention-free schedule can allow the nodes

finishing their transmissions early in the data window and then switching to low-power mode

in the middle of the data window. This advantage allows the nodes with short transmissions,

which is especially common in a high-speed network to stay in low-power longer. With the

contention-free schedule, the contention process for ATIM is still required but is eliminated in

data transmissions that are normally much larger than an ATIM window size. EC-MAC and

Enhanced 802.11 schemes can only operate in an environment where every sensor hears each

other while proposed DTA is suitable for fully connected network and multi-hop network

also.

Data delivery in wireless networks is probabilistic since the connectivity is the likelihood
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of a successful communication [11]. Neighboring nodes have connectivity based on inter-

ference, congestion, and other sources of losses. Depleting energy resources and hardware

characteristics lead to unreliable estimation of sensors ranges. Thus, routing algorithms

for sensor networks should take these factors in consideration and be evaluated along with

the lower level estimation mechanisms as well as application level factors under realistic

application traffic loads.

A wireless sensor network for Structural Health Monitoring is described in [15] which

employs a multi-hop network that continuously collects data and transmits them to a base

station. In this chapter, challenges such as synchronization and timely and reliable data

delivery are discussed. End-to-end and per hop error recovery, wavelet compression and

time-stamping for synchronization are used to address these challenges. This work also

identifies some potential problems with low data rate sensor networks and high data rate

802.11 like networks as described below.

There are considerable deficiencies in applying existing wireless sensor networks to the

task of mission critical monitoring. An examination of the factors that affect both energy

consumption and response time in sensor queries reveals that (a) data transmission collisions

represent a major source of time and energy waste in wireless communications; (b) unnec-

essary amounts of active time for the sensors, due to lack of synchronization among data

transmissions, is another major source of wasted time and energy in wireless sensor networks

[15]. IEEE 802.15.4 was designed for quite general-purpose wireless networks providing an

acceptable average performance for a wide class of applications. The lack of mechanisms

to overcome the hidden terminal problem can result in excessive collisions. The data rates

of 802.15.4 are quite low and can increase the latency of data delivery, which can be a big

disadvantage for the task of critical monitoring.

Recent study [15] has shown that common MAC protocols can achieve 100% data delivery

reliability with a packet rate up to 1 packet/sec per node. The number of collisions can

increase significantly if the load on the network increases. Consider a Structural Health

Monitoring system as described in [15]. Sensors in such systems can generate up to 20

kilo-samples/s on four channels for a total of 80 kilo-samples/s. Each sample is 16 bits

long resulting in data being generated by each sensor at a rate of 1280 kbps (160 bytes/s).
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The maximum physical layer packet size in 802.15.4 is 127 bytes of which 16-32 bytes are

part of the MAC/PHY headers. Assuming 80 bytes/packet at the PHY layer, two packets

are generated every second by each sensor node. Occasionally, packet sizes can be smaller

resulting in higher packet rates and increased possibility of collisions with 802.15.4. As

reported in [15] the average residence time for 1 packet in a multi-hop network of 10 sensors

could be up to 142 secs. When this rate increases to 2 packets/sec per sensor, the network

collapses.

The above factors result in considerable under-utilization of the sensor networks exploit-

ing common data delivery techniques. Roughly speaking, only 120 bytes/sec of the network

bandwidth is utilized out of the available 3750 bytes/sec. Meanwhile, a typical SHM appli-

cation generates 200-600 bytes/sec of row data, which introduces an obvious performance

bottleneck in existing WSNs for the critical monitoring task.

Figure 3 summarizes the characteristics of Data Intensive Sensor Networks. As the data

load increases we observe considerable performance degradation of the key performance pa-

rameters of wireless sensornets. Packet success ratio drops due to frequent collisions and

retransmissions. The data glut results in the increased time delay and overall energy con-

sumption. After certain load threshold the performance characteristics of traditional WSNs

become unacceptable.

2.3 OVERVIEW OF THE DISSERTATION

This dissertation studies the problem of efficient query processing in resource constrained

critical wireless sensor environments. Our objective is to develop efficient information access

mechanisms for wireless sensor networks under data-intensive wireless network constraints

and specific application requirements. We propose a database-driven approach to optimize

data transmissions in sensor networks for the task of critical monitoring. Using the optimizer,

the potential problems with wireless sensor networks can be significantly alleviated. We also

propose decentralized optimization techniques that provide adaptive data delivery based on
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Figure 3: Utility of the Proposed Optimization Approach.

local knowledge that is readily available to a sensor node. This thesis has proceeded in the

following stages:

1. Development of a basic cross-layer wireless query optimization framework (DTA).

2. Theoretical study and justification of the DTA framework.

3. Exploring practical implementation strategies for DTA framework.

4. Explored limitations of DTA framework and developed a more scalable and decentralized

optimization scheme.
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3.0 BASIC CROSS-LAYER OPTIMIZATION FRAMEWORK

In this chapter, we first discuss our basic cross-layer optimization framework. Then, we

describe how we can integrate this framework with existing wireless infrastructure. We also

describe the theoretical foundations of our framework and analyze soundness and complete-

ness of our approach.

3.1 DATABASE-LIKE QUERY OPTIMIZATION FOR EFFICIENT

TRANSMISSION SCHEDULING

Our basic approach consists of integrating the low level wireless network protocols with

database-driven algebraic query optimization. A query optimizer should take into consid-

eration the current network topology, the applications’ coverage requirements, collision do-

mains of the wireless nodes, etc. in order to generate efficient query schedules. Thus, in

order to generate the query schedules, we propose to utilize an algebraic framework - Data

Transmission Algebra (DTA) – that captures the low-level network features along with their

constraints and requirements. In this chapter, we introduce DTA that allows the optimizer

to generate collision-aware query schedules. In chapter 4, we improve DTA’s scalability

with Whirlpool, and in chapter 5, we extend the DTA framework to handle trust-aware data

delivery.
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3.1.1 Basic DTA Framework

The basic DTA consists of a set of operations that take transmissions between wireless sensor

nodes as input and produce a schedule of transmissions as their result. The simplest DTA

schedule is an elementary transmission nienj denoting a one-hop transmission from sensor

node ni to node nj. Each transmission nienj is associated with a collision domain CD(ni, nj )

defined as the union of the transmission ranges of the communicating nodes. A transmission

schedule is either an elementary transmission or a composition of elementary transmissions

using one of the operations of the DTA. The basic DTA includes three operations that

combine two transmission schedules A and B:

1. o(A,B) - a strict order operation, that is, A must be executed before B;

2. c(A,B) - a non-strict order operation, that is, either A executes before B, or vice versa;

3. a(A,B) - an overlap operation, that is, A and B can be executed concurrently.

Figure 4: Example of DTA specifications.

For example, consider the query tree in Figure 4 that shows the initial DTA specification re-

flecting basic constraints of the query tree. For instance, operation o(n4en2, n2en1) specifies

that transmission n2en1 occurs after n4en2 is completed because of the query tree topology.

Operation c(n2en1, n3en1) specifies that there is an order between transmissions n2en1 and

n3en1 since they share the same destination. However, this order is not strict. Operation

a(n4en2, n5en3) specifies that n4en2 can be executed concurrently with n5en3, since neither

n3 nor n5 belongs to CD(n4,n2 ), and neither n4 nor n2 are in CD(n5,n3 ). Figure 4 also

shows an example of a complete schedule that involves all elementary transmissions of the

query tree.
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3.1.2 Query Scheduling using DTA

Each operation of the initial specifications defines a simple transmission schedule consisting

of two elementary transmissions. The DTA introduces a set of transformation rules that

can be used to generate more complex schedules from the initial specification. Applying the

DTA rules we generated schedules stage by stage starting from initial schedules with two

elementary transmissions (stage 1). Stage 2 generates schedules with 3 transmissions; stage

3 generates schedules with 4 transmissions. Last stage generates complete schedule that

includes all elementary transmissions of the query tree. An example of DTA transformation

rules is the following.

Rule1: o(A,B), o(C,D), a(A,C) → o(a(A,C), B)

Rule2: o(a(A,C), B), c(B,D) → o(a(A,C), c(B,D))

These rules apply towards generating more complex schedules from the initial specification

in Figure 4.

Apply Rule1: o(n4en2,n2en1), o(n5en3,n3en1), a(n4en2,n5en3)→ o(a(n4en2n5en3), n2en1)

None of the simple or complex transmission schedules considered so far include all elementary

transmissions of the query tree, so we call them partial schedules. Our goal is to generate

DTA expressions for complete schedules.

Apply Rule2: o(a(n4en2n5en3), n2en1) → o(a(n4en2n5en3), c(n2en1,n3en1))

More DTA transformation rules are given in DTA theory section. Below we introduce a

cost model for optimizing data transmissions in order to generate complete and efficient

schedules.

Figure 5 shows simple cost estimation expressions for each of the DTA expressions. In

this case, the cost corresponds to the execution time associated with a particular schedule.

For example, the execution time of elementary transmission nienj consists of local process-

ing times Tp at nodes ni and nj plus the time Ttx required for transmitting data from ni to nj.

The execution time of strict order of schedules A and B is the sum of execution times of

A and B. For overlapping schedules A and B, the execution time would be the maximum of

the execution times of A and B. Finally, the execution time of the choice between A and B
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Figure 5: Estimating Time Costs of Schedules.

is the same as the execution time of the strict order minus a predefined time factor Tf . Tf

indicates that in general, the optimizer prefers the choice operation over strict order, since

the latter restricts flexibility of the optimizer in query scheduling. We ignore propagation

times as they are negligible in this case. The optimizer chooses the schedule with minimum

cost from a set of all possible complete schedules.

3.1.3 Integration of Basic Optimization Framework with Wireless Network

Infrastructure

We design a query optimizer that executes at the coordinator node (e.g., base station) and

selects the data transmission schedule. The schedule implements a monitoring query with

optimal response time and energy consumption. A coordinator announces the generated

schedule to relevant wireless nodes broadcasting beacons and modified superframe structures

to the nodes. The superframe structure specifies mandatory transmission and reception time

slots for each node. Note that, in addition to collision handling, DTA can be applied to

exploit other factors which are currently not supported at the MAC layer. They include (a)

the ability to have fully functional point coordinators that can assign Guaranteed Time Slots

(GTS) to other nodes and (b) the availability of multiple frequency channels (3 in 802.11b,g,

8 in 802.11a and up to 20 in 802.15.4) to support concurrent transmissions.

Since the query delivery is tree-like, the sink node can act as the coordinator and assign

GTS to the leaf nodes that are collecting the information based on the DTA. For example,

consider the query tree shown in Figure 6a. Using DTA, the optimizer generates the follow-

ing schedules c(n1en4, c(n2en4, n3en4 )) for delivery to node n4 and c(n4en6, n5en6 ) for
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delivery to node n6. The above two schedules can be executed concurrently. Then node

n4 can be the point coordinator and assign GTS to nodes n1, n2, and n3. Recognizing

that concurrent transmissions are possible, n6 can assign the first GTS to n5 while n4 is

collecting information from its leaf nodes as shown in Figure 6a.

Another aspect that DTA can exploit is the availability of multiple frequency channels

over which concurrent transmissions are possible. Currently, there are no mechanisms for

ad hoc networks to operate using multiple frequencies because nodes are not aware of what

frequencies to use for which connections and when to use them. If the DTA schedules gen-

erated also indicate the frequency channels to be used, concurrent transmissions are enabled

where none existed previously. For example, in Figure 6 (Left), we could have a(n1e n4,

a(n2en4, n3en4 )). Node n4 must be capable of receiving communications on multiple fre-

quency channels, which may not be possible with existing technology. Transmissions in the

same collision domain with different source and destination nodes can exploit concurrency

with different frequency channels even with today’s technology.

Figure 6: Left: Using GTS with DTA, Right: Time Cost Relationships between Different

Scheduling Schemes.
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3.2 DTA THEORY

In this section we introduce a DTA theory consisting of the DTA signature and DTA infer-

ence rules [27]. The DTA signature specifies basic DTA syntax, while DTA inference rules

represent transformations of the well-formed DTA terms. The DTA signature specification

is presented in Figure 7. It includes a set of sorts together with operations defined on them.

The DTA signature includes two sorts Node and Schedule . Elementary transmission (de-

noted e) is a DTA operation that takes two nodes as input and outputs a schedule. The rest

of the DTA operations (o, c, a) map two input schedules to an output schedule.

Figure 7: DTA Signature.

In order to introduce DTA inference rules we extend the basic DTA signature with a

secondary operation subs, which for a given DTA schedule returns all its sub-schedules. The

subs operation is specified as follows:

subs : Schedule→P(Schedule),

where P(Schedule) denotes the power set of schedules. The following equations com-

plete the specification of subs :

subs(XeY) = { XeY}.

subs(comp(S1,S2)) =

{comp(S1,S2)}
⋃

subs(S1)
⋃

subs(S2),

where comp denotes any of DTA operations o, c, or a. DTA inference rules are repre-
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sented in Figure 8. A DTA inference rule Premise → Conclusion reflects the fact that there

is a one step inference from Premise to Conclusion. For example, using rule 1 (order intro-

duction) we can infer a strict order of two elementary transmission if the destination node

of the first transmission is also a source node of the second transmission. Rule 5 generates

a strict order of DTA schedules X and S if there exists a sub-schedule Si of the schedule S

such that o(X,Si) can be generated by the DTA rules. In order to infer a(X, S), we should

be able to infer a(X,Si) for all sub-schedules Si of the schedule S.

Definition 3.3.1 (DTA inferability): A DTA schedule t is inferable from a set of DTA

schedules S (denoted S ` t) iff either t ∈ S, or t can be generated from S via finite applications

of the DTA inference rules.

Example 1. Consider the following set of DTA schedules:

S = {n4en2, n2en1, n5en3, n3en1, a(n4 e n2, n5en3), a(n4 e n2, n3en1)},

which is a subset of the initial DTA specification from Figure 8. We can infer from S

the following schedule:

a(n4 e n2, o(n5en3, n3en1)),

using rules 1 and 8:

(n5en3), (n3en1)→rule 1 o(n5en3, n3en1 ), a(n4 e n2, n5en3), a(n4 e n2, n3en1) →rule 8

a(n4 e n2, o(n5en3, n3en1)).

Figure 8: Basic DTA Inference Rules.
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3.2.1 DTA Semantics

We provide a logic-based specification of DTA semantics using Prolog-like Horn clauses [25].

A predicate looks as follows: p(t1,t2,...,tn), where p is a predicate name of arity n, each

ti is a term, and (t1,t2,...,tn) is a tuple. A term is a constant or a variable, or a complex

term constructed using function symbols. A name starting with a capital letter signifies a

variable. A rule is a statement of the form

p :- q1, q2,..., qn,

where p and qi are predicates, p is the rule head, and the conjunction q1, q2 ,..., qn is

the rule body. A rule with an empty body is called a fact. A rule may be used to define

the predicate p, so that p holds whenever q1, ...,qn all hold. For example, the following rule

defines that X is a grandparent of Y if X is a parent of Z and Z is a parent of Y:

grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

Below we introduce the predicates used in the logical specification of DTA semantics.

The predicates are grouped into environment constraints, which reflect basic properties of

wireless transmission medium, and query constraints, which reflect data transmission pat-

terns imposed by the query semantics. Finally, we use environment and query constraints

to define the semantic validity of DTA schedules.

3.2.1.1 Environment Constraints The environment constraints reflect an actual sen-

sor network with wireless nodes communicating via data transmissions. The transmissions

can be either elementary (one-hop), or complex ones (consisting of several elementary trans-

missions). The following predicates specify the environment constraints:

wirelessNode(X). This predicate specifies that X is a wireless sensor node.

distance(X1,X2,D). This predicate specifies that D is the distance between wireless nodes

X1 and X2.

range(X,R). This predicate specifies that wireless node X can transmit in range R.

in range(X1,X2). This predicate is true if wireless node X1 is within transmission range

of node X2. The following rule defines the in range predicate:

in range(X1,X2) :- range(X2,Range),

21



distance(X1,X2,Dist),

Range >= Dist.

reachable(X1,X2). This predicate is true if nodes X1 and X2 are within transmission

ranges of each other:

reachable(X1,X2) :- in range(X1,X2),

in range(X2,X1).

starts(S,T). This predicate specifies that data transmission S (elementary or complex

one) starts at time moment T.

ends(S,T). This predicate specifies that data transmission S ends at time moment T.

time overlap(S1,S2). This predicate is true if transmissions S1 and S2 overlap in time.

The following rule defines the time overlap predicate we use semicolon to denote disjunction:

time overlap(S1,S2) :- starts(S1,ST1), starts(S2,ST2),

ends(S1,ET1), ends(S2,ET2),

( (ST2 = ET1, ET2 = ST1);

(ST1 = ET2, ET1 = ST2) ).

member(XeY, S). This predicate is true if the elementary transmission XeY is included

in a complex transmission S.

in cd(X, X1eY1). This predicate is true if node X is located in the collision domain of

elementary transmission X1eX2:

in cd(X, X1eY1) :- in range(X,X1); in range(X,Y1).

can collide(S1,S2). This predicate specifies that concurrent execution of transmissions

S1 and S2 may result in collisions. The first rule considers the case when both S1 and S2

are elementary transmissions. The second rule deals with complex transmissions.

can collide(X1eY1,X2eY2) :-

in cd(Y1,X2eY2); in cd(X1,X2eY2);

in cd(Y2,X1eY1); in cd(X2,X1eY1).

can collide(S1,S2) :- member(CS1,S1),

member(CS2,S2),

can collide(CS1,CS2).
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collide(S1,S2). This predicate specifies that concurrent execution of transmissions S1

and S2 results in collisions.

collide(S1,S2) :-

can collide(S1,S2),

time overlap(S1,S2).

3.2.1.2 Query Constraints strict precede(S1,S2). This predicate states that query

semantics require schedule S1 to be executed before schedule S2 :

strict precede(S1, S2) :- ends( S1, ET1),

starts(S2, ST2),

ST2 > ET1.

precede(S1,S2). This predicate states that schedules S1 and S2 must be executed in an

order (either S1 follows S2, or S2 follows S1 ):

precede(S1,S2) :- strict precede(S1,S2);

strict precede(S2,S1).

no conflict(S1,S2). This predicate states that transmissions S1 and S2 can be executed

concurrently without violating any query-imposed orders and without risk of collisions:

no conflict(S1,S2) :- not precede(S1,S2),

not can collide(S1,S2).

3.2.1.3 Validity of DTA Schedules At this point we are ready to specify semantics

of the DTA schedules in terms of the predicates introduced above. First, we should define

a mapping of the DTA terms into our semantic domain. We assume an identity mapping

function between Node sort of DTA signature and wireless nodes. We also assume that any

DTA term XeY will map in elementary transmission XeY. DTA terms comp(S1,S2), where

comp denotes one of the DTA operations o, c, or a will map in the complex transmission

that includes all elementary transmissions eti∈subs(comp(S1,S2)). We will represent a data

transmission as a list of its elementary transmissions [et1, . . . ,etn]. The mapping is defined

via the following map predicate:

map(XeY,[XeY]).
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map(comp(S1,S2), Result) :-

map(S1,MS1), map(S2,MS2),

append(MS1,MS2,Result).

The first map rule specifies that any elementary transmission XeY schedule is mapped

to an actual data transmission represented as a list [XeY] whose only member is the given

elementary transmission. The second rule applies the map predicate recursively to the com-

ponents of a complex schedule and generates the resulting complex transmission as a list

of elementary transmissions appending the results of the component mappings. Predicate

append(L1,L2,R) is true if list R is a concatenation of the lists L1 and L2.

Example 2. Consider the DTA schedule inferred in Example 1: a(n4 e n2, o(n5en3, n3en1)).

Using the map predicate it will be mapped in the following list of elementary transmissions:

[n4en2, n5en3, n3en1].

The following valid predicate specifies semantics for each of the DTA operations:

valid(XeY) :- wirelessNode(X), wirelessNode(Y),

reachable(X,Y).

valid(o(S1,S2)) :- valid(S1), valid(S2),

map(S1,MS1), map(S2,MS2),

strict precede(MS1,MS2).

valid(c(S1,S2)) :- valid(S1), valid(S2),

map(S1,MS1), map(S2,MS2),

precede(MS1,MS2).

valid(a(S1,S2)) :- valid(S1), valid(S2),

map(S1,MS1), map(S2,MS2),

no conflict(MS1, MS2).

The definition of the valid predicate consists of four rules with one rule per DTA opera-

tion. Elementary transmission XeY is valid if the participating wireless nodes X and Y are

reachable from each other, i.e., X and Y are in each other’s transmission ranges. Strict order

o(S1,S2) is valid if both S1 and S2 are valid schedules, S1 is executed before S2 ( imposed

by strict precede predicate). Validity of c(S1,S2) and a(S1,S2) is defined using precede and

no conflict predicates.
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Using valid predicate we can define a DTA semantic entailment, or logical implication

relation:

Definition 3.3.2 (DTA semantic implication): DTA term t is semantically implied by

a set of DTA schedules S (denoted S ` t) if t is valid whenever all ti ∈ S are valid.

3.2.2 soundness and completeness results

3.2.2.1 Soundness

Proof. The proof follows from the definition of can collide predicate.

Theorem 3.3.2.1 (DTA soundness):

For any set of DTA schedules S and a DTA schedule t, if S`t then S�t.

Proof. Soundness of rules 1 and 2 follows from the definition of strict precede predicate.

Soundness of rule 3 follows from the definition of precede predicate. Soundness of rule 4

follows from the commutativity of can collide predicate (Lemma 1).

Sub-schedule order. First we prove left sub-schedule order. Consider two valid

DTA schedules X and S and assume that there is a sub-schedule Si∈subs(S) such that

valid(o(X,Si)). This implies that there are elementary transmissions et1, et2 and mappings

map(Si,MSi) such that member(et2,MSi) and valid( o(et1,et2 )). Meanwhile, Si∈subs(S) also

implies member(et2,MS), where map(S, MS). Then, from the definition of strict precede we

conclude valid(o( X,S)). The proof of right sub-schedule order is conducted in the same way.

Sub-schedule choice and Sub-schedule overlap. The structure of the proof has

the same schema as the proof of sub-schedule orders. The proof is based on the definitions

of the precede and no conflict predicates.

3.2.2.2 Completeness Generally speaking, the DTA inference rules are not complete,

i.e., we cannot prove that for any set of DTA schedules S and a DTA schedule t, if S � t then

S ` t. As an example consider two valid elementary transmissions et1 and et2 such that

not precede(et1,et2), and not can collide(et1,et2). Then {et1,et2} � a(et1,et2). However, we

cannot infer a(et1,et2) from {et1,et2} using the DTA rules. The reason is that DTA does not
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utilize the low-level semantics of transmission ranges and collision domains. Meanwhile, we

can prove that the DTA rules are complete with respect to a given query : if the initial DTA

specification reflects basic environment and query constraints, then any valid DTA schedule

is also DTA inferable. Below we formally introduce the concept of the query completeness

(q-completeness) and prove q-completeness of the DTA inference rules.

Definition 3.3.2.1 (query tree): For a given query Q we define a query tree TQ as a set

of all elementary transmissions required to evaluate Q.

Example 3. Consider query Q in Figure 2. Then TQ = {n4en2, n2en1, n5en3, n3en1}.

Definition 3.3.2.2 (q-complete set): A set of DTA schedules SQ is query complete (q-

complete) with respect to a query Q if it includes all elementary transmissions of the query

tree TQ and all valid schedules c(eti,etj) and a(eti,etj) over the elementary transmissions of

TQ.

More formally

SQ = TQ

⋃
{c(eti,etj)|eti,etj ∈ TQ ∧ valid( a(eti,etj)) }

⋃
{a(eti,etj)|eti,etj ∈ TQ ∧ valid( c(eti,etj)) }

Example 4. For query Q from Figure 2

SQ = {n4en2, n2en1, n5en3, n3en1,

c(n2 e n1, n3en1),

a(n4 e n2, n5en3), a(n4 e n2, n3en1),

a(n5 e n3, n2en1)}

Theorem 3.3.2.2 (DTA q-completeness): For any query Q and a DTA schedule t, if

SQ � t then SQ ` t.

Proof. Assume that SQ � t, but not SQ ` t. If t is elementary transmission or

comp(S1,S2), where comp is either c or a and S1, S2 are elementary transmissions, then

by definition of SQ: SQ � t ⇒ t ∈SQ⇒ SQ ` t. If t is a o(S1,S2), where S1 and S2 are

elementary transmissions, then t can be inferred from SQby finite number of applications of

the DTA rules 1 (order introduction) and 2 (order transitivity). If t is a o(S1,S2) and at
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least one of S1 or S2 is not elementary transmission, then t can be inferred from SQby finite

number of applications of the DTA sub-schedule rules 2, 5 and 6. If t is a comp(S1,S2),

where comp is either c or a and at least one of S1 or S2 is not an elementary transmission,

then t can be inferred from SQby finite number of applications of the DTA rules 3, 4, 7, and

8. Thus, SQ � t implies SQ ` t.

3.2.3 Derived DTA Rules, Executable Schedules and Deadlocks

In order to increase the performance of our algebraic optimization we use the basic DTA

rules to infer a set of derived rules. Figure 9 shows some examples of the derived DTA rules.

The derived rules are utilized by our randomized optimizer as valid moves between DTA

schedules [34], [74], and [76].

Figure 9: Derived DTA Inference Rules.

It is interesting to note that expected order associativity o(o(X,Y),Z) → o(X,o(Y,Z))

and choice associativity c(c(X,Y),Z) → c(X,c(Y,Z)) are not sound inference rules. Con-

sider a query tree in Figure 10. The following DTA schedule is valid: o(o(a(n1en5,n4en8),

n9en11), n10en12). However, the schedule o(a(n1en5,n4en8),o( n9en11, n10en12)) is not

valid, since valid( o( n9en11, n10en12)) is not true. Similarly, c(c(n7en10,n8en10), n6en9)

is valid, while c(n7en10, c(n8en10, n6en9)) is not valid. With the tree topology of Figure

10 transmissions n8en10 and n6en9 can be executed concurrently, i.e., valid( a(n8en10,

n6en9)) holds.
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It should be noted that while being invalid the above schedules o(n9en11, n10en12) and

c(n8en10, n6en9) are still executable. Indeed, the fact that query semantics do not impose

a strict order on the transmissions n9en11 and n10en12 does not mean that we cannot

execute them in the order o(n9en11, n10en12). The same is true about n8en10 and n6en9.

An interesting question is if it is possible to generate a valid DTA schedule which would not

be executable. This question has a positive answer. An example of a valid non-executable

schedule is a deadlocked schedule.

Definition 3.3.3.1 (deadlock-potential schedules): DTA schedules S1 and S2 are

deadlock-potential if both o(S1,S2) and o(S2,S1 ) are valid.

For example, in the query tree in Figure 10 schedules a(n1en5, n10en12) and a(n4en8,

n9en11) are deadlock-potential. This is implied by the fact that both o(n1en5, n9en11)

and o(n1en5, n9en11) are valid. Then, strict order of the deadlock-potential schedules will

make a valid non-executable deadlocked schedule. The following is an example of a valid

deadlocked schedule:

o(a(n1 e n5, n10en12), a(n4 e n8, n9en11) ).

In order to capture the deadlock semantics we extend the DTA semantic definition with

deadlock(T1,T2) predicate stating that DTA transmissions T1 and T2 are deadlocked. The

following rule provides a formal definition of the deadlock predicate:

deadlock(T1,T2) :- strict precede(T1,T2),

strict precede(T2,T1).

Note, that negation of the deadlock predicate in the body of the valid(o(S1,S2)) rule

would invalidate the deadlocked schedules. This, however, would add more complexity to

DTA inference rules in order to maintain DTA soundness and completeness. In order to

preserve reasonable complexity of the query optimization we allow DTA rules to generate

deadlocked schedules. Instead of making DTA deadlock-free we implemented efficient dead-

lock handling strategies..
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Figure 10: Invalidation of order and choice Associativity

3.3 COLLISION-FREE DTA SCHEDULES

In this section we will prove a key property of DTA: DTA inference rules generate only

collision-free schedules.

Definition 3.3.3.1 (collision-free schedule): A DTA schedule S is collision-free if ∀Si, Sj ∈

subs(S), Si 6= Sj,map(Si Ti),map(Sj Tj) implies not collide(Ti Tj).

Theorem 3.3.3.1 (valid schedule is collision free):

For any DTA schedule t, if valid(t) then t is collision free.

Proof. If t is an elementary transmission then the fact that t is collision-free follows

from Definition 5. Indeed, in this case ∀Si, Sj∈ subs(t) Si= Sj= t. Suppose t is a composed

schedule comp(S1,S2), where comp is either o or c. Since t is valid, then there are mappings

map(S1,T1) and map(S2,T2) such that time overlap(T1,T2) is false (this follows from the

definition of strict procede and procede predicates). Thus, collide(T1,T2) is false, which

implies that t is collision-free. Now assume that t is a composed schedule a(S1,S2). Since t

is valid, then there are mappings map(S1,T1) and map(S2,T2) such that can collide(T1,T2)

is false (this follows from the definition of no conflict predicates). Thus, collide(T1,T2) is
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false, which implies that t is collision-free.

Corollary 3.4.3.1 (DTA-inferable schedule is collision free): For any set of valid DTA

schedules S and a DTA schedule t, if S ` t then t is collision free.

Proof. The proof follows from soundness of DTA (Theorem 1) and Theorem 3.
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4.0 PRACTICAL IMPLEMENTATION STRATEGIES

In this chapter, we discuss the practical implementation strategies for applying DTA and

provide experimental evaluations.

4.1 SCALABLE OPTIMIZATION STRATEGIES

Basic DTA scheduling as described above may be expensive due to its combinatorial nature.

The number of alternative schedules grows at least exponentially with the number of sensor

nodes and elementary transmissions participating in query. In order to handle the opti-

mization complexity, we utilize heuristic-based pruning methods that eliminate suboptimal

alternatives and randomized algorithms [34]. Randomized algorithms are searching for a

solution with the minimal cost performing random walks in the solution space via series of

valid moves. Specific algorithms are different with respect to moving strategies and stopping

conditions. Most well-known randomized optimization algorithms are Iterative Improvement

(II) (Figure 11), Simulated Annealing (SA) and Two-Phase Optimization (2P0) ([51], [34]).

In our case, possible solutions are DTA schedules. We define valid moves between DTA

schedules on the basis of the DTA inference rules (Figure 8, 9).

4.1.1 Iterative Improvement Algorithm for DTA Optimization

Since, Data Transmission Algebra (DTA) enumerates all possible complete schedules it be-

comes very expensive to generate such schedules when the size of the tree does not remain

reasonably small. Thus, we adapt Iterative Improvement algorithm to generate optimal
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schedules while not trying to enumerate all possible schedules.

Input: A catalog containing all the nodes in the query tree, processing time for each of the

nodes, elementary transmissions, transmission time for each elementary transmission, and

order relation amongst elementary transmissions as obtained by using DTA.

Output: An optimal schedule obtained by transforming elementary transmissions from in-

put catalog using DTA, and by comparing costs of different schedules obtained by random

moves in the neighborhood.

Figure 11: II Algorithm for DTA Scheduling

4.1.2 Experimental Analysis

4.1.2.1 Behavior of DTA Scheduler For this study we developed a simulation tested

based on the ns-2 simulator with the CMU wireless extension [56]. We have implemented an

Iterative Improvement DTA scheduler using Arity Prolog 32 version 1 [1]. First, we report

on the behavior of the DTA scheduler. Then we compare DTA scheduling with 802.15.4

MAC.
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Figure 12: Comparison of DTA Scheduling with Serial Scheduling

Figure 12 shows the average query execution time for different scheduling stages. We compare

the DTA scheduling with a serial scheduling strategy that performs elementary transmissions

sequentially. For each scheduling stage we report the average execution time of all its sched-

ules. We observe that at each scheduling stage, the approach that uses DTA considerably

outperforms serial scheduling. We report on the behavior of the DTA scheduler for a medium

complexity query tree involving ten sensor nodes with overlapping collision domains. Pro-

cessing and transmission costs were generated randomly using Gaussian distributions. The

DTA scheduler generated schedules stage by stage starting from initial schedules with two

elementary transmissions (stage 1). Stage 2, 3 and 4 represent schedules with 3, 4 and 5

scheduled transmissions. Stage 5 includes complete schedules covering all elementary trans-

missions of the query tree. Figure 13 reports on the average benefit that each scheduling

stages gains from concurrent transmissions. Intuitively, the benefit is part of the time cost

that the DTA scheduler is able to “hide” scheduling some transmissions concurrently. The

benefit is defined recursively for each of DTA operations. The benefit of a(X,Y) is equal to

minimum of costs cost(X) and cost(Y). For the rest of the DTA operations the benefit is

equal to zero. Thus, any serial schedule has a zero benefit.

Figure 13(a) compares values of average time cost and average benefit for each scheduling

stage. With the increase of the number of transmissions the benefit grows, but not as fast as
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Figure 13: (a) Time Cost and (b) Relative Benefit of DTA Scheduling

the time cost. Figure 13(b) plots the average relative benefit as a percentage of the overall

average time cost per scheduling stage. We observe that for simple initial concurrent sched-

ules the benefit is almost equal to the time cost. This is an expected behavior. Elementary

transmissions have comparable time costs. By scheduling them concurrently, DTA hides on

average one half of the time cost of their serial execution. However, for complete schedules

(stage 5) the average relative benefit is as low as 0.2, which means that only 20% of the total

serial cost has been hidden. This is also an expected behavior, since complete schedules are

composed of non-elementary transmissions (sub-schedules) with higher variance in their time

cost. Thus, it is more challenging for the DTA scheduler to hide time costs of non-elementary

sub-schedules.

4.1.2.2 Evaluation of the II-based DTA Scheduler Figure 14 shows some of our

experiments that evaluated the performance of the Iterative Improvement (II) algorithm for

DTA scheduling. It reports average time cost and benefit of all considered schedules (avg cost

and avg benefit) and time cost and benefit of the winner schedule chosen by II algorithm

(win cost and win benefit). In addition to costs and benefits of the schedules, we also report a

value of average gain received from the local minimum phase of the algorithm (avg lm gains).

The local minimum gain occurs when II algorithm improves a random initial schedule via

given number of random moves. This number should be no greater than the local minimum

condition. The upper left graph in Figure 14 illustrates a consistent improvement of II
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Figure 14: Performance of II-based DTA Scheduler

performance as we increase the values of the stopping condition with fixed local minimum

condition of 10. We also provide a time cost of a serial schedule (ser cost) as a reference point

and a worst case scenario. The upper right graph also reports on benefit and local minimum

gains of the winner schedule. While we observe steady increase of the benefit value, the

local minimum gain behaves quite sporadically. This is an expected behavior, since for each

value of II stopping condition we set the same local minimum condition. Thus, in general we

should expect a random value of avg lm gains. In order to explore the performance of the

local minimum phase we plot the cost, benefits and local minimum gains for different values

of the local minimum conditions (lower two graphs of the Figure 14). We observe that the

performance of the II algorithm consistently improves as we increase the values of the local

minimum conditions.

4.1.2.3 Comparison of DTA with CSMA/CA Figure 15 reports on packet success

ratio representing the percentage of transmitted packets that reach a destination (sink) node

successfully. Recall, that a low packet success ratio that caused network collapses for higher
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Figure 15: Packet Success Ratio for Medium and Large Networks.

traffic loads from critical monitoring applications, so it is important to observe how DTA

helps to maintain it comparing to typical IEEE 802.15.4 that uses carrier sense multiple

access with collision avoidance (CSMA-CA) [78]. Again, we experimented with medium and

large star-like networks using CMU wireless and mobility extensions to ns-2 simulator. The

medium network consists of 25 nodes positioned within a 150x150 meters flat area while

the medium network includes 73 nodes. All nodes (except the central sink node) deliver

packets to the sink in multi-hop fashion. We used 250 Kbps channel data rate with the

sensor transmission range of 15 meters.

Figure 15 (left graph) shows the simulation results for a medium network. We observe

that at lower loads, the packet success ratio of DTA is around 98%. It decreases to 80% as

the data generation rate increases to 40 packets/second. This slight degradation is caused

by insufficient queue buffer size of sensor nodes. Meanwhile, even at very low traffic loads

(0.5 and 1 packet/sec) CSMA delivers only 70% of data to the sink node. When the load

increases, the CSMA network becomes overloaded with collided or lost packets and the

packet success ratio drops to 30%.

The benefit of DTA becomes even more obvious for a large network (Figure 15, right

graph). At lower rates, the DTA packet success ratio is around 95%. The ratio decreases to

40% as the data generation rate increases to 27 packets/second. This is because the traffic
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load exceeds the channel data rate (250 Kbps). Meanwhile, the packet success ratio with

CSMA drops to less then 20% almost immediately.

4.2 INTEGRATING THE CROSS-LAYER OPTIMIZATION WITH

EFFICIENT NETWORK INTERROGATION STRATEGY

In order to further facilitate the optimization, we propose to utilize efficient network inter-

rogation strategies. Such strategies can decompose the wireless network into sub-networks

reducing the scheduling complexity considerably. Below we propose a Whirlpool data deliv-

ery technique that splits the network in sectors and performs a rotating interrogation of the

network, where groups of non-colliding sectors are queried in a rotation order.

4.2.1 Whirlpool: Rotating Interrogation

Consider a set of wireless sensor nodes spread uniformly over a monitoring area, and a base

station is located at an approximate center of the network. The sensor network can be split

into sectors as shown in Figure 16a, b, c. The number and size of sectors can vary depending

on the monitoring requirements. We define two sectors S1 and S2 as colliding, if at least one

transmission of S1 collides with any transmission of S2. We assume that adjacent sectors

are always colliding. Transmissions within a group of non-colliding sectors can be conducted

concurrently. This also introduces inter-sector concurrency, as opposite to intra-sector con-

currency, where the DTA optimizer schedules concurrent transmissions within one sector.

In Figure 16b, transmissions within each of (S1, S3) and (S2, S4) sector groups could be

scheduled concurrently.

We investigate practical improvements of the basic Whirlpool technique, such as intro-

ducing interlayer concurrency that allows the optimizer to schedule last hops concurrently

with initial transmissions of the next rotation. We also explore specific Whirlpool tuning

for the purposes of efficient monitoring. For example, the Whirlpool can be fine-tuned with

37



Figure 16: Sectoring of Sensor Network.

respect to the number and size of sectors. As the number of sectors increases and the num-

ber of nodes in each sector decreases, DTA query scheduling becomes more efficient (less

complex) as the optimizer applies DTA to smaller sectors. At the same time, smaller sectors

can also reduce the number of potential “good” query schedules explored by DTA.

Figure 17: Effect of Whirlpool Concurrencies.

Figure 17 reports some preliminary simulation results on the ability of Whirlpool to

utilize inter- and intra-sector (in-sector in Figure 17) concurrency. For this experiment, we

used a simulated sensor network with 75 sensors uniformly spread over an area of 100×100

meters. A preliminary prototype of basic DTA and Whirlpool scheduling was implemented

38



in Arity Prolog 3.2. We report on one Whirlpool rotation with different sectoring. As

a baseline, we used a serial strategy that executes transmissions in Whirlpool sectors one

by one. This corresponds to the “No Inter-sector, No In-sector” curve in Figure 17. The

next option is “Inter-sector, No In-sector” case where Whirlpool executes non-conflicting

sector groups concurrently. The “In-sector, No Inter-sector” curve corresponds to DTA

scheduling within each sector, while executing sectors one by one. Finally, we combine inter-

sector concurrency with DTA scheduling (“Inter-sector, In-sector” curve) in an attempt to

maximize the concurrency benefit. Figure 17 shows that, in general, any kind of Whirlpool

concurrency improves upon the base line. Inter-sector concurrency does not give any benefit

for 1, 2 and 3 Whirlpool sectors, since in this case any sector is adjacent to the rest of them

and we do not have non-colliding sector groups. With an increase in the number of sectors,

the benefit of inter-sector grows, which is the expected behavior. Indeed, since execution

time of a non-conflicting sector group is equal to the execution time of its maximal sector,

the smaller sector sizes improve performance due to the benefits of inter-sector parallelism.

Meanwhile, the benefit from DTA scheduling only (“In-sector, No-Inter-sector”) degrades

with a larger number of sectors. The reason is that smaller and narrower sectors provide

fewer opportunities for concurrent transmissions. We observe that with 8 sectors DTA alone

is approaching pure serial Whirlpool execution, which means that only a few transmissions

were scheduled concurrently. As expected, combining inter-sector concurrency and DTA

scheduling demonstrates the best performance.

Thus, Whirlpool should be tuned for an optimal number and size of sectors so as to

utilize the performance benefits of DTA scheduling while keeping the scheduling complexity

reasonably low. Another important parameter of Whirlpool is its speed of rotation, which

can be considered as the time spent by Whirlpool in each sector. It can also be interpreted

as the size of the data sample received from each sector during one rotation. Faster rotation

and smaller data sample size would also assume lower quality of data. Tuning the Whirlpool

rotation speed, we can either deliver approximate data faster or accurate data slower. This

provides additional opportunities for trading query response time for QoD, which is especially

important in mission-critical monitoring applications.
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4.2.2 Fine-tuning Whirlpool

The whirlpool can be fine-tuned with respect to the number and size of sectors, as well as

the number and speed of rotations.

Number and size of sectors: As the number of sectors increases and the number of nodes

in each sector decreases, query scheduling becomes more efficient. In case of using DTA,

query scheduling becomes less complex as the optimizer applies DTA to smaller sectors.

This results in a higher degree of intra-sector concurrency. Meanwhile, the larger number of

sectors increases chances of inter-sector concurrency. However, while considering DTA based

approach smaller sectors can also reduce the number of potential “good” query schedules

explored by DTA. Whirlpool should be tuned for an optimal number and size of sectors

so as to utilize the performance benefits of specific scheduling framework while keeping the

scheduling complexity reasonably low.

Number and speed of rotations: Higher numbers of rotations imply that more data

is collected from each sector. The number of rotations should be tuned on the basis of

application requirements. The most important parameter of whirlpool is its speed of rotation.

Speed of rotation can be considered as the time spent by whirlpool in each sector for one

rotation. It can also be interpreted as the size of data sample received from each sector

during one rotation. In general, the speed of rotation is higher for whirlpools with smaller

sectors. Faster rotation would also assume lower quality of data. By tuning the whirlpool

rotation speed, we can either deliver approximate data faster or accurate data slower.

To summarize, whirlpool introduces the following major advantages:

1. Complexity Reduction in Scheduling

2. Introduction of Inter-sector Concurrency

3. Increase of Network Utility in terms of Control over the Behavior

The last item requires more explanation. We define sensor network utility as the ability to

provide a better quality of data relevant to understanding the behavior of the monitored

system within shorter periods of time. Variable Quality of Data (QoD) that achieved by
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whirlpool provides additional opportunities in trading query response time, energy and QoD,

which is especially important in mission-critical applications such as structural monitoring

for early instability detection. Using the whirlpool monitoring system we can localize the

damage in particular network sectors and also evaluate propagation of unstable behavior.

4.2.3 Whirlpool Algorithms

4.2.3.1 Basic Algorithm: Serial Last-hops Consider a whirlpool structure with 4

sectors S1, S2, S3, S4 and a base station placed in the center of the network (Figure 18). We

assume that any whirlpool sector has a single last hop trans-mission that reaches the base

station. In Figure 18, t1lh is a last hop transmission of S1, t2lh is the last hop transmission

of sector S2 and so on.

Figure 18: Whirlpool with 4 Sectors.

A complete sector schedule is a DTA schedule that includes all elementary transmissions

of the sector1. For example, o(c(t11,t12),t1lh) is a complete schedule for sector S1. A sub-

complete sector schedule is a DTA schedule that includes all elementary transmissions of the

sector except its last hop transmission. For example, c(t11,t12) is a sub-complete schedule for

S1. Figure 19 represent the basic whirlpool algorithm (BA). First, the non-conflicting groups

are formed. For the example in Figure 18 NCGrp = [{S1,S3}, {S2,S4}]. Then the schedules

are grouped by non-conflicting sectors as follows: Sch = [{c(t11,t12),c(t31,t32)},{c(t21,t22),c(t41,t42)}]
1 We can use any efficient scheduling technique here. Whirlpool is orthogonal to DTA in this sense.
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Figure 19: Basic Whirlpool Algorithm.

Each of the sector groups Sch[1] and Sch[2] are executed in the order of whirlpool rotation.

Meanwhile sub-schedules within each group are executed concurrently. We can express this

inter-sector concurrency using DTA overlap operation a as shown in the following expression:

o( a( c(t11,t12),c(t31,t32) ), a( c(t21,t22),c(t41,t42) ) ) (1)

The above DTA expression schedules all sub-complete schedules of the whirlpool in Figure

18. In order to complete the scheduling we have to take care of last hop transmissions. Since

all last hop transmissions share the same destination, the optimizer schedules them serially

using DTA non-strict order operations:
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LHSch=c(t1lh,c(t2lh,c(t3lh,t4lh))) (2)

Combining schedules (1) and (2) using strict order operation we obtain a DTA expression

for one whirlpool rotation:

o ( o( a( c(t11,t12),c(t31,t32) ),

a( c(t21,t22),c(t41,t42) ) ) ,

c(t1lh,c(t2lh,c(t3lh,t4lh))) ).

With basic whirlpool algorithm, there is a bottleneck for the last-hops. In order to deal with

this bottleneck, we propose a modified algorithm.

4.2.3.2 OHT Algorithm: One Last-hop through In this algorithm we allow the

last-hop for one of the sectors to occur concurrently while other sectors still deliver the data

to the nodes before the last hop node. Similar to the basic algorithm sub-complete DTA

schedules Sch[i] are generated for each of the whirlpool sectors. However, this time one last

hop also scheduled in the sub-complete schedule. Consider again Figure 18. In case OHT

the groups of non-conflicting sectors will be as follows:

Sch = [{o(c(t11,t12),t1lh),c(t31,t32)},

{o(c(t21,t22),t2lh),c(t41,t42)}]

Each of the sector groups Sch[1] and Sch[2] are executed in the order of whirlpool rotation.

Inter-sector concurrency is expressed as:

o(a(o(c( t11,t12),t1lh), c(t31,t32)),

a( o(c(t21,t22),t2lh),c(t41,t42) ) ). (3)

To complete the scheduling remaining two last hops are scheduled serially using DTA non-

strict order operations:

LHSch = c(t3lh,t4lh) (4)

Combining schedules (3) and (4) as in the basic algorithm gives a complete schedule for one

rotation:

o ( o( a( o(c(t11,t12),t1lh),c(t31,t32) ),a( o(c(t21,t22),t2lh),c(t41,t42) ) ) , c(t3lh,t4lh))) ).

4.2.3.3 Layered Whirlpool In order to consider more concurrent transmission oppor-

tunities, we introduce layering in whirlpool. We consider how the whirlpool algorithms can
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Figure 20: One-Hop Through (OHT) Algorithm.

be improved by introducing interlayer concurrency. First we explain Layered Basic Algo-

rithm (LBA) where all last hops of the whirlpool are executed serially. Consider Figure

21a where the same color layer-sectors can be scheduled simultaneously. We assume that

there is no conflict in transmissions across the layers. The outer-layer dark color sectors are

scheduled initially to begin the whirlpool. The inner layer-sectors (closer to the base station)

start transmitting only after the corresponding outer layer-sector transmissions have been

completed. The layered whirlpool continuously acquires data from outer-layers and passes
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it through inner-layers to the center. Figures 21b, 21c and 21d represent three execution

stages during one whirlpool rotation. All dark-color sectors at each stage can be executed

simultaneously. After the stage 3 (Figure 21d), the last hops are executed serially. Figure

23 provides the LBA specification.

Figure 21: Explaining Layer-sectored Whirlpool Execution.

The second layered whirlpool strategy is the LOHT algorithm, which is the layered version

of the OHT technique. The LOHT algorithm groups non-conflicting sectors and executes

them along with one last hop from one of the sectors in the group. We also developed

several advanced whirlpool algorithms maximizing the benefits of continuous concurrent

transmissions. For example, Figure 22 illustrates the approach where transmissions from

consequent whirlpool rotations co-occur. Figure 22d corresponds to the case where the last

hop sectors are being executed while the outer-most layer starts executing transmissions for

the second rotation. This maximizes the overall concurrency.

4.2.4 Experimental Analysis

Figure 24 compares overall response times for each of the whirlpool algorithms. Here we

consider whirlpool with 3 layers. We observe a consistent improvement in the performance

of the whirlpool algorithm comparing to the BA strategy. We also observe that the response

time decreases as the serial bottleneck for the last-hops is rectified. Meanwhile, most con-

siderable impact on response time comes from the layering. The LOHT strategy wins over
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Figure 22: Whirlpool Execution using Advanced Algorithm.

all other algorithms for almost all number of the whirlpool sectors. The only exceptions are

1 and 2. In this case the performance of LOHT degrades since the execution time of the

additional last hop becomes comparable with the execution time of a next layered-sector.

For 3 or more sectors, LOHT behaves better than other algorithms, since in this case it

considerably eliminates the last-hop bottleneck. However, with the increase in the number

of layer-sectors the layering effect is diminished since the smaller size of the layer-sectors

restricts intra-sector concurrency. It should also be noted that the complexity of the LOHT

scheduling may enforce choosing simpler but less efficient algorithms such as LBA and OHT.

In order to investigate the utility of whirlpool for timely data delivery, we evaluated the data

delivery profiles for each of the whirlpool algorithms. Figure 25 presents the results of this

evaluation for the whirlpool structure with 8 sectors and 3 layers. We observe that OHT

algorithm starts delivering data much earlier than BA. Similar relationship exists between

LOHT and LBA. As expected the both LBA and LOHT over perform BA and OHT. The

ability of whirlpool to deliver data early is very useful for mission-critical system monitoring.

The crossover in the data delivery profiles indicates performance trade-offs that should be

explored by our system. For example, we may choose OHT over LOHT if the early data

delivery is preferable. Meanwhile, if faster overall response time is required then LBA should

be chosen.
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Figure 23: Layered Basic Algorithm for Whirlpool.

Figure 26 illustrates further possibility of improvement in the whirlpool algorithms via better

time synchronizations. We compare the LOHT strategy with the two advanced algorithms

that perform synchronized whirlpool interrogation using the idea outlined in Figure 112.

Adv1 and Adv2 are improvements over LBA and LOHT algorithms respectively. Figure 26

represents benefits from one rotation only. Meanwhile the performance gain will increase

with increase in number of rotations, since some of the outer-layer transmissions can be
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Figure 24: Response Time for whirlpool algorithms.

Figure 25: Data Delivery Profile for Whirlpool Algorithms.

executed concurrently with the last hops of the previous whirlpool rotations. Although it is

beneficial yet, the time-synchronization is difficult to implement. We are currently exploring

the practical applicability of these algorithms.

To summarize, our experiments demonstrated high utility of the whirlpool-based strate-
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gies for timely data delivery in sensor networks. We also demonstrated how whirlpool algo-

rithm can be tuned to maximize the transmission concurrency in order to meet the given

performance target.

Figure 26: Profile for Advanced Whirlpool Algorithms.

4.3 CASE STUDY: DETECTING STRUCTURAL INSTABILITY

4.3.1 Background

Non-intrusive Structural Health Monitoring is a procedure where the natural dynamics of a

structure are observed for changes that indicate damage or instability [54], [22]. By quanti-

fying these changes, the system may detect and locate the damage. Recently, progress has

been made in using techniques from non-linear dynamics based on analysis of chaotic excita-

tion signals in detecting structural instability. In general, structural behavior is considered

to be stable if observed structural parameters (e.g., vibration) are predictable, i.e., they are

either constant or periodic (Figures 27a and 27b). A structure qualifies as unstable if its

behavior is chaotic, i.e., if it exhibits a deterministic but non-predictable evolution (Figure

117c) [8], [68].
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Figure 27: Data Patterns for Stable and Unstable Systems and Redundancy as Indicator of

System Instability.

In order to detect chaotic behavior, a variety of measures have been used (e.g., Lyapunov

exponent, Kolmogorov-Sinai entropy, etc.) [68]. We performed preliminary experiments with

redundancy-based estimation of Kolmogorov-Sinai entropy and found it quite natural and

efficient to detect chaotic behavior with WSNs. In this case, the data sample sensed by the

sensors is time-shifted D times with a lag of m (D specifies the number of dimensions in

the lag space). The resulting lagged time series Xt, Xt+m,. . . Xt+(D-1)m are compared

with the original time-series for similarity that can be captured by information theoretical

redundancy measure [68]. For stable data, the relation between redundancy and lag is a

horizontal line at a constant ordinate value. For chaotic data, the plot gives us a downward

sloping line. Figure 117d indicates the beginning of instability at time moment 2000, where

we observe a change in redundancy.

4.3.2 Optimizing Detection of Structural Instability

The proposed cross-layer optimization can be effectively tuned to perform the instability

detection as explained above. We assume that each sensor node accumulates a data sample

every Ta seconds (sample arrival rate). Once a sample of data is received at the base sta-

tion, it is tested for redundancy with a suitable lag and a chosen embedding dimension. The

time interval from the beginning of transmission of a sample to the receipt of the sample
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at the base station is known as the propagation delay (Tp). As soon as a sample of data

reaches the base station, it can be analyzed to detect any indications of instability. Consider

a simple Whirlpool structure and a plot of system-generated vibration data in Figure 118.

First, the sensor nodes in one of the non-conflicting group of sectors, e.g. {1, 1}, sample the

vibration data (labeled by 1 in the vibration plot). Then, the collected data is transmitted

to the base station that performs redundancy calculations. Note that the system misses

the readings that occur during the data propagation delay. When the second group {2, 2}

is sensing and transmitting, the first group {1, 1} stays idle and vice-versa. Thus, in this

example the system is being interrogated twice per whirlpool rotation. Choosing specific

Whirlpool sectoring and rotation speed, we can control the propagation delay, sample size,

data freshness and amount of missed data.

Figure 28: Simple Whirlpool for Instability Detection.

The choice of specific sectoring and rotation speed also impacts the accuracy of instability

detection. If the sample size is too large, instability will be detected with a considerable

delay. Meanwhile, estimating redundancy on a smaller sampling interval typically results

in less notable redundancy changes compared to larger sampling intervals. Smaller samples

may not provide enough data for accurate redundancy estimates. This is illustrated in

Figure 29. The leftmost graph represents redundancy estimated on a sampling interval of

500, while the right redundancy graph corresponds to a sampling interval of 60. We observe

steep redundancy degradation for the larger sample and smooth redundancy change for the

smaller sample. Although a smaller sampling interval may have a potential for providing

more timely instability detection, it risks missing the instability due to redundancy miss-

estimation. Another problem may occur when a sample is collected in proximity of the
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unstable region. Case (a) in Figure 29 corresponds to a scenario where the sample includes

both readings from stable and unstable system states. The amount of stable readings can

hide the chaotic pattern of the unstable region during the redundancy estimation. This can

result in a missed instability point. Similar situations may occur when the system returns

to stable behavior after some instability period (case (b) in Figure 29). In this case, a false

alarm may be raised.

Figure 29: Effect of Sampling on Redundancy Increment, Missed Instability and False

Alarms.

We explore applicability of our specific optimization techniques and tuning strategies in order

to provide accurate and timely instability detection in SHM systems.

4.3.3 Experimental Analysis

In this section, we provide some experimental results evaluating utility of the Whirlpool

technique for the task of SHM. We configured a simulated sensor network with 75 sensors

uniformly spread over a monitoring area. We simulated Zigbee WSN [63] with a frequency

band of 915 MHz and a nominal data transmission rate of 40 kbps. We set the actual trans-

mission rate at 30 kbps with a packet size of 120 bytes. We also generated several vibration

time-series with patterns of instability. Figure 30 plots the instability detection time for

different numbers of the Whirlpool sectors and sample sizes reflecting the Whirlpool rota-

tion speed. We observe that, in general, instability is detected earlier with more number of

sectors. Meanwhile, the overall Whirlpool performance slightly decreases as the number of

sectors increases. The reason is that smaller and narrower sectors provide fewer opportunities
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for concurrent transmissions. We also observe that smaller sample size, which corresponds

to faster Whirlpool rotation, allows Whirlpool to detect the instability earlier.

Figure 30: Instability Detection Time for Different Number of Sectors at Different Sampling

Intervals.

At the same time the Whirlpool tuned for smaller samples is more vulnerable to false

and missed alarms. This can be observed in Figure 31 that plots an average number of the

false and missed alarms versus sample size. In general, an optimal choice of the sample size

and cut-off accuracy is critical for accurate instability detection. From our experiments we

found that a cut-off accuracy of 0.25 with sampling interval of 250 performs reasonably well.

4.3.4 Conclusion

We introduced a novel algebraic framework for specifying and analyzing data transmissions

along with constraints imposed by a query in wireless sensor networks. Our framework

enables flexible cross-layer query optimization techniques that utilize information about

the MAC layer. We undertook a comprehensive experimental and theoretical study of our

framework. It included the implementation and testing of our framework in simulated envi-

ronments, as well as exploring its soundness and completeness. We also introduced a rotating

interrogation technique called Whirlpool that provides opportunities to optimize data deliv-

ery in time-critical monitoring applications. We explored concurrency opportunities with
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Figure 31: False Alarms and Missed Alerts.

different whirlpool algorithms. We also demonstrated extra benefits of using whirlpool in

combination with our algebraic query optimization framework. Then, we studied the appli-

cability of the DTA and whirlpool for the task of non-intrusive Structural Health Monitoring.
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5.0 TRUST-BASED ROUTING

The majority of research on sensor networks is focused mostly on time/energy efficiency

and various approaches addressing this issue have been proposed (e.g., maximizing collision-

free concurrent data transmission [73]). Meanwhile, in many applications the reliability and

trustworthiness of gathered data may be critical. In this chapter, we apply DTA framework

to handle location-based trust in WSNs. The idea is to extend the DTA cost-model with

trust estimation.

Consider a sensor query to collect temperature measurements from inside of a monitored

building. Validity of these measurements is critical to discover, say, the spread of fire in the

building in a timely manner. Therefore, we need to make sure that the received data are

not changed while routed via the network. Meanwhile, there are many different routes to

deliver data from temperature sensors. Some of them involve only sensors located inside the

building. Other routes may be shorter and more time/energy efficient, but data should be

routed through sensors located in a less protected outside area. Such common routing would

ignore trustworthiness. As a result the last (possibly shorter) route would be preferred. The

required level of trustworthiness could still be achieved assuming that cryptographic protec-

tion is applied and the measurements are encrypted. However, in this case the time/energy

efficiency would decrease, since both encryption and decryption are time and energy consum-

ing. Moreover, in many cases such cryptographic protection is not available or provides only

limited protection due to resource constraints of sensor nodes. Even if the cryptographic

protection is available it may be not sufficient. In order to use cryptography to provide

authenticity and integrity of data, every participant should maintain a trusted key and a

key management system for generation and distribution of cryptographic keys [19], [20], and

[28]. This increases complexity and imposes additional time and energy requirements.
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In our approach, a trust-aware routing assumes that all sensors in the network are as-

signed an initial trustworthiness level. Initially, trustworthiness of each sensor or groups of

sensors can be determined from their context (e.g., properties of deployment area, sensor de-

sign, etc.). For example, deployment inside buildings may provide more physical protection

to sensors compared to outdoor deployment, where intruders can have easier access to the

sensor.

The trust-awareness based approach proposed in this chapter can be used when crypto-

graphic protection is not available or is too resource demanding. The required level of trust-

worthiness can be achieved by routing data via trusted sensors, even though such trusted

routes are longer and may be more time/energy consuming.

Sometimes, it would be more practical to choose an intermediate solution that combines

those described above. Given some trustworthiness requirements, we can select a route

to transmit data from the sensors to more powerful intermediate nodes that protect data

cryptographically, and then route protected data through lower trustworthiness sensors.

5.1 SUBJECTIVE LOGIC

In this section, we consider how to express the level of trust in some metric. Following [37],[38]

we first define the term opinion, denoted ω, that expresses opinion about trustworthiness

level.

Let t, d and u be such that t + d + u = 1,{t, d, u} ∈ [0, 1]3. Then a triple ω = {t, d, u}

is called an opinion, where components t, d and u represent levels of trust, distrust and

uncertainty respectively. The level of trustworthiness is expressed by opinions. For ex-

ample, the trustworthiness level associated with distrust could be expressed as opinion

ω 1 = {0.0, 0.9, 0.1}, but trustworthiness level associated with maximum trust could be ex-

pressed as opinion ω 2 = {0.96, 0.00, 0.04}. Varying these parameters, we can express different

levels of trust. Expressing trust using three parameters instead of just one trust level pro-

vides a more adequate trust model of real world uncertainties. When different opinions are

combined, these parameters are not treated equally.
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The subjective logic defines a set of logical operators for combining opinions including

conjunction, recommendation, and consensus, which we describe below.

Let ωA
p =

{
tAp , dA

p , uA
p

}
denote an opinion of entity A about logical statement p being

true. In the context of this chapter, A is a sensor node and statementp corresponds to “data

received by A reflects unchanged result of measurement”.

If some entity A has opinion ωA
p =

{
tAp , dA

p , uA
p

}
about some statementp, and opinion

ωA
q =

{
tAq , dA

q , uA
q

}
about some statementq, thenA’s opinion about truthfulness of statement

p ∧ q is defined as following [37]:

ωA
p∧q = ωA

p ∧ ωA
q =

{
tAp∧q, d

A
p∧q, u

A
p∧q

}
where tAp∧q = tAp tAq , dA

p∧q = dA
p + dA

q − dA
p dA

q , uA
p∧q = tAp uA

q + uA
p tAq + uA

p uA
q .

Let A and B be two entities that in context of this chapter represent sensors. Then

ωA
B =

{
tAB, dA

B, uA
B

}
denotes an opinion of entity A about trustworthiness of a recommenda-

tion given byB. Assume that B gives its recommendation to A about trustworthiness of a

statement p in form of its opinion ωB
p . Since entity A does not have any direct opinion ωA

p

about p, it will try to deduce some indirect opinion about trustworthiness of p based on

the given recommendation, denoted ωAB
p . For this purpose, subjective logic introduces the

recommendation operator, denoted ⊗, as follows:

ωAB
p = ωA

B ⊗ ωB
p =

{
tAB
p , dAB

p , uAB
p

}
where tAB

p = tABtBp , dAB
p = tABdB

p and uAB
p = dA

B + uA
B + tABuB

p .

In the case where there are several independent opinions about the same statement, we

can use consensus operator ⊕ to get combined opinion about the same statement. Let ωA
p

and ωB
p be two opinions of entities A and B about statement p. Then the combined consensus

opinion is defined as

ωA,B
p = ωA

p ⊕ ωB
p =

{
tA,B
p , dA,B

p , uA,B
p

}
where tA,B

p =
(
tAp uB

p + tBp uA
p

)
/
(
uA

p + uB
p − uA

p uB
p

)
, dA,B

p =
(
dA

p uB
p + dB

p uA
p

)
/
(
uA

p + uB
p − uA

p uB
p

)
,

uA,B
p =

(
uA

p uB
p

)
/
(
uA

p + uB
p − uA

p uB
p

)
.
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Now we are ready to describe how trustworthiness of different query trees can be found.

For more details related to subjective logic the reader is recommended to consult [37],[38].

5.2 SYSTEM MODEL

At the beginning, we have to assign a level of trust to each sensor based on its location,

design, etc. We consider a system model as described in [73]. We assume that a sensor

query originates at a base station propagating it to all sensor nodes in the network and

collecting the results back from the sensors. Query processing can take place at the base

station and/or within sensor nodes, depending on the type of query and capabilities of

sensors.

We also assume that a query optimizer runs at a base station and generates a set of

alternative query routing trees. The optimizer selects a query tree that delivers results

satisfying trustworthiness requirements (in addition to other requirements, such as finding

maximizing concurrent transmissions). The query optimizer has to assess trustworthiness of

all data gathered using the given query tree.

We assume that the sensor network contains two types of nodes: sensors and base sta-

tions. Every sensor can be associated with one or several base stations. As a basis for our

trust measurement, we assume that each sensor and each base station have an assigned opin-

ion about the trustworthiness of the sensors it queries, and each base station knows opinions

about sensors it controls, as well as opinions about trustworthiness of recommendations of

sensors that it controls as well as other base stations. Using subjective logic any base station

can calculate the trustworthiness of data received from underlying sensors and from other

base stations.

Let us consider the sensor network presented on Figure 32, consisting of one base station

and six sensors aggregating data.

Let n1 be a base station that gathers measurements from sensors n2, n3, n4, n5. Since n1

has a direct connection to only sensors n2 and n3 the trustworthiness of measurements from

other sensors n4, n5, n6, n7 should be evaluated with respect to corresponding trustworthiness

58



recommendations of intermediate sensors n2 and n3. Additionally, we assume that sensor n3

aggregates independent opinions about the same statement p assessing data from n3, n6 and

n7, and forwards the consensus opinion to n1.

Figure 32: Sensor network with base station n1and aggregation sensor node n3.

Following the rules of subjective logic presented in Section 3, we can find that trustwor-

thiness of data from collected from sensor nodes as following:

ωn1n2
p2

= ωn1
n2
⊗ ωn2

p2

ωn1n2n4
p4

= ωn1
n2
⊗ ωn2

n4
⊗ ωn4

p

ωn1n2n5
p5

= ωn1
n2
⊗ ωn2

n5
⊗ ωn5

p5

ωn5
p = ωn1

n2
⊗ ωn2

n5
⊗ ωn5

p

ωn1(n3,n6,n7)
p = ωn1

n3
⊗
(
ωn3

p3
⊕ ωn6

p6
⊕ ωn7

p7

)
where statement pi is true if delivered measurement of sensor ni correctly represents

the original measurement of ni for i = 2, 4, 5 and p3, p6, p7 are three equivalent statements

denoted as p. Therefore, trustworthiness of data gathered by base station n1 can be expressed

as following:

ωn1
p2∧p4∧p5∧p = ωn1n2

p2
∧ ωn1n2n4

p4
∧ ωn1n2n5

p5
∧ ωn1(n3,n6,n7)

p
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5.3 TRUST-AWARE DATA GATHERING

Let us consider an example of a sensor network with one base station (see Figure 33). The

network consists of the nodes n1, n2, · · · , n10 where n1 denotes the base station. The dashed

red rectangle outlines a protected area in the sense that sensors n1, n2, n3, n5, n7 located inside

the rectangle have higher trustworthiness compared with sensors n4, n6, n8, n9, n10 located

outside of the protected area.

Figure 33: Routing query tree optimized without consideration of trustworthiness require-

ments

According to our model, node n1 knows opinions about the trustworthiness of data

produced by all sensor nodes, that is, ωn2
p2

, · · · , ωn10
p10

and trustworthiness of recommendations

ωni
nj

for all nodes ni and nj, i 6= j, that may directly communicate with each other.

Following subjective logic rules from Section 3, we can calculate the trustworthiness of

data gathered by n1 using the query tree presented in Figure 33 as following:
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ωn1
t2∧···∧t10 = ωn1n2

t2 ∧ ωn1n3
t3 ∧ ωn1n2n4

t4 ∧ ωn1n2n6
t6

∧ωn1n2n5
t5 ∧ ωn1n2n5n7

t7 ∧ ωn1n2n5n7n8
t8

∧ωn1n2n5n7n9
t9 ∧ ωn1n2n5n7n10

t10

In cases where trustworthiness requirements are higher, we have to choose a non-optimal

routing tree presented in Figure 34. It shows the same sensor network with a query routing

tree having a higher level of trustworthiness.

Figure 34: Routing query tree optimized with respect to trustworthiness requirements

Compared to the routing query tree in Figure 33, data from node n9 will be routed via

the more trustful node n7, not n6. The same holds for nodes n8 and n10. Trustworthiness

for the case described in Figure 34 can be calculated similarly as it was demonstrated for

the case in Figure 33.
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5.4 EXPERIMENTS

First we tested our trust-aware processing scheme on a wireless sensor network topology

consisting of 10 nodes (Figure 35).

Figure 35: Small network topology.

We assumed that the network is data intensive. The data from all the nodes is sent

to the base station using multi-hop delivery. Each node transmits at least 128 Kb of its

own sensed data and additionally, relays the data that it received from its children nodes to

its next hop. Each node is also associated with an opinion i.e. a triple of {trust, distrust,

uncertainty}. The initial trust values are high and randomly set to be in the range from

0.97 to 0.99. Although, this range is pretty small, any small change in the second decimal

place values of trust semantically reflects a bigger magnitude of change in trust because of

extreme sensitivity of trust as defined in the subjective logic recommendation and conjunc-

tion operators [38]. Distrust and uncertainty are randomly assigned to each node such that

for each node the expression trust+distrust+uncertainty = 1. We evaluated time, energy

and trust values for this topology over a set of five different routes shown in Figure 36.

Figure 37 shows the time cost for each of routes illustrated in Figure 36. We observe that

data delivery via route 3 has the minimum latency, whereas route 4 has the worst latency.

Time cost for routes 1, 2 and 5 are almost similar.

Meanwhile, route 1 consumes minimal energy (Figure 38). Route 4 has the worst energy

usage. Also, from Figure 39, we observe that route 4 has worst trust and highest uncer-

tainty too. A trust-aware optimizer would prefer to choose route 1 or route 3, which have
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Figure 36: Five different data delivery routes for the topology in Fig.35.

Figure 37: Time cost for 5 routes in Fig. 36

comparable time, energy and trust.

Next we performed a larger-scale experiments with 73 nodes positioned over a 1200mX1200m

area as shown in Figure 40. Each node has a range somewhere between 100m – 150 m.

Here, the central node is our base station. All the other nodes are either source or relay
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Figure 38: Energy cost for 5 routes in Fig. 36

Figure 39: Trust, Distrust and Uncertainty for the 5 routes in Figure 36

nodes. The source nodes receive data from the environment and send these data to the base

station via multi-hops using the intermediate relay nodes. Relay nodes do not contribute

their own data. Each source node transmits at least 128 Kb of its own data. We identified

6 almost equally distant peripheral nodes as source nodes. Each source node utilizes 3

alternative paths to transfer its data to the base station. For each simulation run each of

the 6 nodes selects one of the available paths and delivers data using that path. Hence, for
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Figure 40: 73 nodes topological grid for simulation experiments.

every simulation we obtained a spider shaped topology (a “spider leg” corresponds to a path

from source node to the base station node). We performed simulation studies for 729 such

topologies, and report results based on few of these, which provide a representative behavior

observed from all the simulation studies.

For each spider topology, our optimizer found optimal schedules based on time cost, en-

ergy cost and trust values. Our optimizer has a cost model to estimate both response time

and energy consumption of a DTA schedule. Details of the time and energy model are in

chapter 3 ([75]). As for the small network, the initial trust values were randomly set in the

range from 0.97 to 0.99 since even small change in the second decimal place values of trust

semantically reflects a bigger magnitude of change in trust because of extreme sensitivity of

trust as defined in the subjective logic recommendation and conjunction operators. Distrust

and uncertainty are randomly assigned to each node such that for each node the expres-

sion trust+distrust+uncertainty = 1. In order to perform the Multi-criteria Optimization

Problem (MOP) our optimizer utilized randomized algorithms [34] to generate Pareto fronts

for large query trees. Randomized algorithms will search for a Pareto optimal solution by

performing random walks in the solution space via a series of valid moves [76].

We obtained a variety of time and energy optimal schedules with a distribution of trust,

distrust and uncertainty values as shown in Figure 41. The trust values for the schedules

65



Figure 41: Distribution of opinions for the obtained sub-optimal schedules.

Figure 42: Distribution of latency and energy spent for the obtained sub-optimal schedules.

range somewhere between 0.35 and 0.45; and so do the uncertainty values. Distrust ranges

from 0.19 to 0.24. Figure 41 represents the histograms of the opinion distributions for

the generated schedules. We observe that most of the obtained sub-optimal schedules are

associated with 0.38-0.4 trust values. Figure 42 represents latency and energy histograms.

We observe that most of the schedules have latency in the range of 400- 600s and energy

cost from 70 to 80 J. There is a clear winner schedule with the lowest latency and similarly,

a clear winner with least energy cost and trust.

Experiments with varying trust levels High trust: ranging from 0.91-0.99

Figure 43 shows the time cost; energy cost and trust values for various schedules explored

for optimization where the initial trust values were in the high range varying from 0.91 to

0.99. Here, most of the generated schedules had trust values between 0.1 to 0.13 with latency

ranging from 450s to 600s and energy costs of 70 to 80J. These schedule trust values are much

higher than 0.008 to 0.014 (Figure 44) trust values which were generated for the schedules
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Figure 43: Time, energy and trust for various schedules with initial high trust values.

where initial trust values ranged from 0.8 to 0.99, although the time cost and energy costs

were still comparable.

Medium trust level: trust ranging from 0.8-0.99

Heterogeneous trust levels

To experiment with a network associated with heterogeneous trust values, we kept 19 nodes
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Figure 44: Time, energy and trust for various schedules with initial medium trust values.

with trust=1 (well-protected nodes), 6 nodes with trust=0.3 (unprotected nodes) and rest of

the nodes were assigned trust randomly between 0.8 and 0.97 (medium protection). Figure

45 shows that the schedules generated were more biased in terms of their final trust values

and energy cost. We could clearly find the schedules that were high trust and that still

maintained low energy costs. Further, we explore such optimization opportunities.

Trust-aware optimization: Table 1 summarizes results from our exploration of various
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Figure 45: Time, energy and trust for various schedules with heterogeneous initial trust

values.

possible schedules in the network. We may want to generate schedules with maximum trust,

minimum distrust, minimum uncertainty, minimum latency and minimum energy for meeting

particular performance targets. However, we would expect our optimizer to generate an ideal

schedule that would have maximum trust, and minimum distrust, uncertainty, latency and

energy cost. So, the optimizer would aim to generate a schedule as close to the best desired

schedule represented in Table 2.

Table 1: Opinion, latency and energy cost values for some interesting schedules

Trust Distrust Uncertainty Latency (s) Energy (mJ)

Max Trust Schedule 0.432 0.204 0.364 472.5 58241.9

Min Distrust Schedule 0.379 0.196 0.425 550.1 75803.0

Min Uncertainty Schedule 0.411 0.235 0.354 505.0 66746.4

Min Latency Schedule 0.419 0.214 0.367 325.9 58900.3

Min Energy Schedule 0.424 0.2 0.376 376.7 53909.5
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In order to do so, our optimizer explores Pareto fronts reflecting continuous improvement

of one optimization criteria while not degrading another one. Figure 46 represents Pareto

fronts illustrating the trade-off between trust and latency explored by the optimizer. For

example, for time cost 479 s, the optimizer could explore 3 schedules each with trust values

0.376, 0.399, 0.424 respectively; hence, showing improvement in trust. Similarly, in Figure

47, we show the Pareto fronts reflecting trust/energy trade-off.

Table 2: Opinion, latency and energy cost values for the best desired schedule

Trust Distrust Uncertainty Latency (s) Energy (mJ)

Best Desired Schedule 0.432 0.196 0.354 325.9 53909.5

Figure 46: Pareto-fronts showing improved trust values for same latency.

We observe that the optimizer has an opportunity to increase trust and decrease en-

ergy cost while maintaining reasonable latency. This motivates further research on various

scenarios where efficient and trustworthy schedules can be obtained.

5.5 CONCLUSION

In this chapter, we propose a novel approach to efficient trust-aware routing in data intensive

sensor networks with trust metrics based on subjective logic. Our approach compliments
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Figure 47: Pareto-fronts showing improved energy cost for same trust values.

DTA based time/energy sensor query optimization and can provide a basis for design and

deployment of highly reliable data intensive sensor networks.
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6.0 RELAXED OPTIMIZATION TECHNIQUES

Algebraic optimization as explained in previous chapters, to some extent, relies on global

knowledge about the sensor network and requires a central coordinating node to perform

the optimization. As it was mentioned earlier, this approach can be efficiently applied in

medium-scale special-purpose networks (e.g., SHM networks). Although, DTA optimization

can be implemented in a more distributed way, its pereformance will inevitably degrade as

the size of the network grows.

In this chapter, we explore less centralized and more local-knowledge dependent opti-

mization techniques that build on the following principles:

1. Localized Decision Making

Localized decision making in WSNs is based on interactions between sensors with in

a restricted vicinity. Estrin et al [21] pointed towards the significant robustness and

scalability advantages in designing applications using localized algorithms. We propose

to design a system that uses the local knowledge but collectively achieves a desired global

objective.

2. High Capacity Network Design

In his lecture notes [11], Hari Balakrishnan identfied three main ideas that should be used

as principles while designing a high-capacity wireless network: make every transmission

count ; control erroneous data transmissions ; and maximize concurrent data transmis-

sions. He further states that a complete system design of a wireless network involving

all these knobs is still an open question, which we attempt to solve here.

The previous chapters discussed DTA, whose main goal is to maximize concurrent trans-

missions while minimizing collisions. This capter starts with a discussion on decentralized de-
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sign of the data delivery network. We then describe how to model a data delivery mechanism

that minimizes the number of transmissions that do not lead to a useful packet transmission

and resolves various network bottlenecks.

Figure 48: General taxonomy of relaxed optimization techniques

Figure 48 explains general taxonomy of the proposed approaches. We observe that DTA

is associated with higher degree of centralization and global network knowledge. A more

relaxed scheme would require lower degree of global knowledge and centralization. Thus,

with this taxonomy, exploring the relaxed optimization scheme can be viewed as a top-down

descent from (1, 1) to (0, 0) point. Here, (0, 0) point corresponds to minimum degree of

global network knowledge and maximum decentralization.

6.1 MOTIVATION

It has become increasingly popular to consider WSNs as an implementation platform for

data-intensive applications with high bandwidth needs (e.g., continuous monitoring of the

integrity of civil and military structures, dynamic emergency assessment, disaster manage-

ment, fire evacuation etc.). Meanwhile, the well-known resource constraints have a much

73



stronger impact in the Data Intensive Sensor Networks (DISNs), where each node is con-

tinuously sensing and delivering information to a base station. While DISNs are intended

to handle large streams of data, their performance dramatically degrades with increase in

network size and data rate.

Figure 49: Left: Packet Success Ratio (PSR) for 3, 10 and 100-node networks with data rate

of 1 packet/s. Right: PSR for a 10-node network when data rate is increased from 0.1 to 10

packet/s.

As an example, consider data delivery performance for WSNs with topologies of 3, 10

and 100 nodes simulated using ns-2 with IEEE 802.15.4 extension. The 10 and 100 node

topologies were generated randomly. Figure 49 shows the percentage overall successful packet

deliveries at the sink (i.e., ratio of total packets received successfully to the total packets sent

by the sources, referred to as PSR hereon). In Figure 49 (Left), the case when data rate was

1 packet/s/node, PSR decreased form 100% packet success for the 3-node network to only

61% packet success for the 10-node network. Further, the 100-node network at the same

data load could achieve only 4% of successful data delivery. Figure 49 (Right) shows PSR

for the 10-node network as the data rate is changed from 0.1 to 10 packet/s. We observe a

notable decrease in PSR from 0.61 to 0.3.

These observations agree with the fact that data delivery perfromance in medium to

large wireless sensor networks at higher data rates degrades steeply and does not meet

requirements of data-intensive applications. This also concurs with the results reported in

related studies (see chapter 2). It is common for sensors in a structural health monitoring
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system to generate 6-8 packet/s of vibration data. Thus, the DISN should provide more

graceful degradation of the successful information delivery as the network size and data

rates increase. A major challenge in achieving this objective is that the factors impacting

successful information delivery in DISN are numerous and their combined effect is hard to

assess for different network configurations and applications. While numerous techniques

were proposed to handle data losses due to link quality degradation, congestions, route

unavailability and packet collisions, it is not feasible even for sensor networks to explicitly

tune up and optimize the complex interplay between these factors.

In this chapter, we introduce a light-weight adaptive approach that considerably im-

proves performance of data intensive sensor-nets. Instead of devising a refined network cost

model that would account for various data losses, we propose to optimize information deliv-

ery in DISN using a macroscopic view of the network as a complex adaptive system (CAS)

[49], where simple localized decision made by individual sensors converge to a desirable in-

formation delivery pattern. Our approach is based on local data rate adaptation by each

sensor with respect to the locally observable network conditions and network level power

adaptation. The emergent network behavior reflects notable improvement in the informa-

tion delivery performance. While exploiting this emergent behavior of the WSN CAS, we

recognize that various reasons for packet drops in a sensor-net are collectively manifested as

WSN bottlenecks. A bottleneck is formed by one or several sensor nodes interfering with the

rest of the network, often without contributing to the successful delivery of data. In general,

detecting bottlenecks is hard. It would require intensive WSN self-monitoring and may be

prohibitively expensive for resource-constrained sensor-nets. Besides, even after being suc-

cessfully detected, the botteleneck resolution would need even more considerable efforts in

network assessment and analysis. Performing it in real time on the top of a heavily-loaded

DISN is not realistic.

We demonstrate that our proposed adaptive strategy automatically detects and resolves

WSN bottlenecks. Following simple adaptation logic, sensors can automatically tune-up

their performance according to their contribution to successfully delivered data. Thus, our

approach can efficiently recognize and resolve the network bottlenecks and dramatically

improve information delivery in DISN.
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6.2 BACKGROUND

The RF nature of wireless sensor networks leads to inherent uncertainty in the network be-

havior. The RF links can become unpredictable from time to time just because of simple

changes in moisture levels in air. The RF link fades due to path loss and drops packets due

to interference from other nodes in the network or single shared channel. Also, the limited

buffer availability and varying data rates lead to congestion in the wireless sensor network.

Below, we consider the major factors that cause this uncertainty. These factors manifest

themselves with different strengths under different network configurations and data rates.

Figure 50: Various causes of packet loss (a.) Poor Link Quality, (b.) Collisions, (c.) No

Route Availability, (d.) Congestion. (S-sender; R-receiver).

Link Quality Degradation. In order to perform a multi-hop data delivery, sensors

identify their neighbors and maintain wireless links to them. If a sensor has low battery life,

or is obstructed by a physical interference, it may not be able to maintain a reliable link.

The packets sent over an unreliable link are dropped (Figure 50a).

Packet Collisions. Large number of packet exchanges between the nodes in DISN

may interfere with each other (Figure 50b). Packets collide when several sensors within

each other’s range transmit simultaneously, or if concurrent transmissions are simultane-

ously received at the same destination. Packet collisions result in numerous packet drops

and retransmissions. Earlier, in chapter 2, we introduced DTA that mostly handles packet

collisions.
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No Route Availability. Each sensor in DISN uses some routing protocol (e.g., AODV

[55]) to establish and maintain data delivery routes. Sometime nodes forming a route become

unavailable, or a route update turns out to be faulty. After retransmission limit is exceeded,

all packets on such a route are dropped (Figure 50c).

Congestion. Sensors forming a data delivery route can exceed their buffer capacity and

become congested under high data rates. Congested sensor nodes start dropping packets

causing additional data loss (Figure 50d).

Complex interplay of above factors dramatically impact successful data delivery in DISN.

Next we discuss their combined effect in more details for different network topologies and

data rates.

Figure 51: Comparison of Packet Success Ratio for 2 and 3 node topologies at various data

rates.

First, consider a trivial network consisting of only two nodes: source and sink. We

simulated continuous data delivery for this network in ns-2 using 802.15.4 standard in a

non-beacon enabled experiment, with AODV routing, a transmission range of 15 m for the

nodes, and a packet size of 70 bytes (or 70*8 = 560 bits). With the 2.4 GHz band 802.15.4

which supports 250 kbps, theoretical data rate of 446 packet/s (i.e. 250000 bps/560 bps)

77



can be handled by the channel. In reality, the available bandwidth is much lower. Figure

51 shows the packet success ratio achieved for the 2-node network at various data rates. We

observe that the PSR remains equal to 1 up to around 160 packet/s, after which it begins

to decrease.

None of the causes for packet drops that are discussed earlier are responsible for the

decrease in PSR. The sink is within the range of the source with no physical interference

in the simulated network. The source is the only node generating packets, there are no

collisions-based losses. The route is a simple one-hop, which accounts for the lack of no

errors due to unavailable routes. Moreover, since the sink has an infinite buffer, there are no

congestion drops. Hence, the only reason for the PSR decrease is the fact that the channel

capacity has been exceeded at this high data rate. Thus, the realistic bandwidth threshold

available over a single wireless link for our experiments is 160 packet/s. After 170 packet/s,

data drops become noticeable.

Compare this result with the PSR dynamics reported in Figure 49. We observe that

even data rate of 1 packet/s is not handled well by the 10 and 100 node networks, while the

channel can handle up to 160 packet/s. This is because of added topological complexity and

resource constraints (e.g., limited buffer, difficulty in maintaining routes) in larger multi-hop

networks, as we illustrate in the following example.

Consider two 3-node topologies: (1) with two source nodes delivering data to the sink

node using a single hop, and (2) with one source node delivering data to the sink using an

intermediate hop. Figure 51 reports on PSR for both topologies at various data rates. We

observe that for the single hop topology the PSR starts decreasing at around 10 packet/s.

The distribution of causes for this drop is shown in Figure 52 (Left). As the data rates

increase, the routes become unavailable and congestion losses increase. The link quality and

collision losses seem to decrease at higher rates, since fewer packets are routed through the

network because of the high unavailable route and congestion losses.

We also observe in Figure 51 that the decrease in the PSR for a 3-node single-hop

topology is more gradual compared to the multi-hop topology, where PSR drops sharply

after 20 packet/s. The distribution of losses in Figure 52 (Right) shows that the congestion

losses were the significant cause of this drop (please refer to the scale on y-axis).
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Figure 52: Left: Packet loss for a 3-node single-hop network at various data rates. Right:

Packet loss for a 3-node multi-hop network at various data rates.

Thus, even a simple 3-node multi-hop network fails really fast under higher data load.

This illustrates one of the major reasons why implementing data-intensive applications using

a large multi-hop wireless sensor network is difficult: Explicit optimization of the combined

effect from different factors impacting the data losses is problematic.

6.2.1 Bottleneck nodes and their impact on information delivery

A bottleneck is formed by one or several sensor nodes interfering with the rest of the network

without contributing to successfully delivered data. Consider again the 3-node multi-hop

topology from the previous section with the data delivery success decreasing sharply after

20 packets/s. In Figure 53, we show the per-second-reception-footprint of packets that were

successfully delivered to the sink from each node of the network for the duration of the

experiment. The top-left plot in Figure 6 shows us that at the data rate of 20 packets/s,

some packets sent by node 2 could not reach the sink and were lost.

When we compare this footprint to the losses reported in Figure 52, we see that collisions

and poor link quality are major reasons for the PSR decrease. Meanwhile, comparing the

footprint for 20 packets/s with the footprint for 30 packets/s (Figure 53), we see that hardly

any packet was received at the latter data rate. This also shows that as the drops due to
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Figure 53: Left: Reception footprint and packet losses at 20 and 30 packets/s for 3-node

multihop topology.

unavailability of route increase, the congestion losses suddenly become huge. It is likely that

as the data rate increased, node 1 could not handle its own data along with the data coming

from the node 2, and the network congestion jammed the route discovery. This, in turn,

contributed to further losses due to network congestion. With respect to the terminology

used in this chapter, both node 1 and node 2 are bottleneck candidates responsible for the

performance degradation.

With a larger network of 21 nodes (Figure 54) we observe at data rate of 1 packet/s

the PSR of this network is 0.19. The major losses are due to collisions, poor link quality

and route unavailability. There is no congestion in the network at this data rate. The

network footprint for all packets received by the sink is shown in Figure 54. The packets

were sent regularly at 1 packet/s for 120s by all the 20 source nodes in the network. A

careful observation of the plot shows that nodes 1, 2, 5 and 9 seem to have delivered most of

their data. Nodes 4, 17, 18, 19 and 20 did not deliver any packets to the sink, while nodes

6, 7, 8, 10, 11, 12, 13, 14, 15, and 16 delivered some of their data.

In order to understand better what exactly is happening in this network, below we show

a complete routing tree generated from the network trace (Figure 55). We observe that
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Figure 54: Receive packet footprint for 21-node topology at 1 packet/s.

Figure 55: Routing tree for 21-node network. (Notice that the packets from node 8 were

routed through node 12).

nodes 18, 19 and 20 could not find a next hop. For node 8 it seems natural to route data

through node 4. However, the network conditions (e.g., node 4 is always occupied by data

from node 5 that is coming at a high rate) must have forced node 8 to find route through

node 12. We can deliberate that since node 8 diverted traffic to node 12, it also caused a lot

of traffic through node 16. Meanwhile, since there was congestion in the network, the route
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Figure 56: Preferred constructed routing tree for the 21-node network.

discovery for nodes 18, 19 and 20 failed to find a route to the sink.

One way to resolve bottlenecks is to provide better routing. Figure 56 shows an improved

routing tree that was constructed manually. Here, we reduce load on node 16, and thus

resolve the bottleneck node 8. The dark arrows show the preferred expected new routes that

should be discovered to resolve the bottlenecks. We experimented with this network, and

we found that the PSR indeed increased from 0.19 to 0.66 (Figure 56). We notice that the

losses in Figure 54, where PSR is low (0.19), represent a much larger fraction (i.e., 81%) of

packets that were successfully delivered compared to the losses in Figure 56 where PSR is

0.66, and only 44% of packets are dropped. We also observe that losses due to routes being

unavailable decreased due to successful bottleneck resolution.

To sum up, after resolving the bottlenecks, PSR improves dramatically. However, resolv-

ing bottlenecks manually, as illustrated above, is not efficient for large networks. Further in

this chapter, we will elaborate on how the network performance can be improved by using our

adaptive strategies that are light-weight, can be easily built into the DISN and automatically

detect bottlenecks and resolves them.

In the next section, first we discuss the works related to solving the data delivery problem

in wireless networks and WSNs, in general and with rate adaptation techniques.
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6.3 RELATED WORK

Rate adaptation is a proven technique used in high capacity wire-line modems [45]. Re-

searchers have attempted to solve the low data reliability problem in wireless networks using

802.11 standard, by implementing rate adaptation techniques. It has been an active area of

research [69], [44], [39], [46], [33] and [60]. Most rate adaptation mechanisms using 802.11

standard maintain previous packet success and failure reports to design strategies to dy-

namically adapt the physical layer transmission rate to optimize the throughput. ARF [46]

uses a heuristic to predict the channel quality based on past transmission success and failure

records. RBAR [33] uses RTS/CTS to get immediate feedback from the destination to eval-

uate the quality of the channel and determine the appropriate transmission rate. OAR [60]

opportunistically transmits multiple packets back-to-back at a high data rate during clear

channel periods. Robust Rate Adaptation [69] uses a two-state Markov channel. However,

not many rate adaptation mechanisms have been proposed for Wireless Sensor Networks

using the IEEE 802.15.4 standard. In [40], adaptive energy reduction schemes have been

proposed based on rate adaptation. Pushback [43], a MAC layer solution, considers the

time-varying nature of the wireless sensor network and uses a Hidden Markov Model-based

scheme in order to predict the future channel conditions.

We propose a decision-centric dynamic rate adaptation mechanism. Rate adaptation in

our case is a two-stage local process for each sensor node, comprised of local network state

identification and local rate adaptation. These components in our research bear a similarity

to RRAA [69] for 802.11. In RRAA, a lost-frames based metric was used to estimate loss in

the network. In our research, we use a simple, accurate, localized metric, local-Packet Success

Ratio, which gives us a direct evaluation of network behavior in the node’s neighborhood.

Our dynamic rate adaptation approach is a step towards designing high-capacity wireless

sensor networks. A high-capacity network should be able to make every transmission count,

increase parallelism in data delivery and reduce errors [11].

Our technique uses a local information-based logic to generate optimal Markov Decision

Process (MDP) based policies at each node to transmit packets when it is more likely for

them to deliver the data. Our approach rewards the actions (rate changes) that maintain a
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good state for the node. The sent-packet footprints also show that rate adaptation introduces

some asynchronous behavior, which may generate opportunities for concurrent data delivery.

Furthermore, learning the state-transition probabilities of the network may map the Signal-

to-Noise ratio in the network. At high noise levels we would expect more transitions from

a good state to a bad state. Conversely, the transition probabilities would reflect the noise

level and generate another optimal policy.

6.4 HANDLING UNCERTAINTY IN WSNS

As we explained in section 6.2, explicit optimization of the combined effect from the different

factors impacting the data losses (e.g., link quality degradation, collisions, congestion and

route unavailability etc.) is problematic. The initial study in Section 6.2 tells us that there

are few characteristics of the wireless sensor networks that we can exploit to decide on a

reinforcement learning [57] based solution. For example, congestion and route unavailability

problems, to some extent, can be handled by rate adaptation; and link quality and colli-

sion problems can be handled by setting transmission power and/or generating collision-free

schedules. We also know that in order to resolve congestion, if the data rates are too high, we

may need to decrease them; and in case of link quality degradation we may want to increase

the transmission power. So, even though we do not have the perfect mapping to optimal

solutions, at least we have a little bit of supervised learning. There is a recursive nature to

the wireless sensor network problems e.g., at each step of data delivery a node experiences

the same questions: what data rate should be used to send data?, and what should be the

transmission power? These questions remain the same even if the step-sizes change. We

found that MDPs with their associated state-action rewards are likely superior in such cases,

because at each stage they may learn to answer the question better.

MDP aims to influence the behavior of a dynamic probabilistic system. An MDP model

defines system states, actions, state transition probabilities and expected rewards for actions

performed in specific states. The decisions on choosing an optimal action in a current state

are made at time points called decision epochs. Choosing action a in state s results in
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a reward r(s, a). System state si at the next decision epoch depends on the transition

probability distribution p(si|s, a). A decision policy prescribes action selection at each state

at all decision epochs. Depending on whether the number of decision epochs is finite or

infinite, the model is finite horizon or infinite horizon correspondingly. For the infinite

horizon model it is common to consider stationary policies that apply the same decision rule

to choose actions at each epoch.

Commonly MDP assumes that an immediate reward r(s, a) is more valuable than future

reward resulted from expected sequence of state transitions. Hence, any future rewards

accumulated by a decision maker, is discounted by a factor. A core problem in MPD is

to find an optimal policy that maximizes the expected discounted reward and there is a

standard set of algorithms [57] to calculate such policy (i.e., to solve MDP model).

MDP has been used to decide on actions in uncertain environments, where the systems

operating in that environment do not have total effective control and a central control if often

not robust. For example, MDP has been used to fly autonomous helicopter i.e., without a

human pilot [53]. A helicopter equipped with sensors that record its position and orientation

say 10 times/s can input this to a reinforcement learning algorithm, which then outputs a

signal to the control-stick for proper movement in order to maintain a good flying state of

the helicopter. Every time the control stick action leads helicopter to be in an unstable

state the reinforcement learning algorithm gets a negative reward and corrects its action.

A system may be in an uncertain environment for a very long time and may require a

sequence of actions to be taken throughout its life as it transits through various states.

With reinforcement learning, over time, such an algorithm learns to maintain a stable flying

condition by taking a sequence of actions that maximize the accumulated rewards.

We use the packet success ratio as the metric that decides on the system states. Packet

success ratio represents the percentage of transmitted data packets that reach the sink node

successfully. Since, this ratio ranges from 0 to 1, the number of states that a node can be

in is intuitive and relatively small when compared to the time horizon. As we adapt the

data rate, we use a percent increase or decrease in data rate as the actions for the MDP.

Hence, the number of actions are also finite, intuitive, and relatively small. In general, MDP

is not a good choice when the number of states and actions are large because it becomes
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computationally very difficult to solve the MDP. However, in our case with a small set of

states and actions, a solution based on solving MDP suits well.

We believe that such a rewards-based reinforcement learning will help the nodes to

make transmissions that they believe would count, minimize the congestion and route-

unavailability errors. When used along with transmission power adaptation and on top of

a collision-aware mechanism it can lead to an effective data delivery mechanism in wireless

sensor networks.

6.5 FORMALIZING DATA DELIVERY IN WSN AS AN MDP

The main idea of our approach is to have sensor nodes adaptively tune up their information

delivery according to their contribution to successfully delivered data. As a result we expect

that sensors will transmit only if they have some confidence that the data will be delivered

successfully. Tuning the data rate at each sensor in this way can detect and mitigate the bot-

tlenecks manifested by the combined effect of the factors impacting the data losses (Section

6.2).

Our localized rate adaptation mechanism is performed at each sensor node in two steps:

1. State estimation: each sensor estimates the state of the network based on some local

information readily available at the sensor.

2. Rate adaptation: based on the locally estimated state, sensor decides when and how to

update data transmission rate.

Below we consider each of these steps in detail.

6.5.1 State Estimation

Each node maintains a locally estimable metric that reflects the behavior of that node. A

node keeps track of the number of packets it sent, and the number of packets that were

actually delivered to its one-hope neighbors in a short-term window called a cycle. The ratio

of the locally delivered packets to the packets sent by a node within a cycle is called its local -
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PSR (l -PSR). Thus, l -PSR gives sensors an estimate of losses in each node’s neighborhood

within its cycle.

The expectation is that a sufficiently low (or high) l -PSR would indicate bad (or good)

network PSR. Localized data rate adaptation maintaining reasonable l -PSR should improve

the overall information delivery performance in DISNs. Here, we have to address two issues:

(1) how can we define the state space reflecting notable changes in l -PSR, and (2) what

should be the cycle length.

It is obvious that l -PSR of 1 indicates that node is in a good state, while l-PSR of 0

indicates a bad state for the node. For effective rate adaptation, we add more granularity

to the state space. The l -PSR state thresholds should be chosen to minimize the possibility

of data loss in the next transmission during the next cycle. We experimented with different

l -PSR ranges as candidate system states. Table 3 shows an example of one of the state

spaces that we also maintained in our experiments.

Table 3: States of a sensor node based on its l -PSR.

PSR State

>0.8 State 1: highly functional

>0.5 and <=0.8 State 2: moderately functional

>0.3 and <=0.5 State 3: hardly functional

<=0.3 State 4: non-functional

The cycle length is a critical parameter. It controls how often localized rate adaptation

should take place. It depends on our expectation of when we want the adaptation to begin,

and the current data rate of the system. The length of the cycle can be specified in terms of

number of packets transmitted by a node, after which it will decide on adapting transmission

rate for the next packet. If we expect an early adaptation, then a small cycle length (say

1 packet) would help the network to adapt better. Meanwhile, if the data rate is high (10

packets/s), then it would not make sense to adapt the rate for each packet. In this case the

cycle length may be set longer (e.g., 100 packets).
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6.5.2 Rate Adaptation

1. Adaptation Actions

At the beginning of each cycle, sensor node estimates its state by checking its l-PSR

in the previous cycle. Depending on the estimated state the node makes a decision on

whether to decrease or increase the interval between the packets, which corresponds to a

respective increase or decrease in the data rate. Thus, each sensor performs adaptation

actions depending on its estimated state. Table 4 lists one possible set of the adaptation

actions. The actual value of the data rate decrease or increase is a tuning parameter for

a particular adaptation action. We experimented with different set of actions and the

results are reported in Section 6.7.

Table 4: Five possible adaptation actions for a node.

Actions Change in Interval

= Prev. Interval * 1

↑1%: Prev. Interval * 1.01

↑5%: Prev. Interval * 1.05

↑20%: Prev. Interval * 1.2

↑30%: Prev. Interval * 1.3

Assuming that sensor is in one of the four states listed in Table 3, it needs to choose

a proper action from Table 2. The choice of an action for a particular state should be

based on its potential impact on the successfully delivered data. For example, if the

node is highly functional (state 1), then, action 1 (i.e., ’=’) should probably be preferred

over ↑1% or ↑5%. Meanwhile, sensors in a non-functional state (state 4) would better

perform more conservative action like ↓20%, or even ↓30%. Specific choice of actions

would depend on the probability of that action to change the node state from a less

functional to more functional state, and vice-versa.

Our localized rate adaptation can be represented as an infinite horizon MDP model with

sample states and actions from Tables 3 and 4. An MDP model can be solved to find a
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state-action policy that accumulates highest reward. Choosing appropriate rewards for

states and actions, we can tune the policy selection process to achieve desired performance

targets. Solving the MDP model using a standard value iteration or policy iteration

algorithms [57] we receive an optimal state-action policy. Each sensor node consults the

optimal MDP policy when making decision on rate adaptation in its current state.

Figure 57: Part of l -PSR-based state-action diagram with a decision policy.

Figure 57 presents a part of state action diagram of an MDP model together with an

example of a decision policy. Intuitively, the policy suggests to increase the packet in-

terval for the next transmission if the l-PSR is relatively bad (i.e., less than 50% packets

were successfully delivered). However, the magnitude of increase in the interval varies.

For a very good l-PSR of 0.8 or better, the interval is either kept same or increased

by 1%, whereas for the l-PSR below 0.5, there is a 20% to 30% increase in the length

of the interval for the next packet. Hence, the data rate changes adaptively when the

network in the local sensor neighborhood performs bad. If a node has low l-PSR for

certain number of consecutive cycles, the adaptive interval increases. Hence, if a node(s)

performs consistently bad (and thus is a candidate for being the network bottleneck), it

has lower chances to transmit the next packet.

2. Transition probabilities and rewards In order to complete the model specification

we also define probabilities of sensor state transitions under given actions. For our
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experiments, we form the transition probability matrices by observing the state changes

from the network traces. Meanwhile, such probabilities can also be assigned by expert

for different generic network configurations and application requirements. We defined a

reward matrix that assigns a reward value to a node for being in a particular state and

performing certain action. In general, the reward may depend only on the state of the

sensor node, or both states and action, or state transition based on the action taken.

Finally, we have to assign a factor to discount future rewards accumulated by a sensor.

A discount factor of 0.9 would imply that a reward now will be worth 10% less the next

time when the node accumulates it.

We call this MDP based system as MDP-DRA (MDP based Dynamic Rate Adaptation)

6.6 IMPLEMENTATION NOTES

The MDP based Dynamic Rate Adaptation (MDP-DRA) mechanism is implemented on

each node. When a packet arrives at the beginning of a new cycle, the node uses MDP-DRA

logic to perform adaptation. Since l-PSR measures only one-hop data success, it uses the

information that is readily available at the node in form of packet reception acknowledgments

(ACK). Thus, it does not add any substantial network overhead. In our NS2 implementation,

before a wireless sensor node transmits data to its neighboring nodes, it decides on a data

rate. This decision is usually fixed in the configuration file at the beginning of the simulation

for a node or the network. We extended NS-2 so that each node performs MDP-DRA logic.

Each node has access to packet success information from its network trace history. The

nodes use only their real-time trace history (i.e., trace beginning from the time when the

previous packet was delivered by this node).
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Table 5: Algorithm: MDP-DRA

Phase 1:

Input: A network N , recent trace Tr, States S, Actions A,

Transition Probability matrix T , Rewards matrix R, A discount factor g

Output: A policy P

1. Initialize S, A, R, g and derive T from Tr

2. Solve MDP to get P

Phase 2:

Input: A node N i with data to be delivered, recent node trace T i ,

State-action policy for the node P i

Output: Data transmission rate for the next packet delivery i.e., action for

the node

1. Initialize i=1

2. For a node Ni with data to deliver, calculate the local packet success ratio

i.e., l− PSRi for the node Ni

3. Decide on node state Si

4. Return an action Ai to the node Ni i.e., the data transmission rate for

the next packet delivery

5. Go to i=i+1

6.7 EXPERIMENTS AND ANALYSIS

6.7.1 Set-Up

For this study, we implemented MDP-DRA on ns-2 with CMU wireless extension [3]. The

MAC layer followed IEEE 802.15.4 standard [2] incorporated into ns-2 by Zheng & Lee [77].

All sensor nodes were Fully Functional Devices (FFDs) [2].
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Two-ray ground path loss model was chosen for radio propagation. The wireless channel

data rate was 250 Kbps. Each flow in the network was executed according to constant bit

rate (CBR) traffic. AODV protocol was used for routing. Each sensor had a transmission

range of 15m. The packet size was 70 bytes, and the queue length was set to 50 packets.

The complete experiment length was 140s. The nodes set themselves up during first 20s

and deliver data for next 60s. The sink stops receiving any data being propagated in the

network after 140s. Each sensor had an initial energy of 10J. Transmission and receiving

power were 0.0225 W and 0.03 W, respectively. We report experimental results for 10 and

100 node networks. The 10 node topology was in a 50mX50m area. The 100 node topology

was in a 100mX100m area. All nodes deliver packets to one sink in multi-hop fashion with

data load accumulation. For example, in case of 1 packet/s data generation rate, leaf node

n1 transmits 1 packet to its next hop neighbor n2, and n2 transmits 2 packets which include

its own sensing data and data from the previous leaf node n1 to the next hop and so on.

6.7.2 Resolving bottlenecks

First, we applied MDP-DRA on the 21 nodes network discussed in context of bottlenecks,

earlier in 6.2.1. Using MDP-DRA, the network could automatically discover a route through

node 8, and a route for the nodes 18 and 20. MDP-DRA helped to find and maintain

alternate routes e.g., route from 8− 4 and 8− 12; 10− 11 and 10− 7; 11− 8 and 11− 10;

13 − 9 and 13 − 16; hence, giving more opportunities for data delivery. One of the routing

trees obtained by using MDP-DRA is shown in Figure 58c. This route is very similar to our

constructed, preferred route Figure 58b, although, it still could not find a route for packets

from node 19 where no coordinator could be associated with the node. Resolving this would

need more fine-tuned adaptation.

The PSR dynamics and contributing loss factors are shown in Figure 59. The PSR

increased from 0.19 for CSMA to 0.73 for MDP-DRA (Figure 59), which is even more than

the PSR achieved (0.66) by using our constructed route. MDP-DRA was able to decrease

the drops due to route unavailability by more than 80%, but some congestion losses appeared

due to higher traffic at nodes 8, 10 and 16.
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Figure 58: Effect of MDP-DRA on routing.

With MDP-DRA various nodes delayed their packets, and this facilitated route discovery

and data delivery for other nodes. For example, nodes 5 and 9 (after 30s) delayed their packet

delivery and that enabled nodes 6, 7, 8, 10, 11, 12, 13, 14 to deliver more data, and 17, 18

and 20 to discover new routes for themselves. Nodes 5 and 9, although they were delivering

data before, yet had hampered route discoveries like 8− 4− 2. Node 5 kept on delaying its

packets, whereas node 9 started to deliver data normally after 60s, which shows strength of

our rewards based adaptive actions policy.

We have observed similar bottleneck resolution performance in networks with 10 and 100

nodes. For the 100 node topology, we can see the received packet footprints at 0.1 and 1

packet/s in Figure 61. The left graph in each pair is the received packet footprint without

using MDP-DRA, and the right graph is packet reception with MDP-DRA. We can see that

more packets were received as a result of dynamic rate adaptation. The darker patches in

the plot show that larger number of packets were received within small intervals of time. It

implies that MDP-DRA could maintain good local PSR, and hence, could use higher data

rates to deliver data.

Similarly, data reception at the sink was also better at the data rate of 1 packet/s (Figure

61.). The longer trails of the packet reception footprints indicate that MDP-DRA helped the

network to maintain better reception for longer time compared to CSMA with exponential

93



Figure 59: Effect of MDP-DRA on PSR.

Figure 60: Data reception footprint for 21-node network (a.) before and (b.) after using

MDP-DRA.

back-off (CSMA+BO).

Later, we will show (Figure 65) that at a higher rate of 10 packets/s, MDP-DRA was able

to maintain the PSR of 0.3, which is more than 800% higher compared to the CSMA+BO

packet success ratio of 0.03. At the same time MDP-DRA also managed to deliver more

data. Figure 62 (d.) shows that while many of nodes did not deliver any data, MDP-DRA

improved data delivery for the nodes that were able to route data. MDP-DRA also delayed

data transmission from the bottleneck nodes (compare Figure 62(a.) to Figure 62 (b.)) by

continuously increasing the interval for those packets that would most likely drop. Thus,
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Figure 61: Pairs of data reception footprint for MDP-DRA at 0.1 packet/s (top pair) and 1

packet/s (bottom pair) for 100-node topology

we observe that MDP-DRA is able to resolve bottlenecks efficiently even for a large, dense

network with a high initial data rate of 10 packets/s per node.

6.7.3 Packet Success Ratio

Next, we report on packet success ratio for basic CSMA with exponential back-off (CSMA+BO),

a random rate change strategy (RandRate), where the rate is changed randomly, and our

localized MDP-DRA approach (MDP-DRA) where rate change is based on an MDP policy.

The packet success ratio (PSR) represents the percentage of transmitted data packets that

reach the sink node successfully. The higher packet success ratio implies a better and more

reliable network. In other words, the network is less susceptible to dropped packets caused

by packet interference, congestion or route unavailability if the packet success ratio is high.

The experiments take into account the real-time history of the trace in order to determine

PSR for each node. Now, we compare results for CSMA with exponential back-off, Random

Rate Change and MDP-DRA.
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Figure 62: Send and receive footprint for 100-node network without and with MDP-DRA,

at 10 pacekts/s.

Figure 63: PSR for 10 and 100-node networks at 0.1 (left), 1 (middle) and 10 (right) packet/s

Figure 63 shows that for these set of experiments, MDP-DRA wins over CSMA+BO

every time. MDP-DRA loses to RandRate at the lower data rate of 0.1 packet/s. This

implies that there exists a better set of actions, which we can choose for rate adaptation.

Hence, as an update over our MDP-DRA we could improve the set of actions that are used.

In that case, MDP would find the optimal state-action policy corresponding to those set
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Figure 64: % data del. & wasted for 10 (left) and 100-node (right) network at 0.1 packet/s

of actions. It should be noted that RandRate loses even to the CSMA+BO at higher data

rates of 1 packet/s and 10 packet/s, whereas MDP-DRA wins over CSMA+BO every time.

Hence, a systematic rate adaptation scheme is a better way to improve efficiency of data

delivery. When CSMA+BO is used for simulations without any rate adaptation, we observe

(Figure 16) that at 0.1 packet/s, the PSR decreases sharply from 0.61 to 0.21 for 10 and 100

nodes network respectively. At data rate of 1 packet/s, PSR is 0.6 and 0.06 for 10 and 100

nodes networks respectively. At 10 packets/s data rate, PSR is 0.31 and 0.03 for 10 and 100

nodes respectively. Hence, we observe that for CSMA+BO, the PSR decreases sharply with

increase in the size of the network. With respect to the change in data rates within the same

topology, the PSR follows similar trend, although the magnitude of decrease is smaller.

One of the design goals for a higher capacity wireless sensor networks is to make every

transmission count [11]. In order to do so, the idea is to minimize the number of transmissions

that don’t lead to a successful packet transmission. Figures 64, 65 and 66 show that MDP-

DRA is much better at keeping up with this goal as compared to CSMA and RandRate.

We can see from Figure 59, that at 0.1 packet/s MDP-DRA delivers more and wastes lesser

data than CSMA.

As the data rates increase (Figures 65 and 66), MDP-DRA wastes orders of less data than

other approaches. At 1 packet/s, for 10 nodes, CSMA delivered 646 packets compared to
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Figure 65: % data del. & wasted for 10 (left) and 100-node (right) network at 1 packet/s

536 by MDP-DRA, however, CSMA wasted 434 packets whereas MDP-DRA wasted only 53

packets. More wasted packets also translate into more energy being used, which is precious

in wireless sensor networks.

Figure 66: % data del. & wasted for 10 (left) and 100-node (right) network at 10 packet/s

At 10 packet/s, for the same 10 node topology, CSMA delivered 3349 packets, RandRate

delivered 3027 packets and MDP-DRA delivered 5288 packets. Similarly, for the 100 node

topology for the same 10 packet/s data rate, CSMA, RandRate and MDP-DRA delivered

1805, 3241 and 3952 packets respectively, whereas the packets wasted were 57694, 56210
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and 9747 respectively - an order of magnitude less for MDP-DRA. At times, when other

approaches win over MDP-DRA in terms of the amount of data delivered, the difference be-

tween the data delivered by other approaches and MDP-DRA is not in orders of magnitude

whereas the packets wasted are at least an order higher. Also, note the state definition for

this MDP-DRA is PSR-based, which is a ratio of successful data delivered to the total data

sent. A different state definition can be devised and would motivate better amount of data

delivery if that would be the performance target.

Figure 67: Gain in PSR and data delivered using MDP-DRA over CSMA+BO for 10 and

100-node networks at 0.1, 1 and 10 packet/s respectively

In contrast to the PSR obtained using CSMA+BO, our localized rate adaptations scheme

(MDP-DRA) achieves substantial improvement in the PSR performance. Figure 67 provides

the breakdown of % PSR and % data gain at each data rate. With respect to PSR, we infer

that MDP-DRA performs better and becomes more valuable when the network size becomes

larger and data rates are higher. The magnitude of the amount data gain, as discussed earlier,

varies. In general, MDP-DRA considerably outperforms CSMA, by minimizing critical losses

from those factors that contribute the most to the information delivery degradation.

In Figure 68, we have plotted the distribution of absolute numbers of packet drops

for all the networks considered in this study. We observe that losses due to congestion

almost disappear in larger networks at higher data rates when MDP-DRA is used. The link

quality and collision losses increase at times for the 10-node network. These can be reduced

99



using appropriate transmission power adjustment. A fine-tuned MDP-based solution can be

developed where a state may be defined using a combination of all these losses in the system.

Then, for high link quality losses and collisions, we could tune the transmission power as

well. So, we can see that this MDP-based adaptation approach is flexible and enhanceable.

However, the implementation of the combined state based MDP is reserved for future work.

Figure 68 also shows that the drops due to route unavailability are high for CSMA+BO.

By using MDP-DRA, these drops have been substantially decreased. Note that these drops

indicate that no route is available for a packet and the route discovery is adversely affected,

which is often a case in larger and higher data rate networks.
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Figure 68: Comparison of packet losses for 10 and 100-node networks at 0.1, 1 and 10

packet/s
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6.8 IMPROVED ALGORITHM

We modify the MDP-DRA algorithm by adding an initialization phase to it. Here, the

network decides on the optimal transmit power setting for the nodes and an optimal set of

actions that would be then used to generate a state-action policy for the network (Table 6).

Table 6: MDP-based Dynamic Adaptation: MDP-DA

Phase 0 (a.):

Input: Initial transmit power setting, Pti and a range of transmit power settings.

Output: An optimal power setting optPt

1. optPt = Pti; PSRi is the PSR for the transmit power setting Pti

2. while(PSR benefit >> 0), set Pt = a random power setting

3. For a number of short trials, record the PSR and calculate averagePSR.

if (averagePSR > PSRi), optPt = Pt, else optPt = Pti

4. go to 2.

5. Return optPt

Phase 0 (b.):

Input: A range of possible actions

Output: An optimal set of actions

The action-set selection algorithm is similar to power setting selection

Start MDP-DRA

The initialization phase comprises of an iterative improvement algorithm to select power

settings and/or an action-set. Short trial experiments are conducted over the network us-

ing a random-start power setting from the available set of power settings. Average PSR

is calculated for the trials. If the average PSR is better than the PSR using initial power

setting, then the new transmit power is set to the trial transmit power. The power settings

are tweaked for each iteration depending on an improvement or decrease in the PSR. When

no tangible benefit over average PSR can be obtained by any more changes in power set-
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tings, the final transmit power is set. Similarly, an action-set initialization phase can help

choose a better set of actions. This step also uses iterative improvement. Since, the actions

we consider are percent change in data rate, we tweak the data rates iteratively to obtain

network PSR for short trials, and improve the action-set.

Figure 69: Comparison of packet losses for 10-node network at 0.1, 1 and 10 packet/s with

power adaptation and a better action-set

Figure 69 shows the effect of power adaptation and the possibility of choosing a better

action-set on the 10 nodes network with 0.1 packet/s, 1 packet/s and 10 packet/s initial data

rates. The PSR increased for power adaptation for 0.1 packet/s, and for power adaptation

and better actions-set for 1 packet/s. For 10 packet/s, we found that we had already chosen

a better actions-set and power setting, hence, we don’t see any change in the PSR for the

three approaches.

6.8.1 Performance target based tuning

Different applications have different performance expectations from a DISN. In this section,

we explore the possibility of tuning MDP-DRA to achieve different performance targets.

Here, we also explore the possibility of increasing data rates depending on the applciation

demands from the network. The tuning is based on modifying rewards associated with the

states and actions.

We consider three different reward strategies and their impact on DISN performance
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targets. For example, if each node were to increase the packet interval by 30% (↑ 30%) for

each state of the node, the network would live longer while transmitting a low amount of

data fairly successfully. We can reflect this choice of conservative actions ↑ 30% action for

most states with a set of rewards that lead the MDP model to generate such a conservative

policy. The corresponding reward function is shown in Table 7. Here, we can see that rewards

create a bias to choose ↑ 30% action by assigning a relativeyly higher reward in each state.

Optimal policy obtained from solving MDP with discount factor 0.9 is [↑ 30%, ↑ 5%, ↑ 30%,

↑ 30%].

Table 7: Reward matrix for a conservative policy. Optimal policy generated = [↑ 30%, ↑ 5%,

↑ 30%, ↑ 30%]

= ↓ 30% ↓ 5% ↑ 5% ↑ 30%

Highly Functional -0.1 -1 -0.8 0.5 0.7

Moderately Functional-0.1 -1 -0.8 0.7 0.8

Hardly Functional -0.5 -1 -0.9 0.8 0.9

Non-Functional -0.8 -1 -0.9 0.8 1

We can obtain an aggressive target policy where aggressive actions (e.g., decrease in

interval by 30% or ↓ 30%) are chosen for each state. Similarly, a moderate policy that

chooses a mix of actions can also be targeted. Table 8 and 9 show an example of moderate

and aggressive policy rewards with corresponding optimal policies.

We performed adaptation experiments for these three policies. Figure 70(a.) shows that

the data delivered by the conservative policy is low, and it is high for the aggressive policy.

For the moderate policy, which is the same as the adaptive policy that we have used in our

experiments, we can see that in terms of data delivered, it performs as good as the aggressive

policy. But, with respect to PSR it gives a much better performance than both conservative

and aggressive policies (Figure 70(b.).
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Table 8: Reward matrix for a moderate policy. Optimal policy generated = [↓ 30%, ↓ 5%,

↑ 5%, ↑ 30%]

= ↓ 30% ↓ 5% ↑ 5% ↑ 30%

Highly Functional 0.7 1 0.8 -0.7 -1

Moderately Functional 0.9 -0.1 1 0.5 0.1

Hardly Functional -0.2 -1 -0.5 1 0.5

Non-Functional -0.5 -1 -0.7 0.5 1

6.9 MDP-DRA ON TOP OF DTA AND DRAND

In this section, we show the benefit of using MDP-DRA on top of DTA and DRAND [58].

DRAND is a distributed implementation of RAND [59], a randomized time slot scheduling

algorithm. The algorithm does not require any time synchronization and is shown to be

effective in adapting to local topology changes without incurring global overhead in the

scheduling. DTA and DRAND are efficient in handling collisions and maximizing concurrent

transmissions. However, they are not good at congestion handling and do not allow for

another route discovery in case of congestion. In order to eliminate these deficiencies of DTA

Table 9: Reward matrix for a aggressive policy. Optimal policy generated = [↓ 30%, ↓ 30%,

↓ 30%, ↓ 30%]

= ↓ 30% ↓ 5% ↑ 5% ↑ 30%

Highly Functional 0.7 1 0.8 -0.8 -1

Moderately Functional0.9 1 0.8 -0.5 -0.7

Hardly Functional 0.8 0.9 0.7 -0.3 -0.4

Non-Functional 0.4 0.8 0.5 -0.2 -0.3
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Figure 70: (a.) Data delivered and (b.) PSR, for different policies.

and DRAND, and to show the efficacy of MDP-DRA when used with other mechanisms we

deployed MDP-DRA on top of DTA and DRAND.

To apply MDP-DRA with in DTA and DRAND’s context, first, we consider fixed routes

and time slots. We can see from Figure 71 that PSR with DTA/DRAND alone is low. When

we apply MDP-DRA on top of DTA/DRAND using DTA/DRAND’s original route only, the

PSR benefits only a little, especially at higher data rates when congestion losses need to be

compensated more. DTA and DRAND generate fixed schedules, so it may not be wise to use

them in inherently uncertain wireless environment. In order to provide more flexibility to

DTA/DRAND we allow for new route discovery if bottlenecks occur in the network. We call

this approach route scrambling. DTA/DRAND already generate a collision-free schedule,

which is better than seeding the scrambler with a random schedule. As we can see from

Figure 71, the scrambled DTA/DRAND perform very well. At higher data rates, the new

route updates may be hampered by congestion in the network, hence, adversely affecting the

scrambling. MDP-DRA adapts the data transmission rates and resolves network congestion

while allowing more route updates. Hence, as shown in figure 71, scrambling along with

MDP-DRA achieve higher PSR. Since, DTA and DRAND are designed for collision-handling,
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Figure 71: PSR for DTA, DRAND and improvements using MDP-DRA and route scram-

bling.

initially, we did not allow packet retransmissions. However, when we use scrambling and

MDP-DRA along with exponential backoffs, the PSR increases even more.

Hence, we see that MDP-DRA can be used in conjunction with other data delivery

techniques and it adds to the performance of network, especially, as the data rates increase.

6.10 DYNAMIC NETWORK MONITORING

To monitor the present state and the state to which the wireless sensor network may eventu-

ally converge, we developed a tool that can be used while the network is delivering data using

a state based adaptive strategy like MDP-DRA. In order to do so, we capture snapshots of

the network performance at various times. After getting the snapshot, the state-transition

probabilities are computed for that snapshot. Then, assuming the network as a Markov

system, we use an initial distribution vector to calculate the steady state vector. For the

matrices that are not regular (i.e., a matrix such that all the entries of some power of the

matrix are positive) we assume a transition in the highly dysfunctional State 4, to convert

it into a regular matrix.
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6.10.1 Background

A Markov system can be in one of several (discrete) states, and can pass from one state to

another each time step (snapshot time) according to fixed probabilities. A state-transition

probability matrix represents the probability (transition probability) that the system will

move from one state to another, given that it is currently in one state. The sum of transition

probabilities out of one state is, by definition 1. The set of probabilities is stored as a

transition matrix P, where an entry (i,j) is the transition probability from state i to state j. A

distribution vector v, is a row vector with one non-negative entry for each state in the system.

If v is an initial distribution vector and P is the transition matrix of a Markov system, then

the distribution vector after 1 step is the product of v and P : vP. The distribution after one

step is obtained by again multiplying by P i.e., (vP)P = vP 2. Similarly, the distribution

after n steps is obtained by multiplying v on the right by P n times i.e. vP n If P is a

transition matrix for a Markov system, and if v is a distribution vector with the property

that vP = v, then v is called a steady state distribution vector, which is also the principle

eigen vector of the matrix P . To find a steady-state distribution, we solve the system of

equations given by

u + v + w + ... = 1

[u v w...]P = [u v w...]

where we use as many unknowns as there are states in the Markov system. A steady state

probability vector is then given by

v∞ = [u v w...]

where the vP approaches a fixed matrix v∞. This matrix gives the long-term probability

that the system will be in each state.

6.10.2 Experiments

Figure 72 shows the steady states for 30 second interval snapshots for CSMA and MDP-DRA

approach after 30s, 60s, 90s and 120s for a 100-node network at 1 packet/s. The pie-charts

show percent of transitions to a particular state. Transitions to state 1 (represented by
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Figure 72: Steady states for 30s intervals for CSMA+BO(top) and MDP-DRA(bottom) after

30s, 60s, 90s and 120s into the experiment.

white piece of pie) are considered good and suggest that the network is converging towards

a healthy state. We can see from the top row of Figure 72 that for CSMA+BO as the

time progresses the network converges towards a bad state (represented by black piece of

pie), as the size of the black pie increases. Meanwhile, for MDP-DRA (bottom row) as the

network delivers data, the adaptive data delivery maintains a healthy network state and

largely, improves it. The steady state achieved in the final snapshot decreases, however,

as the network adapts from first snapshot’s bad state to second and third snapshots better

states, if we would let the network run for more time the reinforcement learning logic would

again adapt the network back to a favorable state. A smaller snapshot (e.g., here less than

30s snapshot) can also help in reducing the amount of network time spent in a bad state.

A detailed look at the state-transition matrices after 30s tells us about the network

behavior during the snapshot time. For CSMA+BO about 17% of all the transmissions

entering the bad state (State 4) get out of it. In case of MDP-DRA 18% do the same. About

31% transmissions out of all the transmissions that transit from the best state (State 1)

transit to State 1 itself; whereas in case of adaptive MDP-DRA 59.4% transit to State 1.

Here, we already see the signs of adaptation. The steady state distribution for this snapshot
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for CSMA tells that in long-term if things continue the same way for the network, 76% of

total transitions would result in the bad state (State 4), and only 18% will result in good

state (State 1).

Comparatively, for MDP-DRA snapshot 63% of total transitions would result in the

bad state and 32% in good state. As the network delivers data in these conditions, for

CSMA+BO the long term transitions in good state drop from 18% to 9% and bad state

transitions go up from 76% to 91%, whereas for MDP-DRA the good state would result in

30-80% of transitions.

Figure 73: State achieved by complete experiment.

The steady state achieved for the complete experiment (Figure 73) shows that 87% of

time CSMA transitions resulted into a transition into the bad state and only 11% into the

best state where as for MDP-DRA the transitions resulting in good state were 45% and 51%

resulted in the bad state. Out of all the transitions that entered the bad state (State 4),

around 10% left it in case of CSMA, whereas 14% left it in case of MDP-DRA. Out of all

the transitions that transited from the best state (State 1) 21% maintained the good state,

whereas 81% maintained the good state with MDP-DRA. Hence, using this mechanism we

could monitor the network at various check-points and predict the network behavior. Also,

if needed, we could modify the actions after each snapshot to improve and converge the

network to a healthy state. Next, we discuss this.
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Table 10: Snapshot of steady state vectors for MDP-DRA and Multistage MDP-DRA

MDP-DRA Multistage MDP-DRA

After Stage 1 [0.4 0.05 0.05 0.5] [0.4 0.05 0.05 0.5]

After Stage 2 [0.57 0.02 0.01 0.4] [0.6 0.04 0.02 0.4]

After Stage 3[0.85 0.01 0.02 0.12] [0.83 0.02 0.02 0.13]

After Stage 4 [0.84 0.04 0.02 0.1] [0.88 0.01 0.01 0.11]

6.10.3 Multi-stage MDP-DRA using Dynamic Network Monitoring

Using dynamic network monitoring, we can influence the behavior of the network by modi-

fying the actions while the network is running. After we get the first snapshot and compute

its convergence, the steady state vector gives us an idea to be conservative or aggressive in

our approach. For example, in Table 10 after stage 1 the Multi-stage MDP-DRA chooses

another optimal policy based on the new transition probabilities. Based on that we can see

that at stage 2, the steady-state vector converges to a better state-distribution compared to

MDP-DRA. We maintain the same policy for Stage 3, however as the network performance

becomes worse than MDP-DRA, we again learn new transition probabilities and force the

network to converge to a better state.

6.10.4 Conclusion

In this chapter, we discussed a decentralized design of the data delivery in wireless sensor

networks. We described an MDP-based data delivery mechanism that minimizes the num-

ber of transmissions that do not lead to a useful packet transmission and resolves various

network bottlenecks. We compared and used it along with other approaches, and showed its

efficacy. We showed that this approach could be improved using power and action-set opti-

mization and also used it to do performance target based data delivery. We also proposed a

steady-state vector based network monitoring model, and used it to improve our MDP-DRA

approach.
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7.0 CONCLUSION, DISCUSSION AND FUTURE WORK

In this thesis, we proposed approaches for efficient data delivery in DISNs. First, we devised

a novel algebraic framework (DTA) for collision-aware non-conflicting concurrent data de-

livery. We showed that this framework could optimize latency, energy, data and extended

it to optimize the level of trust associated with the schedule. We improved DTA’s scala-

bility with a sectored rotating interrogation strategy called Whirlpool. As the network size

grows, generating optimal DTA schedules becomes challenging. Also, congestion problems

in larger DISNs jam data delivery. In order to design high capacity larger scale DISNs,

then, we proposed relaxed optimization strategy that dependeds largely on local knowledge

available at each node. From our experiments with random rate changes, we realized that

a non-linear rate assignment helped generate more interleaved data delivery pattern, which

in turn led to fewer bottlenecks in the network. We found that a Markov Decision Process

(MDP) could be used to generate a more diverse rate assignment, where the change in rate

assignment is motivated by the state of the node in the network. Even a static MDP i.e.,

with a single policy for the life of WSN performed better than other approaches. In each

experiment, MDP-DRA approach on an average performed much better than the achievable

rate Θ(1/n) (protocol model) [50] for arbitrary networks, or O(W/
√

nlogn) [26] for random

ad-hoc networks for smaller networks, and better than average capacity, though not nec-

essarily always fair, for larger networks. MDP-based approach also benefits by alleviating

the need for back-propagating the congestion message on a congested route. It is a good

idea to let the nodes in a route know that there is congestion in the network ahead. But,

in our approach, whenever a node gets congested, its local-PSR decreases and leads to a

decrease in its rate. While this node sets into problem resolution mode, the nodes waiting

to deliver to this node drop their packets and modify their data rate. This automatic con-
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gestion detection and resolution process continues to backtrack till the nodes are able to

maintain a stable state again. Hence, this MDP-based process does not need to explicitly

back-propagate a congestion alarm and starts to self-heal at the moment it faces a problem.

However, a static MDP assumes that the state-transition probabilities in the network do not

change, and transition probabilities as well as associated rewards assignment do not have

any uncertainty. Since, this is far from reality [18], an MDP would eventually suffer. Hence,

we extended MDP-based rate adaptation with a multi-stage MDP where the state-transition

probabilities are updated for various network snapshots and new optimal policies are gener-

ated at each snapshot. We also demonstrate that choosing a specific power assignment for

the network has effect on data delivery. We proposed an improvement over our MDP-based

dynamic rate adaptation by adding an initial phase that searches for an optimum transmis-

sion power level for the network. From our experiments, we have realized that an optimum

power assignment at node level would be more beneficial. In order to do so, our future

work would include local collisions and link quality along with PSR to devise a new state

for each node. A reinforced learning algorithm would help us assign power and rate for each

node. In another improvement over our MDP-based dynamic rate adaptation, we proposed

to improve the choice of action-set for the state-action policy. Another future work would

be to let each node in the network decide on a preferred action-set, which in our view may

lead to even more interleaved transmissions and more opportunities to resolve congestion,

generating new routes.
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