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RÉSUMÉ

Les interventions guidées par images effectuées sous modalité 2D bénéficient de la superposi-
tion d’images 3D prises en stage préopératoire. La technologie nécessaire pour cette superposition
est le recalage 3D-2D, qui consiste à trouver la position et l’orientation de l’image préopératoire
3D par rapport aux images intraopératoires 2D. Une intégration adéquate d’un algorithme de reca-
lage à un processus chirurgical a le potentiel d’avoir un impact positif sur l’issue de la chirurgie et
la durée de l’intervention. Cependant, beaucoup de chirurgies sont effectuées sans l’assistance du
recalage, car aucune des solutions actuelles n’est applicable dans leur contexte clinique spécifique.
Pour remédier à cette situation, cette thèse porte sur la recherche de solutions pratiques applicables
à des interventions guidées par images spécifiques.

La première chirurgie étudiée est l’ablation par cathéter pour fibrillation atriale/auriculaire (AC
pour FA) effectuée sous fluoroscopie rayons X, une procédure électrophysiologique traitant l’aryth-
mie cardiaque. Dans cette chirurgie, une image volumétrique (soit résonance magnétique (RM) ou
tomodensitométrie (TDM)) est prise avant l’opération pour définir l’anatomie de l’atrium gauche
(AG) et des veines pulmonaires (VP)s. Un maillage segmenté de ce volume est ensuite utilisé pour
offrir un support visuel intraopératoire lors du placement du cathéter d’ablation via sa superposition
aux images fluoroscopiques. Cependant, les solutions de recalage actuelles sont trop lentes et re-
quièrent des interventions manuelles, ce qui est problématique quand un recalage intraopératoire est
nécessaire pour permettre de pallier aux mouvements du patient. Aussi, les solutions automatiques
actuelles qui recalent les images 3D et 2D directement, sans passer par l’identification manuelle
de points ficudiaux, ne sont pas assez précises pour être cliniquement utilisables. De plus, les solu-
tions qui n’utilisent pas la cartographie électromagnétique ne fonctionnent pas avec les modalités
RM/fluoroscopie rayons X. Ceci est un problème, car nous visons les interventions de AC pour FA
qui utilisent la modalité RM sans la cartographie électromagnétique.

Il y a deux défis principaux pour arriver à une solution utile cliniquement. Premièrement, résoudre
le difficile problème du recalage RM/fluoroscopie complexifié dans le cas de AC pour FA à cause
de la correspondance partielle entre les modalités au niveau des VPs. Deuxièmement, de faire ce
recalage assez rapidement pour permettre une mise à jour intraopératoire en temps réel dans les
cas où le patient bouge pendant l’opération. Afin de remédier à cette situation, nous introduisons
une nouvelle méthode de recalage basée sur la partition d’image dérivée d’un maillage (recalage
PIDM). Cette méthode utilise les projections d’un maillage segmenté de la modalité 3D pour inférer
une segmentation des images fluoroscopiques 2D. Ceci est beaucoup plus rapide que de faire des
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projections volumétriques et, puisque le maillage peut être segmenté d’une image RM ou TDM sans
distinction, la même procédure est valide pour les deux modalités. La justesse du recalage est éva-
luée par des mesures de similarité qui comparent les propriétés statistiques des zones segmentées
et incorporent l’information de profondeur des maillages afin de tenir compte de la correspondance
partielle au niveau des VPs.

Nous validons l’algorithme de recalage PIDM sur des interventions chirurgicales de AC pour FA
provenant de 7 patients différents. Quatre mesures de similarité basées sur le principe de la partition
à partir du maillage sont introduites et mises à l’épreuve sur 1400 cas biplans chacune. La précision,
la portée et la robustesse de la solution sont évaluées en calculant la distribution de l’erreur (distance
de projection) en fonction de la justesse de la pose initiale pour chacun des 5600 recalages. La
précision est également évaluée de manière visuelle, en superposant les résultats du recalage et les
valeurs-vérité sur les images fluoroscopiques. Pour donner une juste appréciation de la performance
attendue de notre algorithme, les exemples visuels sont tirés de cas représentant l’erreur moyenne
ainsi que d’un écart-type au-dessus et en dessous.

Afin d’évaluer l’extension du recalage PIDM à d’autres types de chirurgies, celui-ci est appliqué à
des cas de sclérothérapie de malformation veineuse (SdMV). Ce type de chirurgie est particulière-
ment délicat à recaler car la malformation peut être présente sur toutes les parties du corps, ce qui
offre peu de prévisibilité sur les propriétés des images médicales à recaler d’un patient à l’autre. De
plus, cette chirurgie est effectuée en imagerie monoplan et les données ne sont pas accompagnées
de méta-information permettant la calibration géométrique du système. Nous démontrons que le
recalage PIDM est applicable aux cas de SdMV, mais doit être modifié pour être applicable à la
grande variété de parties du corps où les malformations veineuses peuvent être présentes. Le proto-
cole développé pour les chirurgies de AC pour FA peut être utilisé dans les cas où une embolisation
ou une démarcation intérieure/extérieure d’une partie du corps est proéminente, mais il est néces-
saire d’intégrer l’information de gradients dans les mesures de similarité pour recaler les organes
où les os sont prédominants.
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ABSTRACT

Image-guided interventions conducted under a 2D modality benefit from the overlay of relevant
3D information from the preoperative stage. The enabling technology for this overlay is 3D-2D
registration: the process of finding the spatial pose of a 3D preoperative image in relation to 2D
intraoperative images. The successful integration of a registration solution to a surgery has the
potential for significant positive impact in terms of likelihood of treatment success and intervention
duration. However, many surgeries are routinely done without the assistance of registration because
no current solution is practical in their clinical context. In order to remedy these issues, we focus
on producing practical, targeted registration solutions to assist image-guided interventions.

The first surgery we address is catheter ablation for atrial fibrillation (CA for AF), an electrophys-
iology procedure to treat heart arrhythmia conducted under X-ray fluoroscopy. In this surgery, a
3D image, either magnetic resonance (MR) or computed tomography (CT), is taken preoperatively
to define the anatomy of the left atrium (LA) and pulmonary veins (PV)s. A mesh, segmented
from the 3D image, is subsequently used to help positioning the ablation catheter via its overlay
on the intraoperative fluoroscopic images. Current clinical registration solutions for CA for AF are
slow and often require extensive manual manipulations such as the identification of fiducial points,
which is problematic when intraoperative updates of the 3D image’s pose are required because of
patient movement. The automatic solutions are currently not precise enough to be used clinically.
Also, the solutions which do not involve electroanatomic mapping are not suitable for MR/fluo-
roscopy registration. This is problematic since we target CA for AF interventions where the 3D
modality is MR and electroanatomic mapping is not used.

There are two principal challenges to overcome in order to provide a clinically useful registration
algorithm. First, solving the notoriously hard MR to X-ray fluoroscopy registration problem which
is further complicated in cases of CA for AF because of the partial match between modalities at
the level of the PVs. Second, solving the registration quickly enough to allow for intraoperative
updates required due to the patient’s movement. We introduce a new registration methodology
based on mesh-derived image partition (MDIP) which uses projections of a mesh segmented from
the 3D image in order to infer a segmentation of the 2D X-ray fluoroscopy images. This is orders
of magnitude faster than producing volumetric projections and, since the mesh can be segmented
from either MR or CT, the same procedure is valid for both modalities. The fitness of the registra-
tion is evaluated by custom-built similarity measures that compare the statistical properties of the
segmented zones and incorporates mask-depth information to account for the partial match at the
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level of the PVs.

We validate the MDIP algorithm on 7 cases of patients undergoing CA for AF surgery. Four MDIP-
based similarity measures are introduced; each one is validated on 1400 biplane registrations. The
precision, range, speed and robustness of the solution is assessed by calculating the distribution
of projection distance error in function of the correctness of the initial pose for all 5600 biplane
registrations. The precision is also evaluated visually by overlaying the ground-truths with results
from the registration algorithm. To give a fair appraisal of the expected behavior, the examples are
taken from cases exemplifying the average error measured as well as one standard deviation above
and under.

The registration algorithm is also applied to cases of sclerotherapy for venous malformation (SfVM)
in order to assess its portability to other type of surgeries. SfVM are especially challenging be-
cause the malformation can be present on any body part, which offers little predictability on the
properties of the medical images from one patient to another. Our dataset is sampled from mono-
plane surgeries and did not come with metadata allowing a geometrical calibration of the system.
We demonstrate that MDIP-based registration is applicable to cases of monoplane SfVM, but that
modifications are required in order to account for the wide variety of body parts where VMs are
common. The protocol developed for CA for AF surgeries can be used for embolizations or when
the interior/exterior border of the organ is prominent, but gradient information has to be taken into
account by the similarity measures in order to properly register cases where bones are predominant.
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CHAPTER 1 : INTRODUCTION

Image guided intervention (IGI) 1 is the use of medical images in order to assist surgical in-
terventions. One of the earliest applications of IGI was reported in 1896 at McGill University in
Montreal where a radiograph helped planning the removal of a bullet from the leg of a victim [1].
As medical-imaging systems improved, 2D imaging modalities matured from being solely plan-
ning and diagnosis tools to providing live intraoperative images during surgeries. Meanwhile, 3D
imaging modalities such as magnetic resonance imaging (MRI) and X-ray computed tomography
(CT) are now routinely used to plan the operations. The next logical step is to conduct surgeries
with real-time intraoperative updates of the 3D modality. Unfortunately, the current state of medi-
cal imaging science is still far from achieving that goal. What is possible today is to overlay a static
3D image taken before the operation to the intraoperative 2D images. The gains from this aug-
mented reality 2 is not only to display a third dimension but also to draw from the complimentary

nature of the different modalities, none of which is superior to all others regarding all aspects [1].
This additional information improves the ability of the medical staff to make judicious decisions,
potentially reducing operation time and cost as well as improving the average outcome for patients.

(a) X-ray fluoroscopy of
the left atrium.

(b) MR image of the left
atrium with aorta.

(c) X-ray fluoroscopy
with superimposed pre-
operative MR image.

Figure 1 Example of a preoperative 3D image being overlaid to a 2D intraoperative image.

In order to reap the benefits from the overlaid 3D image, its position and orientation relative to
the intraoperative 2D images — the pose of the patient/organ — needs to be correct. The process
of finding that pose is called 3D-2D registration. Unfortunately, even if operating rooms have all
the necessary hardware, surgeons often conduct the operations without registration’s assistance. It

1. Loosely associated appellations: image-guided surgery, image-guided therapy.
2. Also called: computer-assisted surgery, computer-aided surgery or computer-assisted intervention.
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is possible have a medical specialist manually provide registration, to add expensive tracking hard-
ware or add steps to the surgical procedures in order to help registration (such as the implantation of
fiducial markers prior to surgery). However, medical professionals are rightfully reticent to change
their operative protocol, buy additional hardware, add staff or procedure steps to their surgical
workflow. This thesis focuses on practical, low-cost, automatic registration solutions that can be
integrated without impeding the surgery while having the potential for significant positive impact
on surgeries. In order to fully understand the challenges to providing such a solution, this chapter
contains a brief introduction to the main target surgery: catheter ablation for atrial fibrillation (CA
for AF: section 1.1). Even though registration is a mature research field, each surgery has unique
challenges in terms of speed, precision requirements and modeling the statistical or stochastic link
between multimodal medical images. This implies that a registration solution usually has to be
fine-tuned to the target surgery.

In order to evaluate if the solution proposed is easily extendable to other type of surgeries, the
same method as developed for CA for AF is also evaluated on sclerotherapies for venous malfor-

mation (SfVM), which are described in section 1.2.

1.1 Clinical Application: Catheter Ablation for Atrial Fibrillation

Atrial fibrillation (AF) is a heart rhythm disorder which affects more than two million people
in the United-States [2]. It causes palpitations, shortness of breath and is a risk factor for strokes.
AF is caused by abnormal electrical activity originating around the pulmonary veins (PV)s, which
triggers abnormal beating (fibrillation) of the heart.

Pulmonary veins

Ablation targetsPathologic electrical signalLeft atrium

Figure 2 From left to right: LA with attached PVs, pathologic electrical current that triggers the
arrhythmia, the ablation targets in CA for AF.

CA for AF is a surgery which aims at stopping the propagation of the problematic electricity
by inflicting small lesions that act as a barrier to the pathological electric current. The lesions are
administered via an ablation catheter dispensing radio-frequency energy which is inserted from
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the groin or the side of the neck, then guided through a blood vessel into the heart. During the
operation, a puncture is made on the wall separating the right and left atria to allow direct insertion
inside the left atrium. The catheter is then moved to the target ablation sites, producing small
cauterizations of 6 to 8 mm in diameter [2]. The ablations are distributed around the PVs which
are the point of entry of oxygen-rich blood from the lungs into the left atrium (LA) (see figure 2).
The cauterization caused by the ablation encircles the pulmonary veins, preventing the propagation
of the problematic electrical current. The operation requires from 2 to 6 hours. The success rate of
the operation is from 30% to 90%, depending on the severity of the disease. As a consequence of
the operation, 1% to 2% of patients suffer life-threatening complications such as a puncture of the
heart or stroke [2].

The operation can be done under monoplane or biplane fluoroscopy, with monoplane fluo-
roscopy being more frequent. Fluoroscopy is a 2D projective imaging modality which cannot
distinguish the soft tissue of the LA and PVs without the injection of contrast agent [3].

(a) Frame 0 (b) Frame 5 (c) Frame 10 (d) Frame 19 (e) Frame 30 (f) Frame 35

Figure 3 Injection of contrast agent in the LA. Notice that in (a) — the frame without contrast agent
— the LA and PVs are not visible. In the other frames, it is still difficult to identify anatomical
regions: no single image offers a clear, comprehensive understanding. The surgeon has to watch the
injection of contrast agent attentively and rely on his expertise to construct a mental representation
of the location of important structures, which complexifies the procedure and increases the risk of
complications [4].

Figure 3 reveals that the surgeon has to rely on a mental map of the LA during the catheter guid-
ance and subsequent embolizations. This opens the door to costly, life-threatening errors. In order
to reduce the likelihood of errors, computer-assisted image guidance is provided by overlaying a
mesh extracted from a preoperative MR image to the intraoperative X-ray fluoroscopy images. This
mesh allows a visual reference of the anatomical structures to be present after the contrast agent
has washed away. This visual map reduces the number of injections of contrast agent necessary
for guidance 3, as well as allowing a display of the past embolization sites as visual marks on the
mesh. The visual marks enable a more accurate distribution of the ablation target sites, reducing the

3. There is a limit to the amount of contrast agent that can be safely injected in the patient.
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potential for errors. The presence of the visual guidance system decreases the procedure’s duration
and likelihood of AF recurrence: 84% of patients who benefited from registration-based guidance
had no recurrence of AF versus 64% in the control group (sample size of 50 patients) [3]. Another
study done on 94 patients by Kistler et al. [5] reveals that the 3D-2D overlay of a CT image via
registration for cases of CA for AF reduces the fluoroscopy time from 62 ± 26 min to 49 ± 27
min as well as a 32% arrhythmia recurrence compared to 52% when not using overlays. Since the
intraoperative modality is X-ray fluoroscopy, a reduction in operation time also translates in a lower
dose of radiation imposed on the patient.

Registration is the operation that positions a 3D preoperative image in relation to the 2D intraopera-
tive images. It allows a 3D-2D overlay that can be used to assist catheter guidance and identification
of ablation sites. This registration can be done manually, but is time consuming (typically takes
a few minutes) and requires the training and presence of an additional skilled medical expert in
the room. An automatic registration algorithm that systematically positions the LA at the proper
position and orientation with an acceptable, reproducible and predictable error rate is therefore
highly desirable. Registration algorithms achieve better results when using biplane images; with
monoplane images it is likely that there will be large out-of-plane errors. To simulate two planes,
the C-arm of monoplane systems can be rotated between subsequent image acquisitions. However,
this reduces the registration accuracy due to non-simultaneous image acquisition which results in
motion artifacts.

There are two main registration methodologies for cases of CA for AF that have clinical prece-
dents: surface/landmark registration via an electroanatomic mapping (EAM) system and direct
CT/fluoroscopy-based registration.

The surface/landmark registration method registers the preoperative MR or CT image to a sur-
face obtained from an EAM system which gathers information from a specialized mapping catheter
via coils positioned underneath the patient [6]. The registration is done using both manually identi-
fied fiducial points as well as 3D-3D surface-to-surface matching. Kistler et al. [5] report using this
technique successfully on 47 patients (total 94 patients, 47 controls) using landmark points pairing
of proximal or first order venous branches on PVs for a first crude registration, then refining with
the surface-based method. The landmark registration error is 5.7 mm (measured on the PVs) and
2.4 ± 0.4 mm when using CT/EAM surfaces registration. Fahmy et al. [7] evaluated the precision
of using different landmarks on 124 patients, and obtained the best results (an error of 5.6 ± 3.2
mm) when using the posterior points on the pulmonary veins. Surface registration is done by com-
paring an electroanatomic map of 40-50 points with the CT surface. Using the surface registration,
they evaluate that the LA cavity is aligned with a precision of 2.17 ± 1.65 mm. However, the land-
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mark error jumps from 5.6 ± 2.1 mm before the surface registration to 9.2 ± 2.1 mm after, casting
doubt on the validity of the error assessment for the surface registration.

The CT/fluoroscopy-based 3D-2D registration operates directly on the medical images. It is
considered a harder problem than the 3D-3D surface-based registration of the previous sections,
but has the advantage of not requiring specialized equipment and surgical steps associated with
EAM systems. Sra et al. [8] demonstrated the feasibility of a landmark registration based on
the alignment of the coronary sinus catheter on the fluoroscopic images with the coronary sinus
segmented from the CT. Tests done on 20 patients were only evaluated qualitatively and reveal that
manual alignment after the automated registration was needed in 51% of the image sequences.

Knecht et al. [9] evaluate three different 3D-2D CT/fluoroscopy registrations on 56 patients.
Two methods are similar to the methods of Sra et al. (based on manual alignment of landmarks or
segmented heart contour) and are reported to have an accuracy of 0.3 ± 0.5 mm for the landmark
method and 1.3 ± 0.6 mm for the method using the hear contour. The third method is based on
the automatic registration of LA via registration of the spine from the segmented CT image and
real-time fluoroscopic images. This method, highlighting the difficulties of automated systems, has
an accuracy of 17.0 ± 9.0 mm. They report an average time of 7 ± 2 minutes for the algorithm
to complete. They do the registration during the patient preparation and catheter insertion, and
mention that as a result the operation is not lengthened by the registration. However, in the same
article they mention that repeat registration was necessary in case where the patient moved during
the procedure, indicating that long (minutes) delays for registration do impede some procedures.

Currently, clinically usable registration systems for CA for AF exist. The methods that use EAM
mapping require manual steps and the acquisition of additional, expensive hardware, but have the
advantage of being compatible with both CT and MR modalities. The direct CT/fluoroscopy-based
systems usually require manual identification of fiducial points, or lack precision. The current
systems are slow (∼7 minutes for registration), which can be a problem if registration has to be
repeated during the operation because of patient movement. There is currently no system available
that is compatible with the MR modality without using EAM mapping [10]. Using MR instead
of CT is preferable since it reduces the harmful radiation dose imposed on patient (see section
1.3 for details on the health considerations of modalities which irradiate the patient). There is
therefore a need for a new automatic registration solution that is fast, precise, and works for the
MR/fluoroscopy modalities pairing.
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1.2 Clinical Application: Sclerotherapies for Venous Malformation

Venous malformation (VM) is a congenial vascular abnormality. It is a spongy masses of veins
of various size characterized by the absence or low-velocity venous flow which can be present
anywhere inside the patient, but most commonly found in the head, neck, extremities and trunk [11].
Although asymptomatic in some patients, other experience thrombosis within the malformation,
which results in the development of a firm mass, swelling and pain. Surgery is required when
the VM inconveniences the patient or for aesthetic considerations. Since VMs are radioresistant
and generally not treatable by excision, the surgery consists of injecting a sclerosing agent such
as ethyl alcohol into the VM while the patient in under general anesthesia. In order to render
the sclerosing agent X-ray visible, it is mixed with a contrast agent. The operation often requires
repeated aggressive treatment because VMs have the tendency to recanalise after the sclerotherapy
[12], and a wait period of 1 to 3 months must be observed between sclerotherapies. Before the
operation, MR images are sampled to assess the extent of the VM and help plan the surgery. MR
images can also be taken after the operation to assess if repeating surgery is warranted. However,
because of transient inflammatory reaction to the sclerosing agent, a period of 6 months is advised
before a MR assessment of the therapeutic response after sclerotherapy [11]. XMR rooms (X-
ray/MR) allow the patient to be slid from the fluoroscopic table to the MRI during the operation,
enabling intraoperative assessment of the sclerotherapy before inflammation occurs. As of now, the
surgeon has to memorize the information gleaned from the MR image, and then use that information
in the subsequent sclerotherapy. A properly registered overlay of the MR image to the fluoroscopic
images would reduce mental load, allow for better precision and reduce the likelihood of error in
embolization location.

1.3 Image-Guided Interventions Modalities

This section covers the modalities used in the surgeries for which we want to provide image-
guidance: CA for AF and SfVM.

X-Ray

X-rays are an electromagnetic radiation of wavelength of 0.01 to 10 nanometers. When passing
through biological tissue, X-rays are absorbed at a different rate depending on the properties of the
type of tissue traversed. By measuring the attenuation of the X-ray energy, it is possible to create
an image that depicts the internal properties of the tissue imaged. The absorption rate is high for
bones, which makes it an ideal modality for orthopedic use, but is relatively weak for soft tissues
[13].
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The simplest way to form an X-ray image, X-ray radiography, is to place a patient between an
X-ray source and a detection plane, which produces a static 2D image. X-ray fluoroscopy allows
real-time images at 30 frames per second [14] by using a lower energy level. X-ray fluoroscopy
is widely used as the interventional modality in cardiac surgeries. X-ray radiography and X-ray
fluoroscopy have the limitation that the images produced are two-dimensional and projective by
nature, resulting in an information loss that makes overlapping structures indistinguishable from
one-another.

X-ray source

flat panel detector

Figure 4 Monoplane X-ray fluoroscope.

X-ray computed tomography allows to produce slices of the patient’s anatomy, circumventing
the overlapping problem caused by the projective nature of X-ray radiography. The images are
produced by a narrow energy beam that rotates around the patient, creating several 1D signals. A
technique known as back-projection allows a high-resolution (≈1 mm [13]) 2D image of a patient’s
slice to be reconstructed from 1D signals taken at different angles. An X-ray CT scan typically takes
a few seconds. A helical CT can create a 3D volume of the patient by using the same method, but
by continuously moving the patient perpendicular to the 2D space sampled by a rotating X-ray CT
device. It is possible to get 3D images of the heart using a helical scan, but special precaution has
to be taken in order to minimize movement artifacts due to the patient’s movement, heartbeat and
respiration. The images are taken while the patient is holding his breath, and is synchronized with
an electrocardiogram in order to sample images from the same phase of the cardiac cycle.

However, X-ray-based image modalities irradiate the patient, which can have significant long-
term negative health impact. This is especially true for CT scan, where the dose from a single
abdominal scan delivers 1000 times more radiation than a single posterior-anterior chest radiogra-
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phy. There is no large-scale epidemiological study that directly links CT exposure to cancer risk.
However, a study by Brenner et al. [15] extrapolates known cancer risk for specific organs under
different radiation doses to estimate the health impact of CT-scanning. Using that method, it is
estimated that 0.4 to 2% of all cancers in the United-States are due to CT-irradiation. A single ab-
dominal CT-scan of a patient in his thirties is expected to raise his likelihood of death from cancer
of 0.05%. Since radiation is especially harmful to children, that risk raises to 0.09% if the patient is
about 5 years old. Therefore, pediatric cases warrant extra care regarding irradiation exposure. Any
reduction of irradiation exposure is a statistical improvement of the patient’s future health prospect.

The visibility of the target organ (especially when it is mainly composed of soft-tissue) can be
increased by the injection of a liquid which has a very high X-ray absorption rate, such as barium
sulfate. This injection allows the organ to appear momentarily very clearly, but has to be used
parsimoniously because it can harm the patient in large doses.

Magnetic Resonance

Magnetic resonance (MR) is a 3D imaging modality based on the interaction of a strong mag-
netic field, atomic nucleus and a radio-frequency pulse. The application of a strong magnetic field
has for effect to align the spin of the patient’s body protons in a parallel or anti-parallel direction.
Then, a radio-frequency pulse is applied, causing the protons to precess in their alignment with the
magnetic field. When the radio-frequency pulse is switched off, the protons’ orientation gradually
align back with the magnetic field, but at a different rate for protons belonging to different tissue
types. It is the measurement of these different relaxation times that allows forming MR images
(MRI) 4. Since protons are in highest density in water and fat, MR is an ideal modality for soft-
tissues; this contrasts with X-ray, which is a poor modality for those tissue types. This also makes
multimodal registration arduous because the statistical properties of the intensities in CT/X-ray and
MR images is inherently different and have a complex, hard to model relationship to each other. It
also has the advantage over X-ray of being non-ionizing (there are no known health impact of MR
imaging) while having a similarly high spatial resolution (≈ 1 mm).

4. The acronym MRI is used to refer to either MR images or MR imaging. The meaning should be unambiguous
from the context.
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Figure 5 MRI scanner.

However, the slow image acquisition time make MR imaging susceptible to movement artifacts,
which is especially problematic when the target organ is non-static and deformable. For example, in
cardiac application, it is necessary to use an electrocardiogram to synchronize the MR acquisition
to the cardiac cycle. MR is currently rarely used as the interventional modality. This is due to both
the slower imaging time as well as the surgical tools being generally unfit for use in an MR scanner
[14]. Although successful cardiac catheterization guided by MR has been reported [4], it is not the
norm.

Because of the high-quality of image produced, MR is widely used as a diagnostic tool. For
example, brain tumors have higher water concentration than the surrounding tissue. Parkinson’s
disease, Alzheimer’s disease and hemorrhages result in deposits of iron which can be detected
because of their interaction with water. In the same manner, MR is often used to diagnose liver
diseases, musculoskeletal abnormalities as well as cardiovascular diseases [13].

The contrast agents used in MR imaging is typically gadolinium, manganese, europium or small
iron particles possessing a high magnetic moment [13]. These agents reveal small regions or ease
the segmentation of an organ, but the signal to noise ratio of MR images is often high enough to
preclude their use.

1.4 Current Challenges and Research Goals

CA for AF and SfVM surgeries would benefit from a comprehensive, specifically-tuned regis-
tration solution. They are both commonly conducted without automatic registration and sometimes
without any overlay of 3D preoperative images. Current clinically-used algorithms are slow, which
can be problematic during surgeries. For CA for AF, there is no current solution for registration
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without EAM with MR as the 3D modality. In order to bridge the gap between science and the
operating room, we set the following goal:

– Provide quick and automatic registration that does not impede the surgical procedure. These
goals can be achieved by careful exploitation of the specificities of the surgical case at hand.
We are targeting CA for AF surgeries for a custom-tuned registration algorithm, with the
secondary objective of extending the algorithm to SfVM in order to assess how generalizable
the method is.

Registration is a mature research field; it is necessary to survey the work of others in order to
construct the knowledge repository necessary to innovate. The literature is surveyed in chapter 2
to that effect, with a special emphasis on techniques applicable to the two targeted surgeries. The
scientific novelties developed to solve the registration problem as well as the methods selected in
order to test our algorithms are detailed in chapter 3. The results of the experiments that validate
the new methods and a discussion on their implications are in chapter 4. Chapter 5 concludes with
a brief overview of the main scientific contributions as well as suggestions for future research.
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CHAPTER 2 : LITERATURE REVIEW

This chapter assembles the body of knowledge necessary to build a state-of-the-art 3D-2D reg-
istration system aimed at assisting image-guided surgical interventions.

First, section 2.1 broadly covers the federation of smaller components which are the building blocks
of a registration algorithm. Many of these modules are worthy of a thesis in themselves — the
literature is scrutinized for widely used solutions with enough details to identify which components
work best for which problem category. Section 2.2 lists the nature that a registration algorithm can
exploit: how different data sources can be used in registration and the implication of that choice.
This is where the specific surgical application for which image-guidance is most important. Since
insight often comes from gleaning at work seemingly unrelated to the current problem at hand,
it also broadly covers ways to deliver registration that may not be directly applicable to image
guided interventions but can hint to possible innovations across applications boundary. Section 2.3
is devoted to the different validation and comparison techniques for registration algorithms. The
last section (2.4) defines the research objectives.

After reading this chapter, the reader should have a good idea of the state-of-the art in 3D-2D
registration algorithms, how they are built as well as the challenges to overcome in order to provide
useful novel approaches to registration for image-guided surgeries.

2.1 Registration Components and Systems

Solving a 3D-2D registration problem is finding the parameters of the transformation that ex-
presses the 3D and 2D data in the same coordinate frame [16]. After registration, the 3D data is
aligned with the 2D data: when superposed, the intersection of the 2D plane and 3D volume map
to the same physical location. In IGIs, the registration process can be seen as recovering the pose

of the patient: finding the position and orientation of the patient in space.

The iterative registration process is as follows. First, the 3D image is initialized at a plausible
starting position in space. It is then projected (2.1.1) to a 2D image, which is in turn compared to
the intraoperative image from the 2D modality using a similarity measure (2.1.3). The similarity
measure produces a cost from the images comparison, which the optimizer (2.1.4) uses as a basis to
select the next parameters in the transform space. The selection of those parameters is an informed
guess made by the optimizer of a position in the transform space that is plausibly closer to the
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registered position than the current pose. If the optimizer judges that the current transform (2.1.2)
is the registration’s answer, the algorithm stops. If not, the registration loop is reinitialized with the
new, plausibly better position and the next iteration starts. This process is illustrated in figure 2.1,
and represented mathematically by equation 2.1.

Optimizer

Similarity
Measure

Projection 
3D→2D

Transform ti

Registration
Loop

im3d
preoperative

im2d
intraoperative

ti+1

costiΓti(im
3d)

℘p(Γti(im
3d))

(next iteration)

End

Found
Minimum?No

Yes

Figure 2.1 Abstract block-based representation of a 3D-2D registration system. The operator ℘p(.)

represent a projection operation (details in section 2.1.1), and the operator Γt(.) a transformation
operation (details in section 2.1.2).

Figure 2.1 is a representation of how a registration system is built. It can be seen as the simple
minimization of an objective function (the similarity measure):

t̂ = argmin
t

SM

(
im2D, ℘p

(
Γt
(
im3D))) (2.1)

where the parameters t̂ of the transform is the solution of the registration problem: the pose of
the patient. The similarity measure (operator ‘SM(.)’) is a function that evaluates how resemblant
two images are. Note that the registration process can also be a maximization (‘arg max’) process
rather than a minimization — it changes depending on convention or the internals of the similarity
measure used. In this thesis, we use the ‘minimum-seeking’ convention. Equation 2.1 does not
explicit that the ‘arg min’ may or may not yield the correct answer; in most applications, the
minimization process is implemented by an approximative, iterative optimization process that may
get stuck in a local minimum. Also, the minimum of the similarity measure might not correspond
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to the correct registered position. There are therefore two reasons a registration algorithm might
fail:

1. The minimum cost does not correspond to the correct registered position (the similarity mea-
sure, projection or transform is not appropriate).

2. The iterative, optimizer-based minimum-seeking system does not find the minimum cost (and
is unaware of its failure).

2.1.1 Projection System and Geometry

A 3D-2D projection transforms a 3D image into a 2D image. In a registration algorithm, it is
used as a mean to compare data of different dimensionality. The projection can be seen as a simple
function with parameters p:

im℘ =℘p
(
im3D) (2.2)

where the ℘ in im℘ denotes that the image is ℘rojected. This projection if composed of two
operations:

1. The geometrical mapping of the 3D to 2D points.

2. The functional mapping of intensities of the set of 3D points that map to a single 2D point in
order to produce a realistic 1 2D image.

In a slight abuse of notation, the parameters of projection p in equation 2.2 are only related
to the geometrical mapping, and not to the functional mapping of intensities. Those parameters
exist, but since they do not change in a family of registrations of the same case, they are considered
intrinsic to the projection function. The parameters of p are as follows:

p : [ f , ox, oy, sx, sy] (2.3)

where f is the focal distance: the distance of the projection plane from the center of projection.
(ox, oy) and (sx, sy) define the center and effective pixel size of the projected image respectively.
The parameters of p, illustrated in figure 2.2, are often called the intrinsic perspective projection

parameters [17]. The parameters are intrinsic in the sense that they define how the image is formed
without any reference to the external world.

1. ‘Realistic’ here is heavily application dependent. It usually means that it resembles the 2D modality used in the
operation, which may be different from the 3D modality.
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℘(im3d)

(ox,oy)

f

im3d

im2d sxΔx

im2d syΔy

p

Figure 2.2 Intuitive representation of the projection parameters p : [ f , ox, oy, sx, sy].

Image Formation Model

The X-ray imaging model is similar to the pinhole camera model (described in [17]), except
that the image is not inverted and is magnified instead of being shrunk.

Pinhole

image plane

X-ray

focal point

object

object

X-ray source

image plane

A

A

Figure 2.3 X-ray compared to pinhole projection system.
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The equations modeling a perspective projection can be derived by observing the similar trian-
gles formed by tracing rays from the camera center to 3D objects.

x

z

y

pim

A

A
pw

c: camera center

principal ray3d object

image plane

o: principal point

Figure 2.4 Projection system.

The points in the world (the 3D space) are noted pw and the points on the image plane pim. Both
points are ‘physical units’, denominated in the metric system. The center of projection (also some-
times called the camera center) ‘c’ correspond to the center of projection and origin of the world
coordinate system. The principal ray origins from the camera center and is perpendicular to the
image plane. The principal point ‘o’ is at the intersection between the principal ray and the image
plane. The focal distance is measured from the camera center to the image plane and is noted ‘ f ’.
The similar triangles are best viewed when looking at the YZ plane:

y

f

z

pim

pw

c: camera center principal ray

3d object

image plane

o: principal point
AA

Figure 2.5 Projection system, viewed on the ‘YZ’ plane.
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Intrinsic Parameters

The similar triangles formed by [cy, pim
y , pim

z ] and [cy, pw
y , pw

z ] allow the derivation of the formulae
to project pw

y on a 2D plane at pim
y :

pim
y =

pw
y · pim

z

pw
z

=
pw

y · f
pw

z
(2.4)

The same analogies are valid for the XZ plane:

pim
x =

pw
x · pim

z

pw
z

=
pw

x · f
pw

z
(2.5)

Equations 2.4 and 2.5 are sufficient to project 3D world coordinates to a 2D plane. However, in
order to generate a proper numerical image, it is necessary to define a scale and image boundaries.
For example, if the image plane has relevant information in a zone of 1 cm by 1 cm, it could be
represented either by a numerical image of 1x1 or 100x100 pixels. Additionally, the numerical
image could represent just a subset of the information in the image plane.

image space pixel space

(-100, -100)

(100, 100)

(0, 0)

(200, 200)

A y

X

y

x A
Figure 2.6 Image space to pixel space.

A scaling factor s
pixel
unit defines how many pixels correspond to one image unit (im.u), e.g: mm.

The change of referential from image space to pixel space is done by translating the scaled image
units by opixel pixels, the position where the principal point lays in pixel space. This is done using
the following equation:

ppixel
x = pim

x · s
pixel
im.u
x +opixel

x

ppixel
y = pim

y · s
pixel
im.u
y +opixel

y (2.6)

To account for image boundaries, there are two variables ppixel−min and ppixel−max that define the
maximum and minimum points in the pixel space to be displayed in the image. Any points outside
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of the minimum-maximum range created by those points are discarded. (To simplify equations,
opixel is selected so that it lies in the middle of the image, with ppixel−min = [0, 0]T .)

In order to express the projection in a matrix system, equations 2.4 and 2.5 are substituted in 2.6:

ppixel
x =

f · pw
x · s

pixel
im.u
x

pw
z

+opixel
x

ppixel
y =

f · pw
y · s

pixel
im.u
y

pw
z

+opixel
y

(2.7)

which is equivalent to:

pw
z · p

pixel
x

pw
z · p

pixel
y

pw
z

=

 f · s
pixel
im.u
x 0 opixel

x

0 f · s
pixel
im.u
y opixel

y

0 0 1


pw

x

pw
y

pw
z

 (2.8)

The pixel position ppixel is recovered after division by the third component pw
z .

This 3D-2D projection matrix is called the intrinsic matrix Mint because it contains the parameters
that are intrinsic to the camera model: its parameters [ f , sx, sy, ox, oy] do not depend on variables
from the external world.

Mint ≈

 f · s
pixel
im.u
x 0 opixel

x

0 f · s
pixel
im.u
y opixel

y

0 0 1

 (2.9)

Equation 2.9 assumes that there are no distortions in the image formation model (hence the ap-
proximation symbol). Unfortunately, X-ray systems may introduce a shear distortion that can be
modeled by a skew factor (γ) [18], slightly complicating the intrinsic matrix:

Mint =

 f · s
pixel
im.u
x γ · f · s

pixel
im.u
x opixel

x

0 f · s
pixel
im.u
y opixel

y

0 0 1

 (2.10)
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Extrinsic Parameters

Registration is recovering the pose of the patient, which is modeled by the extrinsic parameters.
The intrinsic parameters, seen in section 2.1.1, express the internals of the projection system. The
extrinsic parameters model the position and rotation of the patient in space, which is the infor-
mation we wish to recover using registration. Although non-rigid deformations are plausible, this
thesis is limited to the 6-dimension rigid-body parameters deformation resulting from a rotation
and translation:

pb = R ·pa + t (2.11)

where R is a 3x3 rotation matrix and t a 3x1 translation vector (t = [tx, ty, tz]T ). In order to store
the 3D-3D rigid-body transformation in a convenient form, R and t are concatenated in a matrix
with the 3D points expressed in homogeneous coordinates:

pb =

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz




pa
x

pa
y

pa
z

1

 (2.12)

This leads to the definition of the extrinsic matrix, which applies a rigid-body transforming a
point in the world space (3D) to another point in the world space.

Mext =

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz

 (2.13)

Projection Matrix

The intrinsic and extrinsic matrices link any 3D point in the world space to a 2D point in the
image space.

p2D∗ = MintMextp3D (2.14)

Note that p2D∗ 6= p2D: p2D has to be recovered by a division by the third component, as done
in equation 2.8. The intrinsic and extrinsic matrices can be concatenated into a projection matrix,
which directly links 3D and 2D positions:

Mpro j = MintMext (2.15)
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2.1.2 Transform

It is the responsibility of the registration algorithm to find the right transform t that recovers
the pose of the patient, which is inferred by comparing the projection of the transformed 3D pre-
operative data to the 2D intraoperative images. In this process, there are a myriad different ways to
transform the 3D image. t could be the parameters of a spline-based local deformation function ap-
plied to the 3D volume, or simple translation parameters; the selection of an appropriate transform
depends of the underlying assumptions about the registration problem. If it can be assumed that the
organ to be registered is solely rigidly deformed between the acquisition of the preoperative and
intraoperative images, using a rigid-body 6-parameter transformation representing a 3D translation
and rotation (as in equation 2.16) is adequate. These parameters are related to what is called the
extrinsic parameters in computer vision lexicon [17], which are introduced in section 2.1.1.

t =
[
tx ty tz θx θy θz

]T
2 (2.16)

Even when the rigid-body assumption is not completely correct, a registration system is often
restricted to account for relatively simple transformations since there is a very high cost of raising
the dimensionality of t. If α is the dimensionality of t, it means that the search-cost to evaluate
every possible transform has a complexity of O(nα). If it requires 15 milliseconds 3 to evaluate
a transform (projecting on a 2D plane and comparing to the intraoperative data), translations are
evaluated in a range of 25 mm with a millimeter precision and with a 3D-angle precision of ± 1
degree, it will take 43.3 years to complete an exhaustive registration. By comparison, a similar
registration but accounting for translations only (that is, t : [tx, ty, tz]T has a dimensionality of 3)
will complete in 3.9 minutes. This explains why the dimensionality of t is often limited: to strike a
precision/speed compromise.

The transform is represented by:

im3D
t = Γt

(
im3D) (2.17)

where t represents the transformation parameters while Γt is the function that applies the trans-

form with parameters t on a 3D image.

2. The capital ‘T’ here signifies that the vector is transposed (in order to conform to the mathematic convention of
this thesis), it should not be confused with a parameter of t.

3. This is a low-bound approximation: according to [19], generating the projected image typically takes about 15
ms when implemented on a fast GPU — this 15 ms does not include the evaluation of the similarity measure.
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im3d

(im3d)

(im3d)

(im3d)

ΓtA

ΓtA

ΓtB

ΓtC

ΓtB

ΓtC

Figure 2.7 Example of transforms. tA and tB are rigid-body transforms, while tC is an elastic
transform.

2.1.3 Similarity Measure

The similarity measure ‘SM’, also sometimes called criterion function or cost function, mea-
sures the similarity between two images.

cost = SM
(
ima, imb) (2.18)

A good similarity measure has its lowest 4 cost correspond to the registered position of the two
images, as well as smoothly and continuously decreasing as the two images are pulled from their
registered positions. This is necessary since the minima is typically sought by an optimizer (see
section 2.1.4) that relies on differential or local topology in order to iterate towards the minima; the
presence of peaks and valleys makes it more difficult to converge towards the correct answer. The
similarity measure selected is crucial for the success of the registration algorithm. Unfortunately,
there exist no panacea similarity measure that is superior to all others in all aspects – it needs to be
selected depending on imaging properties of the target organ, modalities used and image formation

4. Or highest depending on the convention used.
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model [16]. This section briefly introduce common similarity measures and the type of data that
they are expected to work well with.

Sum of Squared Differences

Perhaps the simplest similarity measure is the sum of squared difference (SSD), which com-
pares the images pixel-by-pixel and returns the sum of the differences.

SMSSD(ima, imb)= 1
N ∑
∀(x,y)

(ima
x,y− imb

x,y)
2 (2.19)

where ‘N’ is the number of pixels processed 5. The SSD (equation 2.19) is intuitive, but not
likely to work for multimodal image pairings: even if the images represent the same physical

reality, the image formation model is drastically different. This means that SSD might work for
2D/2D intramodal registration, could work with quasi-intramodal registration and will most likely
not be useful for multimodal or model-based registration.

Normalized Cross-Correlation

Normalized cross-correlation (NCC) measures the correlation of the deviation from the mean
value of the images. This allows to register two images where the intensities are linearly correlated,
thus accounting for global brightness variation.

SMNCC(ima, imb)= 1
N

∑∀(x,y)(ima
x,y− ima) · (imb

x,y− imb)√
∑∀(x,y)(ima

x,y− ima)2 ·
√

∑∀(x,y)(imb
x,y− imb)2

(2.20)

Local normalized cross-correlation (LNCC) is a variation of NCC that subdivides the image in
blocks and computes the NCC for each of these blocks separately, then averaging the results of the
individual blocks to a single scalar. This allows to account for local as well as global brightness
variation in images [20].

Gradient Correlation

Gradient correlation (GC) measures the correlation between the gradients of two images; it
detects two images as similar as long as the gradient direction and strength are linearly correlated.

SMGC(ima, imb)= 1
2

[
SMNCC

(
∂ ima

∂x
,
∂ imb

∂x

)
+SMNCC

(
∂ ima

∂y
,
∂ imb

∂y

)]
(2.21)

5. The division by the total number of pixels processed is necessary since we use different image resolutions.
However, it is often not required in applications where the images are always of the same size.
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The derivatives in x and y are obtained by convolution with the Sobel horizontal and vertical
operator respectively. GC has the advantage that it makes a less demanding claim on the resem-
blances of the images as NCC: as long as the two images have gradient of similar orientation and
strength, they will be recognized as similar. Thus, it can be expected that GC will do better in
multimodal registration than the intensity-based SSD and NCC.

Note that the gradient-based measures hinging on Sobel filters have the unfortunate property
of being resolution-dependent. Great care must be taken in multiresolution schemes to adapt the
kernel size to the image resolution. Also, when working with subtracted images, it might be helpful
to apply 2D-preprocessing in order to remove ghost artifact whose high-gradient magnitude might
adversely affect gradient-based registration [19].

Joint Entropy

Since multimodal images have a relationship that cannot be expected to be strictly linear, it is
helpful to move to a more abstract level of comparison. The Shannon entropy H(x) is a measure of
the quantity of information — sometimes also seen as a measure of uncertainty or the dispersion

of the probability distribution — of a signal x. It is a weighted sum of the amount of information
per outcome with the probability of that outcome.

H(x) =−∑
i

p(xi) logb p(xi) (2.22)

where p(x) is the probability distribution of x. In order to avoid infinite results, equations 2.22
implicitly defines: p(0) · logb p(0)→ 0. This measure of entropy can be applied to images by
estimating p(x) with the normalized histogram of the image.

p(imx,y) := normalized_histogram(imx,y) (2.23)

The joint probability of two signals p(x, y) expresses the probability to obtain value yi in signal
y given xi. It is possible to adapt equation 2.22 to compare two images to obtain the joint entropy:

H(x,y) =−∑
i, j

p(xi,yi) logb p(xi, yi) (2.24)

The joint entropy of images can be estimated by using the normalized joint histogram (NJH) as
an approximation for p(x, y).

p(ima, imb) := normalized_joint_histogram(ima, imb) (2.25)

To compute the NJH, a two-dimensional array of size nBin x nBin is first initialized at 0. Then,
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for all (x, y) coordinates in (ima, imb), the coordinates (i, j) of the two-dimensional array is incre-
mented by 1; i being the corresponding intensity of ima(x, y) in bin-space, and j the corresponding
intensity of imb(x, y) also in bin-space. At the end, the resulting 2D array is normalized. Note that
the bin-space is simply a linear mapping of the range of intensities in the image to 0−nBin, nBin
being proportional to the resolution of the approximation of the join-probability function p(x, y)
(defines on how many integer-values the distribution is numerically represented).

ima

imb

i

j

0 nBin

nBin

Figure 2.8 NJH(ima, imb) := the normalized probability that imb has intensity j knowing that ima

has intensity i.

By substituting the joint histogram for the probability function in equation 2.24, we arrive at
the final formula for the joint entropy cost function.

SMJE(ima, imb) = H(ima, imb) =−∑
i, j

NJH(ima, imb)logbNJH(ima, imb) (2.26)

JE is theoretically bounded from 0 to ∞ , with high values indicating that the images are not
well registered. Note that since JE is a sum of nBin2 normalized elements, the result is higher when
using more bins in the joint histogram.

Mutual Information

As seen in figure 2.9, the joint entropy between two dissimilar images can be low if the entropy
of the different images are low as well, which could yield low results for completely misregistered
images. Mutual information (MI) solves that problem by including the individual entropies in the
calculation:

SMMI(ima, imb) = H(ima)+H(imb)−H(ima, imb) (2.27)
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Equation 2.27 is bounded from −∞ to 0. Another form of the metric, introduced by Studholme
et al. [21], is the normalized mutual information (NMI). It has the advantage of being bounded
between 0 and 1 (1: well registered) as well as being less sensitive to changes in overlap that can
lead to degenerate results 6.

SMNMI(ima, imb) =
H(ima)+H(imb)

2 ·H(ima, imb)
(2.28)

6. Note that in some registration papers [21, 22], the factor two in equation 2.28 is missing, while in others it is
present [23]. In our implementation, NMI(ima, ima) (the maximum possible correlation: both images are the same)
yields 2, which indicates that there is a factor two missing . I therefore use the version of the equation with the factor
two division.
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(a) DRR of the left
atrium.

(b) DRR of the left
atrium with higher av-
erage intensity.

(c) Maximum intensity
projection of the left
atrium.

(d) X-ray unrelated to
previous images.

(e) JointHis-
togram(d,d). Join-
tEntropy(d,d): 2.27.
NMI(d,d): 1.00.

(f) JointHis-
togram(a,b). Join-
tEntropy(a,b): 1.61.
NMI(a,b): 0.74.

(g) JointHis-
togram(a,c). Join-
tEntropy(a,c): 2.32
NMI(a,c): 0.58.

(h) JointHis-
togram(a,d). Join-
tEntropy(a,d): 3.24.
NMI(a,d): 0.51

Figure 2.9 The joint histograms of (d,d) and (a,b) show that when the image are linear combina-
tions of each-other, the joint histogram has low dispersion. When the images have a multimodal
correlation (a,c) or no relationship to each other (a,d), the joint histograms are more dispersed. As
expected, as (a) is compared to ever-more different images, the joint entropy gets higher. Note that
the joint entropy of (d,d) is higher than the joint entropy of (a,b) – this is due to (d) having a high
entropy in itself, (the joint entropy of (a,a) is 1.05, as expected lower than (a,b) at 1.61). The result
also show that NMI is more intuitive to use than joint entropy: exact copies of an image get a score
of 1, as image get progressively less resemblant, the score monotonically lowers.

2.1.4 Optimizer

The goal of the optimizer is to find the values in the parameter space of t which maximizes or
minimizes 7 a similarity measure:

t̂ = argmin
t

f
(
t
)

(2.29)

where t̂ is the set of parameters that minimizes f
(
t
)
, and t are the free parameters of the trans-

7. In this thesis, the convention is optimization by minimization.
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form.

Optimizers can be seen as a clever way to find the extremum of an n-dimension function without

having to evaluate all the possible positions of the parameter-space. Most optimizers work in an
iterative fashion: starting from an initial point in t, one or more nearby positions in the parameter
space are selected for evaluation. The difference between optimizer types usually lies in the se-
lection strategy for these positions. In the set of positions (or single position) evaluated, the best
approximation of the minimum value is kept as the starting point of the next iteration. Another
strategy dictates when the result found is good enough; when it is, the optimizer returns the low-
est value visited in f

(
t
)

for all t evaluated. This carries the risk of returning a local minimum,
obliviously ignoring that a lower, better value lies elsewhere.

For example, the simplest form of optimizer is an exhaustive search optimizer: in order to
find the minimum, one can simply evaluate f

(
t
)

for all possible t and return the minimum result.
However, it is not practical to do so when t has a high dimensionality (even on modern computers,
it would take years to find the solution to a 6-parameter registration that way).

Important Criteria of Optimizers

Optimizers can be local, semi-global or global. On one side of the spectrum, local optimizers
are expected to quickly find the extremum for a simple topology but not for topologies with many
creases and valleys, whereas global optimizers find the extremum even with complex topologies,
at the cost of taking much longer to find the solution. In order to have a balance between speed,
precision and robustness to complex topologies, registration algorithms predominantly use local
optimizers coupled with strategies (see section 2.1.4) that allow them to behave in a semi-global
manner.

Other important considerations for optimizers are the speed at which they can converge to the
solution (how many iterations are required) as well as how long it takes to generate the candi-
date position(s) to be evaluated by the similarity measure. Some optimizers require the similarity
measure to be differentiable analytically, whereas others do not or use numerical differentiation.

List of Commonly-Used Optimizers

Exhaustive Optimizer

It is possible to solve equation 2.29 by evaluating all possible values of f (t) and keep the
minimum.
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t̂ = min
i=[1..n]

[
f (ti)

]
= min

[
f (t1), f (t2), f (t3), ..., f (tn)

]
(2.30)

However, this is not computationally feasible in the case of 3D-2D registration where the high-
dimension of t makes n unfathomably large and every evaluation of f

(
ti
)

is time-consuming. A
more sensible solution is to sub-sample the problem space of t by evaluating only every m-th value
in the n-dimensional search space.

t̂≈ min
i=m·[1.. n

m ]

[
f (ti)] = min

[
f (tm), f (t2m), f (t3m), ..., f (tn)

]
(2.31)

It is possible to get an approximation of t̂ by using equation 2.31. However, there is usually a
smarter way to subsample the search space by taking in consideration properties of the registration
at hand. For example, Miao et al. [19] find an approximation of t by limiting the search to 2 di-
mensions in downsampled images of 64x64 pixels (the initial image have a resolution of 256x256
pixels) in a range of [-20 cm, 20 cm] x [-20 cm, 20 cm], with five discrete level of z-translation. Af-
ter the exhaustive ‘subsampled’ optimizer finishes, a full-blown optimization is run (all parameters
in t) starting from the best value of t found by the exhaustive subsampled optimizer. This indicates
that an exhaustive subsampled optimizer can be used to find a first approximation of t which can
later be used as a starting point for a different optimizer type.

Gradient Descent

Gradient descent 8 consists of simply iterating towards the direction opposite to the highest
gradient:

ti+1 = ti−α∇ f (ti) (2.32)

where α is the learning rate. There are many possible stop criteria, a simple one being | f (ti−1)−
f (ti)|< ε [24], where ε is a small value that is proportional to the precision required. Note that α

can vary during the optimization process. The presence of the gradient implies that the similarity
measure has to be differentiable.

Best-Neighbor

The best-neighbor optimizer is strikingly simple: given starting position t1, the neighbors at a
distance of ‘step size’ α in the n-dimensional space are evaluated. If one of the neighbors has a

8. Gradient ascent and gradient descent are the same algorithm, excepted that the negation in equation 2.32 is
switched for an addition when ascending.
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lower value than the current position, the current position is moved to the lowest-cost neighbor and
the next iteration starts. If the current position has the lowest value amongst all visited, the step
size is multiplied by a value between 0 and 1 (the step size multiplier), and closer neighbors are
explored. The stopping condition is triggered when α reaches a predefined value, for example 1.

α1

t1

t4

α3

α5

: visited position
: visited position, highest cost

t2, t3

α2

α4

: step sizeα

Figure 2.10 Example of a best neighbor optimizer with an initial step size of α1 = 4, a step size
multiplier of 0.5 and minimum step size of 1. The optimizer starts at t1; then four positions at a
distance of α1 are visited: the lower cost is found on the right-hand side, which becomes position
t2. From t2, none of the positions at a distance of α1 have a lower cost, so t3 begins from the same
position but with α3 = α2 · 0.5 = 2. A higher position is found two units ‘up’ and the optimizer
moves to t4. From t4, no higher position is found at a distance of 2, so α5 = α4 · 0.5 = 1. The
stopping condition is α = 1, so the optimizer stops at the position t4.

The best-neighbor optimizer has the advantage of being simple to understand and implement.
It does not require the evaluation of derivatives, therefore does not require the cost function to
be differentiable. It also has few, intuitive parameters: initial step size, step size multiplier and
minimum step size.

Powell
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It is possible to extend a good 1-dimension optimization strategy for n-dimensions functions
by optimizing one dimension at a time. However, a simple implementation will likely produce
an inefficient path to the minimum. The optimization of one dimension may interfere with the
optimization done for the other dimensions, which can result in an infinite loop, never minimizing
the function.

Powell’s method [25] is based on the idea that is it possible to find conjugate directions for
which the two aforementioned problems does not occur [26]. It therefore iteratively finds a position
which has a lower cost, using a set of directions which are likely to quickly lead to the global
minimum.

Downhill Simplex

The downhill simplex method, also sometimes called Nelder–Mead method, downhill simplex
or amoeba, generates a simplex 9 in the search space which is iteratively modified to converge
towards a minimum.

The n points of a simplex in the n-dimension search space is represented by P= [p1, p2, ..., pn].
The initial summits are selected as a rough-guess of the region in which the suspected minimum
lies. After evaluating the n points, it is possible to identify the point with the associated maximum
cost pmax. Intuitively, the minimum is more likely to lie closer to one of the other points than the
maximum. This point pmax can therefore be replaced by another point in the surrounding of the
simplex space, with the other points indicating which region is more likely to contain the minimum.
The exact heuristics to select new points are described in [27] and there is an implementation
available in [26].

Comparison of Optimizer Performance

The topology of registrations’ similarity measure as a function of the transform parameters is
highly variable depending on the type of medical images to register. Even though some papers
compare an optimizer favorably using simulated or real data, it is hard to find evidence that one
optimizer works better than another when used in a new registration application.

For example, [20] measures that best-neighbor, gradient descent and Powell-Brent have similar
performance when registering phantom data. Sundar et al. [28] compared best neighbor, Powell
and gradient descent in registration of blood vessels in neuro-interventions: in this situation, Powell
has the best performance precision and speed-wise, but they ended-up using the best-neighbor
optimizer since it was more robust.

9. A simplex is the generalization of a triangle to n-dimensions.
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It is therefore advisable to run tests with many optimizers and select the one that is an appro-
priate compromise between speed, performance and robustness for the application at hand.

Strategies Often Used to Improve the Optimizer’s Behavior

The use of local optimizers, even when paired with a multiresolution approach (see section
2.1.4) in multimodal registration is not sufficient to guarantee finding the correct registered position
[22]. Since the high-dimension similarity measure can form many extrema, it should be expected
that the simple use of local-optimizers may not reliably find the solution. It is possible to use
global optimization strategies such as simulated annealing and genetic algorithms, but they are
typically not found in registration systems because of performance considerations. Jenkinson et al.
report that the registration using simulated annealing takes 1 hour to complete [22], compared to 20
minutes for a ‘semi-global’ search. Global optimization is a bit of a misnomer since those methods
make it more likely that the extremum will be found, but cannot guarantee it [22, 29].

This section contains strategies that are often used to obtain an acceptable registration result
with local optimizers.

Duplicate Competing Optimizations

It is possible to lower the probability of getting stuck in a local extremum by introducing re-
dundant optimizer passes that have slightly different starting parameters [30]. This decreases the
speed of the registration, but is faster and simpler than using simulated annealing or genetic al-
gorithms. Such a strategy is used in [19], where three sub-registrations are started from tentative
positions. Once they complete, the solution for which the similarity measure is the highest amongst
the sub-registrations is selected as the solution for the global registration.

In [31], three successive re-initializations of the registration result from a first pass with suc-
cessively constrained translation and rotation freedom increases the percentage of registration suc-
cesses.

Not Every Dimension is Equal in the Search Space

To allow for optimization of a n-dimension function, a change in any of the parameters of t
should have a similar impact on the output of the similarity measure [20]. It is difficult to enforce
these properties on a similarity measure, but impact of a change in the parameters of t can easily
be regularized by multiplying the step size of the optimizer by a scaling factor that has a different
value for each parameter in t.
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For example, translation and rotation parameters typically have different impact, so they require
a different scaling value. In monoplane registration, the out-of-plane translations (parallel to the
principal ray, as defined in figure 2.4) have a smaller impact on the projection than the two other
translation parameters [28], and must therefore have a large scaling value.

The scaling values are set using common sense for the registration problem (such as in the
example of translation and rotation), as well as measuring the average variation of the similarity
measure’s output for changes in every dimension of t. The scaling values are modified until the
variation of any of the parameters of t has a similar impact magnitude on the result.

Multiresolution

Because global optimizers are too computationally expensive to use, registration systems are
constrained to use local optimizers, which will not succeed in finding the minimum of the similarity
measure unless the topology is very simple. A multiresolution approach is a compromise between
the extremes of global optimization and a ‘wishful’ local optimization. It is similar to the sub-
sampling exhaustive optimizer seen in section 2.1.4, except that the sub-sampling is done on the
image-space instead of the parameter-space.

This can be achieved by building a pyramid of sub-sampled images, finding the minimum at
the lowest resolution, then starting over in a region around that minimum but at one level-down
in the resolution pyramid. However, one must be aware that this makes two assumptions that
are not always true [22]. First, there is no guarantee that the sub-sampling reduces the number
of local maxima. Second, the global minimum at the highest resolution is not necessarily in the
neighborhood of the zone where the global minimum at a lower resolution is.

However, the multiresolution approach is still widely used, indicating that even if these assump-
tions are not guaranteed to hold, it is an acceptable way to build a registration system that offers a
good compromise between performance and precision.

Optimizer Chaining

Optimizer chaining is the use of a set of registration systems, where the output of a system is the
starting point of the next, forming a chain until the last system is reached.

This can be done to use one type of optimizer that is better at iterating fast towards the solution
but has a low precision as a first approximation and then another optimizer that iterates slowly
towards the solution but with a greater precision as a final, ‘careful’ approach. Another typical use
is to register first for translation parameters only, then to register for translation and rotation at the
same time. The concept of optimizer chaining is widely used as it allows combining the strength
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of different optimizers in a single registration system.

2.2 Registration Algorithms Categories

When building a registration algorithm, two choices have a disproportionately big impact on
the outcome: the choice of registration nature and strategy. The nature of the registration is the
type of underlying data that is used; the strategy is the process and building blocks selected. Out of
the two, the nature of the registration has the biggest impact because every aspect of the system has
to be built in consideration of the underlying type of data. Once the nature of the registration has
been selected, it is very costly to change; it can amount to restart from scratch. This is different for
strategies, which can be changed along the way with relative ease. The selection of the registration
nature should therefore be done with great care.

The strategies are the different optimizers, projection and similarity measures components that
can be used. The nature of the registration is more fundamental: for example, one system could use
extracted points from the 3D and 2D data as a basis for a landmark-based registration while another
may use the comparison of the projection of the 3D image with a 2D image through a similarity
measure.

The registration nature can be separated in four broad categories: extrinsic (marker or tracking
based), intrinsic (intensity, feature or gradient), model (statistical or geometrical) and hybrid (a
mix of different natures in a single algorithm). This section is dedicated to surveying successful
registration algorithms, sorted by nature.
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Figure 2.11 Hierarchy of different natures of registration. Intrinsic algorithms use information
naturally inside the images whereas extrinsic algorithms use information artificially implanted or
external to the patient. Model-based algorithms compute a model from the source data and use it
as a base for registration. Hybrid algorithms use a combination of the other types of registration.

2.2.1 Intrinsic

Intrinsic registration relies solely on the information found in the medical images. It is divided
in three categories: intensity, gradient and feature-based registration. Intensity-based registration
exploits the intensities of the voxels and pixels in their integrity whereas gradient-based registration
extracts and matches the gradients of the 3D and 2D images. Feature-based registration extracts
features such as points or surfaces from the intensities, then use a similarity measure that solely
uses the extracted features for registration.

Intrinsic Intensity-Based Methods

Intrinsic intensity-based registration (IIBR) relies solely on the voxel/pixel information to com-
pare images. Conceptually, is it the simplest way to provide registration as it does not require the
identification of special zones — images are just a set of intensities. The principal assumption is
that it is possible to find a statistical relationship of the degree of similarity between the two images
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via their intensities. This can be an easy task for intramodal cases where simple comparisons such
as sum of square difference or normalized cross-correlation (see section 2.1.3 for an overview of
these similarity measures) suffice, but more arduous for intermodal cases which require advanced
statistical methods such as mutual information.

In order to adapt IIBR from 2D-2D to 3D-2D applications, the 3D volume is projected onto
a 2D plane. This projection — a simulated 2D image — is then compared to the 2D modality.
The creation of the simulated 2D image is done by tracing rays from a projection center, through
a 3D volume, unto an image plane (ray-tracing). The value of each pixel can be deduced by
doing an operation on all the voxels traversed by its associated ray. For example, simply summing
the values followed by a re-scaling of the intensity range is sufficient to construct a 2D image
that looks something like a projection of the 3D volume. In order to gain realism, the way the
ray-tracing is done is specifically tuned to the modalities involved. For CT/X-ray, the attenuation

coefficient, a measure of how much energy a type of tissue absorbs, as well as the logarithmic nature
of the X-ray photon attenuation is modeled [32, 20]. The simulated X-ray images produced from
a CT volume are called digitally reconstructed radiographs (DRR). They are not a completely
faithful representation of a X-ray image since the effective energies of CT/X-ray are different,
which result in different attenuation coefficients [33]. The modalities also have different resolutions
and idiosyncratic image artifacts. Therefore, one should expect that the simulated image resembles

the modality imitated, albeit with significant discrepancies.
It is also possible to produce simulated 2D images from a MR volume, but the difference be-

tween intermodal MR/X-ray images is greater than for CT/X-ray images. This is due to the dras-
tically different image formation process involved in the MR/X-ray case. The anatomical features
and their relative position are the same, but the way they manifest themselves on the image is com-
pletely different [34]. This may be partly overcome by the use of complex similarity measures
that allows matching images that have a complex non-linear relation to each-other such a mutual
information, as well as visually tuning the projection process to obtain images that are more alike
the modality to imitate. However, because of the large discrepancy between the projected MR
images and X-rays, this methodology is generally not suitable for registration [35]. Because it is
not possible to generate DRRs from MR images [36] 10, DRR-based IIRB is not directly used to
register MR to fluoroscopic data. However, it is possible to register MR to fluoroscopic data using
mutual information and intensity distributions along the rays. In preliminary work, Rohlfing et al.
[37] uses this method to register the MRI of a skull to two orthogonal DRR images. However, the
practice of registering MR/fluoroscopic images by projecting the MR on a 2D simulated image is
not widespread; there are no convincing studies that validate this methodology on many patients

10. The cited paper is correct in the sense that it is not possible to generate a DRR from an MR image, but it is
certainly possible to generate a projection. This projection will just not be a good mimic of a radiograph.
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and surgical cases. Note that the terms ‘DRR’ or ‘MR-based DRRs’ are sometimes used even if the
projection is meant to simulate a MR image (a more thoughtful denomination would be ‘digitally
reconstructed MR image (DRMRI)’, but is not used in the literature).

A drawback of DRRs is that they are computationally costly to produce. A typical ‘straightfor-
ward’ registration evaluates the cost function around 1000 times. Khamene et al. [20] reported that
the generation of a 256x256 pixel DRR alone takes 60 ms using a 256x256x216 voxel volume, or
35 ms for when the volume is downcasted to 128x128x108 voxels. Miao et al. [19] report gen-
erating a 256x256 DRR using a 2563 voxels volume in 15 ms when computed on the GPU of a
NVidia Quadro FX 360M. Hipwell et al. [32] state that a DRR-based registration takes 5 minutes
to complete, whereas Van de Kraats et al. [36] report 9 minutes for a similar algorithm.

In multimodal applications, there is sometimes no meaningful statistical relationship between
the different modalities. This is the case for the LA which, when viewed under fluoroscopy, is
not visible unless injected with a contrast agent. Such an X-ray image cannot be registered to an
MR image of the LA using IIBR, no matter how complex the similarity measure selected [16]. To
remedy to that situation, both modalities are sampled during the injection of a contrast agent that
renders the LA visible for a brief time period. However, even with a contrast agent, the delineation
of the organ in the fluoroscopic image is not perfect in any single frame and the organ is seen
through the propagation of the liquid, which does not completely matches the MR image (the MR
image is typically synchronized with the cardiac cycle and motion-compensated, which allows to
capture the organ in its entirety). Also, the X-ray images are typically taken during the surgery,
which means that they contain surgical instruments which are not seen on the MR images.

In general, IIBR is more precise than feature based methods, but has a smaller capture range [38,
35]. It has the advantage of not requiring segmentation or feature detection. IIRB is often DRR-
based and used for CT/X-ray registration. For example, Miao et al. [39] use mutual information
(see section 2.1.3) to match a DRR of a segmented CT of the aorta. However, they resort to a
gradient-based method to match the spine. The gradient-based approach can be used to side-step
the issues of the lack of resemblances between the projected 3D and 2D images. The next section
(2.2.1) covers gradient-based registration and explains why it is often used to complement IIRB-
based registration.

Intrinsic Gradient-Based Methods

The IIRB methods of section 2.2.1 have limited utility in multimodal MR/X-ray applications
due to the weak similarity between the projected MR and fluoroscopic images. In some applica-
tions, the intensity gradients prove to have a more stable intermodal relationship. The gradient-
based methods consist of extracting and matching the gradients (magnitude and direction) in the
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3D and 2D images. The rays, from the X-ray source to the predominant edges on the X-ray im-
ages, are expected to be tangent to the surface of main anatomical structures in the 3D volume.
The registration can be done by finding the highest gradients in the 3D image, then projecting and
matching with the 2D image gradients [40] or by finding the highest gradients on the 2D image,
then back-projecting through the 3D volume [35].

Markelj et al. [35] demonstrated that it is also possible to transform a 3D-2D registration
into a 3D-3D problem by reconstructing a coarse 3D simulated image from multiple 2D images,
then using a similarity measure based on 3D gradients matching. However, this comes with the
drawback of requiring multiple X-ray images from different vintage points and well as slower
registration speed.

The gradient-based methods are precise, but have low range compared to intensity-based methods
[35]. They are faster than pure intensity based registration methods because only a subset of gra-
dients needs to be considered (ray-trace only from locations on the 3D or 2D images which have
the highest gradients) and most of the time-consuming volume processing can be done as a pre-
operative step [35, 40]. This result in registrations completing in about 25 seconds [36]. They are
especially useful in applications where the intensity similarity across modalities is weak (such as
MR/X-ray fluoroscopy) and for images that have strong, well defined organ borders such as bones.

Intrinsic Feature-Based Methods

Since the performance bottleneck for most registrations is the optimization/similarity measure
loop, intrinsic feature based methods can lighten the load on the optimizer by simplifying the high-
complexity data (2D, 3D images) to simpler representations. The registration is then solved by
the minimization of distance between detected features in 3D and 2D. When using the most basic
feature – points – the first step is to detect them in both 3D and 2D modalities. After the detection,
the 3D and 2D points are matched using close form solutions [41] or with iterative processes like
iterative-closest-point [42].

For example, Sundar et al. [28] use the centerline of blood vessels in neurointerventional ap-
plications as the central feature. The vessels are detected in 3D and then reduced as a set of points.
The vessels are also detected on the 2D images, but are transformed into a distance map to allow for
a quick-lookup of the distance between the 3D projected points and the centerline of the 2D image.
Ruijters et al. [43] uses a similar method to register coronary arteries (feature-based registration is
popular for vessel-based images since they are generally straightforward to segment in 3D and 2D).
The 3D data is segmented and projected onto a 2D distance map for every transformed visited in
the optimization process. A vesselness filter which expresses the likelihood of a pixel to belong to a
vessel-like structure is applied to the 2D images. Both features in this algorithm are non-traditional



37

(distance map and vesselness), but illustrates the general approach of transforming the 3D and 2D
image into features, then registering by optimization of the features’ similarities.

Intrinsic feature-based registration is typically fast and has a good capture range. However, the
precision depends on the underlying feature extraction or segmentation methods used, which are in
themselves non-trivial. The precision is typically lower than with intensity-based methods. Feature-
based registration can be used to get a rough initial registration which is later refined by a more
precise method.

2.2.2 Extrinsic

Extrinsic registration relies on artificial information placed either on the patient or on surgical
equipment that allows recovering the pose. It can be broadly divided in two categories: marker-

based, where markers are implanted on a patient as easily-detectable features to assist registration
and tracking-based, which relies on the detection by an external device of the patient and equipment
in the operating room in order to estimate the patient’s pose.

Extrinsic Markers-Based Methods

Extrinsic registration relies on the position of markers attached on, or implanted in patients. It
can be seen as special case of ‘intrinsic feature-based’ registration, where the features are human-
made, implanted and designed to be easy to identify in both modalities. Markers are typically used
in operations where there are no features that otherwise allows for registration [16]. After pair-
ing, the markers are detected in 3D and 2D, either manually or using image processing techniques.
Then, the registration is deduced by finding the rigid transformation that best projects the 3D po-
sitions of the markers on the 2D position detected. This can be done using closed-form solutions
that minimize the error in the least-square sense [44], or by an iterative process [45].

For example, Simard et al. [45] uses markers taped to the skin of patients to register cases
of SfVM. The markers are manually identified and paired in the 3D (MR) and 2D (fluoroscopy)
modalities. Starting from an initial pose recovered from the DICOM file headers, the best trans-
formation of the set of 3D-2D points is then found using an iterative least-square solution. The
precision, measured on tests using an anthropomorphic phantom, is good (less than 2 mm). How-
ever, the pose of markers on the patient’s body is time consuming and impedes the normal operation
procedure. Also, the markers pairs in 2D-3D have to be identified and paired manually, which takes
2 to 3 minutes on average.

Markers-based methods have the advantage to be precise, computationally and conceptually simple,
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but have the drawback that the implantation of the markers is invasive and time consuming. They
are ideal to define a gold standard registration result [35], which can serve as the comparison point
for other, less precise registration algorithms. It is also possible for the markers to move from their
initial implantation point during surgery, causing significant registration errors.

Extrinsic Tracking-Based Methods

Tracking-based methods exploit the detection of the surgical environment via sensors to keep
track of the patient’s position, rather than trying to find relationships in medical images. For ex-
ample, work by Rhode et al. [46, 14] track optical markers (infrared emitting diodes) placed on
surgical equipment tracked using optical cameras (Northern Digital Optotrak 3020). In order to
calibrate the system, markers have to be identified manually, but there is no manual intervention
during the operation and no need to place markers on the patient. The precision, as measured on
experiments using an anthropomorphic phantom, is of 2.4 to 4.2 mm for two-dimensional target
registration error and 4.6 to 5.1 mm for integrated volume representation. This level of precision
is claimed to be clinically acceptable to align the chambers of the heart. This solution is attractive
because it does not impose an additional burden on the medical staff during the operation, but the
availability of the optical tracker, the cost and the space it takes in an usually crowded operating
room remains a problem.

Since this method does not require an iterative registration or the use of DRRs, it can be done
in real-time. However, it assumes that there is no patient movement between the MR and X-ray
machines, which means that the patient has to be properly immobilized and that a limited amount of
time is allowed in between the MR scan and the operation. An image or feature-based registration
could be done in addition to the tracking in order to allow for patient movement compensation.

2.2.3 Model-Based

Model-based registration consists of using an artificial modality derived from or representing
the 3D image, then registering this model to the 2D images. The model is typically geometrical
or statistical. For example, implants are usually designed as CAD (computer-aided design) ge-
ometrical models, which can be registered to 2D images of a patient’s organ. Statistical models
contain denser information of the represented organ, permitting production of realistic ray-traced
projective images. When an atlas is available, it can be customized into a realistic patient-specific
representation of the targeted organ in order to avoid imaging the patient under a 3D modality (to
save time, cost or to avoid needlessly irradiating the patient). Fast registration can be achieved by
using a model that is a simplification of the 3D data. This simple representation might also be easier
to register than the initial 3D image when the original 3D and 2D images are intermodal. Note that
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model-based registration differs from intrinsic feature-based approaches where the features are ex-

tracted from the 3D image and then directly matched to the same type of feature on the 2D image,
such as matching point or surface sets. The models are not limited to being matched to a similar
feature in 2D — they can be used along with the intensity-based similarity measures.

There are numerable cases of model-based registration applications in the literature, most of them
for orthopedic use involving the pelvis [47, 48, 49, 50], femur [51, 52, 53], hip [54], knee [55, 29]
or spine [56]. There is also some work involving vessels: coronary angiograms [31] and liver
vasculature [57]. The registration is done using edge matching or contour-based methods [47, 53,
55, 56], iterative closest-point [51], DRR with a gradient difference metric [50], DRR with a MI-
like metric [48, 49], DRR with both gradient and MI [54], binary masks [29, 31] or simple sampling
of model-projected point intensities on the 2D image [57]. There seem to be no work related to
model-based registration of dynamic soft tissue organs such as the heart chambers. This may be
due to the fact that it is easy to register a mesh (a data structure that has information on the edge of
the organ) to bones and vasculature which have clear boundaries, but harder for soft-tissue organs
which do not.

Model-based registration can be used to accelerate DRR production which is the main speed
bottleneck in 3D-2D registration (producing a DRR-like image from a mesh or a statistical model
can be much faster than from a 3D image) or even completely bypass the production of DRR
by using ‘binary masks’ methods. This is the approach used by Mahfouz et al. [29], where they
observe the kinematic movement (under fluoroscopy) of patients that had knee replacement surgery
in order to identify potential sources of joint stress. The CAD model of the implant is projected
to produce a 2D binary mask as well as a 2D edge mask. A simple similarity measure that counts
the superposition of the bright pixels with the masks is used. A weighted sum of the full mask
compared with the inverted X-ray image and the edge mask is compared with the edge-enhanced
X-ray. This extremely simple similarity measure can be used since the metallic implants appear
much lighter (after inversion) than anything else under X-ray. The optimization is done using
simulated annealing, which is time-efficient because the production of the masks is very fast.

Turgeon et al. [31] also bypass the production of DRRs by registering a 3D mesh of a coronary
tree (simulated dataset) derived from preoperative 3D images (using the marching cubes algorithm)
to a mask derived from a 2D angiogram of the heart with the limitation that the preoperative and
intraoperative images must be acquired at the same phase of the cardiac cycle (end of diastole).
Entropy correlation coefficient (a normalized form of mutual information) is used as the similarity
measure, along with a transform (6 degrees of freedom) driven by a downhill simplex optimizer.
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2.2.4 Hybrid

Hybrid registration refers to registrations that combine the results from different methods to
take advantage of their specific strength. For example, [19] registers an aorta using a similarity
measure that is the weighted sum of the similarity of the aorta (predominant in the image) as well
as the coronary ostia (a much smaller feature). One method is used to steer the registration glob-
ally, while the other is used for precise alignment in the final steps of the registration. Vermandel
et al. [58] register digital subtracted angiography and magnetic resonance angiography by com-
bining intensity and feature based approaches, using the feature-based approach to speed-up the
registration and the intensity-based approach to refine the solution. A similar approach is used by
[40] where they use points on bone contours with an iterative-closest-point method to find a coarse
registration, then switch to a gradient-based method to refine the solution. Hybrid approaches are
especially common with gradient-based algorithm since they lack the range of other algorithms but
are useful to refine a solution which is already close to the truth value. Registration algorithms used
clinically tend to employ hybrid methods because it allows combining the strengths of different al-
gorithms to achieve lower probability of complete failure which would require many algorithms
based on different image properties to fail simultaneously.

2.3 Validation of the Registration Methods

Registration is difficult to evaluate because there is no standard dataset that can be used as a
basis to evaluate all possible algorithms. There exist free-of-charge, fully calibrated multimodal
datasets with ground truths [36, 16] to test and compare registration algorithms. If possible, this is
the best way to evaluate registration. However, registration is applied on a wide range of medical
images and modalities; those datasets are only useful to compare algorithms that are designed for
applications that use medical images similar to their dataset. A lot of research effort is spent solving
specific surgeries by using surgery-specific information that cannot be generalized to datasets from
a different type of surgery.

In the absence of a public dataset with known ground-truths (which is most of the time the
case when developing a new registration algorithm), it is still possible to validate and measure
the quality of registration algorithms. This section reviews the methods that are routinely used to
evaluate registration algorithms.

2.3.1 Validation of Similarity Measures

A full-fledged registration algorithm is a federation of smaller components that, in themselves,
have enough complexity to motivate the creation of their own test protocols. If one of the com-
ponents has defects, the whole system has little chance to work properly. This section outlines a
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method to isolate the similarity measure from the rest of the registration algorithm.

A good similarity measure has the following properties [20]:

1. The topology of the evaluation of the parameter space of t forms an minimum 11 tmin where
the registration is correct.

2. When moving away from tmin in any dimension of t, the cost becomes higher as smoothly

and monotonically as possible.

3. Properties (1) and (2) are robust to expected radiometric differences between the input images
of the metric.

These properties can be assessed by evaluating the similarity measure over the whole param-
eter space of t. However, since evaluating the similarity measure for the whole domain of t is
computationally unfeasible in a reasonable amount of time and that graphical interpretation of
high-dimensional data is difficult, is it preferable to evaluate the similarity measure by varying one
or two dimensions at a time while fixing all others in the vicinity of the ground truth [22]. There
is no formal guarantee that a similarity measure is smooth for all parameters when it is smooth for
only one or two, but in practice it is often observed.

In order to avoid being overly verbose, the following nomenclature is adopted: the cost func-

tion refers to the variation of the cost of the similarity measure in function of a variation of the
parameters of the transform.

2.3.2 Validation Methods without Known Ground Truth

Visual Observation

Visual observation by a medical professional is an important validation step. Since the evalu-
ation methodologies are often application specific [16] and done on publicly unavailable images,
the comparison of metrics can be of limited utility. The utility of the registration algorithm has to
be evaluated by the end-users: the medical specialists themselves. To allow them to evaluate the
registration algorithm, it is therefore important to provide images that present the registration result
as a 3D-2D overlay. The drawback of visual observation is that it makes it difficult to compare the
performance of different algorithms because of the qualitative nature of the visual observation.

Compare With Lowest Similarity Measure Cost Exhaustively Found

When unavailable, it is possible to approximate the ground-truth with the global minimum,
which can be found by an exhaustive optimizer [29]. Of course, there is no guarantee that the

11. Or maximum, minimum is used here as a convention.
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ground-truth coincides with the global minimum, which makes such an evaluation relatively weak.
However, it can be useful to measure convergence properties of the algorithm as well as the impact
of changing the similarity measure or optimizer type.

Consistency Study

Another way to run experiments without having a ground-truth is to crudely evaluate the reg-
istration solution manually, then to generate initial positions around that value. The registration
algorithm is launched with those initial values and the results are then compared to each other

instead of against a ground-truth [22]. If the registration algorithm is consistent, the different reg-
istrations results should be similar to one another.

2.3.3 Validation Methods with Known Ground Truth

Comparison of Transform Parameters

It might be tempting to directly compare tregist and ttruth (the transform parameters found by
the registration and the ground-truth respectively) as an error metric, but it is not an appropriate
measure of a 3D-2D registration algorithm’s performance. First, not all items in t have a simi-
lar impact. For example, out-of-plane translations in 2D projective images typically have a much
smaller impact than the in-plane translations [28]. Also, the items in t are not necessarily indepen-
dent. For example, the rotation and translation parameters in a 6-dimensional rigid body transform:
since more than one set of rotation parameters rx, ry, rz can yield the same final rotation, it is not
appropriate to use the direct comparison of parameters as a mean to evaluate registration quality (a
perfect registration might yield a high error rate using that method) [36].

mPD and mTRE

The mean target registration error (mTRE) is the mean distance between the registered and
ground truth points in 3D space and mean projection distance (mPD) is similar but after 3D-2D

projection [36]:

mTRE(P, Tregist , Ttruth) =
1
n

n

∑
i=1
‖Tregistpi−Ttruthpi‖ (2.33)

mPD(P, Mregist , Mtruth) =
1
n

n

∑
i=1
‖Mregistpi−Mtruthpi‖ (2.34)

where P = {p1, . . . , pn} are points where the error is evaluated. P can be fiducial points
(although special care has to be taken not to introduce a bias [16]), or simply picked at random
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inside a region of interest. Tregist and Ttruth are the rigid body transformation matrices found by the
registration algorithm and the ground truth; Mregist and Mtruth the perspective projection matrices
(the mPD is understood to be the result after division by the homogeneous coordinate).

Another closely related measure is the root mean square error (RMS) [31] (in its 2D and 3D
forms). However, there is no practical reason to prefer RMS error to mPD and mTRE. mPD and
mTRE are used in this thesis because they are more commonly seen in registration papers.

Statistically Significant Number of Registrations and Cases

The ultimate test for a registration framework is to have enough patients with known ground-
truths to characterize the expected success rate, precision and range of the registration algorithm.
This can be achieved by using the following protocol. For every patient, generate n random initial
positions. These positions are derived from ttruth with a random deviation added to each component
to simulate the initial difference between the patient’s real position and the estimation that the
registration algorithm starts with.

tinit = tdeviation + ttruth (2.35)

where [∆tx,∆ty,∆tz,∆θx,∆θy,∆θz]
T → tdeviation. The parameters of the deviation are generated

from a bounded uniform distribution. The translation terms are bounded between −α..α mm and
the rotation terms between −β ..β degrees. For example, [31] uses a Gaussian distribution with
tdeviation of 25 mm and 6◦ to corrupt ttruth into tinit in registration of coronary angiograms. Livyatan
H. et al. [40] evaluate that the initial pose is within 10-20 mm and 5-15 degrees of the ground truth
in cases of femur registration. The exact values depend on the specific surgery and can be evaluated
by looking at recorded surgical cases. The number of registrations created is therefore the number
of starting positions generated for each patient, multiplied by the number of cases available. Each
registration yields an error measure, usually mPD or mTRE.
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Figure 2.12 Error measurement as a function of the error before and after the registration. This
example figure contains only one result, with an mPD of ≈17 mm before registration and ≈5 mm
after. The success threshold is set depending on the surgery’s precision requirement. The ‘line of
no improvement’ separates the experiments where the registration improved the pose to when it
was worsened.

Since a lot of data is generated from running such an experiment, it is helpful to report the result in
the form of a graphic that can, at a glance, give an intuitive understanding of the properties of the
registration algorithm, such as in figure 2.12 [36]. The figure expresses the relationship between
the registration error before and after the registration. Every blue cross is the result of a registration.
The line of no improvement separates the trials for which the registration improved the situation
from those where it was worsened. The precision of the algorithm is the average position on the
vertical axis, the success rate is the ratio of the cases under/over the ‘success threshold’ line and
the range of the algorithm is the maximum starting error value for which a reasonable ratio 12 of
the trials end-up under the success threshold line.

2.4 Research Direction: The Case for a New Registration Algorithm

Our goal for this research project is to provide quick and automatic registration that does not im-

pede the surgical procedure for interventions where 3D-2D registration is not widely used because

12. The exact ratio to use is often a contentious debate. The surgeon is probably the best judge of what an appropriate
value is.
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of yet unsolved technical hurdles.
The cases of CA for AF lack predictable, distinct features that would make an intrinsic feature-

based method feasible. The extrinsic methods require modifying the surgical procedure by the
implantation of markers on the patient, or buying additional hardware. We saw in section 2.2 that
intrinsic intensity-based methods are in general too slow for real-time registration, in large part
because of the computational complexity of computing volumetric projections. This is reflected
in current projection-based solutions for registration of CT/fluoroscopic data which take several
minutes to complete. Also, there is currently no automatic registration algorithm that can register
MR/fluoroscopic data for cases of CA for AF due to the large discrepancies between the projected
MR and fluoroscopic images which even complex similarity measure based such as mutual infor-
mation cannot account for. The same is true for cases of SfVM which use the MR/fluoroscopic
modalities. In addition, there is a need for a common methodology that will allow registering the
large diversity of medical images because VMs can be present on any body part: the organ or
features to register vary from case to case.

CA of AF surgeries are currently done with an overlaid mesh that is manually registered at the
beginning of the operation. We propose to use the mesh rather than the MR image to drive the reg-
istration. This is less computationally intensive since it allows side-stepping the costly volumetric
projections. The mesh can be used as a way to infer zones in the fluoroscopic images, which can
then be compared against each other. This also has the advantage that it abstracts the 3D modality
used, since a mesh will not differ if it is segmented from MR or CT data (opening the door for fast
MR/fluoroscopic registration).

We posit that the zones created by a mesh projection are most statistically different when the
mesh’s pose corresponds to the correct, registered position of the mesh. This is a way to solve
a 3D-2D multimodal problem by the analysis of 2D-2D intramodal information, which simplifies
3D-2D multimodal analysis. At the best of the knowledge of the author, this method of registration
is novel.

The hypothesis for this project is:

– Using the partition of the 2D images created by projecting the mesh derived from the 3D
modality can solve a multimodal MRI/X-ray 3D-2D registration problem faster than the vol-
umetric projection based methods currently used.

The specific objectives are:

I. Devise a fast, robust and automatic algorithm that provides MR/fluoroscopic registration for
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cases of CA for AF without requiring additional hardware in the operating room.

a. Propose a similarity measure that directly registers a mesh to fluoroscopic images sam-
pled during the injection of contrast agent in the left atrium.

b. Solve a multimodal registration problem by comparison of intramodal intensities groups
in the fluoroscopic images.

c. Accommodate for partial match between modalities. In cases of CA for AF, the 3D
image matches the contrast agent only partially (especially at the level of the PVs).

II. Build a validation framework and gather validation cases:

a. Build a tool that allows finding the ground-truth visually for the surgical cases.

b. Build a tool that allows to visually derive the biplane geometry using the source 3D and
2D images.

c. Define a preprocessing protocol that readies the patient data for registration.

d. Gather validation data from CA for AF surgeries.

III. Validate the resulting registration algorithm:

a. Validate the algorithm on surgical cases of CA for AF

b. Evaluate the algorithm on surgical cases of SfVM.
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CHAPTER 3 : METHODOLOGY

There is a dearth of algorithms that allow solving hard multimodal problems (such as MR/X-
ray) in an amount of time that allows for intraoperative update of the organ’s pose. We introduce a
new class of model-based registration algorithm which addresses both of these problems by trans-
forming a 3D-2D multimodal problem into a 2D-2D intramodal problem. The multimodal compu-
tations are eased by first segmenting a mesh from the volumetric data, then basing the registration
on the analysis of the statistical properties of the groups of pixels inferred from the projection of
that mesh onto a binary mask. These operations are less costly than using volumetric ray-casting,
and abstracts the type of volumetric data since the mesh not strongly coupled with the modality
(e.g. CT or MR) used. These improvements come with the drawback of requiring a segmentation
of the 3D volume prior to the registration. Because the technique hinges on groups of pixels de-
rived from the projection of a mesh, we call the algorithm ‘mesh-derived image partition’ (MDIP)
registration.

The novel MDIP algorithm is described in section 3.1. The algorithm is tested with data recorded
from surgical cases which is described in section 3.2. The validation method of the proposed
algorithm is presented in section 3.3.

3.1 Mesh-Derived Image Partition Based 3D-2D Registration Algorithm

The typical intensity-based approach to 3D-2D registration is to ray-cast a 3D volume to a
2D image, and then use a similarity measure to compare the projected 2D image with the 2D
intraoperative frames. Based on the output of the similarity measure, the optimizer then iteratively
steers the registration process. The relationship between the ray-casted and source 2D image is
complex (their image formation processes are different, especially if the 3D and 2D modalities are
a multimodal mix of X-ray and MR data), which requires elaborate statistical methods such as MI
to compare. This results in the topology of the similarity measure as a function of a change in the
transform applied to the 3D data having many peaks and creases, which makes the optimization
process error-prone. This can be mitigated by using global or semi-global optimization, but at
the cost of a large, negative impact on performance (discussed in section 2.1.4). The volumetric
projection is also inherently slow (see section 2.2.1), which further hinders performance.

In the MDIP algorithm, a mesh is first segmented from the volumetric data, which abstracts the
3D modality used (a mesh derived from CT or MR will not have significant differences). Instead of
projecting the 3D image into a simulated 2D image through ray-casting, the mesh is used to infer
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groups in the 2D image, which can be done orders of magnitude faster than volumetric projection.
A comparison of the statistical properties emergent from these groups drives the registration. Since
the groups come from the same modality and only basic statistical operations are required, a lot
of computation stress is removed from the similarity measure. The topology of the similarity
measure’s cost in function of a change in the transform’s parameters is also simplified, greatly
easing the optimization process.

The MDIP algorithm can be computed using the following steps. First, a mesh is used to bisect the
2D image into two groups: the pixels that fall under the projection of the mesh (∈ mask) and the
ones that do not (/∈ mask) (see figure 3.1).

im2D

∈im
2D
mask

∈/im2D
mask

Project/Bisect

Mesh

Mask

Figure 3.1 The projections of the mesh partitions a 2D image (im2D) into two pixel groups: im2D
∈mask

and im2D
/∈mask.

The main hypothesis is that when the mesh is properly registered, the grouped pixels share
common characteristics because they belong to the same entity. A similarity measure operating on
pixel groups yields a quantity indicating how well registered the 3D and 2D images are. The set of
transform parameters that correspond to the best 3D image pose is found by iterative optimization.
The whole process is summarized in figure 3.2.
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Loop

Figure 3.2 Overview of the 3D-2D MDIP-based registration algorithm.

The creation of groups in the 2D image can be seen as a way to transform the registration
problem into a segmentation problem, with the possible segmentations constrained by the topology

of the 3D image.

The rest of this section is dedicated to covering the new components that have to be developed
in order to build a MDIP-based algorithm: the creation of masks from meshes (3.1.1) and the
introduction of similarity measures that operate on groups of pixels with only the average intensities
(3.1.2) or with histograms of intensities (3.1.3).

3.1.1 Mask Creation

In order to segment the 2D image into groups, the 3D image is projected into a mask. Although
it is possible segment into groups using volumetric 3D images, the rest of the text assumes that
the volumetric 3D image has been segmented into a mesh as a preprocessing step (as explained in
section 3.2.3). We use meshes because they are available in the normal procedure for cases of CA
for AF and they allow directly creating masks much faster than when using volumetric data.
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The projection operation can be represented as:

mask :=℘p

(
Γt
(
mesh

))
:= MaskProjectiont,p

(
mesh

)
(3.1)

where t= [tx, ty, tz,θx,θy,θz]
T are the extrinsic rigid-body transformation parameter and p= [ f ,-

ox, oy, sx, sy]
T the intrinsic perspective projection parameters (derived from the X-ray geometry

parameters: dsource−planeA, dsource−planeB and ∆yiso) as seen in section 3.2.2. Two OpenGL contexts
(one for each plane) are created, and the meshes are loaded along with the intrinsic and extrin-
sic matrices which are derived from the geometry parameters previously mentioned. Figure 3.3
illustrate a simple mesh-to-mask projection system.

X-ray Source

Mesh

tx

ty

tz

t: θx

θy

θz

f

Mask

(ox,oy)

imx

imy

Figure 3.3 Projection system used to create a mask from a mesh.

Depth-Mask Creation

Only a short part of the PVs are visible during the injection of the contrast agent, which is
problematic when trying to match a mesh which has the full PVs attached.
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(a) Full mesh (b) Mesh after shortening of
the PVs

(c) Subtracted fluoroscopy
frame

(d) Subtracted fluoroscopy
frame with full mesh overlaid

(e) Subtracted fluoroscopy
frame with ‘shortened PVs’
mesh overlaid

Figure 3.4 Meshes overlaid to the fluoroscopic images with PVs cut and uncut. Notice that the cut
mesh matches the fluoroscopic image better than the uncut meshes.

This protruding of the PVs outside of where they are visible on the fluoroscopic images causes
significant registration errors. We published a registration method that uses cut meshes such as in
figure 3.4 (b) and (e) to mitigate that problem [59]. The mesh-cutting creates an additional prepro-
cessing step which requires expertise to properly complete. The depth-mask process introduced in
this section allows completely circumventing the mesh-cutting.

The main idea behind depth-mask generation is to lessen the importance of the pixels under the
PVs since they are not visible under fluoroscopy. Since the PVs are relatively small tubes that
protrude from a larger body, it is possible to produce an automatic segmentation of the mesh by
using distance transform-type operations. However, because of speed concerns and simplicity of
implementation, we use an approximation of the mesh’s local depth by exploiting the depth-buffer
of OpenGL. The internal depth-buffer for the front and back faces are used to approximate a ray-
casting operation with close to no speed penalty over just generating binary masks (the depth-buffer
is calculated by the graphics card whether or not it is used in this process) [60].
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(a) P1A subtracted fluoroscopic im-
age

(b) P1A depth-mask (no process-
ing)

(c) P1A depth-mask (processed)

(d) P6A subtracted fluoroscopic im-
age

(e) P6A depth-mask (no process-
ing)

(f) P6A depth-mask (processed)

Figure 3.5 Depth-masks before and after processing. P1A refers to ‘patient #1, plane A’ and P6A
to ‘patient #6, plane A’. See section 3.2 for a description of the data and associated nomenclature.

Processing is applied to the depth-masks before they are used by the similarity measure. This is
done to adjust the intensity values so that pixels under the PVs have much lower values than under
the LA and pixels under the LA are homogeneous. The ray-tracing approximation also produces
disproportionately high values for the PVs which have their principal direction in the out-of-plane
direction, as can be seen in figure 3.5 (b) and (e). This is corrected by ‘compressing’ the intensities
that are more than one standard deviation over or under the mean to exactly one standard deviation
over or under, then rescaling the intensities over the full range allowed by the image resolution.
The result can be seen in sub-figure (c) 1 and (f). The value of 1 standard deviation (not 2, 2.5 or 3
...) was established by a visual comparison — the value which best separates the main body of the
LA and the PVs was kept.

1. Note that the depth-mask has visible artifacts for some meshes due to holes and imperfections. However, it does
not seem to impede registration as the area affected is small.
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Now that the creation process for the depth-masks is known, the next two sections describes simi-
larity measures and how they use the information in the depth-masks (sections 3.1.2 and 3.1.3).

3.1.2 Partition-Based Similarity Measure: MeshVerage

The idea to register using pixel groups is inspired by snake methods, where a segmentation is found
by iteratively evolving a curve via the minimization of an energy function. The difference in our
approach is that the rigid-body parameters t are iteratively modified instead of the curve’s control
points, thus indirectly changing the contour of the segmentation curve according to the mesh’s
topology. Another way to see our solution is that it constrains the possible curves to the subset of
curves that can be obtained by projecting the mesh.

If one assumes that the target 2D region is relatively homogeneous and markedly different from
the other zones of the 2D image, a simple comparison of the average pixel values that fall inside
and outside of the mask with the pixels in and out of these groups can be a good indication of the
fitness of the registration. This is inspired by the cost function of a level-set segmentation approach
introduced in [61], which leads to the definition of the following similarity measure:

SimMeasMV (im2D, mask) :=
1
n

(
∑

∀(x,y)∈mask

∣∣∣ im2D
(x,y)− im2D

∈mask

∣∣∣
+ ∑
∀(x,y)/∈mask

∣∣∣ im2D
(x,y)− im2D

/∈mask

∣∣∣) (3.2)

where im2D
(x,y) is the intensity value of the fluoroscopic image at position (x,y) and im2D

∈mask,

im2D
/∈mask are the average intensity values for the group of pixels inside and outside the mask re-

spectively; n is the total number of pixels processed. The pixels are scaled so that their value
range from 0.0 to 1.0. The final value returned by the similarity measure is divided by the number
of pixels processed, guaranteeing a result between 0.0 and 1.0. We call this similarity measure
‘MeshVerage’.

Extension with Depth-Masks

In order to use the depth-masks introduced in section 3.1.1, equation 3.2 has to be adapted. The
values of the depth-mask are interpreted as a probability to belong to a group. This probability
is obtained by a simple division of the local mask value with the maximum mask-intensity value
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possible (equation 3.3).

p(x,y)∈mask =
im2D−mask

x,y

max(im2D−mask)
(3.3)

p(x,y)/∈mask = 1.0− p(x,y)∈mask (3.4)

The calculation of the average values is modified in the following manner:

im2D
∈mask =

1
∑∀(x,y) p(x,y)∈mask

∑
∀(x,y)

im2D
(x,y) · p(x,y)∈mask (3.5)

im2D
/∈mask is calculated in a similar manner but with the probability p(x,y)/∈mask instead.

The probability is also used as a weight factor in the cost function:

SimMeasMV−DepthMask(im2D, mask) :=

1
n ∑
∀(x,y)

(
p(x,y)∈mask ·

∣∣∣im2D
(x,y)− im2D

∈mask

∣∣∣+ p(x,y)/∈mask ·
∣∣∣im2D

(x,y)− im2D
/∈mask

∣∣∣ ) (3.6)

Note that if a binary mask is used with the depth masks formulas, p(x,y)∈mask and p(x,y)/∈mask

will always be equal to 0 or 1, with one being the inverse of the other, which renders equations 3.6
and 3.2 equivalent.

3.1.3 Partition-Based Similarity Measure: Histogram

The MeshVerage approach is attractive because of its simplicity, ease of implementation and
speed. However, it may not be advised to discard so much of information contained in the inten-
sities by only using averages. It is possible to extend MeshVerage by using statistical measures of
information such as standard deviation and kurtosis. These values are all description of the shape
of the probability density function (PDF) of the pixel intensities; rather than incrementally use
more descriptive features, the Histogram approach uses the integral information of the discretized
version of the PDF (pixel group’s histogram).
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im2d

mask

im2d
∈mask

im2d
∉mask

subwindow∈mask

subwindow∉mask

Figure 3.6 Two histograms are created: one for the pixels inside of the mask, and one for the pixels
outside of the mask. Then, for every position in the 2D image, a local PDF is compared to either
the histogram of the pixels inside or outside the mask, depending if the local position is itself under
the mask or not. The local PDF is approximated by a local histogram formed by the pixels in a
sub-window surrounding a position.

The histograms are compared by taking the absolute value of a bin-per-bin subtraction, and then
averaged by the number of bins. The following equation represents how the cost is calculated using
the Histogram similarity measure:

SimMeasHistogram(im2D, mask) :=
1
n

(
∑

∀(subwindow)∈mask

∣∣∣ hist(im2D
subwindow)−hist(im2D

∈mask)
∣∣∣

+ ∑
∀(subwindow)/∈mask

∣∣∣ hist(im2D
subwindow)−hist(im2D

/∈mask)
∣∣∣)

(3.7)

Equation 3.7 contains a division by the number of subwindows processed (n) to guarantee a
result between 0.0 and 1.0.

Since it may be wasteful to compute equation 3.7 for every possible sub-window (the sub-
windows of two adjacent positions have significant overlap), a stride parameter defines how many
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pixels separate the center of two subsequent sub-windows. The similarity measure therefore has
three parameters: the number of bins in the histogram, the size of the the local sub-window and the
stride parameter.

Extension with Depth-Masks

The extension of the Histogram similarity measure for use with depth-masks is similar to what
was done for the MeshVerage method (see section 3.1.2). However, since histograms are calcu-
lated instead of a scalar value (see equations 3.3 and 3.4), the calculation of hist(im2D

∈mask) and
hist(im2D

/∈mask) are modified by including them in the sample for the histogram a number of times the
value of p(x,y)∈mask or p(x,y)/∈mask. For example, a pixel that has a p(x,y)∈mask of 0.9 (and therefore a
value p(x,y)/∈mask of 0.1) is added 9 times in the array from which hist(im2D

∈mask) is calculated, and 1
time in array from which hist(im2D

/∈mask) is calculated.

The updated equation to take the depth-mask into account is as follows:

SimMeasHistogram−DepthMask(im2D, mask) :=

1
n ∑
∀(subwindow)

(
p(subwindow)∈mask ·

∣∣∣hist(im2D
subwindow)−hist(im2D

∈mask)
∣∣∣+

p(subwindow)/∈mask ·
∣∣∣hist(im2D

subwindow)−hist(im2D
/∈mask)

∣∣∣ )
(3.8)

3.2 Clinical Application of Mesh-Derived Image Partition Based 3D-2D Registration

The data to register is a set of biplane cases of CA for AF from 7 patients, referred to as the ‘CA
for AF dataset’. The data is labeled as P#{A, B}, where ‘#’ signifies a case number corresponding
to a unique, anonymous patient. After the patient number, the associated plane, ‘A’ or ‘B’, follows.
For example, ‘P6B’ refers to patient #6, plane B. For each patient, there is an MRI of the LA with
its accompanying mesh produced by segmentation of the left-atrium from the aorta and surrounding
tissue as well as a DICOM biplane fluoroscopic sequence showing the injection of contrast agent in
the LA. The meshes are produced as part of the normal procedure in surgeries of CA for AF. They
are overlaid to the video feed from the fluoroscope in order to help catheter guidance and display
past ablation points during the operation.
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3.2.1 2D Images

The 2D intraoperative images are sampled from a biplane X-ray fluoroscopy system. Figures
3.7 and 3.8 show selected frames in the fluoroscopic videos where the contrast agent best delineates
the left atrium.

(a) P1A (b) P2A (c) P3A

(d) P1B (e) P2B (f) P3B

Figure 3.7 Biplane fluoroscopic images for cases P1, P2 and P3 shown at the frame where the
contrast agent best delineates the left atrium.
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(a) P4A (b) P5A (c) P6A (d) P7A

(e) P4B (f) P5B (g) P6B (h) P7B

Figure 3.8 Biplane fluoroscopic images for cases P4, P5, P6 and P7 shown at the frame where the
contrast agent best delineates the left atrium.

For each of the 7 clinical cases, there is a biplane video of between 15 to 40 gray-scale fluo-
roscopic frames of 1024x1024 pixels that shows the injection of contrast agent in the left-atrium.
Figure 3.9 is an example of such a video. Note that the region of interest (LA and PVs) is not
visible under fluoroscopy unless injected with contrast agent [3].

(a) Frame 0 (b) Frame 5 (c) Frame 10 (d) Frame 19 (e) Frame 30 (f) Frame 35

Figure 3.9 Injection of contrast agent in the left atrium for P1.

3.2.2 Geometry

In order to register biplane 3D-2D data, it is necessary to adapt the monoplane geometry intro-
duced in section 2.1.1 for biplane cases. The surgical system’s geometry is represented in figure
3.10.
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Figure 3.10 Biplane geometry for the CA for AF dataset (case P7 shown).

The angle between the principal rays of plane A and B is 90◦ for all cases. The parameters that
vary depending on the case are:

t: The 6-dimension rigid-body transform applied on the mesh (by the registration algorithm or the
user through the graphical user interface).

Mint−planeA and Mint−planeB: The intrinsic projection parameters for plane A and B (see section
2.1.1).

dsource−planeA and dsource−planeB: The physical distance (mm) between the source (X-ray source or
camera center) and the imaging plane (X-ray flat panel).

∆yiso: Physical distance (mm) on the Y axis between the principal rays for plane A and B.
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Unfortunately, the CA for AF dataset does not contain the parameters of the system’s geometry.
It was only available for one of the cases, which served as an initial guess for the other cases.
The geometry was adjusted by visual observation with the software described in section 3.3.1.
Rotations are done around the center of the mesh (calculated as the centroid of the mesh: the
average position for all vertices). A number of assumptions on the constraints of the geometry are
made: dsource−planeA is forced equal to dsource−planeB and the angle between the biplane views is
fixed to 90◦. These constraints are imposed because they are reasonable assumptions and manual
tuning of the geometry is endless if all the parameters are allowed to change freely.

Technically, the parameters are concatenated into two extrinsic and two intrinsic matrices. Two
OpenGL contexts are used to efficiently render the masks, after converting the matrices to OpenGL’s
idiosyncratic format [62].

3.2.3 3D Images and Segmentation into a Mesh

The experiments use 3D meshes of the LA with attached PVs. The meshes are segmented from
the MR images by health-care professionals from an off-site team. Each mesh has from 15 to 20
thousand vertices, with an average of 18 thousand.

To ensure that the segmentation is reproducible (does not contain unconventional preprocess-
ing), we compared a mesh manually extracted from the MR image using conventional procedures
and off-the-shelf tools. Both meshes look similar; no significant difference was observed. Regis-
trations done with both meshes also produce the same results. The segmentation procedure used is
as follows. First, a segmentation of the MR volume is done manually. Then, the mesh is extracted
by the application of an isosurface using a visually-defined threshold value. Finally, the mesh is
smoothed to remove noise.

(a) P6B original MRI (b) P6B MRI after segmentation of
the LA and PVs

(c) P6B mesh used for registration

Figure 3.11 Segmentation of a mesh from a MR image.
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In figure 3.11, it is worth observing that the length of the pulmonary veins in the final mesh
is somewhat arbitrary. The PVs on the mesh are cut at a certain level by the segmentation, when
in reality they continue into ever-diminishing capillaries. The depth-masks introduced in section
3.1.1 lessens the importance of that arbitrary choice, allowing to have the same registration result
no matter the length of the PVs in the mesh. The 7 meshes used for the registration are displayed
in image 3.12.

(a) P1A (b) P2A (c) P3A (d) P4A

(e) P1B (f) P2B (g) P3B (h) P4B

(i) P5A (j) P6A (k) P7A

(l) P5B (m) P6B (n) P7B

Figure 3.12 The 7 meshes after segmentation from MR images.

Figure 3.12 reveals that the mesh for case P5 contains significant noise, where the other meshes
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do not. This may be due to a faulty segmentation, or maybe our collaborators simply forgot to
smooth the mesh after segmentation. This has a negative impact on the registration result for this
case, which is discussed in section 4.2.1.

3.2.4 Data Preprocessing

Data preprocessing in registration tend to be specific to the target surgery. Finding the right
preprocessing can be guided by expertise, but there are seldom rules that dictate best-practices
for all cases. A process of expertise-guided trial and error, with measurement of what helps and
impedes the registration is therefore necessary, with special attention to the registration nature

and strategy picked. For example, the impact of surgical instrument ghosts in digitally subtracted
images might be important when using a gradient correlation similarity measure [19], but not for a
similarity measure that uses average pixel values (the change in a small portion of the image does
not have a significant impact on the similarity measure’s output then).

This section contains experiments that indicate which preprocessing is appropriate for the task at
hand.

2D Images Rescaling

The 3D image can be projected over an arbitrary-large region on 2D space. In theory, the more
information in the 2D images the better. However, because it is critical to achieve fast registration
and that the evaluation of the similarity measure is at minimum O(n2)-bound to a 2D image of size
n×n pixels, it is worth looking at the computation time / registration precision compromise.

Generally speaking, lower-resolution 2D images should result in worse registrations, but there
is usually a cut-off resolution above which more information does not improve results. Since the
higher resolution images come at the expense of significant processing cost, the algorithm speed
is enhanced by finding the minimum resolution for which there is no precision sacrificed. In order
to assess this compromise between precision and time, a monoplane registration of case P1B with
the MeshVerage similarity measure (see section 3.1.2) using an exhaustive optimizer on the XZ
planes (as described in section 3.3.4) is done. The registration speed is measured in relative time

to a 1024× 1024 pixels registration. In order to correct for registrations which end early because
of erroneously terminating on a wrong solution, the time used for comparison is the average time
it takes to complete a single iteration. When re-scaling is applied, it is done at the beginning of
the registration using bilinear interpolation. Since the transform and geometry description are in
physical units (mm), the resolution of the image does not necessitate a change in the registration
settings.
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The results and analysis of 2D image rescaling tests using this procedure are in section 4.1.1.

2D Images Subtraction

Image subtraction helps differentiating the contrast agent from the other image elements while
minimizing the interference of static background elements. For example, the lower-left corner of
(a), (b), (c) and (d) in figure 3.13 is much less prevalent in (e), once the images have been subtracted.
However, image subtraction cause significant ‘ghosts artifacts’ due to the movement of the surgical
instruments.

(a) (b) (e)

(c) (d)

Figure 3.13 (a) to (d): Sequence of fluoroscopic images showing the injection of contrast agent in
the LA (frames 0, 10, 19 and 35) for case P1. (e): Subtracted image (frame 10 - frame 0). Note that
the surgical instruments are present in the images.

Registration requires the targeted organ to be visible in both modalities. Since the LA is only
visible during the injection of contrast agent, the X-ray images used for registration must be sam-
pled from the set of images containing contrast agent. This implies that the right frame(s) to run
the registration need to be selected. The subtracted images are obtained by observation of the non-
subtracted images. In the CA for AF dataset, the video sequences start just before the injection
of contrast agent: frame 1 can be selected as the baseline for subtraction (frame 0 is routinely
eliminated because the average intensity is often visibly different for that frame), with the other
frame being the first frame that delineates the LA well. The selection of this second image is the
only non-automated step in the registration algorithm. In order to enforce consistency, the frames
subtracted are the same in the biplane sequence. For example, if frame 10 is subtracted to frame 1
for plane A, then frame 10 and 1 are also used for subtraction in plane B.

In order to evaluate if the subtraction is beneficial to the registration, the protocol established in
section 3.3.4 is used with case P1B, at a 2D resolution of 256x256 pixels. The range of the trans-
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form parameters ty, tz evaluated by the exhaustive optimizer is contained in an interval of -15 to 15
mm around the ground truth for both directions. The results are reported in section 4.1.2.

Motion Compensation. The subtracted images of section 3.2.4 have noticeable image artifacts
caused by respiratory and cardiac motion between two subtracted frames. In order to determine if
registrations can be improved by applying motion-compensation, the best rigid transformation pos-
sible is found by manually aligning the two images to be subtracted, as shown in figure 4.4. Then,
100 registrations with a best-neighbor optimizer, the MeshVerage similarity measure using binary
masks, a random corruption (uniform distribution) of magnitude -15..15 mm for the translation in
x, y and z and 10..10◦ for the rotation in x, y and z are computed. 50 of those registrations use the
motion compensated images, 50 used the ‘normal’ subtracted images. The results of the analysis
of the impact of motion compensation on registration using this protocol are in section 4.1.3.

3.3 Validation Methods for the Proposed Algorithm

3.3.1 Finding the Ground Truths by Visual Inspection

The ground truth is found using a custom-built program that allows modifying the parameters
of the transform and geometry in a graphical user interface.

Figure 3.14 The custom-built software used in order to manually find the ground-truth values.

The software (see figure 3.14) allows defining the parameters of the biplane geometry and
manipulating the translation and rotation applied to the mesh using the mouse. The left and right
planes are linked: a movement of the mesh in the left plane results in a movement in the other
plane according to the underlying geometry. Unfortunately, we could not get a medical specialist
to evaluate the ground truth: they were found by careful examination of the MRI, X-ray and mesh
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data by non-medical staff (me). In all cases, the probable positions were fastidiously evaluated and
the best match kept as the ground truth. Fortunately, since all cases are biplane, it makes it less
likely to get the position completely wrong: the place where the mesh is supposed to be is obvious
in most cases where the contrast agent clearly delineates the LA and PVs. However, there are some
cases where the contrast agent only partially render the LA and PVs visible, there remains some
ambiguity on whether or not the defined ground truth correspond to the exact registered position.

3.3.2 Performance Evaluation: Precision

In order to validate the registration algorithm, the following protocol is used:

1. Find the ground truth (ttruth) by visual observation using the custom-built software described
in section 3.3.1.

2. Generate the initial positions (tinit) by adding a random deviation vector to the ground truth.

The deviation vector is ∆tdeviation = [∆tx,∆ty,∆tz,∆θx,∆θy,∆θz]
T = [−15..15,−15..15,−15..15,-

−10..10,−10..10,−10..10]T where ‘A..B’ signifies a random number between A and B fol-
lowing a uniform distribution.

3. Run the registrations using the initial positions as starting points.

4. Compare the final positions of the mesh with the ground truths. This is done both visually
using the mesh contours and quantitatively using the mPD error metric.

A 6-dimension rigid-body transformation (t = [tx, ty, tz, θx, θy, θz]
T ) along with a best neighbor

optimizer is used with the following parameters:

Table 3.1 Best-neighbor optimizer parameters.

Parameter Value

Step Size for Translation 5.0
Step Size for Rotation 0.25× Step Size for Translation
Step Size Multiplier 0.5
Minimum Step Size 1.0

For the histogram-based similarity measures, the following parameters are used:
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Table 3.2 Histogram similarity measure parameters. Refer to section 3.1.3 for the definition of the
parameters.

Parameter Value

Number of bins in histogram 200
Size of local sub-window 13x13 pixels
Stride 2

The first pass of the optimizer runs using translation only with the maximum step size; every
subsequent pass uses all the transform parameters. The images used are subtracted but not motion-
compensated. The 2D images are resized to 256x256 pixels at the beginning of the registration.
The experiment generates and runs 200 registrations for every one of the 7 clinical cases. 1400
registrations are therefore run for every similarity measure, for a total of 5600 registrations.

Section 2.3.3 covered the mTRE and mPD error measures. In a previous iteration of the research
work for this thesis [59], we reported the error in both mPD and mTRE. Having the two error
measures did not bring additional insight (mTRE is usually a little bit higher than mPD, but follows
the same pattern as mPD for our surgical cases) and made error analysis more difficult since there
is always two values to consider. In addition, 3D-2D registration applications are better measured
with 2D error (mPD) than 3D error (mTRE) [36] since the operation itself is conducted under
the 2D modality. Because of these elements, this experiment reports error solely using the mPD
measure. Instead of choosing fiducial points for evaluation, as done for other papers evaluating
3D-2D registrations for CA of AF [9], we measure the error on all vertices of the mesh 2. This
penalizes us since the overall error is much larger than the ‘application error’ (this is discussed in
section 4.2.3), but allows for automatic error evaluation of the 5600 registrations. The results of
this experiment are reported in section 4.2.1.

The mPD error measure is good to evaluate the whole system, but when developing the components,
it is helpful to get insight by looking at the interim-results inside the algorithm. Section 3.3.4
describes the method that was used to get an intuitive measure of the interplay of the similarity
measure, optimizer and transforms.

3.3.3 Performance Evaluation: Time

The performance of our algorithm is evaluated by automatic timers running during the regis-
tration and kept in a registration log file. After all the registrations have run, the time statistics

2. The average number of vertices for the left atrium meshes is around 18 thousand.
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(mean ± standard deviation) are gathered and grouped by similarity measure used. The 2D image
size used is 256x256 pixels, the same size used in the precision evaluation (3.3.2). The results are
reported in section 4.2.2.

3.3.4 Inspection of Similarity Measures

Section 2.3.1 motivated the need for the isolation of the similarity measure from the rest of the
registration system by producing a plot of the effect of changing two parameters of the transform
on the similarity measure’s output. There are some practicalities to consider in order to produce
the cost function figures with the CA for AF dataset: a variation of the (X , Y ) axes in plane A
will result in an out-of-plane translation for plane B. Since it is desirable to measure the effect of
varying a single parameter at a time, the registration is run in monoplane mode.

An exhaustive optimizer is used to evaluate all the positions within a range and resolution
around the ground truth. See figure 3.15 for an example.

(a) P1 B at (ty, tz) at (10, 10) mm
of the ground truth.

(b) P1 B ground truth. (c) P1 B at (ty, tz) at (−10, −10)
mm of the ground truth.

Figure 3.15 Exhaustive search from (−10, −10) mm to (10, 10) mm around the ground truth.
Note that the parameters in t that correspond to the ‘up-down’ and ‘left-right’ translations depend
on the case geometry. Refer to figure 3.10 for the cases’ geometry.

Here is a graphical representation of the variation of the output of the similarity measure as a
function of parameters in t (θx, θy and ty, tz).
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(a) Variation of ty, tz in (−10..10) mm. (b) Variation of θx, θy in (−15..15) degrees.

Figure 3.16 Plot of similarity measure’s output for case P1B un function of a variation of the
parameters of t. The curves in the background show the variation of the similarity measure’s output
as the transform parameters get further away from the global minima in a direction parallel to the
axis.
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CHAPTER 4 : RESULTS AND DISCUSSION

This chapter contains experiments that measure the performance of the MDIP-based registra-
tion algorithm proposed in this thesis. First, section 4.1 contains experiments results used to tune

the parameters of the registration algorithm. Then, the whole registration system is evaluated on
clinical cases of CA for AF in section 4.2 and SfVM in section 4.3.

4.1 Impact of Data Preprocessing

Besides the nature and strategy of the registration algorithm, there are many parameters that
influence the ultimate outcome of the registration. This section contains the experiments conducted
in order to determine appropriate parameters.

4.1.1 Impact of 2D Images Rescaling

Table 4.1 Impact of 2D image resizing prior to registration on registration precision and speed,
using the MeshVerage similarity measure and case P1B in monoplane mode.

im2D size (pixels) registration speedup mPD (mm)

1024x1024 1.00 1.34
512x512 2.15 2.67
256x256 2.72 1.89
128x128 3.10 1.89
64x64 3.24 1.89
32x32 3.37 1.34
16x16 3.34 5.97

8x8 3.11 8.96
4x4 3.20 17.11

Table 4.1 reveals that there is not much speed to be gained by reducing the image below
256x256 pixels. It seems like it is possible to register with the same precision at resolutions as
low as 32x32 pixels. This may be due to the fact that the MeshVerage similarity measure is by
nature based on averages, and that the number of pixels in the sample does not need to be very high
in order to differentiate between the pixels inside and outside the target zone. Note that the mPD
for 512x512 pixels has a higher error than for lower resolutions. However, a difference of 0.78 mm
may not be significant.
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In order to gain information on the impact of sub-sampling the 2D image, the similarity mea-
sure’s cost as a function of a change in the transform parameters is measured by an exhaustive
optimizer. This 2D surface is referred to as the ‘cost function’.

(a) 1024x1024 pixels (no resize) (b) 512x512 pixels (c) 256x256 pixels

(d) 128x128 pixels (e) 64x64 pixels (f) 32x32 pixels

(g) 16x16 pixels (h) 8x8 pixels (i) 4x4 pixels

Figure 4.1 Impact of resizing P1 B on the similarity measure’s cost as a function of a variation of the
transform parameters. The cost is represented as a surface and the free parameters of the transforms
are ty and tz (all others kept constant). The two background lines are the similarity measure’s cost
varying for one dimension while at the absolute minimum for all other dimensions.

Looking at figure 4.1 reveals that resizing down to 128x128 pixels results in a smooth cost
function. From 64x64 pixels to lower resolutions, the cost function becomes increasingly erratic,
with many false local minima clearly visible at the 16x16 pixels level.
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Because of the result from this experiment, the registrations in the rest of this chapter are done
with a 2D image resolution of 256x256 pixels.

4.1.2 Impact of Image Subtraction

Since the 2D data is a sequence of images showing the injection of contrast agent into the LA,
it is possible to use the variation of information between two time points. This can be done by
subtracting two images taken at a different time.

(a) P1B, frame 1 (b) P1B, frame 18 (c) P1B, frame 1 subtracted from
frame 18

Figure 4.2 Subtracted and non-subtracted fluoroscopic images of P1B.

Figure 4.2 is an example of subtracted and non-subtracted images. Looking at (c) reveals that
the subtraction emphasizes the LA. Also, the border, lower-left dark region as well as the patient’s
spine seen on the right side of (a) and (b) are all attenuated in (c).
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(a) Not subtracted, MeshVerage
similarity measure

(b) Not subtracted, border removed,
MeshVerage similarity measure

(c) Subtractred, MeshVerage simi-
larity measure

(d) Not subtracted, Histogram sim-
ilarity measure

(e) Not subtracted, border removed,
Histogram similarity measure

(f) Subtractred, Histogram similar-
ity measure

Figure 4.3 Cost function plots for non-subtracted without border removal, non-subtracted with
border removal and subtracted images. The blue dot is the minima found in the cost function and
the greed dot is the ground-truth minima.

The first column of figure 4.3 shows that the similarity measures are heavily influenced by the
presence of the dark border in the fluoroscopic image, especially for MeshVerage in (a). The av-
erage pixel values calculated inside and outside the mesh is impacted by the border that has an
average intensity closer to the contrast agent than the rest of the image, hinting that using only av-
erages neglects important information. Comparing (d) to (e) reveals that the Histogram similarity
measure is less influenced by the presence of the border than the MeshVerage similarity measure.
Nevertheless, when the border is manually removed, the similarity measures do not have a mini-
mum concordant with the ground truth. When the images are subtracted, both similarity measures
have similar graphs, and the minima are concordant with the ground truth, with the Histogram
similarity measure being slightly more accurate.

The minima found by the similarity measures are not exactly equal to the ground truth. It is
not due to a sampling error since the ground truth is contained in the set of transform parameters
evaluated; the similarity measure simply does not have a minimum exactly at the sample place as
the human operator evaluated the ground truth. The experiment show that it is better, even essential,
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to use subtracted images in order to have good registration results.

4.1.3 Impact of Motion Compensation

Some of the surgical instruments’ ghost artifacts are attenuated by the motion compensation, but
no rigid alignment can correct for the deformation in all zones, indicating that there is significant
non-rigid deformations in the images.

(a) P1A Subtracted (b) P1B Subtracted

(c) P1A Subtracted after linear
motion-compensation

(d) P1B Subtracted after linear
motion-compensation

Figure 4.4 Source images for registration of case P1 with or without manually, rigid translation-only
motion compensation.

Additionally, the motion compensation renders the delineation by the contrast agent less vis-
ible. This could be due to the fact that a slight misalignment of the two images to be subtracted
accentuates the parts of the image where there is high-frequency noise, which correspond to the
places where there is contrast agent.
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Table 4.2 Registration precision for P1 with and without motion compensation, using the MeshVer-
age similarity measure with binary masks.

Motion-Compensation mTRE (mm ± σmm) mPD (mm ± σmm)

Yes 7.22 ± 1.84 7.05 ± 1.88
No 5.80 ± 0.99 5.65 ± 1.02

The results suggest that a rigid motion-compensation is not desirable as a preprocessing step.

4.2 MDIP-Based Registration for Cases of CA for AF

This section contains experiments using the complete registration system. The parameters for
the registration are set according to the results from the previous section.

4.2.1 Performance Evaluation: Precision

Table 4.3 Average mPD error for the 5600 registrations sorted by similarity measure and case, with
variability measured using sample standard deviation (mPD mm ± σmm).

Case MeshVerage
MeshVerage-
DepthMask

Histogram
Histogram-
DepthMask

P1 5.96 ± 1.78 4.07 ± 1.28 6.50 ± 1.07 5.49 ± 0.84
P2 22.09 ± 11.57 11.22 ± 4.06 12.96 ± 3.97 11.00 ± 4.18
P3 9.33 ± 3.19 6.83 ± 1.68 9.66 ± 2.45 7.48 ± 1.58
P4 4.91 ± 2.92 5.28 ± 1.90 4.20 ± 2.11 6.01 ± 2.11
P5 4.25 ± 1.91 10.86 ± 0.85 4.54 ± 1.66 9.24 ± 1.42
P6 4.70 ± 1.97 6.27 ± 1.79 4.40 ± 1.60 5.42 ± 0.80
P7 16.79 ± 7.36 5.63 ± 1.54 10.46 ± 2.11 5.63 ± 2.22

All Cases 9.72 ± 8.55 7.17 ± 3.32 7.53 ± 3.97 7.18 ± 2.96

Figure 4.5 shows the registration result graphically in the manner explained in section 2.3.3.
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(b) MeshVerage with binary mask
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(c) MeshVerage with depth-mask
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(d) Histogram with binary mask
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(e) Histogram with depth-mask

Figure 4.5 mPD error after registration as a function of mPD error at initialization for the different
similarity measures.

The introduction of the depth mask greatly reduces the error for the MeshVerage similarity
measure. However, the Histogram similarity measure does not benefit much from using the depth-
mask: the error for P7 and P3 is lowered, but is higher for P5 and P6. This indicates that the
way Histogram uses the depth-masks may need to be adapted in order to profit from the additional
information the depth element contribute. It is also possible that the method used to generate the
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mask by exploiting the depth-values calculated by OpenGL produces artifacts that interfere with
some cases. A comparison with a pure ray-casting method is needed to establish whether or not it
is the case.

The error for P2 is higher for all similarity measures. The position of the ground truth for P2
is the most difficult to see: if the ground truth is difficult to position visually, the algorithm might
either stumble because it is a more difficult problem or the ground truth might simply be slightly
off.

Looking at table 4.3 reveals that P5 seems to be an outlier: the use of a depth-mask doubles the
error, where it significantly reduces the errors in other cases. P5’s mesh was much noisier than the
others, so this behavior might be due to a faulty segmentation.

The error measurement and associated figures are useful to compare the similarity measures, but
does not offer a good qualitative feel for the usefulness of the registered data. The figures that
follow show the visual result to expect for three levels of error (mPD): low (≈4 mm), medium (≈7
mm) and high (≈10 mm). The medium level corresponds to the average error of the best similarity
measure, and the high and low levels are one standard deviation above and under the average case
respectively.

(a) X-ray (b) Ground truth (c) Registration result (d) Ground truth (black)
and registration result
(white)

Figure 4.6 P1A with final mPD of 4.04 mm.
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(a) X-ray (b) Ground truth (c) Registration result (d) Ground truth (black)
and registration result
(white)

Figure 4.7 P1A with final mPD of 7.02 mm.

(a) X-ray (b) Ground truth (c) Registration result (d) Ground truth (black)
and registration result
(white)

Figure 4.8 P1A with final mPD of 9.94 mm.

Notice in figures 4.6, 4.7 and 4.8 that the registration result is always at the left of the ground
truth. This may be because of the lower-right image border: the ground truth is set by a human
operator that bases his decision on a posteriori knowledge of the shape of the LA. The human
operator can deduce that it is likely that the LA is occluded by the border. The registration algorithm
has no information to deduce this, and is therefore pushing the mesh to the left as can be seen in
figure 4.8 (c) where the lower-end of the LA fits with the delineation created by the contrast agent
and the image border.
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(a) X-ray (b) Ground truth (c) Registration result (d) Ground truth (black)
and registration result
(white)

Figure 4.9 P6B with final mPD of 4.02 mm.

(a) X-ray (b) Ground truth (c) Registration result (d) Ground truth (black)
and registration result
(white)

Figure 4.10 P6B with final mPD of 7.02 mm.

(a) X-ray (b) Ground truth (c) Registration result (d) Ground truth (black)
and registration result
(white)

Figure 4.11 P6B with final mPD of 10.11 mm.
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Figure 4.10 (c) delineates the LA better than the ground truth, but the pulmonary vein position
is wrong. This is another case where the position of the PV is deduced (its position is only par-
tially visible under fluoroscopy) using knowledge of the general shape of the LA and PVs by the
human operator that defined the ground-truth. This information is not available to the registration
algorithm.

Also note that the ground truths are established using biplane cases, which mean that the posi-
tion for each plane is a compromise between the best position for planes A and B. This is why the
ground truth is sometimes slightly wrong when looking only at one plane at a time. The fact that
the two planes do not exactly match for the same 3D position is an indication that the geometry is
approximate.

(a) X-ray (b) Ground truth (c) Registration result (d) Ground truth (black)
and registration result
(white)

Figure 4.12 P7A with final mPD of 4.02 mm.

(a) X-ray (b) Ground truth (c) Registration result (d) Ground truth (black)
and registration result
(white)

Figure 4.13 P7A with final mPD of 7.00 mm.
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(a) X-ray (b) Ground truth (c) Registration result (d) Ground truth (black)
and registration result
(white)

Figure 4.14 P7A with final mPD of 10.02 mm.

Figures 4.12 and 4.13 illustrate the problem of the ground truth ambiguity when the delineation
of the target object from the background is fuzzy such as in fluoroscopic images from cases of CA
for AF. When comparing sub-figures (b) and (c), it is hard to tell which one is correct and which
one is not. The registration results are qualitatively equivalent to the ground truth, but the mPD are
4.02 and 7.00 mm. In the case of the mPD of 7.00 mm (4.13 (c)), the registration seems a little bit
worse than the ground truth when looking at the right edge, but the difference is very small. This
difference is likely the lowest error threshold at which it is possible to tell that the result is worse
than the ground truth. This indicates that mPDs from 0 mm to a threshold around 5 mm might be
qualitatively as good as the ground truth.

Section 4.2.3 offers an explanation for this phenomenon: the majority of the error is contributed
by zones of the PVs which are not visible under fluoroscopy therefore may routinely be positioned
incorrectly by the human operation when evaluating the ground truth.

4.2.2 Performance Evaluation: Time

The speed of registration is reported as mean ± standard deviation for all cases of CA for AF.
The protocol for the evaluation of this data is described in section 3.3.3.
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Table 4.4 Average completion time sorted by similarity measure for biplane registrations (1400
registrations for each similarity measure).

Registration Method Time (seconds ± σ )

MeshVerage 19.03 ± 9.38
MeshVerage DepthMask 31.00 ± 14.64
Histogram 127.00 ± 61.55
Histogram DepthMask 191.81 ± 97.36

The closest comparison to our registration solution is work done by Knecht et al. [9]; their
team provides registration in cases of CA for AF based on the segmentation of the patient’s spine
from the CT image which is then registered with the real-time fluoroscopic images. They report that
their registration takes 420± 120 seconds, about 13.5 time as long as the ‘MeshVerage DepthMask’
method we introduce. For spine registration, Van De Kratts et al. [36] report a registration time of
25 seconds for a gradient-based application and 9 minutes for an intensity-based registration.

The time that we report in table 4.4 is from non-optimized C++ code running on a low-end
laptop in single-threaded mode. It is hard to have a fair comparison with Knecht et al. since they
do not mention implementation details such as the hardware used and if it is parallelized or not.
Also, our implementation uses biplane registration — in monoplane cases it is likely that it would
take half as much time to complete. In our implementation, most of the time is spent in getting
a cost for the best-neighbors in the optimization process, which requires 24 evaluations of the
similarity measure per iteration (12 per plane). This is completely parallelizable: a multithreaded
implementation of the algorithm running on an N-core machine is expected to approach a speedup
factor of N, for factors up to 24.

MDIP-based registration therefore significantly outperforms other projection-based algorithms
in terms of speed, and may outperform the gradient-based approaches once parallelized.

4.2.3 Error Distribution as a Function of the Position on the Mesh

Since the error is computed on every vertex of the mesh, it is possible to display the distribution
of the error depending on the local position on the mesh.
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(a) Plane A, mPD of 4.95 mm. (b) Plane B, mPD of 8.56 mm.

Figure 4.15 P6 error distribution on the mesh. The mPD for this case is 6.75 mm.

Figure 4.15 clearly shows that the error is higher on the PVs than on the LA. Since the ablation
targets are located on the LA around the PVs [2] (see figure 2), the application error is much
lower than the reported mPD when calculated on the whole mesh (including the PVs). For the case
displayed by figure 4.15, the application error (mPD on the LA around the PVs) is estimated to be
around 2 to 3 mm, while the mPD for the whole mesh is 6.75 mm.

This indicates that the error measured for the MDIP-based algorithm would probably be much
lower if it was measured using manually-selected fiducial points on the LA rather than on the PVs,
as some other papers do.

This also puts in context preliminary results where we reported an mPD of 6.30 ± 2.55 mm
using the ‘MeshVerage’ similarity measure with binary masks and meshes where the pulmonary

veins were manually cut-off [59]. Supposing that using a depth-mask is equivalent to using a cut
mesh, the mPD measured is lower when the meshes are cut for the same surgical cases: discarding
the PVs may significantly lower the error measured, without lowering the actual and application
error. Therefore, a comparison of the error levels measured reveals that it is probably better to
use depth-masks or the Histogram similarity measure rather than manually cutting the PVs prior to
registration.

4.3 MDIP-Based Registration for Cases of SfVM

This section contains the result of registrations for cases of sclerotherapies for venous mal-
formation (SfVM). This is an attempt to see if the same methodology used in CA for AF cases
can successfully be applied to other type of surgeries. The difficulty in cases of SfVM is that the
malformations can be found anywhere on the patient’s body [45], making it difficult to establish a
registration protocol as well as validation scheme. The cases that we have available are monoplane,
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which makes it arduous to establish a ground-truth because of the lack of information in the out-of-
plane direction. The meshes in cases of SfVM were obtained by visual segmentation from the MR
image using the ParaView program [63]. The validation for the cases of SfVM is done visually,
with a case-study style that highlights the challenges typical to this type of surgery. The section
ends with recommendation on further development required in order to improve the performance
of the MDIP-based algorithm for SfVM.

4.3.1 Case Study: Shoulder

Venous malformations can be present on any part of the body, which make it difficult to establish
a registration protocol. The zones of the image that are exploitable for registration vary from one
case to another. One approach to the problem is to exploit information that is constant in most VM
case: the presence of an embolized venous malformation that is easily seen on both fluoroscopy
and MRI.

(a) MRI (b) Mesh segmented from
MRI

(c) Fluoroscopic
image

Figure 4.16 Case of SfVM on a shoulder shown under different modalities.

In this case, the registration uses the Histogram similarity measure with a binary mask. The
parameters are exactly the same as used in the CA for AF cases.
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(a) Fluoroscopic image (b) Registration initial
pose

(c) Registration itera-
tion 5

(d) Registration itera-
tion 10

(e) Registration itera-
tion 15

(f) Registration itera-
tion 20

(g) Registration itera-
tion 46 (final)

Figure 4.17 Registration result for the shoulder case using the VM to drive the registration.

Using the embolization as the feature to register has the drawback that it might not work well
when the venous malformation is relatively shapeless or that the MRI does not match the fluo-
roscopy.

4.3.2 Case Study: Leg

In the ‘leg case’, the intraoperative fluoroscopic images show the full organ from an outside
view. The outside area has a distribution of pixel intensities that is drastically different from the
organ, which facilitates the registration. The protocol is the same as was done for cases of CA
for AF: the MRI is segmented into a mesh, and then the mesh is registered to the intraoperative
fluoroscopic images.
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(a) Fluoro-
scopic image

(b) MRI slice (c) MRI 3D view (d) Mesh extracted
from the MRI

Figure 4.18 Case of SfVM on a leg shown under different modalities.

For the registration reported below, the Histogram similarity measure with binary mask is used.
Tests were also conducted with the ‘MeshVerage’ similarity measure, and the performance was
almost identical.

(a) Fluoroscopic image (b) Initilization of reg-
istration.

(c) Registration result

Figure 4.19 Registration of a leg under monoplane fluoroscopy using the Histogram similarity
measure and a binary mask.

The mesh is properly positioned at the end of the registration and clearly overlaps with the leg’s
border. However, since the leg is relatively shapeless in the rotation around its principal axis, it is
possible that there is a rotational error that cannot be identified by merely looking at the projective
overlap with the target organ. This case also registers well even when the initial guess is extremely
off. Figure 4.20 shows a registration with such an initial position.
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(a) Fluoroscopic image (b) Initilization of reg-
istration

(c) Registration itera-
tion 10

(d) Registration itera-
tion 20

(e) Registration itera-
tion 30

(f) Registration itera-
tion 40

(g) Registration itera-
tion 50

(h) Registration itera-
tion 62 (final)

Figure 4.20 Same registration as figure 4.19, but with a starting point that is an extreme corruption
as initial position. The registration algorithm is nevertheless able to recover a reasonable pose.

The registration overlap is correct, but the end result seems a bit slanted. However, it is expected
that the result is slightly worse than for a realistic case such as seen in figure 4.19 because of the
extreme initial error.

Using the inside/outside border of the organs seems to give a reasonable approximation of the reg-
istration, albeit without aligning the images perfectly. In many cases of SfVM, there are prominent
bones which have a lot of fine details; they can also easily be segmented from the MR image.
Since these fine details might be helpful to gain registration accuracy, we conduct an experiment to
register the same case but with the tibia as the feature.
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(a) Initilization of reg-
istration

(b) Registration itera-
tion 5

(c) Registration itera-
tion 10

(d) Registration itera-
tion 15

(e) Registration itera-
tion 20

(f) Registration itera-
tion 40

(g) Registration itera-
tion 84 (final)

Figure 4.21 Registration of the tibia using the Histogram similarity measure.

The registration from figure 4.21 illustrates a limitation of the MDIP-based registration when
the similarity measure uses statistical measures from the whole image. The registration does suc-
cessfully delineate the bones, but it in an extreme way that encompasses all the bony structures
inside the leg. The algorithm was originally developed to solve cases where the delineation of the
organ is fuzzy, where it is a good thing to bundle together the parts of the image that are statistically
similar. In the cases where one bone must be isolated from the others, such a behavior is harmful.
Also, there are three zones in the images where the pixels have markedly different statistical prop-
erties: the inside of the bones, the inside of the leg (excluding the bones), and the outside of the
leg. Doing the partition using only two groups (as is adequate for cases of CA for AF) is probably
not advisable in this case.

Next is an example of the same registration, but based on a simple similarity measure that maxi-
mizes the 3D-2D gradients obtained with a Sobel filter. The idea is show that a simple modification
of the MDIP-based algorithm successfully uses the gradients to register bony structures.
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(a) Fluoroscopic image
after Sobel filtering

(b) Initilization of reg-
istration

(c) Registration itera-
tion 5

(d) Registration itera-
tion 9 (final)

Figure 4.22 A registration of the tibia based on 3D-2D gradients. Note that the left and right lower
parts of the tibia are properly delineated by the mesh, but the top part stops at the next bone, slightly
misplacing the upper end of the tibia.

The registration algorithm used for figure 4.22 has extremely limited range: it cannot correct
for high initial pose errors. However, it demonstrates that the similarity measures have to consider
statistical elements other than direct pixel intensities. It remains an open question on how to best
integrate the use of gradients in an MDIP-based algorithm (the example shown above is a simple
maximization of the value of the gradient along the mesh’s border, similar to what is done in [55]).
An hybrid algorithm that first finds a crude pose based on the inside/outside border of an organ
or an embolization then switches to gradient matching for bony structure in order to get a precise
pose is advised. However, such a method requires that many elements be present in the same case,
which does not allow solving all SfVM cases using the same protocol.

4.4 General Discussion

This section reports the results of the application of the MDIP-based registration algorithm on
cases of CA of AF, for which an in-depth numerical analysis as well as visual results have been
presented. Visual and case-study type analysis were done for the SfVM cases, demonstrating that
MDIP-based registration is extendable to other type of surgeries, but at the same time highlighting
that modifications to the similarity measure depending on the specificities of the surgical case is
necessary for this extension.

There is one aspect that has not yet been discussed in the error analysis: the factors contributing
to misregistration, which come from two distinct sources: the algorithm itself, and the experiment
setup. The rest of this section reviews these elements and ends with a discussion of the relevance
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of the error analysis.

4.4.1 Errors Due to the MDIP-Based Algorithm

There are two aspects of the MDIP-based algorithm that may contribute to misregistration and
warrant further analysis: the depth-mask creation process as well as the selection of the frames to
subtract in the sequence showing the injection of the contrast agent in the LA. But before talking
about what contributes to the error, we comment on an easy avenue to gain precision that was
intentionally avoided.

The optimizer used for the MDIP-based algorithm was willfully not selected to get the minimum
possible error: the techniques laid-out in section 2.1.4, which are proven ways to lower the average
error for registration algorithms, were not adopted. This decision is motivated by a desire to be
sensible to subtle variations in the algorithm’s behavior — such optimizations make it harder to
measure the impact of parameters change as these clever optimization techniques may cloak under-
lying weaknesses. As the project evolves from the validation phase to a clinical trial, these methods
can now be implemented in order to lower the expected error. Fortunately, the MDIP-based algo-
rithm is perfectly compatible with these tentative changes as they usually involve modification of
the optimizer, not the similarity measures (which are more strongly tied to the MDIP-based algo-
rithm).

The depth-mask process described in section 3.1.1 drastically improves the average registration for
the MeshVerage similarity measure, but it does not have the same dramatic positive impact for the
Histogram similarity measure. The parameters used in the creation of the depth-mask influence the
thickness of the PVs for which the similarity measure assumes that the 3D image will not match the
fluoroscopic image. This information is not integrated in the same manner for the different similar-
ity measures; it should therefore not be assumed that the same settings influence all the similarity
measures uniformly. Optimizing these settings for each similarity measure might enhance their
performance. Also, the current generation of depth-masks hinges on a clever approximation of the
mesh’s local depth that exploits calculations done internally by the graphics card in order to avoid
the computation of the distance-transform. However, the impact on precision of that approximation
remains to be evaluated. A distance-transform based projection method should be compared to our
current approximation in order to verify if we sacrifice quality for speed in this process.

The manual selection of two frames to subtract from the injection of contrast agent video sequence
is the last manual remnant in our otherwise completely automatic registration algorithm. This se-
lection is much quicker than doing a complete manual registration – our system is an improvement
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over a completely manual registration – but it is an operation that needs to be discarded before
we can claim that our process is completely automatic. There are a number of ways this can be
accomplished. If the beginning and end of the injection of contrast agent are signaled by operative
hardware, it is possible to systematically select one frame in the middle of the contrast injection
sequence. It is also possible to average a few images during the injection, and to subtract this
averaged image with the first image. Another solution is to detect the zones with contrast agent,
and to use that information for frame selection or directly for registration. Note that, because of
pulmonary and patient movement, the registration result is likely to be different depending on the
frame(s) selected. No matter what the precision of the registration on a single frame is, there is
a limited clinical utility to be extremely precise since the exact position of the LA moves during
the cardiac cycle and patient respiration. The next section (4.4.2) discusses other aspects that limit
the precision. It concludes with a proposition that when the precision is inherently limited, the
robustness of the algorithm should be the principal metric considered to drive research effort, not
the absolute, single-frame precision.

4.4.2 Errors Due to the Experiment Setup

There are three sources of error that are external to the registration algorithm: the approximate
geometry, the quality of the fluoroscopic images and the precision of the ground truth. After cov-
ering the cause of errors due to the algorithm and the experiment setup, we discuss whether the
precision is the right metric to drive research effort.

The geometry is obtained through manual refinement of a crude initial approximation. Constraints
on the geometry are assumed in order to make this process feasible, some which may be inaccurate
(see section 3.2.2): it is unknown how much this degrades the precision. Since the geometry is
available during the surgeries, allowing a serialization of the geometry to a file which is later sent
along with the medical images for analysis can correct this error source. This is currently being
implemented and future cases will have the full geometry defined. It is worth indicating that our
algorithm is expected to behave better if used clinically, where the geometry is correctly defined.

The quality of the fluoroscopic images taken during the injection of the contrast agent has an impact
on the quality of the registration that has not been evaluated. Table 4.3 and figure 4.5 reveal that the
average registration precision varies widely depending on the case. P2 is by far the case that has the
worse registration error for all similarity measures used, and not surprisingly it is the case where
visually it is also the most difficult to establish the ground-truth. The fluoroscopic data comes
from operation not targeted to the application of automatic registration algorithms. Therefore,
if the injection of contrast agent is done with more care to completely delineate the whole LA
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in one single injection, the average registration result might be better. In addition, we did not
systematically use frames at the same position in the cardiac cycle (simply because we did not have
access to the electrocardiogram data). Synchronization with the cardiac cycle may allow increasing
the consistency of the results.

The precision of the ground truths needs to be evaluated. The truth-values used as a comparison
basis for our algorithm is defined by a human operator, who registers with an inherently limited
precision. It is necessary to evaluate the consistency of the registration from one operator to another
as well as for one operator at different times. For example, if for exactly the same surgical case, an
operator registers with a variability of 5 mm (mPD), it means that the ground truths cannot be used
to evaluate an algorithm’s precision for under that 5 mm threshold. This evaluation should be part
of a clinical trial, which is described in section 5.0.3.

We spent a great deal of effort tuning the algorithm to register with high-precision, but there is a
point where is it worth asking if the precision we measure is really the most important metric to
optimize in order to deliver a clinically effective algorithm. Since the border of the organ is fuzzy,
likely to move around due to respiratory and cardiac motion and dependent on the frame used from
the contrast agent injection sequence, it may be of little added value to spend a lot of effort to reach
a very high precision for a single point in time. The really important aspect for the registration is
to fail infrequently, rather than have a millimeter-precision at one point in time. The robustness of
the algorithm —- the extent to which the algorithm never fails disastrously –– might therefore be
more important than high-precision. As can be seen in figure 4.5 of section 4.2.1, the algorithm is
very robust to large corruptions of the initial pose and rarely degrades the pose when using the best
performing similarity measures. This is a strong point in favor of the MDIP-based algorithms.
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CHAPTER 5 : CONCLUSION

The principal objective of this research project was to conceive a registration algorithm that
automatically aligns a preoperative MR image to intraoperative biplane X-ray fluoroscopy images
for cases of CA for AF. There were two significant challenges to overcome. First, current solutions
take several minutes to complete, which is cumbersome when the registration needs to be updated
intraoperatively because of patient movement. Second, multimodal MR/X-ray fluoroscopy regis-
tration is a notoriously difficult problem, further complicated in cases of CA for AF because the
3D and 2D images do not match at the level of the PVs during the injection of contrast agent.

We introduced the novel MDIP registration algorithm which uses a mesh segmented from the MR
image to partition the intraoperative fluoroscopic images. The discrepancies of the pixels’ statistical
properties contained in the partitions are used by a similarity measure to infer a cost, which drives
the registration. This addresses the difficult MR/X-ray registration problem by transforming a 3D-
2D intermodal registration into a 2D-2D intramodal problem. Also, the partition can be done very
quickly, which enables fast registrations. In addition, we developed a modification to the similarity
measures to account for the partial or absent match of the PVs with the concept of statistical group-
affiliation based on depth-mask intensity.

Our research hypothesis that this novel registration algorithm is faster than current methods is suc-
cessfully validated by experiments on 7 clinical cases of CA for AF. Our solution completes in
about 30 seconds for biplane registration, much faster than the volumetric projection-based solu-
tions which typically require several minutes. We validated the MDIP-based algorithm on 5600
registrations covering 7 cases and four similarity measures by reporting the mPD error at the be-
ginning and end of the registrations. Visual examples of typical registration results as well as one
standard deviation above and under the mean error are also produced.

Aside from potentially providing registration that is clinically practical for cases of CA for AF,
the MDIP-based algorithm is generalizable to other types of 3D-2D registration problems such as
SfVM. It is especially promising when the 3D modality is MR images because it has the potential
to reduce this class of notoriously difficult registration problem to a less elaborate segmentation
problem that has a straightforward solution.
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5.0.3 Recommendations and Future Work

We make an informed claim that the MDIP-based registration algorithm introduced in this thesis
is adequate for use in cases of CA for AF. However, the ultimate evaluation of our system is whether
or not it can outperform a human operator in terms of speed and precision. To verify this, we
propose a two phases clinical trial. The first phase consists of recording the fluoroscopic video
feed as well as the manual registration of the mesh overlay during surgeries. This recorded data
can then be used to compare the results of the registration done manually with the result from
our algorithm. This simulation mode should also allow doing the registrations manually from
the recorded surgeries in order to evaluate the level of discrepancy in the registration done by
different medical specialists and the same medical specialist at different times. If the results from
our algorithm compares favorably to the manual results, then the second-stage full clinical trial
using the registration algorithm to replace manual registration can be put in place.

The MDIP-based registration algorithm introduced in this thesis is not limited to cases of CA for
AF. In order to evaluate how portable to other type of surgeries it is, we demonstrate that the
algorithm is successful for cases of SfVM. Since the SfVM cases are monoplane, this cues that the
algorithm is not limited to biplane imaging. However, the difficulties encountered on some of the
cases indicate that new MDIP-based similarity measures needs to be tuned in order to enhance the
breadth of surgical cases that the MDIP-based algorithm can handle. We demonstrate that using a
hybrid approach that incorporates gradient information in the similarity measure can improve the
registration for some of the difficult cases where the structure to register contains bones.
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