2,181 research outputs found

    Advanced sensors technology survey

    Get PDF
    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed

    Implementation and Validation of a Real-Time Wireless Non-Invasive Physiological Monitoring in a High-G Environment

    Get PDF
    The overall purpose of this research is to develop a system capable of real-time personal positioning and physiological monitoring. The system will be composed of a shirt having non-invasive physiological sensors, Global Positioning System (GPS) receiver, wireless data transceiver, and real-time PC-based control station. The specific purpose of this research phase was to determine the performance capabilities of a modified LifeShirtâ„¢ alone (without GPS) in a high gravitational force environment with the data being sent wirelessly in real-time. The LifeShirtâ„¢ was modified with a real time wireless transmission system

    The 2023 wearable photoplethysmography roadmap

    Get PDF
    Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology

    Body sensor networks: smart monitoring solutions after reconstructive surgery

    Get PDF
    Advances in reconstructive surgery are providing treatment options in the face of major trauma and cancer. Body Sensor Networks (BSN) have the potential to offer smart solutions to a range of clinical challenges. The aim of this thesis was to review the current state of the art devices, then develop and apply bespoke technologies developed by the Hamlyn Centre BSN engineering team supported by the EPSRC ESPRIT programme to deliver post-operative monitoring options for patients undergoing reconstructive surgery. A wireless optical sensor was developed to provide a continuous monitoring solution for free tissue transplants (free flaps). By recording backscattered light from 2 different source wavelengths, we were able to estimate the oxygenation of the superficial microvasculature. In a custom-made upper limb pressure cuff model, forearm deoxygenation measured by our sensor and gold standard equipment showed strong correlations, with incremental reductions in response to increased cuff inflation durations. Such a device might allow early detection of flap failure, optimising the likelihood of flap salvage. An ear-worn activity recognition sensor was utilised to provide a platform capable of facilitating objective assessment of functional mobility. This work evolved from an initial feasibility study in a knee replacement cohort, to a larger clinical trial designed to establish a novel mobility score in patients recovering from open tibial fractures (OTF). The Hamlyn Mobility Score (HMS) assesses mobility over 3 activities of daily living: walking, stair climbing, and standing from a chair. Sensor-derived parameters including variation in both temporal and force aspects of gait were validated to measure differences in performance in line with fracture severity, which also matched questionnaire-based assessments. Monitoring the OTF cohort over 12 months with the HMS allowed functional recovery to be profiled in great detail. Further, a novel finding of continued improvements in walking quality after a plateau in walking quantity was demonstrated objectively. The methods described in this thesis provide an opportunity to revamp the recovery paradigm through continuous, objective patient monitoring along with self-directed, personalised rehabilitation strategies, which has the potential to improve both the quality and cost-effectiveness of reconstructive surgery services.Open Acces

    Telemedicine

    Get PDF
    Telemedicine is a rapidly evolving field as new technologies are implemented for example for the development of wireless sensors, quality data transmission. Using the Internet applications such as counseling, clinical consultation support and home care monitoring and management are more and more realized, which improves access to high level medical care in underserved areas. The 23 chapters of this book present manifold examples of telemedicine treating both theoretical and practical foundations and application scenarios

    Transactions of 2019 International Conference on Health Information Technology Advancement Vol. 4 No. 1

    Get PDF
    The Fourth International Conference on Health Information Technology Advancement Kalamazoo, Michigan, October 31 - Nov. 1, 2019. Conference Co-Chairs Bernard T. Han and Muhammad Razi, Department of Business Information Systems, Haworth College of Business, Western Michigan University Kalamazoo, MI 49008 Transaction Editor Dr. Huei Lee, Professor, Department of Computer Information Systems, Eastern Michigan University Ypsilanti, MI 48197 Volume 4, No. 1 Hosted by The Center for Health Information Technology Advancement, WM

    Real-time signal detection and classification algorithms for body-centered systems

    Full text link
    El principal motivo por el cual los sistemas de comunicación en el entrono corporal se desean con el objetivo de poder obtener y procesar señales biométricas para monitorizar e incluso tratar una condición médica sea ésta causada por una enfermedad o el rendimiento de un atleta. Dado que la base de estos sistemas está en la sensorización y el procesado, los algoritmos de procesado de señal son una parte fundamental de los mismos. Esta tesis se centra en los algoritmos de tratamiento de señales en tiempo real que se utilizan tanto para monitorizar los parámetros como para obtener la información que resulta relevante de las señales obtenidas. En la primera parte se introduce los tipos de señales y sensores en los sistemas en el entrono corporal. A continuación se desarrollan dos aplicaciones concretas de los sistemas en el entorno corporal así como los algoritmos que en las mismas se utilizan. La primera aplicación es el control de glucosa en sangre en pacientes con diabetes. En esta parte se desarrolla un método de detección mediante clasificación de patronones de medidas erróneas obtenidas con el monitor contínuo comercial "Minimed CGMS". La segunda aplicacióin consiste en la monitorizacióni de señales neuronales. Descubrimientos recientes en este campo han demostrado enormes posibilidades terapéuticas (por ejemplo, pacientes con parálisis total que son capaces de comunicarse con el entrono gracias a la monitorizacióin e interpretación de señales provenientes de sus neuronas) y también de entretenimiento. En este trabajo, se han desarrollado algoritmos de detección, clasificación y compresión de impulsos neuronales y dichos algoritmos han sido evaluados junto con técnicas de transmisión inalámbricas que posibiliten una monitorización sin cables. Por último, se dedica un capítulo a la transmisión inalámbrica de señales en los sistemas en el entorno corporal. En esta parte se estudia las condiciones del canal que presenta el entorno corporal para la transmisión de sTraver Sebastiá, L. (2012). Real-time signal detection and classification algorithms for body-centered systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/16188Palanci

    Dispositivo de Deteção do Bruxismo do Sono

    Get PDF
    This thesis aims to explore and, ultimately, develop a system capable of monitoring physiological signals to detect bruxism events. Bruxism is a disorder characterized by the habit of pressing and grinding the teeth. These events can either occur during the day (Awake Bruxism) or during the night (Sleep Bruxism). Studies suggest that 20% of the adult population suffer from Awake Bruxism, and 8-16% from Sleep Bruxism. The consequences of this disorder are several, ranging from tooth wear, dental fractures, or abfraction, resulting in headaches, or facial myalgia. This dissertation focuses on the Sleep Bruxism type since it’s harder to detect and treat. First, a study about the evolution of technology in healthcare is carried out, fundamentally about how it was introduced and how did it get to the point it is now. The topic of wearable devices is also explored, in the sense that it’s where the market is going and how these devices can transform healthcare. Then, the study converges on the devices developed especially for bruxism, namely which devices, and what type of techniques are used. Subsequently, the general concept for the system is elaborated, exploring several options both in terms of devices and physiological data to be parameterized. However, some restrictions exist for the construction of the system. For the construction of an intraoral system, the device has to be of small dimensions and with low energy consumption. With these constraints, the system has implemented an Inertial Measurement Unit to estimate the orientation of the patient’s sleeping position, and force sensors to measure the force exerted between the teeth. For compactness, a Systemon-Chip is used, since it includes an ARM Cortex M4 processor, several peripherals, and an RF transceiver in one package. The system is not only responsible for the data acquisition, but also the data transmission. This is accomplished by using Bluetooth Low Energy, which is one of the most common protocols for low-power devices. Customized service is developed for this purpose, consisting of three different characteristics: the force characteristic, the accelerometer characteristic, and the gyroscope characteristic. The reason is for maximizing efficiency. The last step was to develop the prototype, testing its functionalities and try to project next iterations of the prototype
    • …
    corecore