140 research outputs found

    Application of XMR 2D-3D Registration to Cardiac Interventional Guidance

    Full text link

    Virtual and Augmented Reality Techniques for Minimally Invasive Cardiac Interventions: Concept, Design, Evaluation and Pre-clinical Implementation

    Get PDF
    While less invasive techniques have been employed for some procedures, most intracardiac interventions are still performed under cardiopulmonary bypass, on the drained, arrested heart. The progress toward off-pump intracardiac interventions has been hampered by the lack of adequate visualization inside the beating heart. This thesis describes the development, assessment, and pre-clinical implementation of a mixed reality environment that integrates pre-operative imaging and modeling with surgical tracking technologies and real-time ultrasound imaging. The intra-operative echo images are augmented with pre-operative representations of the cardiac anatomy and virtual models of the delivery instruments tracked in real time using magnetic tracking technologies. As a result, the otherwise context-less images can now be interpreted within the anatomical context provided by the anatomical models. The virtual models assist the user with the tool-to-target navigation, while real-time ultrasound ensures accurate positioning of the tool on target, providing the surgeon with sufficient information to ``see\u27\u27 and manipulate instruments in absence of direct vision. Several pre-clinical acute evaluation studies have been conducted in vivo on swine models to assess the feasibility of the proposed environment in a clinical context. Following direct access inside the beating heart using the UCI, the proposed mixed reality environment was used to provide the necessary visualization and navigation to position a prosthetic mitral valve on the the native annulus, or to place a repair patch on a created septal defect in vivo in porcine models. Following further development and seamless integration into the clinical workflow, we hope that the proposed mixed reality guidance environment may become a significant milestone toward enabling minimally invasive therapy on the beating heart

    MR fluoroscopy in vascular and cardiac interventions (review)

    Get PDF
    Vascular and cardiac disease remains a leading cause of morbidity and mortality in developed and emerging countries. Vascular and cardiac interventions require extensive fluoroscopic guidance to navigate endovascular catheters. X-ray fluoroscopy is considered the current modality for real time imaging. It provides excellent spatial and temporal resolution, but is limited by exposure of patients and staff to ionizing radiation, poor soft tissue characterization and lack of quantitative physiologic information. MR fluoroscopy has been introduced with substantial progress during the last decade. Clinical and experimental studies performed under MR fluoroscopy have indicated the suitability of this modality for: delivery of ASD closure, aortic valves, and endovascular stents (aortic, carotid, iliac, renal arteries, inferior vena cava). It aids in performing ablation, creation of hepatic shunts and local delivery of therapies. Development of more MR compatible equipment and devices will widen the applications of MR-guided procedures. At post-intervention, MR imaging aids in assessing the efficacy of therapies, success of interventions. It also provides information on vascular flow and cardiac morphology, function, perfusion and viability. MR fluoroscopy has the potential to form the basis for minimally invasive image–guided surgeries that offer improved patient management and cost effectiveness

    A subject-specific technique for respiratory motion correction in image-guided cardiac catheterisation procedures

    Get PDF
    We describe a system for respiratory motion correction of MRI-derived roadmaps for use in X-ray guided cardiac catheterisation procedures. The technique uses a subject-specific affine motion model that is quickly constructed from a short pre-procedure MRI scan. We test a dynamic MRI sequence that acquires a small number of high resolution slices, rather than a single low resolution volume. Additionally, we use prior knowledge of the nature of cardiac respiratory motion by constraining the model to use only the dominant modes of motion. During the procedure the motion of the diaphragm is tracked in X-ray fluoroscopy images, allowing the roadmap to be updated using the motion model. X-ray image acquisition is cardiac gated. Validation is performed on four volunteer datasets and three patient datasets. The accuracy of the model in 3D was within 5 mm in 97.6% of volunteer validations. For the patients, 2D accuracy was improved from 5 to 13 mm before applying the model to 2–4 mm afterwards. For the dynamic MRI sequence comparison, the highest errors were found when using the low resolution volume sequence with an unconstrained model

    3D/2D Registration with Superabundant Vessel Reconstruction for Cardiac Resynchronization Therapy

    Get PDF
    <p>Miscellaneous classes: consistent/single studies of pregnancy associated pharmacokinetic changes (percent calculated as pregnant/nonpregnant values).</p

    3D registration of MR and X-ray spine images using an articulated model

    Get PDF
    Présentation: Cet article a été publié dans le journal : Computerised medical imaging and graphics (CMIG). Le but de cet article est de recaler les vertèbres extraites à partir d’images RM avec des vertèbres extraites à partir d’images RX pour des patients scoliotiques, en tenant compte des déformations non-rigides due au changement de posture entre ces deux modalités. À ces fins, une méthode de recalage à l’aide d’un modèle articulé est proposée. Cette méthode a été comparée avec un recalage rigide en calculant l’erreur sur des points de repère, ainsi qu’en calculant la différence entre l’angle de Cobb avant et après recalage. Une validation additionelle de la méthode de recalage présentée ici se trouve dans l’annexe A. Ce travail servira de première étape dans la fusion des images RM, RX et TP du tronc complet. Donc, cet article vérifie l’hypothèse 1 décrite dans la section 3.2.1.Abstract This paper presents a magnetic resonance image (MRI)/X-ray spine registration method that compensates for the change in the curvature of the spine between standing and prone positions for scoliotic patients. MRIs in prone position and X-rays in standing position are acquired for 14 patients with scoliosis. The 3D reconstructions of the spine are then aligned using an articulated model which calculates intervertebral transformations. Results show significant decrease in regis- tration error when the proposed articulated model is compared with rigid registration. The method can be used as a basis for full body MRI/X-ray registration incorporating soft tissues for surgical simulation.Canadian Institute of Health Research (CIHR

    Computer-Assisted Electroanatomical Guidance for Cardiac Electrophysiology Procedures

    Get PDF
    Cardiac arrhythmias are serious life-threatening episodes affecting both the aging population and younger patients with pre-existing heart conditions. One of the most effective therapeutic procedures is the minimally-invasive catheter-driven endovascular electrophysiology study, whereby electrical potentials and activation patterns in the affected cardiac chambers are measured and subsequent ablation of arrhythmogenic tissue is performed. Despite emerging technologies such as electroanatomical mapping and remote intraoperative navigation systems for improved catheter manipulation and stability, successful ablation of arrhythmias is still highly-dependent on the operator’s skills and experience. This thesis proposes a framework towards standardisation in the electroanatomical mapping and ablation planning by merging knowledge transfer from previous cases and patient-specific data. In particular, contributions towards four different procedural aspects were made: optimal electroanatomical mapping, arrhythmia path computation, catheter tip stability analysis, and ablation simulation and optimisation. In order to improve the intraoperative electroanatomical map, anatomical areas of high mapping interest were proposed, as learned from previous electrophysiology studies. Subsequently, the arrhythmic wave propagation on the endocardial surface and potential ablation points were computed. The ablation planning is further enhanced, firstly by the analysis of the catheter tip stability and the probability of slippage at sparse locations on the endocardium and, secondly, by the simulation of the ablation result from the computation of convolutional matrices which model mathematically the ablation process. The methods proposed by this thesis were validated on data from patients with complex congenital heart disease, who present unusual cardiac anatomy and consequently atypical arrhythmias. The proposed methods also build a generic framework for computer guidance of electrophysiology, with results showing complementary information that can be easily integrated into the clinical workflow.Open Acces

    Using the Fringe Field of MRI Scanner for the Navigation of Microguidewires in the Vascular System

    Get PDF
    Le traitement du cancer, la prévention des accidents vasculaires cérébraux et le diagnostic ou le traitement des maladies vasculaires périphériques sont tous des cas d'application d'interventions à base de cathéter par le biais d'un traitement invasif minimal. Cependant, la pratique du cathétérisme est généralement pratiquée manuellement et dépend fortement de l'expérience et des compétences de l'interventionniste. La robotisation du cathétérisme a été étudiée pour faciliter la procédure en augmentant les niveaux d’autonomie par rapport à cette pratique clinique. En ce qui concerne ce problème, un des problèmes concerne le placement super sélectif du cathéter dans les artères plus étroites nécessitant une miniaturisation de l'instrument cathéter / fil de guidage attaché. Un microguide qui fonctionne dans des vaisseaux sanguins étroits et tortueux subit différentes forces mécaniques telles que le frottement avec la paroi du vaisseau. Ces forces peuvent empêcher la progression de la pointe du fil de guidage dans les vaisseaux. Une méthode proposée consiste à appliquer une force de traction à la pointe du microguide pour diriger et insérer le dispositif tout en poussant l’instrument attaché à partir de l’autre extrémité n’est plus pratique, et à exploiter le gradient du champ de franges IRM surnommé Fringe Field Navigation (FFN ) est proposée comme solution pour assurer cet actionnement. Le concept de FFN repose sur le positionnement d'un patient sur six DOF dans le champ périphérique du scanner IRM afin de permettre un actionnement directionnel pour la navigation du fil-guide. Ce travail rend compte des développements requis pour la mise en oeuvre de la FFN et l’étude du potentiel et des possibilités qu’elle offre au cathétérisme, en veillant au renforcement de l’autonomie. La cartographie du champ de franges d'un scanner IRM 3T est effectuée et la structure du champ de franges en ce qui concerne son uniformité locale est examinée. Une méthode pour la navigation d'un fil de guidage le long d'un chemin vasculaire souhaité basée sur le positionnement robotique du patient à six DOF est développée. Des expériences de FFN guidées par rayons X in vitro et in vivo sur un modèle porcin sont effectuées pour naviguer dans un fil de guidage dans la multibifurcation et les vaisseaux étroits. Une caractéristique unique de FFN est le haut gradient du champ magnétique. Il est démontré in vitro et in vivo que cette force surmonte le problème de l'insertion d'un fil microguide dans des vaisseaux tortueux et étroits pour permettre de faire avancer le fil-guide avec une distale douce au-delà de la limite d'insertion manuelle. La robustesse de FFN contre les erreurs de positionnement du patient est étudiée en relation avec l'uniformité locale dans le champ périphérique. La force élevée du champ magnétique disponible dans le champ de franges IRM peut amener les matériaux magnétiques doux à son état de saturation. Ici, le concept d'utilisation d'un ressort est présenté comme une alternative vi déformable aux aimants permanents solides pour la pointe du fil-guide. La navigation d'un microguide avec une pointe de ressort en structure vasculaire complexe est également réalisée in vitro. L'autonomie de FFN en ce qui concerne la planification d'une procédure avec autonomie de tâche obtenue dans ce travail augmente le potentiel de FFN en automatisant certaines étapes d'une procédure. En conclusion, FFN pour naviguer dans les microguides dans la structure vasculaire complexe avec autonomie pour effectuer le positionnement du patient et contrôler l'insertion du fil de guidage - avec démonstration in vivo dans un modèle porcin - peut être considéré comme un nouvel outil robotique facilitant le cathétérisme vasculaire. tout en aidant à cibler les vaisseaux lointains dans le système vasculaire.----------ABSTRACT Treatment of cancer, prevention of stroke, and diagnosis or treatment of peripheral vascular diseases are all the cases of application of catheter-based interventions through a minimal-invasive treatment. However, performing catheterization is generally practiced manually, and it highly depends on the experience and the skills of the interventionist. Robotization of catheterization has been investigated to facilitate the procedure by increasing the levels of autonomy to this clinical practice. Regarding it, one issue is the super selective placement of the catheter in the narrower arteries that require miniaturization of the tethered catheter/guidewire instrument. A microguidewire that operates in narrow and tortuous blood vessels experiences different mechanical forces like friction with the vessel wall. These forces can prevent the advancement of the tip of the guidewire in the vessels. A proposed method is applying a pulling force at the tip of the microguidewire to steer and insert the device while pushing the tethered instrument from the other end is no longer practical, and exploiting the gradient of the MRI fringe field dubbed as Fringe Field Navigation (FFN) is proposed as a solution to provide this actuation. The concept of FFN is based on six DOF positioning of a patient in the fringe field of the MRI scanner to enable directional actuation for the navigation of the guidewire. This work reports on the required developments for implementing FFN and investigating the potential and the possibilities that FFN introduces to the catheterization, with attention to enhancing the autonomy. Mapping the fringe field of a 3T MRI scanner is performed, and the structure of the fringe field regarding its local uniformity is investigated. A method for the navigation of a guidewire along a desired vascular path based on six DOF robotic patient positioning is developed. In vitro and in vivo x-ray Guided FFN experiments on a swine model of are performed to navigate a guidewire in the multibifurcation and narrow vessels. A unique feature of FFN is the high gradient of the magnetic field. It is demonstrated in vitro and in vivo that this force overcomes the issue of insertion of a microguidewire in tortuous and narrow vessels to enable advancing the guidewire with a soft distal beyond the limit of manual insertion. Robustness of FFN against the error in the positioning of the patient is investigated in relation to the local uniformity in the fringe field. The high strength of the magnetic field available in MRI fringe field can bring soft magnetic materials to its saturation state. Here, the concept of using a spring is introduced as a deformable alternative to solid permanent magnets for the tip of the guidewire. Navigation of a microguidewire with a viii spring tip in complex vascular structure is also performed in vitro. The autonomy of FFN regarding planning a procedure with Task Autonomy achieved in this work enhances the potential of FFN by automatization of certain steps of a procedure. As a conclusion, FFN to navigate microguidewires in the complex vascular structure with autonomy in performing tasks of patient positioning and controlling the insertion of the guidewire – with in vivo demonstration in swine model – can be considered as a novel robotic tool for facilitating the vascular catheterization while helping to target remote vessels in the vascular system

    Mesh-Derived Image Partition for 3D-2D Registration in Image-Guided Interventions

    Get PDF
    RÉSUMÉ Les interventions guidées par images effectuées sous modalité 2D bénéficient de la superposition d'images 3D prises en stage préopératoire. La technologie nécessaire pour cette superposition est le recalage 3D-2D, qui consiste à trouver la position et l'orientation de l'image préopératoire 3D par rapport aux images intraopératoires 2D. Une intégration adéquate d'un algorithme de recalage à un processus chirurgical a le potentiel d'avoir un impact positif sur l'issue de la chirurgie et la durée de l'intervention. Cependant, beaucoup de chirurgies sont effectuées sans l'assistance du recalage, car aucune des solutions actuelles n’est applicable dans leur contexte clinique spécifique. Pour remédier à cette situation, cette thèse porte sur la recherche de solutions pratiques applicables à des interventions guidées par images spécifiques. La première chirurgie étudiée est l'ablation par cathéter pour fibrillation atriale/auriculaire (AC pour FA) effectuée sous fluoroscopie rayons X, une procédure électrophysiologique traitant l'arythmie cardiaque. Dans cette chirurgie, une image volumétrique (soit résonance magnétique (RM) ou tomodensitométrie (TDM)) est prise avant l'opération pour définir l'anatomie de l'atrium gauche (AG) et des veines pulmonaires (VP)s. Un maillage segmenté de ce volume est ensuite utilisé pour offrir un support visuel intraopératoire lors du placement du cathéter d'ablation via sa superposition aux images fluoroscopiques. Cependant, les solutions de recalage actuelles sont trop lentes et requièrent des interventions manuelles, ce qui est problématique quand un recalage intraopératoire est nécessaire pour permettre de pallier aux mouvements du patient. Aussi, les solutions automatiques actuelles qui recalent les images 3D et 2D directement, sans passer par l'identification manuelle de points ficudiaux, ne sont pas assez précises pour être cliniquement utilisables. De plus, les solutions qui n'utilisent pas la cartographie électromagnétique ne fonctionnent pas avec les modalités RM/fluoroscopie rayons X. Ceci est un problème, car nous visons les interventions de AC pour FA qui utilisent la modalité RM sans la cartographie électromagnétique. Il y a deux défis principaux pour arriver à une solution utile cliniquement. Premièrement, résoudre le difficile problème du recalage RM/fluoroscopie complexifié dans le cas de AC pour FA à cause de la correspondance partielle entre les modalités au niveau des VPs. Deuxièmement, de faire ce recalage assez rapidement pour permettre une mise à jour intraopératoire en temps réel dans les cas où le patient bouge pendant l'opération. Afin de remédier à cette situation, nous introduisons une nouvelle méthode de recalage basée sur la partition d'image dérivée d'un maillage (recalage PIDM). Cette méthode utilise les projections d'un maillage segmenté de la modalité 3D pour inférer une segmentation des images fluoroscopiques 2D. Ceci est beaucoup plus rapide que de faire des projections volumétriques et, puisque le maillage peut être segmenté d'une image RM ou TDM sans distinction, la même procédure est valide pour les deux modalités. La justesse du recalage est évaluée par des mesures de similarité qui comparent les propriétés statistiques des zones segmentées et incorporent l'information de profondeur des maillages afin de tenir compte de la correspondance partielle au niveau des VPs. Nous validons l'algorithme de recalage PIDM sur des interventions chirurgicales de AC pour FA provenant de 7 patients différents. Quatre mesures de similarité basées sur le principe de la partition à partir du maillage sont introduites et mises à l'épreuve sur 1400 cas biplans chacune. La précision, la portée et la robustesse de la solution sont évaluées en calculant la distribution de l'erreur (distance de projection) en fonction de la justesse de la pose initiale pour chacun des 5600 recalages. La précision est également évaluée de manière visuelle, en superposant les résultats du recalage et les valeurs-vérité sur les images fluoroscopiques. Pour donner une juste appréciation de la performance attendue de notre algorithme, les exemples visuels sont tirés de cas représentant l'erreur moyenne ainsi que d'un écart-type au-dessus et en dessous. Afin d'évaluer l'extension du recalage PIDM à d'autres types de chirurgies, celui-ci est appliqué à des cas de sclérothérapie de malformation veineuse (SdMV). Ce type de chirurgie est particulièrement délicat à recaler car la malformation peut être présente sur toutes les parties du corps, ce qui offre peu de prévisibilité sur les propriétés des images médicales à recaler d'un patient à l'autre. De plus, cette chirurgie est effectuée en imagerie monoplan et les données ne sont pas accompagnées de méta-information permettant la calibration géométrique du système. Nous démontrons que le recalage PIDM est applicable aux cas de SdMV, mais doit être modifié pour être applicable à la grande variété de parties du corps où les malformations veineuses peuvent être présentes. Le protocole développé pour les chirurgies de AC pour FA peut être utilisé dans les cas où une embolisation ou une démarcation intérieure/extérieure d'une partie du corps est proéminente, mais il est nécessaire d'intégrer l'information de gradients dans les mesures de similarité pour recaler les organes où les os sont prédominants.----------ABSTRACT Image-guided interventions conducted under a 2D modality benefit from the overlay of relevant 3D information from the preoperative stage. The enabling technology for this overlay is 3D-2D registration: the process of finding the spatial pose of a 3D preoperative image in relation to 2D intraoperative images. The successful integration of a registration solution to a surgery has the potential for significant positive impact in terms of likelihood of treatment success and intervention duration. However, many surgeries are routinely done without the assistance of registration because no current solution is practical in their clinical context. In order to remedy these issues, we focus on producing practical, targeted registration solutions to assist image-guided interventions. The first surgery we address is catheter ablation for atrial fibrillation (CA for AF), an electrophysiology procedure to treat heart arrhythmia conducted under X-ray fluoroscopy. In this surgery, a 3D image, either magnetic resonance (MR) or computed tomography (CT), is taken preoperatively to define the anatomy of the left atrium (LA) and pulmonary veins (PV)s. A mesh, segmented from the 3D image, is subsequently used to help positioning the ablation catheter via its overlay on the intraoperative fluoroscopic images. Current clinical registration solutions for CA for AF are slow and often require extensive manual manipulations such as the identification of fiducial points, which is problematic when intraoperative updates of the 3D image's pose are required because of patient movement. The automatic solutions are currently not precise enough to be used clinically. Also, the solutions which do not involve electroanatomic mapping are not suitable for MR/fluoroscopy registration. This is problematic since we target CA for AF interventions where the 3D modality is MR and electroanatomic mapping is not used. There are two principal challenges to overcome in order to provide a clinically useful registration algorithm. First, solving the notoriously hard MR to X-ray fluoroscopy registration problem which is further complicated in cases of CA for AF because of the partial match between modalities at the level of the PVs. Second, solving the registration quickly enough to allow for intraoperative updates required due to the patient's movement. We introduce a new registration methodology based on mesh-derived image partition (MDIP) which uses projections of a mesh segmented from the 3D image in order to infer a segmentation of the 2D X-ray fluoroscopy images. This is orders of magnitude faster than producing volumetric projections and, since the mesh can be segmented from either MR or CT, the same procedure is valid for both modalities. The fitness of the registration is evaluated by custom-built similarity measures that compare the statistical properties of the segmented zones and incorporates mask-depth information to account for the partial match at the level of the PVs. We validate the MDIP algorithm on 7 cases of patients undergoing CA for AF surgery. Four MDIP-based similarity measures are introduced; each one is validated on 1400 biplane registrations. The precision, range, speed and robustness of the solution is assessed by calculating the distribution of projection distance error in function of the correctness of the initial pose for all 5600 biplane registrations. The precision is also evaluated visually by overlaying the ground-truths with results from the registration algorithm. To give a fair appraisal of the expected behavior, the examples are taken from cases exemplifying the average error measured as well as one standard deviation above and under. The registration algorithm is also applied to cases of sclerotherapy for venous malformation (SfVM) in order to assess its portability to other type of surgeries. SfVM are especially challenging because the malformation can be present on any body part, which offers little predictability on the properties of the medical images from one patient to another. Our dataset is sampled from monoplane surgeries and did not come with metadata allowing a geometrical calibration of the system. We demonstrate that MDIP-based registration is applicable to cases of monoplane SfVM, but that modifications are required in order to account for the wide variety of body parts where VMs are common. The protocol developed for CA for AF surgeries can be used for embolizations or when the interior/exterior border of the organ is prominent, but gradient information has to be taken into account by the similarity measures in order to properly register cases where bones are predominant

    A NOVEL POSITIONAL SENSOR FOR 3D VASCULAR RECONSTRUCTION

    Get PDF
    Intravascular ultrasound (IVUS) is a device that is surgically inserted into a femoral artery, or vein, to aid in the diagnosis of cardiovascular disease. Correctly locating the IVUS tip facilitates accurate 3D vascular reconstruction. Researchers are actively investigating different methods, such as: stereo X-rays, radio triangula- tion, computer-aided tomography (CAT) scans, etc., to produce quality 3D graphical vascular images. Each of these methods has their pros and cons, however they all require external sensors and some are bulky and complicated to operate. This research investigates an accelerometer, constructed from a multi-mode fiber- optic cable, and studies its performance with multi-mode fiber interferometry tech- nology (speckle-gram analysis) and presents experimental evidence to support its suitability for tracking an IVUS sensor in vivo, leading to real-time 3D reconstruc- tion of internal arterial segments. The system resulting from this study is expected to be simple, small, and economically feasible, to bridge the diagnostic/treatment time gap and eliminate the need for external tracking equipment. Non-linear models and analysis of variance methodologies are presented to verify that the fiber-optic accelerometer is functioning within experimental error which can provide accurate spatial tracking. The results from this study show that the fiber accelerometer is per- forming as well as a micro-electromechanical machine system (MEMS) accelerometer and, unlike the MEMS, it is immune to environmental noise. The potential system is expected to reduce the computation necessary to perform 3D vascular reconstruction from IVUS data, leading to improvements in, and the reduction of, the diagnos- tic/treatment time-line. Also, the performance and sensitivity of this novel positional sensor is expected to improve with appropriate changes in the craftsmanship of the fiber accelerometer and testing apparatus
    corecore