43 research outputs found

    Simple and Adaptive Particle Swarms

    Get PDF
    The substantial advances that have been made to both the theoretical and practical aspects of particle swarm optimization over the past 10 years have taken it far beyond its original intent as a biological swarm simulation. This thesis details and explains these advances in the context of what has been achieved to this point, as well as what has yet to be understood or solidified within the research community. Taking into account the state of the modern field, a standardized PSO algorithm is defined for benchmarking and comparative purposes both within the work, and for the community as a whole. This standard is refined and simplified over several iterations into a form that does away with potentially undesirable properties of the standard algorithm while retaining equivalent or superior performance on the common set of benchmarks. This refinement, referred to as a discrete recombinant swarm (PSODRS) requires only a single user-defined parameter in the positional update equation, and uses minimal additive stochasticity, rather than the multiplicative stochasticity inherent in the standard PSO. After a mathematical analysis of the PSO-DRS algorithm, an adaptive framework is developed and rigorously tested, demonstrating the effects of the tunable particle- and swarm-level parameters. This adaptability shows practical benefit by broadening the range of problems which the PSO-DRS algorithm is wellsuited to optimize

    Simple and adaptive particle swarms

    Get PDF
    The substantial advances that have been made to both the theoretical and practical aspects of particle swarm optimization over the past 10 years have taken it far beyond its original intent as a biological swarm simulation. This thesis details and explains these advances in the context of what has been achieved to this point, as well as what has yet to be understood or solidified within the research community. Taking into account the state of the modern field, a standardized PSO algorithm is defined for benchmarking and comparative purposes both within the work, and for the community as a whole. This standard is refined and simplified over several iterations into a form that does away with potentially undesirable properties of the standard algorithm while retaining equivalent or superior performance on the common set of benchmarks. This refinement, referred to as a discrete recombinant swarm (PSODRS) requires only a single user-defined parameter in the positional update equation, and uses minimal additive stochasticity, rather than the multiplicative stochasticity inherent in the standard PSO. After a mathematical analysis of the PSO-DRS algorithm, an adaptive framework is developed and rigorously tested, demonstrating the effects of the tunable particle- and swarm-level parameters. This adaptability shows practical benefit by broadening the range of problems which the PSO-DRS algorithm is wellsuited to optimize.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Constrained optimization applied to multiscale integrative modeling

    Get PDF
    Multiscale integrative modeling stands at the intersection between experimental and computational techniques to predict the atomistic structures of important macromolecules. In the integrative modeling process, the experimental information is often integrated with energy potential and macromolecular substructures in order to derive realistic structural models. This heterogeneous information is often combined into a global objective function that quantifies the quality of the structural models and that is minimized through optimization. In order to balance the contribution of the relative terms concurring to the global function, weight constants are assigned to each term through a computationally demanding process. In order to alleviate this common issue, we suggest to switch from the traditional paradigm of using a single unconstrained global objective function to a constrained optimization scheme. The work presented in this thesis describes the different applications and methods associated with the development of a general constrained optimization protocol for multiscale integrative modeling. The initial implementation concerned the prediction of symmetric macromolecular assemblies throught the incorporation of a recent efficient constrained optimizer nicknamed mViE (memetic Viability Evolution) to our integrative modeling protocol power (parallel optimization workbench to enhance resolution). We tested this new approach through rigorous comparisons against other state-of-the-art integrative modeling methods on a benchmark set of solved symmetric macromolecular assemblies. In this process, we validated the robustness of the constrained optimization method by obtaining native-like structural models. This constrained optimization protocol was then applied to predict the structure of the elusive human Huntingtin protein. Due to the fact that little structural information was available when the project was initiated, we integrated information from secondary structure prediction and low-resolution experiments, in the form of cryo-electron microscopy maps and crosslinking mass spectrometry data, in order to derive a structural model of Huntingtin. The structure resulting from such integrative modeling approach was used to derive dynamic information about Huntingtin protein. At a finer level of resolution, the constrained optimization protocol was then applied to dock small molecules inside the binding site of protein targets. We converted the classical molecular docking problem from an unconstrained single objective optimization to a constrained one by extracting local and global constraints from pre-computed energy grids. The new approach was tested and validated on standard ligand-receptor benchmark sets widely used by the molecular docking community, and showed comparable results to state-of-the-art molecular docking programs. Altogether, the work presented in this thesis proposed improvements in the field of multiscale integrative modeling which are reflected both in the quality of the models returned by the new constrained optimization protocol and in the simpler way of treating the uncorrelated terms concurring to the global scoring scheme to estimate the quality of the models

    Deriving Protein Structures Efficiently by Integrating Experimental Data into Biomolecular Simulations

    Get PDF
    Proteine sind molekulare Nanomaschinen in biologischen Zellen. Sie sind wesentliche Bausteine aller bekannten Lebensformen, von Einzellern bis hin zu Menschen, und erfüllen vielfältige Funktionen, wie beispielsweise den Sauerstofftransport im Blut oder als Bestandteil von Haaren. Störungen ihrer physiologischen Funktion können jedoch schwere degenerative Krankheiten wie Alzheimer und Parkinson verursachen. Die Entwicklung wirksamer Therapien für solche Proteinfehlfaltungserkrankungen erfordert ein tiefgreifendes Verständnis der molekularen Struktur und Dynamik von Proteinen. Da Proteine aufgrund ihrer lichtmikroskopisch nicht mehr auflösbaren Größe nur indirekt beobachtet werden können, sind experimentelle Strukturdaten meist uneindeutig. Dieses Problem lässt sich in silico mittels physikalischer Modellierung biomolekularer Dynamik lösen. In diesem Feld haben sich datengestützte Molekulardynamiksimulationen als neues Paradigma für das Zusammenfügen der einzelnen Datenbausteine zu einem schlüssigen Gesamtbild der enkodierten Proteinstruktur etabliert. Die Strukturdaten werden dabei als integraler Bestandteil in ein physikbasiertes Modell eingebunden. In dieser Arbeit untersuche ich, wie sogenannte strukturbasierte Modelle verwendet werden können, um mehrdeutige Strukturdaten zu komplementieren und die enthaltenen Informationen zu extrahieren. Diese Modelle liefern eine effiziente Beschreibung der aus der evolutionär optimierten nativen Struktur eines Proteins resultierenden Dynamik. Mithilfe meiner systematischen Simulationsmethode XSBM können biologische Kleinwinkelröntgenstreudaten mit möglichst geringem Rechenaufwand als physikalische Proteinstrukturen interpretiert werden. Die Funktionalität solcher datengestützten Methoden hängt stark von den verwendeten Simulationsparametern ab. Eine große Herausforderung besteht darin, experimentelle Informationen und theoretisches Wissen in geeigneter Weise relativ zueinander zu gewichten. In dieser Arbeit zeige ich, wie die entsprechenden Simulationsparameterräume mit Computational-Intelligence-Verfahren effizient erkundet und funktionale Parameter ausgewählt werden können, um die Leistungsfähigkeit komplexer physikbasierter Simulationstechniken zu optimieren. Ich präsentiere FLAPS, eine datengetriebene metaheuristische Optimierungsmethode zur vollautomatischen, reproduzierbaren Parametersuche für biomolekulare Simulationen. FLAPS ist ein adaptiver partikelschwarmbasierter Algorithmus inspiriert vom Verhalten natürlicher Vogel- und Fischschwärme, der das Problem der relativen Gewichtung verschiedener Kriterien in der multivariaten Optimierung generell lösen kann. Neben massiven Fortschritten in der Verwendung von künstlichen Intelligenzen zur Proteinstrukturvorhersage ermöglichen leistungsoptimierte datengestützte Simulationen detaillierte Einblicke in die komplexe Beziehung von biomolekularer Struktur, Dynamik und Funktion. Solche computergestützten Methoden können Zusammenhänge zwischen den einzelnen Puzzleteilen experimenteller Strukturinformationen herstellen und so unser Verständnis von Proteinen als den Grundbausteinen des Lebens vertiefen

    Gradient based optimization in ligand-receptor docking

    Get PDF
    In this work, we compared six global search heuristics and two scoring functions in the field of ligand-receptor docking. A new way for the gradient based minimization of a ligand whose position in space is defined by translation, orientation and a set of torsional flexible angles was implemented and thoroughly tested. The default local search method of a Lamarckian genetic algorithm was replaced by our novel gradient based approach and the new hybrid was compared to non-gradient global search heuristics. Finally, we present our docking program BALLDock, in which we incorporated our findings.In der vorliegenden Arbeit wurden sechs populationsbasierte Optmierungsheuristiken und zwei Scoring-Funktionen im Hinblick auf ihre Leistungsfähigkeit im Bereich Ligand-Rezeptor Docking miteinander verglichen. Parallel dazu wurde eine neuer Ansatz entwickelt, der die lokale, gradientenbasierte Optimierung partiell flexibler Moleküle, deren Position und Konformation durch Translation, Orientierung und eine Anzahl flexibler Bindungswinkel definiert ist, erlaubt. Danach wurde die gradientenfreie Methode zur lokalen Optimierung eines Lamarck genetischen Algorithmus durch das neuartige gradientbasierte Verfahren ersetzt und dessen Einfluss auf die Ergebnisse der globalen Suchheuristik analysiert. Abschließend wird das Dockingprogramm BALLDock vorgestellt, in das die neu gewonnenen Erkenntnisse einflossen

    An Approach Based on Particle Swarm Optimization for Inspection of Spacecraft Hulls by a Swarm of Miniaturized Robots

    Get PDF
    The remoteness and hazards that are inherent to the operating environments of space infrastructures promote their need for automated robotic inspection. In particular, micrometeoroid and orbital debris impact and structural fatigue are common sources of damage to spacecraft hulls. Vibration sensing has been used to detect structural damage in spacecraft hulls as well as in structural health monitoring practices in industry by deploying static sensors. In this paper, we propose using a swarm of miniaturized vibration-sensing mobile robots realizing a network of mobile sensors. We present a distributed inspection algorithm based on the bio-inspired particle swarm optimization and evolutionary algorithm niching techniques to deliver the task of enumeration and localization of an a priori unknown number of vibration sources on a simplified 2.5D spacecraft surface. Our algorithm is deployed on a swarm of simulated cm-scale wheeled robots. These are guided in their inspection task by sensing vibrations arising from failure points on the surface which are detected by on-board accelerometers. We study three performance metrics: (1) proximity of the localized sources to the ground truth locations, (2) time to localize each source, and (3) time to finish the inspection task given a 75% inspection coverage threshold. We find that our swarm is able to successfully localize the present so

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms
    corecore