
 i

Intelligent Methods for

Locomotion Optimisation

by

Jonathan Wright

School of Computing

The thesis is submitted to the University of Portsmouth

for the degree of Doctor of Philosophy

November 2015

 ii

Declaration

The work presented in this thesis has been carried out in the School of Computing at

the University of Portsmouth under the supervision of Dr. Ivan Jordanov.

Whilst registered as a candidate for the above degree, I have not been registered for any

other research award. The results and conclusions embodied in this thesis are the work

of the named candidate and have not been submitted for any other academic award.

Jonathan Wright

 iii

Abstract

This thesis presents, critical compares and develops new methods to control and

optimise locomotion for a range of systems. Jumping and running locomotion skills are

examined in detail, and intelligent methods are discussed and adapted to optimise for

correct form of motion, and performance outcomes. Existing control techniques are

summarised and compared, including traditional analytical methods, central pattern

generator oscillator systems, pattern generating neural networks, rule based systems and

other specialist methods.

Optimisation and learning methods presented in the literature are also summarised, and

while several methods exist, modern global search methods were limited to genetic

algorithms. This thesis applies particle swarm optimisation and quantum inspired

evolutionary algorithms to vertical jump and walking optimisation, comparing their

performance to a genetic algorithm. Improvements were developed for both binary and

real-value variants of quantum inspired evolutionary algorithms, to benefit performance

on the real-value problems involved in locomotion control. These improvements

consisted of modifications to their rotation gate operators, including a novel scheme to

reduce premature convergence in the binary methods, based on limiting the range of

less significant bits.

Methods were applied in simulated environments, although they can be adapted to real

world robotic control, or for reference in optimising motion in humans. A discussion

of the susceptibility of simulation runs to poor physical modelling was presented, as

this was a significant problem during research. Results were generally mixed, to the

extent that all tested methods may be usefully examined more in future work. The

central pattern generators tested generated successful patterns more often than a

recurrent neural network, and the results of the optimisation algorithms did not show

sufficient advantage of one over the others.

 iv

Contents

Declaration ... ii

Abstract ... iii

Contents .. iv

1 Introduction .. 1

1.1 Motivation .. 1

1.2 Problem statement and objectives .. 3

1.3 Original contributions ... 5

1.4 Thesis outline .. 6

2 Review of locomotion control .. 8

2.1 Control methods ... 8

2.1.1 Analytical .. 8

2.1.2 Central pattern generators ... 11

2.1.3 Feed Forward Neural Networks for movement control 15

2.1.4 Recurrent Neural Network pattern generators .. 17

2.1.5 Rule based systems .. 19

2.1.6 Hidden Markov models .. 20

2.2 Summary ... 21

3 Review and discussion of locomotion optimisation and physical modelling methods 24

3.1 Optimisation techniques in locomotion ... 24

3.1.1 Review of optimisation goals.. 25

3.1.2 Review of optimisation methods.. 26

3.2 Background on global search heuristics ... 27

3.2.1 Genetic algorithms ... 27

3.2.2 Particle swarm optimisation ... 28

3.2.3 Estimation of distribution algorithms ... 29

3.3 Review and specification of physical simulation .. 30

3.3.1 Review of physical simulation platforms .. 30

3.4 Model design .. 32

3.4.1 Simple quadruped model ... 32

3.4.2 Simple biped model .. 34

3.4.3 Detailed biped model ... 34

3.5 Summary ... 36

4 Quantum inspired evolutionary algorithms ... 37

 v

4.1 Introduction .. 37

4.2 Binary QIEA ... 39

4.2.1 Classic QIEA... 39

4.2.2 Application to real-value problems and convergence issues 41

4.2.3 Improved bQIEA convergence performance for real value problems – HSB

(Half Significant Bit). ... 42

4.3 Real QIEA .. 44

4.3.1 The RCQIEA algorithm .. 44

4.3.2 Problems with rotation gate ... 45

4.3.3 SRQEA – fixing RCQIEA ... 45

4.4 Numerical Simulation ... 46

4.4.1 Test functions ... 47

4.4.2 Population size analysis .. 48

4.4.3 Performance metrics .. 50

4.5 Results and Discussion .. 52

4.5.1 Functionality of the tested QIEA .. 52

4.5.2 Evolution properties of the QIEA .. 60

4.5.3 Comparison of QIEA with published results ... 63

4.6 Conclusion .. 68

5 Comparative experiments in evolution of locomotion .. 71

5.1 Vertical jump skill ... 71

5.1.1 Vertical jump in detailed biped model ... 71

5.1.2 Vertical jump in detailed robot biped model ... 73

5.1.3 CPG – Van der Pol ... 74

5.1.4 RNN – Fully connected leaky integrator ... 75

5.1.5 Optimisation ... 75

5.1.6 Fitness function .. 76

5.1.7 Results .. 76

5.2 Walking gaits .. 80

5.2.1 Evolving quadruped walking gaits .. 80

5.2.2 Quadruped walking results ... 82

5.2.3 Evolving biped walking gaits ... 88

5.2.4 Difficulties ... 89

5.2.5 Bipedal walking results ... 89

5.3 A long jump skill .. 91

5.3.1 Conclusion .. 93

 vi

6 Conclusions and future directions .. 95

6.1 Conclusions ... 95

6.2 Future directions .. 99

6.3 List of publications .. 101

7 References .. 102

Appendix A Additional QIEA Results .. 111

Appendix B Fitness functions ... 117

Appendix C Code Listings ... 124

C.1 Original hinge code ... 124

C.2 Modified hinge code ... 124

 vii

List of figures

Figure 1: Radial Basis Function Network (RBFN) .. 16

Figure 2: Cerebellar Model Articulation Controller (CMAC) .. 16

Figure 3: Jordan network .. 17

Figure 4: Fully connected neural network with six output neurons (shaded). 18

Figure 5: Reservoir neural network. ... 19

Figure 6: Constraint/adaptability and learning demands of the reviewed control methods. . 22

Figure 7: Open Architecture Human-centered Robotics Platform 3 (OpenHRP3). 32

Figure 8: Schematic of the quadruped design. ... 33

Figure 9: Simple biped schematic ... 34

Figure 10: Detailed biped schematic .. 35

Figure 11: Evolution of Qbit probabilities on Griewank function... 43

Figure 12: Population analysis for the QIEA. .. 49

Figure 14: Heat map of best convergence to a minimum by the QIEA on the CEC-2013 test

functions. .. 57

Figure 15: Empirical cumulative probability distribution function of mean errors 61

Figure 16: Timeline evolution of mean error values .. 62

Figure 17: Heat map of best minimum performance by SRQEA compared to published PSO

and GA algorithms on the CEC-2013 test functions. .. 67

Figure 18: Still frames from an animation of a vertical jump evolved for a biped model........ 72

Figure 19: Frames from the animation of a successfully optimised vertical jump................... 79

Figure 20: CPG output trace for the right knee angle during a vertical jump 79

Figure 21: Typical evolved successful quadruped gait. .. 83

Figure 22: Time evolutions of each optimisation algorithm for each controller 88

Figure 23: Successful bipedal walking gait. .. 90

Figure 24: Typical long jump evolution. ... 92

 viii

List of tables

Table 1: Advantages and disadvantages of the reviewed control methods. 23

Table 2: PSO configuration. .. 29

Table 3: Non-exhaustive summary of physical simulation packages. 31

Table 4: Quadruped part specification. .. 33

Table 5: Simple biped specification. ... 34

Table 6: Detailed biped specification. .. 36

Table 7: Direction of rotation gate. .. 40

Table 8: Step size analysis for SRQEA ... 47

Table 9: Summary statistics for the 13 traditional test functions with 50 dimensions 53

Table 10: Summary statistics for the 20 CEC-2013 test functions with 50 dimensions 54

Table 11: Summary statistics for CEC-2011 real world problems .. 59

Table 12: Comparison between SRQEA, Fast Evolutionary Programming (FEP) , and MADE .. 65

Table 13: Comparison of success rates (SR) and speed of convergence (SP), between RCQIEA,

SRQEA and 4 differential evolution algorithms .. 65

Table 14: SRQEA compared to SPSO-2011 and a GA algorithm for the CEC-2013 functions

with 50 dimensions .. 66

Table 15: Comparison of performance on real-world problems between SRQEA and three

differential evolutionary algorithms .. 66

Table 16: CPG parameter ranges. ... 74

Table 17: CPG encoding scheme. ... 74

Table 18: Parameter ranges for RNN.. 75

Table 19: GA configuration ... 76

Table 20: Fitness function for vertical jump. .. 76

Table 21: Comparison of vertical jump evolution .. 77

Table 22: Comparison of GA, SRQEA and PSO optimisation of a quadruped gait 84

Table 23: Pairwise significance tests between each combination of controller and optimiser

 .. 85

Table 24: Alternative versions of SRQEA and PSO applied to the full Sin controller for a

quadruped walking gait. ... 85

Table 25: Walking evolution performance for biped model. ... 91

Table 26: Summary statistics for the 13 traditional test functions with 10 dimensions. 111

Table 27: Summary statistics for the 13 traditional test functions with 30 dimensions. 112

Table 28: Summary statistics for the 20 CEC-2013 test functions with 10 dimensions. 113

Table 29: Summary statistics for the 20 CEC-2013 test functions with 30 dimensions. 114

Table 30: SRQEA compared to SPSO-2011 and a GA algorithm for the CEC-2013 functions

with 10 dimensions. .. 115

Table 31: SRQEA compared to SPSO-2011 and a GA algorithm for the CEC-2013 functions

with 30 dimensions. .. 116

 ix

Glossary

Abbreviation Meaning

3D-LIPM Three Dimensional Linear Inverted Pendulum Model

bQIEA Binary Quantum Inspried Evolutionary Algorithm

CMAC Cerebellar Model Articulation Controller

CMP Centroidal Moment Point

CoG Centre of Gravity

CPG Central Pattern Generator

DE Differential Evolution

DoF Degrees of Freedom

ECDF Empirical Cumulative Probability Distribution Function

EDA Estimation of distribution algorithm

FRI Foot Rotation Indicator

GA Genetic Algorithm

HMM Hidden Markov model

NME Normalised Mean Error

NN Neural Network

OpenHRP3 Open Architecture Human-centered Robotics Platform version 3

PSO Particle Swarm Optimisation

QIEA Quantum Inspried Evolutionary Algorithm

RCQIEA Real-coded Quantum Inspired Evolutionary Algorithm

RNN Recurrent Neural Network

rQIEA Real Quantum Inspried Evolutionary Algorithm

SP Success Performance

SR Success Rate

SRQEA Stepwise Real Quantum Evolutionary Algorithm

ZMP Zero Moment Point

Chapter 1 - Introduction 1

1 Introduction

1.1 Motivation

A challenge for modern computer science is the development of algorithms to deal with

increasingly complex optimisation problems. Such challenges include a variety of

practical real-world problems, such as structural engineering [1], [2], antenna design

[3], electric power systems [4], digital image watermarking [5], EEG classification [6],

benchmark problems [7], or mathematical functions designed to test or challenge

aspects of optimisation [8], [9].

This thesis investigates the task of optimising the control of legged mechanical or

biomechanical systems (robots, human models, etc…) to produce various locomotion

patterns, including walking, running and jumping, with a focus on coping with the

complexity present in detailed models of a target system.

When using analytical approaches to these problems, we need to be able to express a

measure of the desired outcome (such as maximum distance obtained), as a function of

the parameters of the model of motion, and apply optimisation techniques to the model

formulae. This is simplified if we can differentiate the system of equations in order to

find minima but, in order to do this, real world applications may require an amount of

simplification in the modelling process, such as in [10]. For example, predicting

projectile flight distance from a throw can be done as a function of launch speed and

angle. However, such simplifications reduce the range of questions that can be

answered, and are susceptible to false conclusions due to omission of key factors. In

this throwing example, can we say how the body should best move in order to maximise

speed? Also, do we make false conclusions over the preferred angle by ignoring spin

and material characteristics of the projectile, its interaction with air, etc..?

Chapter 1 - Introduction 2

The initial inspiration for this thesis was looking at how these questions relate to sport,

and a related discussion was identified in [11] including an justification for the need of

optimisation in sport, the limitations of current approaches and requirements that will

need to be met by new methods. The authors of [11] noted that simple models used in

analytical approaches can result in three problems. Firstly, the reliability of the results

is questionable – movement patterns derived in the simplified model may not be (even

approximately) optimal in the real world system. Secondly, the simplified model may

not contain the detail required - some sport skills have significant contributions from

large and small muscle groups simultaneously [12], but it is difficult to incorporate both

scales in a simple model. Finally, it is difficult to express differences between

individuals in a simplified model.

In order to improve the predictions, our models should become more detailed.

However, we soon reach the point where we cannot solve their dynamics (in the form

of a system of differential equations) analytically and must determine their behaviour

through real-life observation [13], or computer simulation. More detailed models of the

human body have been developed in [14], [15], but these models have many degrees of

freedom, and to optimise locomotion using them we need to develop techniques that

can cope with their complexity. Furthermore, we need to develop control algorithms

that can generate movement patterns with enough parameterisation and range of output,

such that the optimisation algorithm can locate good solutions.

This introduction opened with the goal of investigation optimisation of both biological

and mechanical systems. Although the subsequent discussion has focussed on human

sport, movement control of legged systems is required in other disciplines. These are

outlined in a later literature review, but the largest identified use of locomotion control,

and optimisation of that control, is in the field of robotics. Unlike for sport applications,

robotics (and potentially other fields) can use control methods directly, and therefore

the questions outlined above will become reframed into objectives for the control

algorithm: how do we optimise a desired goal such as maximum speed, and can we

develop a control method that is consistent, resilient to changes in environment or body

state, able to control many degrees of freedom, and customised to the specific design or

implementation of the target system? Increasingly complicated robotic systems will

require optimisation procedures that can deal with more degrees of freedom and

Chapter 1 - Introduction 3

accurately match the demands of the system, so both the sport perspective goals and

robotic goals (and other domains’ goals) will impose the same requirements.

If the target system can be programmed, optimisation of control can be performed in a

real-world setting. However, this process may be slow, prone to damage when

optimisation candidates result in a poorly configured control method, or simply not

possible if the target system cannot be programmed (as is the case with human targets).

In these cases, computer simulation can be used to determine optimal control and the

resulting algorithm could then be copied to the target system if it is programmable, or

the movement patterns be used as an instruction guide for human targets.

1.2 Problem statement and objectives

The problem under investigation by this thesis, is to establish and critically compare

methods suitable for optimisation of locomotion control in simulated physical systems

designed to closely model real-world targets. Given the motivation from section 1.1,

these methods should be able to work with complicated models and support detailed

conclusions on viable control methods or optimal gaits/movement patterns. The

modelling should be accurate enough that control algorithms can be rapidly transferred

from simulated environments to real-world systems, such as legged robots, or that

optimised movement patterns can be used as a template for human instruction, with a

reliable expectation that the pattern will be approximately optimal for them too. The

control algorithms need to be general enough, and the optimisation techniques powerful

enough, to attain good results that can be assumed to be approximately optimal and not

overly constrained by the framework of the control algorithm.

In an attempt to address this problem, the following objectives were stated for the

research covered in this thesis:

 Review and compare successful control methods for locomotion. To enable

experimentation, this objective seeks to identify, categorise and critical compare

published control algorithms. Then suitable candidates can be selected,

according to the evaluation based on applicability and optimisation potential,

for use in later research conducted for this thesis.

 Review, compare and add successful optimisation techniques for locomotion.

The fundamental goal of this thesis is to investigate an optimisation process, and

Chapter 1 - Introduction 4

so this objective is set to identify the types of optimisation algorithm presented

in the literature that have been applied to locomotion. Furthermore, this goal

seeks to apply techniques not previously identified as being used in the field, to

expand the knowledge of what methods can be used and how different

optimisation techniques compare to each other when applied to locomotion.

 Develop new optimisation algorithm variants and apply to locomotion.

Following the review of used optimisation algorithms, and application of

previously unused techniques, this objective seeks to expand further the options

and points of comparison for optimisation techniques by developing new or

modified optimisation algorithms, both for locomotion and for general

application.

 Develop new fitness functions to describe motion skills not identified in the

literature. This goal aims to expand the type of locomotion skills that can be

evolved, crucial in order to be able to generalise techniques to answer questions

for any sport skill, to enable robots to do more tasks in an environment, or to

expand the range of useful activities in any equivalent application. Skills must

be encoded in a fitness function that the optimisation algorithm can then

minimise (or maximise) – a task that is potentially non-trivial as poorly specified

functions may promote sub-optimal solutions relative to the desired outcome, or

even an unforeseen outcome that does not match the original intention of the

developer.

 Compare presented methods across these different skill objectives, and for

different physical systems. While establishing working methods is a useful

endeavour, this objective also seeks to critical compare developed methods in

terms of success rates relative to skill criteria and the fitness values achieved.

This will enable a discussion to begin on the relative usefulness of tested control

methods and optimisation techniques, in differing physical system contexts and

for different movement skills.

 Implement simulation techniques with different software platforms, emphasising

their advantages and disadvantages. It is not a goal of this thesis to develop

physics simulation platforms, and so a review of existing options must be

conducted, and suitable candidates chosen for experimentation. It is an

Chapter 1 - Introduction 5

objective to use more than one platform in order establish that the methods do

work across different physics software, and to make use of advantages one

package may have over others.

 Examine the process of simulating physical systems, and how model design

affects outcomes with a variety of model complexity. A range of physical models

should be developed for the physics platforms that can vary the difficulty of

optimisation (through the complexity of the model), type of system (ideally both

bipeds and quadrupeds) and realism when compared to target systems (e.g.

human body). The modelling process should examine how best to express the

desired system with the physics package and how the dynamic properties, such

as joint actuator models, affect the types of movement possible and suitability

for optimisation.

1.3 Original contributions

The original contributions of this thesis are:

 Development of new fitness functions, in order to optimise movement for

vertical and long jumping;

 Investigation and development of a new quantum inspired evolutionary

algorithms (QIEA), adapted and tested for use with real-value optimisation

problems. Adaptations were made for both binary and real-coded QIEA. The

binary QIEA included a scheme to prevent premature convergence of least-

significant bits in the solution strings. The modified real-coded QIEA proposes

a new rotation gate formula;

 Application of particle swarm optimisation (PSO) and QIEA to running and

jumping locomotion tasks;

 Critical analysis, comparison and evaluation of central pattern generators

(CPG) and recurrent neural networks (RNN) for locomotion control;

 Critical analysis, comparison and evaluation of genetic algorithms (GA), PSO

and QIEA for locomotion optimisation;

Chapter 1 - Introduction 6

 Guidance on developing physical models for use in simulations, that are capable

of and likely to produce the desired movement skills;

 Analysis of the ability of the studied control methods and optimisation

techniques to scale from stable quadruped to unstable biped models, with

increasingly realistic actuator models.

1.4 Thesis outline

This thesis is arranged into six chapters. Chapter 1 introduces this work, with the

motivation for the research in section 1.1, a statement and explanation of objectives in

1.2, a list of original contributions presented in 1.3 and an outline of the thesis in section

1.4.

Although this introduction has talked about human locomotion, the literature reviews

presented in chapters 2 and 3 largely covers robotics. Applicable methods typically

meet the demands of legged locomotion but other systems have also been examined.

Control methods which allow motion patterns to be generated from a parameter vector

are presented in section 2.1 and a comparative summary of the reviewed control

methods is presented in section 2.2.

A summary of optimisation techniques identified that have been applied to locomotion

in the literature is given in section 3.1 and a background to three different types or

classes of optimisation algorithm is presented in section 3.2. A small review of physical

simulation packages in given in section 3.3 and, following a discussion on selecting

suitable physics platforms, a set of physical models are described in section 3.4 for use

in experiments.

To expand upon the available optimisation methods, with recognition that evolving

some patterns may be a difficult task, quantum inspired evolutionary algorithms

(QIEA) are presented in chapter 4. After an introduction in section 4.1, binary QIEA

are presented in section 4.2, along with an identified convergence problem and a

proposed solution. A real-coded QIEA from the literature is given in section 4.3, and a

problem in the rotation gate formulae is shown, along with an alternative solution.

Chapter 1 - Introduction 7

Methodologies for analysing the adapted QIEA are given in section 0, with results and

discussion in sections 4.5 and 4.6 respectively.

Chapter 5 presents experiments in locomotion optimisation. A bipedal vertical jump

skill is developed in section 5.1 for two different platforms, in detailed bipedal models

with qualitative discuss and quantitative comparison between control methods and

optimisation algorithms. This approach is continued for walking gaits in quadruped and

bipedal models in section 5.2 and long jumping in a biped in section 5.3. Some

experiments allowed a large amount of comparison between techniques, including

significance tests. An important discussion is also given into problems encountered in

physical simulation, how they affected experimentation and the implications for future

work.

The main content of the thesis concludes with chapter 6, with a summary and discussion

in section 6.1 with reference to the objectives of the thesis, suggestions for future work

in section 6.2 and a list of the author’s publications in section 6.3. Chapter 7 lists the

references used in this document, Appendix A presents additional results from the

quantum inspired evolutionary algorithm research, Appendix B gives formulae for

fitness functions used in that investigation and Appendix C presents the code for

modified joint actuator functions used in the locomotion optimisation experiments.

Chapter 2 - Review of locomotion control 8

2 Review of locomotion control

Locomotion is the process of moving an organism or synthetic creature around an

environment. Artificially producing locomotion is required in a range of disciplines

including robot control [16]–[19], artificial limb control [20], [21], computer animation

[22], [23], and biological studies [24]. Locomotion may be needed for simulated

models [25] or real world systems such as robots [26].

This chapter details a number of different techniques for control of locomotion present

in the literature, and compares their strengths and weaknesses. Arguments are presented

as to which methods are relevant to the research topic of this thesis, to be examined in

later chapters. As can be seen from their dominance in the reference list, applications

to robotics formed the bulk of this review. This is a reflection of what was found in the

literature search, rather than a bias towards that field in presentation.

2.1 Control methods

2.1.1 Analytical

As was explained in chapter 1, analytical approaches to biomechanics generally involve

simplification. During the literature search outlined in this chapter, analytical

approaches for robotic locomotion also involved simplification in the modelling stage,

and so the outline here will be relatively brief.

Legged movement starts from a simple premise - if the feet are placed in a forward

moving pattern, and the rest of the body remains supported without falling to the

ground, then the whole mass of the system will be moved forward continuously. Motion

is therefore a combination of gait and whole (and especially upper) body stability. As

bipedal motion stresses the stability constraint, it presents a challenge to locomotion

Chapter 2 - Review of locomotion control 9

control, and was found to be the most investigated form in the literature [27]. A typical

procedure for constructing bipedal motion would be:

 Plan a path to determine foot placements;

 Apply stability constraints to determine the Centre of Gravity (CoG) trajectory,

based on a model of the weight distribution;

 Construct a plausible gait algorithm, addressing the double support (both feet

on the ground) and single support (one foot off the ground) phases;

 Solve any remaining degrees of freedom (DoF) by any sensible manner.

Methods may include copying human movement, simplifying movement, or

even producing something that ‘looks right’.

The first and most common stability constraint is the Zero Moment Point (ZMP) [28].

It is calculated as the point under the foot where the ground reaction force will

completely negate the effects of moments and forces on the foot from the rest of the

body (assuming sufficient friction). If the ZMP exists under the foot, then the system

is stable, but if the calculated point is outside the foot, then the ZMP does not exist and

the body (robot) will topple, rotating around an edge of the foot. The ZMP equations

are used to ensure that the robot remains upright as the feet are moved. They are

combined with a model of the mass distribution in order to determine a trajectory for

the centre of gravity (CoG). The model is often simplified to make deriving the

equations simpler. A common model is the inverted pendulum model (IPM), which has

a single point mass connected to the ground by a weightless rod [29]. In two dimensions

this is given as:

 

 
  0,

CoG

CoG CoG ZMP

CoG ZMP

z g
x x x

z z


  


 (2.1)

where xCoG and zCoG are the x and z components of the Centre of Gravity respectively,

xZMP and zZMP are the x and z components of the desired Zero Moment Point, α is a

constant with value 1 in the standard inverted pendulum model, and g is the gravitational

acceleration.

Chapter 2 - Review of locomotion control 10

The gait algorithm is anything that raises a foot (now labelled as belonging to the swing

leg) off the ground, moves it forwards, and places it back on the ground. Often, the mass

models used assume that all of the mass is contained above the hip. Therefore, the CoG

trajectory, as determined by the ZMP constraint, defines the hip angle trajectory. This

is calculated to produce the CoG position relative to the hip position, which in turn is

specified by the foot placements and leg joint angles. The foot trajectories are used to

determine the leg joint angles and the overall motion is determined by the desired ZMP.

It is located under the support foot in the single support phase and transitions to the

other foot during the double support phase. Solving for the final trajectories is covered

in [30].

Variations to the above procedure involve alterations to the stability constraint,

alterations to the mass distribution model and alterations to the gait algorithm. Some

of these variations are discussed below.

Equation (2.1) is a general form of the ZMP inverted pendulum constraint, but in many

experiments it is simplified with the condition that there is no vertical movement of the

CoG (i.e.,). This is often referred to as the Three Dimensional Linear Inverted

Pendulum Model (3D-LIPM). The simplicity of the 3D-LIPM algorithm made it

popular in [17], [18], [18], [19], [26], [30]–[32]. In [25], a comparison was made

between several different mass models. The authors found that all of the models could

be written in the form of equation (2.1) but with α varying depending on which mass

model was used. Since different mass models will result in varying levels of accuracy

to the true model, the identification of the constant α allows the mass model to be fine-

tuned. By experimentally varying α, the ZMP error can be reduced. As α multiplies

the height zCoG, the model was called a Virtual Height Inverted Pendulum. A simple

error minimisation procedure was used to find optimal values for α for different step

periods. The procedure involved incrementing or decrementing α by a fixed amount, if

the ZMP error was outside a threshold interval.

To further increase the accuracy, more complicated mass models can be used, at the

expense of increased complexity of analysis. For example, multi-mass models were

used in [33], [34]. In [34], three different bipedal control methods were evaluated and

validated by comparing them to a reference multi-mass model with ZMP constraint.

The compared models used polynomial interpolation between start and end states,

0CoGz 

Chapter 2 - Review of locomotion control 11

actuator driving in the double-support phase, and a combined approach with added toe

support and shock absorption, respectively. The toe support phase is omitted in normal

ZMP based methods because it is, by definition, a failure with the foot beginning to

rotate about the front edge. The authors included it to allow real-time freedom of choice

for placing the landing foot. They argued this would allow for better walking on uneven

ground.

The ZMP can only be used to classify a state as stable or unstable. More informative

alternatives include the Foot Rotation Indicator (FRI) [35], used to determine the

stability margin or degree of instability, and the Centroidal Moment Point (CMP) [36],

which provides information on the whole body rotational. After analysing how the

various stability constraints performed for a human gait, the authors of [36]

recommended a modified FRI that was more sensitive, and that the CMP and ZMP

should both be used, for human-like locomotion. A reason to improve upon ZMP

control is illustrated in [37], where significant differences were found between human

and ZMP gaits, such as CoG trajectory, free leg trajectory, and the position of the ZMP

under the foot.

With extra legs, stability becomes less of a problem, and the focus then shifts to

developing gait algorithms – methods of moving the feet in order to move the system

in a particular direction. Different types of gaits for quadrupeds have been developed,

to be used at different speeds, such as ambling, trotting, bounding and galloping [38]–

[41]. In order to improve manoeuvrability, forward and crab (perpendicular) gaits for

flat and sloped terrain were developed in [42]. Other research has looked at fine tuning

the gaits, including comparing different modelling assumptions on final real-world

accuracy [41], and increasing efficiency by utilising the natural dynamics of the system

[43].

2.1.2 Central pattern generators

In motor skills science there was a debate over whether locomotion is reflex based or is

generated internally. Experiments in the second half of the 20th century demonstrated

that internal generation had to be a significant part of locomotion [44]. This was proved

by severing sensory neural pathways in animal subjects and observing that they could

still perform locomotion. In more recent times, dissections have enabled a reverse

engineering of the neural networks that control this innate locomotion. Those networks

Chapter 2 - Review of locomotion control 12

that have been discovered, exist in spinal regions and have therefore been called ‘central

pattern generators’, or CPGs [45]–[48].

A biological CPG can be defined as a neural network that produces rhythmic pattern

outputs without the need for patterned input. However, a distinction should be made

between CPG neural networks and more traditional NNs, which are discussed in

sections 2.1.3 and 2.1.4. In reviewing the engineering use of CPGs, it was determined

that it is better to see CPGs as systems of oscillators, rather than as neural networks. In

biological systems, the primary unit of rhythm is built around a pair of

inhibitory/excitatory neurons that produce oscillations. A detailed examination of a

biological CPG from an engineering perspective was conducted in [49] but shall not be

described in detail here. The workings of the neurological systems are modelled,

including membrane potentials, neuron resistance and capacitance, receptor channel

dynamics, among other properties. As described below, the applied literature in

locomotion control generally uses more abstract mathematical forms.

The review of CPGs here focuses on application to robotic control and generalises the

concept to oscillator models. For other perspectives, including historical and biological

contexts, see the reviews in [50], [51]. Some approaches, that are referred to as CPGs,

do not even explicitly use differential equations, but rather use oscillators with more

transparent sinusoidal forms, as discussed in the next section.

A detailed mathematical modelling of biological CPGs has been performed in [49]. The

first examples of artificial CPGs described here take inspiration from biology, but

without directly modelling biological processes. First developed in [52], the Matsuoka

oscillating system models networks of mutually inhibiting neurons and is presented in

equation (2.2). In this system, xi and yi are the internal and external states of oscillator

(or neuron) i respectively. The model includes an adaptation, or self-inhibitory,

component xi
’ which was shown to help produce oscillatory behaviour, when certain

conditions on the constants were met. Oscillators are linked with the weight matrix aij,

b and T are timing constants, and si is an input from outside of the network. Mutually

inhibiting pairs of neurons can conveniently be arranged into units that represent

extensor/flexor muscle pairs [53], and units can then be linked to others to control inter-

limb coordination, all determined by the weight matrix aij.

Chapter 2 - Review of locomotion control 13

 

 

'

' '

,

,

max 0, .

i i ij j i i

i i i

i i

x x a y s bx

Tx x y

y x

    

  





 (2.2)

Matsuoka oscillators have often been used for locomotion [20], [52]–[63], and as well

as proving successful, they have been found to elegantly produce different gaits, such

as walking, trotting and pacing quadruped gaits, simply by specifying different phase

relationships [53]. Furthermore, they are capable of producing smooth gait transitions,

which was dramatically demonstrated in [57] where a 2D four legged robot switched

between a bipedal gait for walking, and a quadrupedal gait for climbing up a slope.

A final example of a biologically inspired CPG oscillator is the Ellias-Grossberg

oscillator outlined in detail in [64] and specified in equation (2.3). This has some

similarities to the Matsuoka oscillator above but slightly different combinations of

contribution to the change in internal state (interpreted in [64] as the membrane potential

of a neuron), from the current internal state xi, external input Ii and interlink weight

matrix Dij. In this equation, A, B, C, E, F1, F2, G1, G2 are constants. Besides its initial

introduction in [64], and use in controlling insect locomotion in [65], this oscillator

appears to be rarely used.

       

  

   

 
  
  

 
  
  

2

1

2

2

2

1

2

2

,

1 ,

max ,0 ,

,

.

i i i i i i ij j

j

i i i i

x Ax B x f x I C x D g y

y E y x y

w w

F w
f w

F w

G w
g w

G w













        

   
 













 (2.3)

Moving away from a direct biological inspiration, the following CPG systems are based

on oscillators that are not trying to emulate some biological control process. The most

obvious of these are systems that explicitly use sinusoidal equations to produce

oscillations. A typical example, from [66], is shown in equation (2.4), and gives an

output θi using an offset xi, and amplitude ri, and a phase angle ϕi for oscillator i. The

Chapter 2 - Review of locomotion control 14

constants ar and br, are used in smoothing equations to change ri to a new value Ri, with

ax and bx doing the same for xi with respect to Xi. The phase angle is changed at a

specified rate of ωi plus a summation produces a link with the other oscillations based

on phase difference, and interlink matrices α and β.

    

  

  

 

sin cos ,

,

,

cos .

i i ij j j i ij j j i

j

i r r i i i

i x x i i i

i i i i

r r

r a b R r r

x a b X x x

x r

       

 

    

  

  

 



 (2.4)

Other examples of using this type of CPG include [67]–[69], where serpentine

locomotion was developed, and by using a hierarchy of oscillators, bipedal locomotion

was produced in [70].

Finally in this section are presented oscillators that are expressed as differential

equations, but without emulating biological processes. A typical example is the Van

der Pol oscillator [71]–[74], shown in equation (2.5). It has a simple structure with

controls for dampening μi, amplitude pi, frequency gi and offset qi for oscillator i

(although there is some interaction between the parameters). Coupling with other

oscillators in the system is achieved through the matrix λ. As with Matsuoka oscillators,

Van der Pol oscillators have been able to produce walking, trotting, pacing and

bounding gaits [72], as well as forward jumping movements [73], with smoothly gait

transitions achieved by varying the control parameters.

 2 2 2 ,

.

i i i i i i i

i i ji j

j

x p s g s q

s x x





   

 
 (2.5)

Finally, the two state variable Hopf oscillator is shown in equation (2.6) [75], [76]. The

state variables x and y interact to create oscillations, with frequency controlled by ω. In

equation (2.7) a driving term εF(t) from [77] has been added, along with a coupling

matrix k [78] to connect a system of oscillators, indexed by i. Additional constants γi

and μi are included to control speed of recovery for perturbation and amplitude

respectively. An interesting variation in CPG constructions was presented in [77],

where a series of Hopf oscillators was investigated, that included feedback terms

allowing learning of an input trajectory, with each sub-oscillator matching a partial of

Chapter 2 - Review of locomotion control 15

the input. A CPG using these combined oscillators was trained with a reference bipedal

locomotion pattern, thus converting a reference trajectory into a system with limit cycle

properties, so that it became resilient to perturbation.

 

 

2

2

2 2

1 ,

1 ,

.

x y r x

y x r y

r x y





   

  

 

 (2.6)

   

 

 

2

2

2 2

,

,

,

.

i i i i i i i

i i i i i i ij i

j

i
i

i

i i i

x y r x F t

y x r y k y

y
F t

r

r x y

   

  

 

    

   

 

 


 (2.7)

2.1.3 Feed Forward Neural Networks for movement control

Feed forward NNs are limited in their ability to generate movement patterns over time.

They have been used to specify parameters for an analytically derived control method,

in response to control inputs encoding stair height to be climbed, in order to interpolate

GA derived optimal patterns (with respect to energy consumption) [79], [80].

For actual pattern generation, radial basis function networks (RBFN, Figure 1) have

been used to generate movement actions in response to sensory input [81]. In RBFNs

the output of the input layer is fed into each neuron in the RBF layer as a vector. The

neurons in this layer have a reference vector and activate depending on how close the

input vector is to their particular reference. Weighted sums of the RBF neuron outputs

are then fed into the output layer. The sensors in [81] gave information about the

hexapod robot’s current state (limb positions) and the network was trained to choose a

suitable action in order to maintain a walking gait. RBFN were used as part of the

network has neurons that compare input vectors to stored reference vectors, and respond

strongly when the distance between them is below a threshold value. This enables the

network to classify states, and these then feed forward towards output layers for actions.

Chapter 2 - Review of locomotion control 16

By basing output on the current state, movement patterns are limited to those in which

a one to one relationship can be established between the analysed state and suitable

action.

Figure 1: Radial Basis Function Network (RBFN)

By including a time signal, a feed forward NN was developed in [82] that could output

actuator values as a function of time. The authors used a Cerebellar Model Articulation

Controller or CMAC network (Figure 2), which is a type of associative memory network

based on the cerebellum [83]. The continuous input space is divided into hyper-

rectangles so that an input is located in one rectangle at any one time. Multiple layers

are used with the placement of the rectangles slightly offset for each layer, so a rectangle

in one layer will overlap several in the other layers. In this way one input is associated

with multiple hyper-rectangles, one in each layer, but changes in the input will result in

different changes in activation in each layer. Each hyper-rectangle in each layer has a

weighted connection to the output neurons. The output of each node is the weighted

sum of the activated rectangles, and the weights are adjusted through training.

The CMAC was trained to learn basic walking patterns for a hexapod, as a function of

time and control variables for desired step length and walking period.

Figure 2: Cerebellar Model Articulation Controller (CMAC)

Chapter 2 - Review of locomotion control 17

2.1.4 Recurrent Neural Network pattern generators

Recurrent neural networks (RNN) recycle information, via time delays, back into

themselves, which makes them useful for processing inputs that evolve over time. Of

particular interest to locomotion is that they can also exhibit limit cycle behaviour and

self-generated patterns, and so are capable of producing periodic trajectories.

Upon this simple premise, more complicated networks can be developed to produce

complex patterns and handle different types of input. With the RNNs outlined here

there is a partnership between processing external sensor data and internally generating

patterns. Inputs into the RNNs for locomotion generally consist of gait selection and

sensory information. For non-recurrent networks, the inputs are vital to produce the

trajectories but, for the RNN, the pattern is produced internally and modified or selected

by the inputs.

A simple way of making an RNN is to recycle the output of a layer, back into the hidden

layer (as additional inputs to those neurons). In Jordan networks (Figure 3), which were

used in [84] to learn locomotion trajectories, this is done by feeding the output layer

back into the network, and with Elman networks (used in [85] to learn trajectories for a

hexapod robot), this is done by feeding the hidden layer back into itself, via time-

delayed connections. In [84] accurate, fault tolerant trajectories were learned, and the

system could interpolate between forms found in the training set, by varying the control

inputs accordingly.

Figure 3: Jordan network

Chapter 2 - Review of locomotion control 18

In [86]–[88], networks of fully connected leaky-integrator neurons were used as pattern

generators (Figure 4 and Eq. (2.8)). In [86], a network of 10 neurons was used to evolve

biped walking patterns. The output functions of the neurons insured changing outputs

over time, even if the network was initialized with zero outputs for all neurons. In [87]

a similar network was used to evolve hexapod locomotion, and in [88] another network

was evolve to hunt a chemical marker in 2D space.

Figure 4: Fully connected neural network with six output neurons (shaded).

  
1

1 i i

i ij j

j

i

i

A

i

A w O

A t

O e







 
  
   

 


 (2.8)

This chapter began by outlining analytically methods, utilising bespoke equations to

meet the task, followed by CPGs, which although more general than analytical methods,

are explicitly systems of oscillators. The neural networks presented in this and the

previous section represent the most general solutions investigated for the field of

locomotion control. The structure of neural networks do not impose the same

constraints on function as the other methods. This is taken to the fullest extent in

reservoir networks (Figure 5). These networks are generally large (relative to other

RNNs for a given task), the structure is initialised randomly rather than having defined

layers, and this combines with the size of the network to create a highly dynamic

information flow. Unlike other neural networks, the weights of connections are not

evolved or learned. Rather, the output neurons are evolved to ‘listen’ in to desired

Chapter 2 - Review of locomotion control 19

patterns from the network. This enables linear regression methods to simplify learning.

Therefore, size and processing power requirements are traded for simplicity of

learning/evolving. In [89] a reservoir network was developed that could learn human

walking trajectories captured from a motion capture system. The system was resilient

to perturbation and able to interpolate between trained references, controlled by inputs.

Figure 5: Reservoir neural network.

2.1.5 Rule based systems

By classifying the current state, the next action can be determined through a table

lookup or rule based system. The simplicity of these approaches enables clear

interpretation, and therefore the use of expert knowledge or learning/optimising

techniques to specify transition rules.

If a calculation of the current state vector can be performed, with discrete values or

categorisation, then a state index can be calculated and used to select an action from a

lookup table. In [90], a transition table was evolved, in order to specify actions based

on the current system state, for a hexapod. Body states were classified into an integer

value and this was used to index a list of actions, which specified leg movements. For

a given transition table, generated using a GA, the hexapod was simulated starting with

each possible initial configuration, and the fitness function was the proportion of those

starting positions that led to a tripod gait. The best table evolved gave stable tripod

gates for 98.4% of the initial states, with the failures arising from initial symmetrical

leg positions that could not lead to asymmetrical tripod gaits.

A transition table was also used in [91] to control a hexapod, but this time, the state

value was calculated as a binary string where each bit represented either supporting

(down) or not supporting (up) leg. With one leg being raised or lowered at a time, the

Chapter 2 - Review of locomotion control 20

goal was to move through a terrain that had specified bad patches (pre-known to the

algorithm). Using a graph search technique, locomotion was successfully generated

and exhibited different gates.

Fuzzy logic algorithms allow decisions based on continuous data. Processing sensor

information (for system state and environmental data) these systems have been used to

augment analytical solutions in [33] (to modify ZMP positions to match shifting

observed in human gaits) and [92] (to control four free parameters in order to improve

stability and efficiency).

More directly, fuzzy logic controllers have been developed to fully control movement.

In [93] they were used for path planning, ditch crossing, and turning for a hexapod. The

controllers processed ditch distance and angle information, and outputted actions for

each leg. Initially, the rules were specified by the author, but it was assumed that a

subset could be more effective. To achieve this, GAs were used to prune the rules,

using a fitness function developed to minimize travel time and maximize walking

efficiency. Through simulation it was found that, whatever the composition of the

original rule set, the GA always improved the fitness.

Others examples include bipedal stair climbing [94] and bipedal flat walking [95], as

well as systems that learned during real-world performance (on-line learning) [96], [97].

A valuable property of rule based systems, including fuzzy-logic algorithms, is that the

techniques (as expressed as rules) can easily be interpreted [94].

2.1.6 Hidden Markov models

One other specialist technique was identified in the literature – constructing hidden

Markov models (HMM) for imitating observed movement patterns. The goal for these

methods is to observe a motion patterns and then to reproduce them. Often, a human

may be the source of the motion pattern to be copied and because the physical workings

and capabilities of the source and target systems are different, simple copying will not

work. Imitation therefore becomes a process of observation and re-synthesis. Here,

observing is estimating the underlying state variables of the source system where only

the output is available, and Hidden Markov Models (HMM) have been used in robotics

for this task [98]–[101].

Chapter 2 - Review of locomotion control 21

When imitating, the system first observes a movement pattern and a recognition

algorithm is then used to determine if the movement is already known, in which case

the pattern is used to refine the stored one. If the pattern is not recognized, then it is

added to the database as a new, learned pattern. The observed kinematic or kinetic

values, as well as the synthesized values, are called ‘motion elements’ in the HMM

papers reviewed here. One motion element represents the kinematic/kinetic values at

one discrete moment of time. The hidden states of the HMM provide an abstraction of

the movement patterns, which can be used to re-synthesise the motion in the target

system.

The first part of imitation is recognition, where a recursive algorithm calculates the

probability of observing a movement pattern, if the candidate HMM was used to

generate it. If this probability exceeds a threshold value (which can be varied to control

grouping of similar observations), then the observation is determined to have fit the

stored model and is, therefore, recognized [98], [99].

If recognition does not occur, then the next stage of imitation is learning. A new HMM

is generated from the observation sequence using an expectation-maximisation

algorithm (EM), such as the Baum-Welch algorithm [102].

To synthesize, or produce the movement once stored, it is usually generated

stochastically from the HMM. Because of its probabilistic nature, typically, the

synthesis is repeated several times, with each sequence normalized in time. The

sequences are then averaged to produce a final output. Alternatively, in [99] the Viterbi

algorithm [103] was used instead, to generate a sequence that most closely matches the

observation. Finally, an error value is generated based on the difference between the

synthesized and observed sequences. This error value can then be used in a learning

rule to modify the matrices of the HMM and refine the stored pattern.

2.2 Summary

A continuum of approaches exists to produce locomotive movement, from those that

rely fully on prior knowledge and require no training, to those that are very generic

pattern generators that require intensive training or optimisation (see Figure 6 for a

Chapter 2 - Review of locomotion control 22

relative visual depiction of algorithm optimisation demand versus constraint profile).

A summary of the highlighted advantages and disadvantages of the methods presented

in this chapter is given in Table 1.

For this thesis, analytical approaches are rejected, for the reasons specified in Chapter

1 – the process of simplification required for modelling reduces reliability, obscures

detail and requires reworking to adapt for individual differences [11]. For similar

reasons the rule based systems are also excluded as they impose a level of simplification

through the selection of discrete action. Furthermore, rule based systems produce

actions as a function of the current state and therefore may need additional internal state

variables, or a time input (as described in section 2.1.3 for the CMAC network [82]), to

have a comprehensive enough output range of patterns to meet the task goal.

Lastly, hidden Markov models are also not considered for this thesis as they have

fulfilled the special task of imitation in the literature. That leaves CPGs and neural

networks as applicable techniques. Because of their oscillator based design, CPGs will

be best suited to cyclic behaviours. Movement skills that are non-cyclic and discrete

may be difficult to realise in a CPG, unless a suitable window of time is chosen, the

CPG is configured in such a way that it does not oscillate, or some multi-stage

techniques are implemented. Prior to conducting the research presented in subsequent

chapters, it was assumed neural networks have the potential to provide a framework

than can produce both cyclic and non-cyclic movement patterns.

Figure 6: Constraint/adaptability and learning demands of the reviewed control methods.

Heavy learning /
optimisation demands

Simple parameterisation

Over-constrained

or non-adaptable

Minimal constraints

and adaptable

Neural
network

CPG

Rule
based

Analytical

HMM

Chapter 2 - Review of locomotion control 23

Table 1: Advantages and disadvantages of the reviewed control methods.

 Advantages Disadvantages

Analytical  Accurate analysis can produce immediate

results

 Training not required so implementation

in hardware can be easier

 Long research history

 Easy to interpret solutions

 Usually very task specific

 Generally task limited with no

emergent behaviours

 Approximate modelling can produce

inaccuracy or inefficiency

 Simplification of analysis through

over-constraint can lead to sub-optimal

solutions

 Constraints can produce ‘un-natural’

gaits

CPG  Limit cycles are resilient to perturbation

 Emergent behaviours

 Clear parameter structure, good for

optimisation

 Less constrained than analytical, possible

that better solutions exist

 Calibration, training or evolution often

required

 Less easy to interpret solutions

compared to analytical

 Still more constrained than some other

approaches

 Non-cyclic behaviour difficult to

implement

Neural
networks

 Least constrained approach

 Capable of good limit cycle behaviour,

resilient to perturbation, and able to

interpolate behaviours

 Emergent, new behaviours possible

 Suitable for training or optimisation

 Some interpretation possible with FFNNs

 Training costs can be high

 Difficult to interpret method of

solutions (black box solutions)

HMM  Used for imitation tasks

 Often used with a database of skills

 No emergent behaviour

 Lack of resilience to perturbation

 Difficult to interpret method of

solutions

Rule
based

 Can be very simple to implement

 Easy to interpret solutions

 Easy to optimise

 Fuzzy systems can cope with varied

environments

 Often only coarse movements can be

specified

 Over constrained so less optimisation

potential

Chapter 3 - Review and discussion of locomotion optimisation and physical modelling

methods 24

3 Review and discussion of locomotion optimisation and

physical modelling methods

Following the presentation of locomotion control methods in chapter 2, this chapter

reviews and discusses methods of parameterisation, particularly from the viewpoint of

optimisation, reviewing existing techniques and presenting a background in other

optimisation algorithms that could be applied to the field, in accordance with the

objectives of this thesis. Then this chapter summarises physical simulation and model

design used in the research presented later in the thesis. That section explains choice

of software platforms, methods to design physical models and influences from the

literature.

3.1 Optimisation techniques in locomotion

Although chapter 2 outlined important methods in locomotion control, little has been

said about how these methods are configured for a particular application. For the non-

analytical techniques, and even for several analytically derived solutions, there exist

some or many parameters which will need to be specified. By evaluating a parameter

set according to some constraint or fitness criteria, such parameterisation can be viewed

as an optimisation process. For analytical approaches, the specification of gait form

and the use of conservative stability constraints usually limits the scope of optimisation.

However, there are sometimes parameters available to adjust, such as gait parameters

including stride length and cycle frequency. These parameters can therefore be

candidates for optimisation, according to some desired goal.

As can be seen with the formulae and structures presented in chapter 2, CPGs and NNs

generally require a sizable number of parameters to be set. The goal of configuring

Chapter 3 - Review and discussion of locomotion optimisation and physical modelling

methods 25

these parameters may simply be to produce a viable solution, or to approach an optimal

solution with regards to one or more goals (e.g. energy efficiency or speed). By proper

encoding of fitness functions, even the basic requirement of viability may be achieved

through an optimisation process.

3.1.1 Review of optimisation goals

Achieving viable solutions is generally not a problem for analytical solutions, as the

point of the analysis is to construct a successful locomotion control system. However,

for the less constrained CPGs, the system may have a wider range of possible outputs

than the task specific goal, and therefore configuration may be needed to produce

success, such as for generating walking patterns in [60], [61]. A simpler method, if a

known successful gait pattern for the physical system is available, is to train the control

algorithm to match that reference. Examples for CPGs can be found in [62], [74], [77],

[104].

Beyond finding solutions where the criterion is simply to produce an acceptable motion,

other research has been conducted into attempting to find optimal solutions in terms of

the stability of the gait, efficiency or accuracy. Improving the form, particularly

dynamic stability, has been the goal for research using analytical method [25], [105],

[106], and CPGs [20], [56], [59].

Energy, and the related goal of effort, feature widely as optimising them can help

realising the solutions as robots in the real world. For analytical control methods,

minimisation of energy expenditure was investigated in [79], [80], [105]–[108], with a

CPG example in [68], and minimisation of actuating effort, determined as a function of

the actuator torques, was looked at in [109], [110] for analytical control methods.

Finally, maximising speed, which is a typical performance goal usually expressed as

maximum distance covered over a set time frame, was attempted in [111] for an

analytical method, and in [78], [112], [113] for CPGs. Alternatively, minimised error

in keeping to a desired speed can be seen in [114] for analytical, and [75] for CPG

control methods.

Chapter 3 - Review and discussion of locomotion optimisation and physical modelling

methods 26

3.1.2 Review of optimisation methods

When specifying values, the simplest technique is to input them manually. This

approach has been common, for example for analytical methods [25], [105]–[107],

[109]–[111], [111], [114] and for CPGs [21], [54], [55], [65], [66], [70]–[73], [115]–

[119]. Analysis can provide readily interpretable parameters such as end and

intermediate gait coordinates [79], [80], [108], but otherwise, successful manual

specification will rely on parameter ranges being a large subset of possible inputs, there

being a simple interaction of the parameters and the output (e.g., a linear relationship),

a large amount of time to be available to discover suitable values, or luck, or a

combination of all of those factors.

Various algorithmic search techniques have been applied to locomotion control. At the

simplest level, random search for minimising speed error in an analytical method was

deployed in [114] (and was found to be better in that situation than sequential

programming and gradient searches), and an exhaustive search for a CPG in [68]. Next,

sequential quadratic programming has been applied for analytical [105], [106], [109],

[110], and CPG [74] methods.

Local search has been used in [78] where a hill climbing algorithm was used for a CPG

based method, but the most common technique found was the global genetic algorithms

(GA). These were applied for the analytical method in [79], [80], [108] and for CPGs

in [20], [24], [59]–[62], [104], [113].

Various alternative techniques were attempted, in order to speed up the search. For an

analytical method, sequential surrogate optimisation was used in [111] (using

successive approximations of the objective function), and for CPGs a policy gradient

search was conducted in [112] and actor/critic learning was used in [56].

Alternative techniques used include Hebbian style learning rules [75], integrated

oscillator learning terms [77] (equation (2.7)), and genetic programming constructed

sinusoidal systems [120] for CPGs, and Depth First Search [121] and A* search [121]

for analytical path planning. Multi staged optimisation has been used to simplify the

process when there is a large number of degrees of freedom [62], [104]. For example,

in [42] a GA was used to find parameters for the hip joints first, then all joints in the

Chapter 3 - Review and discussion of locomotion optimisation and physical modelling

methods 27

left leg, the whole lower body, the upper body, and then finally, the whole body (which

in total had 271 parameters).

Few papers identified in the literature search compared different optimisation

techniques. Although reasons were given for the choice of technique in some cases

(such as actor/critic methods being used to speed up search), those reasons were

untested relative to other techniques. That is why one main aim of this thesis was to

compare and contrast various optimisation techniques applied to locomotion.

Using outcome measures to produce walking in an unconstrained system can be

difficult. The optimisation process needs to find a workable solution from a large

solution space. Using travelled distance as a fitness function was successful in [60]

when combined with analysing final height, to detect possible falling, and average step

length. In [61], the authors initially failed to produce a walking gait with the outcome

measures of travelled distance, frequency of foot strikes, and uprightness. They

presented a theory that control systems in nature may have co-evolved with the structure

of the physical system. With this in mind, they added support structures to the biped

that allowed it to evolve effective gaits without the risk of falling down. Although not

investigated, the authors suggested that the supports could then be removed and

optimisation continued.

3.2 Background on global search heuristics

Typical heuristic approaches to optimisation problems include particle swarm

optimisation (PSO) [122], [123], genetic algorithms (GA) [124], [125], and differential

evolution [126], [127]. However, as highlighted in the previous section, of these only

GA were identified in the literature review for locomotion control. Following the

objectives of this thesis, more optimisation methods were examined, with the results

presented in later chapters, for use in locomotion control. This section provides a brief

background on the techniques that were later examined.

3.2.1 Genetic algorithms

A genetic algorithm (GA) is a search heuristic inspired by the biological process of

evolution [128]. Candidate solutions are encoded as a string of genes called a

chromosome. Several chromosomes (initially randomly generated) are contained in a

Chapter 3 - Review and discussion of locomotion optimisation and physical modelling

methods 28

population pool and each chromosome is assessed for its fitness. In the experiments

presented here, a chromosome encodes the parameter set of each control algorithm, with

one gene representing a parameter. The algorithm is then used in the physical

simulation to test the candidate solutions and the fitness is derived accordingly to the

sport skill under evaluation.

A new generation of the chromosome population is produced at each iteration. The

prevalence of chromosomes and genes carried through to the next generation is related

to how good their fitness was, so more information from fitter chromosomes will be

present and propagated, than such from less fit chromosomes, in general. Candidate

solutions are combined, inspired by breeding in nature, using cross-over reproduction

operators in an attempt to build better solutions by finding combinations of good

elements of multiple solution attempts. Furthermore, mutation is used to randomly alter

individual genes in an additional attempt to move through and explore the search space.

3.2.2 Particle swarm optimisation

Particle swarm optimisation (PSO) [129] uses a swarm of particles to move through the

search space, with each particle’s position changing according to its own experience,

and the experience of other particles in the swarm. By recording the best position found

for each particle, and for the whole swarm or for sets of neighbouring (by index)

particles, candidates for optimal solutions can be exploited. By using momentum, each

particle can explore the search space and potentially find better solutions, which can

then be exploited.

The candidate solutions are represented by the location of each particle in the search

space with the number of dimensions equal to the number of parameters to optimise.

The position ix of each particle i is updated according to equation (3.1):

      1 1 ,i i it t t   x x v (3.1)

where vi is the velocity of each particle i. The velocity for each particle i and dimension

j is calculated according to equation (3.2).

               

     

1 1 2 2

1 2

1 ,

, 0,1 ,

ij ij j ij ij j ij ij

j j

v t v t c r t p t x t c r t l t x t

r t r t U

           
 (3.2)

Chapter 3 - Review and discussion of locomotion optimisation and physical modelling

methods 29

where pij is the best solution found so far by particle i, lij is the best solution found in

the set of local (by particle index) neighbouring particles, c1, c2 are constants balance

exploration (ability to find useful areas of the search space) versus exploitation (ability

to refine solutions), and r1j, r2j are random numbers calculated for each iteration t. The

use of a local neighbourhood characterises this as the Local Best PSO variant. The size

of the neighbourhood around each particle controls how information about good

solutions is communicated throughout the swarm. When using a PSO in the research

presented in later chapters, it was configured as in Table 2 with standard values outlined

in [130].

Table 2: PSO configuration.

1c
 2c

  0ijv t 

1.49445 1.49445 0.0

3.2.3 Estimation of distribution algorithms

GA and PSO techniques evolve candidate solutions over time, sharing information

across the population in order to locate regions with better fitness, and then to exploit

those areas in an attempt to find the optimal solution in the search space. In contrast,

estimation of distribution algorithms (EDA) evolve explicit probability distributions

from which new candidates are sampled for each generation. A typical example of

EDAs is the population-based incremental learning (PBIL) algorithm [131], which

evolves probability strings that are sampled to produce binary candidate strings. After

determining the fitness values for all of the candidates, the probability string is updated

in order to increase the probability of sampling a string that was the same as the fittest

candidate.

It was established in [132] that a relatively new type of optimisation algorithm –

Quantum Inspired Evolutionary Algorithms (QIEA), belonged to the family of EDAs.

Following the objective of expanding upon the number of optimisation algorithms

applied to locomotion, as outlined in the introduction, variants of QIEAs were

developed and tested for real-value functions, and are presented in chapter 4. They

were then compared in locomotion optimisation experiments to GA and PSO in chapter

5.

Chapter 3 - Review and discussion of locomotion optimisation and physical modelling

methods 30

3.3 Review and specification of physical simulation

Movement optimisation can either occur in a simulated or a real environment. To apply

computational optimisation to human tasks, or to robotic tasks where repeated runs are

of practical difficulty, a simulated physical model is required. This section begins with

a brief description of available simulation platforms, outlining their advantages and

disadvantages, and concludes with a series of physical model specifications that were

used in the research for this thesis.

3.3.1 Review of physical simulation platforms

The optimisation procedure adopted for this research has four components: a physical

simulator where the participants, environment and props are modelled and are simulated

to experience forces generated externally (e.g., gravity) and internally (e.g., muscle

forces); a control algorithm that specifies desired joint torques or angles (to approximate

muscle or actuator actions) for each time iteration of the physical system; an optimiser

that specifies the parameters for the control algorithm; a fitness function that drives the

optimisation towards a desired movement skill goal.

The control and optimisation algorithms were to be produced for this thesis, and were

generally coded in C++ (for speed, and author familiarity). For visualisation many

software packages exist, and different ones were used for the work in this thesis. The

main choice to be made, was selection of a suitable physical simulator.

In the literature, two options were identified – a game orientated package used in [86]

and a robotics platform in [31]. The game package that was used is no longer available.

Game packages tend to be built for speed but are usually rigid body simulators and may

set accuracy as a low priority. The robotics platform identified is useful because it has

been used in other studies, and includes a bipedal robot model. Additionally, there are

biomechanics packages available that include more detailed models, although the

computational time will be significantly increased. A short, non-exhaustive summary

of packages available is provided in Table 3.

Chapter 3 - Review and discussion of locomotion optimisation and physical modelling

methods 31

Table 3: Non-exhaustive summary of physical simulation packages.

Type Name Location Notes

Game Newton
Dynamics

newtondynamics.com Built for speed, open source,
good communication from
author. Freely available

Game Unity unity3d.com Contains a whole development
environment so includes
visualisation. Can be used for
free.

Robotics OpenHRP3 fkanehiro.github.io/
openhrp3-doc/

Used in the literature search.
Includes a bipedal robot model.
Stopped development in 2012.
Freely available

Biomechanics SIMM nmbl.stanford.edu/
research/software/
index.htm

Collection of software packages.
Reasonably high detail. Models
provided by the user community.
Freely available.

Biomechanics LifeMOD lifemodeler.com High detail, soft body. High cost.

As optimisation requires multiple simulation runs, it was decided to include a game

orientated physics engine for speed purposes. Newton Dynamics was selected as the

author of this thesis was already familiar with the package, it was free to use and there

was good free support available from the developer and user community. Although this

research project has not tested Newton Dynamics for accuracy, the developer claims

accurate performance due to a deterministic solver, and in turn suggests the platform

can be applied to scientific research. The software has support for GPU acceleration

and can be used on multiple platforms. It is designed to be integrated into other systems

but sample projects exist that include visualisation, interface and logic so prototyping

can be started quickly.

To offer a point of comparison with research in the literature, the popular robotics

simulation platform Open Architecture Human-centered Robotics Platform version 3

(OpenHRP3) [31], [133], was included in the research for this thesis. It allows external

automation so can readily be used for the multiple simulations required by optimisation.

It can be used for bipedal simulations and includes a humanoid model that was

reasonably detailed (although distinctly robotic in nature). The main environment is

typically run as a java programme hosted in Eclipse (Figure 7). This provides a user

interface for visualising the simulation, loading and creating physical models,

specifying control scripts, as well as other functions.

Chapter 3 - Review and discussion of locomotion optimisation and physical modelling

methods 32

Figure 7: Open Architecture Human-centered Robotics Platform 3 (OpenHRP3).

3.4 Model design

The physics platforms used in this thesis are rigid body simulators, meaning that

geometry cannot be deformed (compressed, bent, etc…). This is a good approximation

for basic solid structures, especially robotic systems which are generally built using

very rigid materials such as metal, but will lose some accuracy in modelling biological

system which can be significantly deformed and contain tissues with viscoelastic

properties [134]. Some rigid body simulators, including Newton Dynamics, can be used

to simulate soft body mechanics and even fluids, using a network of particles to

approximate volumes, but this advanced usage was not performed for this thesis. All

models used in experiments consisted of rigid geometry parts (cuboids and spheroids)

connected with mathematical models of joints.

In addition to the bipedal robot from OpenHRP3 [31], which was a relatively high

degrees of freedom model, a set of models were designed to be used in Newton

Dynamics. They are described in the following subsections.

3.4.1 Simple quadruped model

To provide an option that would present the least difficulty to optimise locomotion

patterns for, a quadruped was designed. Quadrupeds are generally more stable than

bipeds and so presumably gaits are easier to find. The system described here is statically

stable (will remain still without joint activation) in its default stance, and it was observed

Chapter 3 - Review and discussion of locomotion optimisation and physical modelling

methods 33

in testing that the model would only fall over if either the rear legs or front legs act as a

pair, moving in the same direction sufficiently to flip the model. The added stability of

this design provided a solid testbed with which to compare control and optimisation

techniques.

The quadruped was constructed with cuboids, hinge joints and linear slider joints. The

main body was situated at the top, supported by four legs at each corner, with each leg

consisting of an upper and lower part. The upper and lower sections of each leg were

joined with a linear slider actuator. The role of this joint was to lift the leg up and place

it back down onto the floor and the legs were attached to the main body using hinge

joints, allowing forward and back rotations. There was no special design for the feet,

and default friction coefficients were used in the physical simulator. The visual design

for the quadruped is given in Figure 8 and a specification of the physical attributes of

each body part is given in Table 4.

Figure 8: Schematic of the quadruped design.

Table 4: Quadruped part specification.

Part x size (m) y size (m) z size (m) Mass (kg)

Main body 0.30 0.10 0.50 15.000

Upper leg 0.06 0.16 0.06 0.576

Lower leg 0.06 0.16 0.06 0.576

Chapter 3 - Review and discussion of locomotion optimisation and physical modelling

methods 34

3.4.2 Simple biped model

Based on the biped design from [86], a simple biped model with a small number of parts

was included to investigate bipedal gaits with minimal degrees of freedom. Cuboids

were used for the body parts and hinge joints connected parts together. The original

inspiration for the design from [86] was used for walking gaits, and included very little

upper body structure. The system contains just two legs and a short torso, and used a

constant density to decide masses. It was later found that the performance of the system,

and ability to form suitable gaits, was heavily dependent on the joint actuation model.

This is discussed in chapter 5. The schematic of the simple biped model is given in

Figure 9 and part sizes are given in Table 5.

Figure 9: Simple biped schematic

Table 5: Simple biped specification.

Part x size (m) y size (m) z size (m) Mass (kg)

Torso 0.300 0.200 0.200 12.00

Hip 0.100 0.100 0.100 1.00

Thigh 0.100 0.500 0.100 5.00

Shank 0.100 0.500 0.100 5.00

3.4.3 Detailed biped model

This model was designed to investigate producing movement in more complicated

systems. The primary goal was to increase the number of body parts, thereby increasing

TorsoH
ip

T
h
ig

h
S

h
a
n
k

Front Right

Chapter 3 - Review and discussion of locomotion optimisation and physical modelling

methods 35

the degrees of freedom and, potentially, making movement control more difficult.

Dimensions were specified in an ad-hoc fashion, with sizes constructed to give a

visually humanoid structure, although this was done by eye rather than using

anthropometric data. Initially masses were specified using a constant density but this

criterion was soon broken as experiments into the dynamics of the body were conducted

in the physical modelling software. When testing out the behaviour of joint movements,

parts were added and their size and mass modified, until satisfactory movement patterns

were produced when manually testing joint actuation, and no wild behaviour

(unrealistic explosive movements) was observed in early test optimisation runs.

Articulation was provided through hinge joints. Additional body parts (neck, shoulders,

abdomen, hips and ankles) were used to enable rotation around two axes by joining a

pair of orthogonal hinges. The design is shown in Figure 10 and part sizes are shown

in Table 6.

Figure 10: Detailed biped schematic

H
e
a
d

Torso

T
h
ig

h
S

h
a
n

k

F
o

o
t

U
p

p
e
r

a
rm

F
o

re
a

rm

H
a
n

d

Shoulder

Abdomen

Hip

Ankle

Front Right

Chapter 3 - Review and discussion of locomotion optimisation and physical modelling

methods 36

Table 6: Detailed biped specification.

Part x size (m) y size (m) z size (m) Mass (kg)

Head 0.152 0.232 0.200 4.69

Torso 0.400 0.520 0.200 29.80

Upper arm 0.100 0.282 0.100 1.83

Forearm 0.080 0.269 0.080 1.13

Hand 0.100 0.086 0.050 1.00

Thigh 0.160 0.422 0.160 9.67

Shank 0.110 0.434 0.120 3.03

Foot 0.100 0.100 0.258 0.86

Neck 0.150 0.010 0.200 0.21

Shoulder 0.100 0.010 0.100 0.07

Abdomen 0.400 0.010 0.200 0.60

Hip 0.160 0.010 0.160 0.24

Ankle 0.100 0.010 0.260 0.10

3.5 Summary

A range of optimisation or learning techniques were identified in the literature. The

main aim of this thesis is to attempt to locate optimal solutions, rather than find accepted

solutions quickly. For that reason globally orientated searches, rather than gradient

based solutions will be favoured and only GA fits this requirement from the literature

review. Therefore, this thesis will examine other techniques, and compare them to GA,

to establish the most appropriate techniques for the domain. A background to PSO and

EDAs was presented, and they will be further discussed, developed and implemented

in subsequent chapters.

A small number of physics software platforms were surveyed, encompassing fast game

orientated systems, purpose specific robotics platforms and biomechanics software. A

game focussed package, Newton Dynamics, was selected for being free, fast and having

good support, while OpenHRP3 was selected as an example of a robotics platform

popular in the literature.

To experiment with different locomotion tasks, a set of physical models were developed

– a quadruped model with good stability, a simple biped model and a more detailed

biped model. These models were designed to provide differing levels of difficulty for

optimisation, in order to establish a relatively simple starting point, and the option to

develop techniques for increasingly complex models.

Chapter 4 - Quantum inspired evolutionary algorithms 37

4 Quantum inspired evolutionary algorithms

Given the complexity of physical models and tasks which this thesis investigates, it is

possible that the search space may contain a very small area of successful parameter

vectors. It was therefore one of the objectives of this thesis to apply different types of

optimisation algorithms, in order to expand the knowledge of what may work best for

this type of problem. In section 3.1 the well-established optimisation techniques GA

and PSO were described, as well as a class of algorithms called estimation of

distribution algorithms (EDA). In this research, the opportunity was taken to examine

a new type of EDA optimisation algorithm called quantum inspired evolution algorithm

(QIEA). As well as implementing versions from the literature, changes were made to

improve QIEA performance when applied to real-value functions and engineering

problems, and the background, results and discussion are presented in this chapter.

4.1 Introduction

In 2002 a new optimization algorithm was presented [135], that took inspiration from

quantum computing to evolve a probability distribution, which in turn was used to

search a solution space. The method used a string of quantum bits (Qbit), each storing

the probability of sampling a one or a zero. Successive sampling of the string produced

a series of candidate binary solutions. If any of these were found to be an improvement,

the underlying Qbit probabilities were adjusted to make the candidate more likely to

appear in successive samples. A detailed explanation of the algorithm is presented in

section 4.2.

Originally, this quantum-inspired evolutionary algorithm (QEIA) was applied to the

Knapsack problem - a binary combinatorial optimisation problem [135], and then

Chapter 4 - Quantum inspired evolutionary algorithms 38

modified versions were applied by others to OneMax, Noisy-flat and NK-landscapes

[132], neural-network training [136], [137], and networking [138]. In [132] it was

argued that QIEAs should be categorised as multi-modal EDAs. As discussed in section

3.2.3, EDAs evolve probability distributions, as do QIEAs, and include popular

examples such as PBIL [131], cGA [139] and UMDA [140]. A comparison of EDAs

with respect to QIEAs, the multi-modal nature of QIEAs and the distinguishing features

of QIEAs are given and discussed in [132].

Although some attempts have been made to apply binary QIEA to real-value problems

[141], most applications to such tasks have used real-value QIEA [142]–[147]. These

algorithms took, at least superficially, the concepts of superposition and quantum

rotation gates that were introduced with the binary QIEA, and adopted them for

application to real-value problems. However, when reviewing them a number of

problems were encountered. Many were incompletely described and could therefore

not be reproduced, one was trivial to implement [142] but performed extremely badly

on a set of multimodal mathematical test functions, and of greatest concern, one paper

[143] claimed superior performance to another optimization algorithm that was later

found to not have performed as well as claimed [148]. A second issue, more of a

philosophical concern than a practical problem, is that in making the adaptation to real-

value problems, the purity of the original quantum inspiration (that are naturally applied

to binary problems) may be lost. These concerns are discussed in sections 4.3 and 4.6.

Various attempts at a real QIEA can be found in the literature, including [145]–[147],

and [149] presents a review of both binary and real QIEA. In this investigation I have

chosen [150] to build a real-coded QIEA upon as it performed the best in initial tests

and contained features common to many real QIEA.

The goals of the research presented here were to see how the Classic version [135] of

the binary QIEA, as well as a representative real QIEA, would perform on a number of

recent benchmark test functions and several real-world problems, and to investigate,

design, and develop modified binary and real QIEA, proposed to improve the

performance of these approaches in terms of convergence and accuracy.

In sections 4.2 and 4.3 the binary and the real QIEA under investigation are presented,

including the proposed modifications. Section 0 outlines the methods used for testing,

Chapter 4 - Quantum inspired evolutionary algorithms 39

and section 4.5 presents the obtained results, with a conclusion and discussion in section

4.6.

4.2 Binary QIEA

This section presents the original binary quantum inspired evolutionary algorithm

(bQIEA) [135], along with a preliminary investigation highlighting arising problems

when applying it to real-value tasks. Then a modified method designed to tackle these

issues is introduced.

4.2.1 Classic QIEA

The original QIEA [135], here labelled Classic, contains the core properties of QIEA:

Qbit sampling; and the rotation gate operator. Unlike a traditional binary evolutionary

algorithm, Classic stores a string of probability values called Qbits. For each individual

i in a population of size p, Qbit value Qij(t) gives the probability of sampling a zero or

one for bit j (from a string with length of N bits) at iteration t. Through repeated

iterations of sampling, the same Qbit value can be used to sample a sequence of random

binary values. If a Qbit has a value of 0.5 (highest entropy), both one and zero have an

equal chance of being sampled. A Qbit value near 1.0 favours sampling 1s, and a value

close to 0.0 favours sampling 0s.

Even in the absence of evolution of the chromosomes, Classic will continue to produce

different candidates for the fitness function, unlike a traditional evolutionary algorithm.

The combination of probability and sampling is inspired by the quantum computing

principal of superposition. Superposition is the ability of a Qbit to hold multiple states

simultaneously. The string Qi therefore provides a probability distribution function for

generating candidate solutions Ci at each iteration.

While random sampling allows the solution space to be searched, the Qbits need to be

changed in order to localise and refine the search. By interpreting the Qbit probability

as an angle, a quantum logic gate called a rotation gate (as given in equation (4.1)), can

be used to adjust the probabilities. This simply shifts the angle, and therefore the

probability, one way or the other. By using the best solution found so far (called the

attractor Ai) for an individual, this gate can be made to rotate towards a position that

reinforces the attractor probabilities, if it is still the best solution, or away, if the current

Chapter 4 - Quantum inspired evolutionary algorithms 40

candidate is better (Table 7). The magnitude of rotation |Δθ| is fixed to π / 100 and

rotation saturates at the extremes, as given by equation (4.2).

Information is distributed around the population via the attractors A. Every G-th

iteration, a global migration is performed, where the best attractor in the population is

copied to all individuals. Every L-th iteration, a local migration is conducted, where

the best attractor in a subset of the population is copied to the whole subset. For the

investigations presented here, G=20, L=1 (meaning improvements to attractors were

copied to subsets at the end of each iteration), and the number of subset groups was

assumed to be 5. Pseudo-code for the Classic approach is given in Algorithm 1.

 

 

   

   

 

 

   
22

1 cos sin

1 sin cos

sin , 1

,

.

ij ij

ij ij

ij ij ij ij

t t

t t

Q

  

  

  

   


  

  

    
    

     (4.1)

Table 7: Direction of rotation gate.

i

j
A

i

j
C   better?

i
f A  sign 

0 0 either n/a

1 1 either n/a

0 1 yes -

1 0 yes +

0 1 no +

1 0 no -

   

 

  

ij

ij

ij ij1 1

min , 0
2

max , 0 0

where is the size and direction of rotation.

,
,

,

Q t t

t

t




 

 



  

   

   





  
 
 




 (4.2)

Chapter 4 - Quantum inspired evolutionary algorithms 41

Algorithm 1: Pseudo-code for the Classic algorithm.

4.2.2 Application to real-value problems and convergence issues

In this investigation, for the binary optimization algorithms, real values were encoded

using a simple scheme. Binary strings of length 24 bits were used to generate numbers

in the [0, 224-1] range, which were then linearly mapped onto the domain for the fitness

function being optimized.

Initialise each Qi with each bit Qij=π/4

Initialise each Ai with random strings

Initialise each Qbit of each string to equal π/4 so that sin2(Qbit)=0.5

while not termination condition do

 for all i∈[1,p]

 sample new Ci from Qi

 evaluate fitness of Ci using a binary to real mapping

 for each t∈[1,N]

 if f(Ai) is better than f(Ci) then

 select a rotation direction that would

 reinforce Aij

 else

 select a rotation direction that would

 move away from Aij

 end if

 update Qij with rotation gate

 end for

 if f(Ci) is better than f(Ai) then

 Ai= Ci

 end if

 end for

 every L iterations perform local migration

 every G iterations perform global migration

end while

Chapter 4 - Quantum inspired evolutionary algorithms 42

An initial application of Classic to real-valued problems highlighted a convergence

issue. A plot of a typical evolution is shown in Figure 11a, where bits for one real value

are shown with most significant bits to the left. Numbers shown are iterations indices.

Light values are unsaturated, dark blue are saturated near to zero, red are saturated near

to one. The plot shows that the least significant Qbits (LSBs) were saturating before

the most significant Qbits. Once a Qbit saturates, it will no longer evolve because

sampling will continuously produce ones or zeros, depending on which end of the scale

the Qbit has saturated to. This means that the LSBs had become randomly fixed

relatively early on in the optimization, thus preventing fine scale exploitation.

For reasonably smooth search spaces, the early stages of the search should focus on

finding the general locations of extrema, rather than refining solutions to a precise

position. During this phase, the fitness function will be affected more by large

movements than by small ones. With a binary representation, this will manifest in the

most significant bits (MSBs) dominating the search, as changes to them are likely to

find larger improvements to the fitness than changes to the LSBs.

Therefore, in the early stages, the LSBs provide little selection pressure, and so random

values for these bits will be tolerated, while the MSBs are optimised. The early

evolution of the LSBs can therefore be modelled as random walk processes. Given that,

it would be reasonable to expect several bits to have deviated substantially from the

neutral middle probability position. Furthermore, the process is reinforced - as an

attractor adopts a solution, shifts in the random walks will make producing a zero or

one more likely, and this will lead to the random walk being attracted to a probability

of zero or one respectively. By the time the MSBs have been optimised, it is likely

therefore that the LSBs have saturated their probabilities.

4.2.3 Improved bQIEA convergence performance for real value problems – HSB

(Half Significant Bit).

One possible solution to these convergence problems was presented in [141], where the

rotation gate operator had limits imposed that were slightly within the zero to one range.

This meant that, even late in the evolution, it is always possible to sample new bit values

as the Qbits never completely saturate.

Chapter 4 - Quantum inspired evolutionary algorithms 43

This type of scheme was tested but the obtained results were mixed at best. As an

alternative, presented here is a method that directly addresses the problem of LSB

premature convergence. When rotating a Qbit, a limit is imposed upon the range that it

can move to, based on the current value of a more significant bit, so that it cannot move

to a more extreme value. This has the effect of delaying large movements in the LSBs

until the MSBs have saturated.

a)

b)

Figure 11: Evolution of Qbit probabilities on Griewank function using (a) Classic and (b) HSB
algorithms.

Initially, using the more significant immediate neighbour bit as the limiting condition

was tested, but eventually it was found that picking a bit index that was half the position

value of the Qbit being rotated (assuming bit index zero is most significant) was better.

This is a somewhat less aggressive limiting condition presenting a compromise between

premature convergence and overly slow convergence. The adjusted formula for the

rotation is given in equation (4.3), with the general algorithm code staying the same as

for Classic (Algorithm 1). This modified algorithm is called HSB (Half Significant Bit)

in this thesis, and preliminary results of an evolution are shown in Figure 11b.

Chapter 4 - Quantum inspired evolutionary algorithms 44

   

    
    

 

1 1

min , 0

max , 0

where j 0, floor 2

4 4
,

4 4

.

,

,
ij ih

ij ih

ij ijQ t t

t t

t t

h j



  

  

 

 

  

     

     

 







 (4.3)

4.3 Real QIEA

In order to apply QIEA to real-value problems, numerous attempts have been made to

develop real QIEA (rQIEA) [149] and so were included in this investigation. A simple

attempt at this is shown in [142] where the rotation angles from the Classic bQIEA are

re-interpreted as actual solutions. This approach was very simplistic and arbitrary, and

completely failed in all of our initial testing. Searching for other rQIEA in the literature

was made difficult by poorly described methods or suspect data. However, one

algorithm called RCQIEA, presented in [150], was well defined and so was included in

this study, along with a modification.

4.3.1 The RCQIEA algorithm

Whereas Classic produces fresh solutions at each generation, RCQIEA stores and

updates a candidate solution. Classic takes the inspiration of superposition and uses it

to evolve a probability density function (pdf), as described by the probability angles for

each bit. By not doing this directly, RCQIEA begins to move away from the original

quantum metaphor. However, as described below, the generation of new candidates

through creep mutation, can be seen as using the candidate as a string of mean values

for an evolving pdf.

At each iteration, a set of offspring Oj is generated from each individual’s candidate Ci

using creep mutation with variances stored in a string Vi. The values in Vi are stored as

angles and transformed into a pair αi and βi in the same way as for the Classic. The

offspring are generated in two subsets: one using αi for the variances; and one using

βi/5, to allow for both fine and coarse searching. The offspring are tested for fitness and

if one is found to be better than the current candidate, it replaces that candidate.

Otherwise, a rotation gate is applied to the variance angles in the same way as in Classic,

but with a rotation step given with equation (4.4).

Chapter 4 - Quantum inspired evolutionary algorithms 45

  
0

sgn exp ,


  
 

 


 
 
 

 (4.4)

where α and β are the angles as defined in equation (4.1), and θ0 and γ are constants.

A cross-over operator is also applied during the evolution. For this investigation, it was

applied four times during the course of each run (G=N/4). The pseudo-code for the

rQIEA presented here, is given in Algorithm 2.

4.3.2 Problems with rotation gate

In [150], the constants for equation (4.4) were specified as θ0=0.4π and γ=0.05. In the

testing, the RCQIEA performed well for many functions. However, values of large

magnitudes for Δθ were detected, which suggested a problem with the behaviour of the

rotation gate. For example, if the angles are α=0.01 and β=0.99995 (satisfying α2 +

β2=1) then equation (4.4) produces a value for Δθ in excess of 2.0e7. As a rotation

angle in this context, such a magnitude for Δθ does not make sense, as it represents

many complete rotations in one iteration. In effect this leads to somewhat random

updates of the angle variables, and in turn, the variances for the creep mutation.

4.3.3 SRQEA – fixing RCQIEA

To alleviate this problem, a modified version of the rotation gate was developed,

keeping the rest of the RCQIEA algorithm (Algorithm 2), called Stepwise Real QEA

(SRQEA). The change rotates the angles by a constant magnitude in the rotation gate,

as shown in equation (4.5).

  sgn 250.    (4.5)

This was motivated by making the update similar to the constant step size used in

Classic. A step size analysis was performed with the results presented in Table 8. A

range of parameter values were used to optimise test functions presented in section 4.4.1

and the parameter value that produced the minimum value for each function is listed in

the table. Some functions had the same minimum value with different parameter

settings, and these were separated using the SP metric outlined in section 4.4.3. The

results gave a spread of values, and so a compromise choice was made of π/250.

Chapter 4 - Quantum inspired evolutionary algorithms 46

Algorithm 2: Pseudo-code for RCQIEA

4.4 Numerical Simulation

Each algorithm was tested against several fitness functions. In accordance with the

procedures outlined in [9], functions were tested with 10, 30 and 50 dimensions (except

for the real-world problems which had specific dimension requirements), and each

optimization run was performed 51 times. The number of function evaluations was

limited in each run to 10000 x number of generations. Given that more than one

function evaluation per generation was performed for the rQIEA, their generations per

run were adjusted accordingly.

Initialise each Ci with random values

Initialise each Vi with random values

Evaluate fitness f(Ci) for each individual

while not termination condition do

 for all i∈[1,p]

construct two sets of offspring Oj from Ci using

creep mutation from a normal distribution with variances Vi. One set

uses the αi angles, one uses the βi angles, scaled for coarse and fine

search respectively

 for each offspring

 if f(Oj) is better than f(Ci) then

 replace Ci with Cj

 else apply rotation gate to Vi

 end if

 end for

 end for

 adjust coarse and fine search scale factors over course of run to move

 towards finer search at the end of the simulation

 every G iterations perform crossover mutation

end while

Chapter 4 - Quantum inspired evolutionary algorithms 47

Table 8: Step size analysis for SRQEA

Function – 30 dimensions SRQEA / π

Sphere 0.001 (SP)

Rotated high conditioned elliptic 0.0064

Rotated bent cigar 0.0010

Rotated discuss 0.0019

Different powers 0.0013 (SP)

Rotated Rosenbrock 0.0010

Rotated Schaffers F7 0.0064

Rotated Ackley 0.0010

Rotated Weierstrass 0.0052

Rotated Griewank 0.0070

Rastrigin 0.001 (SP)

Rotated Rastrigin 0.0010

Non continuous rotated Rastrigin 0.0010

Schwefel 7 0.0040

Rotated Schwefel 7 0.0019

Rotated Katsuura 0.0046

Lunacek bi-Rastrigin 0.0031 (SP)

Rotated Lunacek bi-Rastrigin 0.0052

Rotated expanded Griewank Rosenbrock 0.0061

Rotated expanded Schaffers F6 0.0010

4.4.1 Test functions

Firstly, a set of traditional, basic functions, was taken from the first 13 presented in [8]

(Appendix B). A second set of more complicated functions was added from the first 20

functions defined in the CEC-2013 specification [9] (Appendix B). These are based on

the traditional functions but are highly modified and transformed, including application

of rotations. It should be noted that both sets share one function in common – the Sphere

function. For this function, presentation of the results is duplicated in order to be

consistent when comparing to other published results. Finally, real-world problems

from CEC-2011 [7] were added: frequency modulated sound wave matching; atom

configuration; and radar waveform parameter optimisation.

The frequency modulated sound wave matching problem optimises the constants of

equation (4.6), so that the output of the wave, measured for integer t = [0 , 100], where

θ=2π/100, matches the output of equation (4.7).

      
1 1 2 2 3 3
sin sin sin ,y t a t a t a t        (4.6)

      1.0sin 5.0 1.5sin 4.8 2.0sin 4.9 ,y t t t t     (4.7)

where α and ω are the constants to be optimised.

Chapter 4 - Quantum inspired evolutionary algorithms 48

The Lennard-Jones atom potential configuration problem, aims to minimise the

potential energy VN of a set of N atoms with position  , , z
i i i i

p x y according to

equation (4.8).

   

1

12 6

1 1

2

2 ,

.

N N

N ij ij

i j i

ij j i

V p r r

r p p



 

  

 

 


 (4.8)

Finally, the radar polyphase pulse design problem seeks to minimise a function f(x)

based upon set of n parameters x={x1,…, xn} according to equation (4.9).

      

 

 

1 2

2 1

2 1 1

2

1 2 1

max , ...,

cos , 1, ...,

0.5 cos , 1, ..., 1,

2 1.

,

,

m

jn

i k

j i k i j

jn

i k

j i k i j

f x x x

x x i n

x x i n

m n

 







    

    



 

   

 

 
 
 

 
 
 

 

 

 (4.9)

4.4.2 Population size analysis

Before conducting an extensive evaluation of the proposed methods, an investigation

into choosing a suitable population size was conducted. An initial run for 30 dimensions

was performed for the optimisation algorithms on the non-real world functions, with a

series of different population sizes being used. The number of individuals ranged from

5 to 50, in increments of five, but the total number of functions evaluations was kept to

300000. After running the simulations, the number of times an algorithm had a best

performance (assessed just for that algorithm) was counted for each population size. A

best performance was assessed according to minimum values and mean values for two

separate analyses, and occurred when the value was the lowest, or equal lowest, for that

fitness function across all of the different population sizes tested for the optimisation

algorithm. The results according to the best minimum and mean values found are shown

in Figure 12. Results for the bQIEA Classic and HSB are shown in Figure 12a and

Figure 12b respectively, and results for the rQIEA RCQIEA and SRQEA are shown in

Figure 12c and Figure 12d respectively.

Chapter 4 - Quantum inspired evolutionary algorithms 49

Figure 12: Population analysis for the QIEA: a) Classic; b) HSB; c) RCQIEA; d) SRQEA.

a)

b)

d)

c)

Chapter 4 - Quantum inspired evolutionary algorithms 50

Generally, the bQIEA performed better with higher population sizes, while the rQIEA

were better with smaller population sizes. For Classic (Figure 12a), the best minimum

values were found more often with a population size of 50, with an additional peak at

20/25, while HSB (Figure 12b) had a peak at 35/40 but reasonable performance from

25 to 50. When looking at the mean performance, both bQIEA improved with

increasing population size, with the best being 50 for both. After combining these

results, it was chosen to proceed with 50 individuals for both bQIEA algorithms in the

later simulations and analysis. These results suggest bQIEA are biased towards

exploitation and therefore require a larger population size to achieve good exploration.

For both rQIEA, the results (Figure 12c and Figure 12d) were very clear – a population

size of five performed the best for both minimum and mean values, and so was used for

subsequent investigations. RCQIEA had a sharp drop-off in performance above five,

while SRQEA had a smoother decline with increasing population size. In contrast to

the findings for bQIEA, this suggests that the rQIEA have relatively good exploration,

so benefit from a small population in order to improve exploitation by increasing the

number of function evaluations per individual.

4.4.3 Performance metrics

1) Summary statistics

To present a basic analysis and compare across publications, summary information is

generated from error values (from the known minimum value) or absolute values if the

global minimum is unknown. From the raw data, simple statistical measures such as

minimum, mean and standard deviations are calculated and summarised, with lower

values for each being preferred in the comparisons.

2) Success Rates

Using metrics introduced in [151], a success rate and measure of time taken by the run

to succeed (converging to a minimum) are calculated. Success Rate (SR) is calculated

as the number of successful runs divided by the total number of runs. A run is regarded

as successful if it finds an error below a threshold (as defined in results section, which

can vary depending on the particular analysis or comparisons being made).

Chapter 4 - Quantum inspired evolutionary algorithms 51

3) Success Performance

To measure the speed at which an algorithm obtains good results, a metric called

Success Performance (SP) is calculated. This is defined as SP = (SNFEs)*(number of

total runs)/(number of successful runs), where SNFEs is the average number of function

evaluations required by each successful run to reach the tolerance. A lower value of SP

is preferred because it indicates a better combination of speed and consistency for the

algorithm.

4) Timeline plots

In order to analyse the behaviour of the algorithms, graphical representations of their

evolution are produced for every test function. Across all runs, for each iteration the

mean error is calculated and plotted. The time is normalised with respect to the number

of function evaluations in the [0, 1] range so that the performance of each algorithm can

be compared directly.

5) Empirical cumulative probability distribution

Performance across all functions is summarised using the empirical cumulative

probability distribution function (ECDF) presented in [152]. An ECDF is constructed

by firstly determining the performance of each algorithm on each test function, by

comparing its mean error ME with the mean error achieved by the best algorithm, and

formulating a normalized mean error NME (equation (4.10)). Then, the distribution is

formed by counting, for each value x in the domain of the distribution, how many

normalized means (across all test functions) were obtained below x (equation (4.11)).

Normalizing and plotting these values produces a graph where superior algorithms

reach the top of the chart faster than less well performing algorithms. In this analysis,

all the test functions were included, as well as additional graphs for subsets (traditional,

CEC-2013 and real-world). The NME and ECDF are given by:

,

,f

,

,
1

A f

A

best f

ME
NME

ME



 (4.10)

    ,

1 1

1
,

fA
nn

i j

i jA f

ECDF x I NME x
n n  

 


 (4.11)

where indices A and f denote the optimisation algorithm and the test function

respectively, and nA and nf are the number of algorithms and test functions respectively.

Chapter 4 - Quantum inspired evolutionary algorithms 52

4.5 Results and Discussion

Examples of methods used to optimise CEC-2013 problems include Particle Swarm

Optimization [123], Adaptive Differential Evolution [127], [153], [154], Mean Variance

Mapping [155] and GA [125]. The methods for optimisation of the traditional test

functions, covered in this work, include Evolutionary Programming [8], Particle

Swarm Optimization [156], GA [157], and Hybrid Bee Colony/QEA [158]. This section

presents the obtained bQIEA and rQIEA results.

4.5.1 Functionality of the tested QIEA

First examined was the suitability of the four tested QIEA to be used as optimisation

algorithms for real-value problems. In order to be useful, they must find solutions close

to the optimum, as seen by reaching small error values. The first results examined are

the performance on the traditional test functions, with minimum, mean and standard

deviation data presented in Table 9, and Table 26 and Table 27 in Appendix A for 10

and 30 dimensions respectively.

These functions (listed in Appendix B) are reasonably smooth, at least locally, and

therefore obtaining a good error score will require good exploitation abilities of the

algorithm. Section 4.2 highlighted the difficulties for the Classic method in optimising

the LSBs, and so it would be reasonable to expect that this would be reflected in poor

minimum values as the exploitation would be hampered. Most solutions had errors of

magnitude above 1e-01, the only exceptions being the 10 dimensional Schwefel 2.26,

Griewank and Penalised1 functions. Interpreting raw error values is difficult because

it relates to the numerical properties of the fitness function. For example, the

Rosenbrock has a constant factor of 100 (Appendix B), so the 10-dimension result of

7.39e02 is relatively not as bad as it would first appear. However, as the number of

dimensions increases, the performance becomes obviously poorer, with four minima

with magnitude of 1e07 at 50 dimensions. Means performance for all of the tested

dimensions tested follows the same pattern in general, although there are some large

discrepancies for the 10-dimension batch. These are a mean of 2.10e05 compared to a

minimum of 7.39e02 for Rosenbrock, 2.73e04 versus 1.40e02 for Quartic, and 5.38e04

versus 1.99e00 for Penalised2. This implies, at least for the low dimensions, that

running Classic several times is a necessity.

Chapter 4 - Quantum inspired evolutionary algorithms 53

Table 9: Summary statistics for the 13 traditional test functions with 50 dimensions. Bold are best.

Traditional test functions

50 Dimensions

bQIEA rQIEA

Classic HSB RCQIEA SRQEA

Function Min Mean Std dev Min Mean Std dev Min Mean Std dev Min Mean Std dev

01 Sphere 3.32E+03 5.54E+03 7.22E+02 7.89E+02 1.71E+03 3.85E+02 3.01E-04 5.81E-04 1.79E-04 0.00E+00 0.00E+00 0.00E+00

02 Schwefel 222 2.17E+02 3.08E+02 2.79E+01 8.59E+01 1.28E+02 1.57E+01 7.98E-02 1.08E-01 1.30E-02 0.00E+00 0.00E+00 0.00E+00

03 Schwefel 12 1.72E+06 2.89E+06 5.98E+05 2.77E+05 7.09E+05 1.86E+05 2.03E-01 4.26E-01 2.13E-01 0.00E+00 0.00E+00 0.00E+00

04 Schwefel 221 4.26E+01 4.80E+01 2.80E+00 3.05E+01 3.80E+01 2.41E+00 1.81E-01 3.05E-01 4.89E-02 2.00E-02 3.29E-02 7.54E-03

05 Rosenbrock 8.12E+07 3.42E+08 9.89E+07 9.02E+06 4.92E+07 2.19E+07 9.37E+00 1.27E+02 5.77E+01 4.49E-02 4.34E+01 3.09E+01

06 Step 3.59E+03 5.26E+03 8.57E+02 1.14E+03 1.77E+03 2.99E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

07 Quartic 4.50E+07 7.79E+07 1.73E+07 1.59E+06 9.86E+06 5.05E+06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

08 Schwefel 226 3.42E+02 5.80E+02 7.91E+01 8.64E+01 1.83E+02 4.35E+01 3.17E-05 6.60E-05 2.20E-05 0.00E+00 0.00E+00 0.00E+00

09 Basic Rastrigin 9.28E+01 1.33E+02 1.11E+01 6.74E+01 8.26E+01 6.64E+00 1.56E-04 2.89E-04 8.13E-05 0.00E+00 0.00E+00 0.00E+00

10 Basic Ackley 2.01E+01 2.01E+01 9.47E-03 1.89E+01 1.96E+01 2.09E-01 1.02E-02 1.66E-02 3.10E-03 0.00E+00 5.63E-07 3.26E-06

11 Basic Griewank 3.73E+01 5.03E+01 6.97E+00 8.13E+00 1.54E+01 2.89E+00 4.01E-04 8.45E-03 9.66E-03 0.00E+00 1.48E-02 2.59E-02

12 Penalised 1 1.13E+07 5.69E+07 3.00E+07 2.36E+04 2.60E+06 2.00E+06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

13 Penalised 2 5.72E+07 1.56E+08 4.87E+07 3.80E+06 1.41E+07 6.33E+06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Chapter 4 - Quantum inspired evolutionary algorithms 54

Table 10: Summary statistics for the 20 CEC-2013 test functions with 50 dimensions. Bold are best.

CEC-2013 test functions

50 Dimensions

bQIEA rQIEA

Classic HSB RCQIEA SRQEA

Function Min Mean Std dev Min Mean Std dev Min Mean Std dev Min Mean Std dev

14 Sphere [duplicated] 3.32E+03 5.54E+03 7.22E+02 7.89E+02 1.71E+03 3.85E+02 3.01E-04 5.81E-04 1.79E-04 0.00E+00 0.00E+00 0.00E+00

15 R HC elliptic 6.52E+07 1.23E+08 2.30E+07 4.66E+07 7.09E+07 1.32E+07 5.84E+06 1.15E+07 3.01E+06 1.55E+06 2.96E+06 6.43E+05

16 Rotated bent cigar 4.50E+10 7.15E+10 1.08E+10 1.45E+10 2.46E+10 3.30E+09 1.18E+03 6.45E+06 2.26E+07 4.98E-02 1.58E+05 1.08E+06

17 Rotated discus 9.87E+04 1.59E+05 1.62E+04 9.61E+04 1.28E+05 1.27E+04 1.38E+05 1.92E+05 2.88E+04 1.14E+05 1.75E+05 2.47E+04

18 Different powers 1.20E+03 2.99E+03 8.85E+02 3.18E+02 6.81E+02 1.35E+02 1.57E-03 4.14E-03 1.94E-03 0.00E+00 0.00E+00 0.00E+00

19 Rotated Rosenbrock 2.81E+02 4.74E+02 6.76E+01 1.35E+02 2.41E+02 4.52E+01 2.98E+01 4.51E+01 3.43E+00 2.38E+01 4.19E+01 7.54E+00

20 Rotated Schaffers F7 1.71E+02 2.15E+02 1.70E+01 1.28E+02 1.76E+02 1.41E+01 1.79E+02 2.54E+02 1.22E+02 1.47E+02 2.46E+02 9.28E+01

21 Rotated Ackley 2.10E+01 2.12E+01 3.96E-02 2.10E+01 2.11E+01 3.88E-02 2.10E+01 2.11E+01 3.74E-02 2.10E+01 2.11E+01 4.68E-02

22 Rotated Weierstrass 4.75E+01 5.65E+01 2.47E+00 4.72E+01 5.22E+01 2.35E+00 5.71E+01 6.34E+01 3.36E+00 6.16E+01 6.74E+01 3.76E+00

23 Rotated Griewank 9.90E+02 1.43E+03 1.95E+02 4.96E+02 7.13E+02 1.01E+02 1.54E+00 2.25E+00 3.02E-01 2.71E-02 1.31E-01 4.96E-02

24 Rastrigin 1.86E+02 2.37E+02 2.04E+01 7.87E+01 1.04E+02 1.05E+01 5.83E-04 1.10E-03 3.38E-04 0.00E+00 0.00E+00 0.00E+00

25 Rotated Rastrigin 4.26E+02 5.34E+02 4.14E+01 2.31E+02 4.00E+02 3.99E+01 3.58E+02 6.08E+02 1.25E+02 4.60E+02 6.85E+02 1.38E+02

26 NC rotated Rastrigin 5.69E+02 6.63E+02 3.95E+01 4.41E+02 5.54E+02 4.39E+01 4.71E+02 6.30E+02 9.74E+01 5.01E+02 6.89E+02 1.01E+02

27 Schwefel 7 1.60E+03 2.29E+03 2.72E+02 3.88E+02 8.10E+02 1.46E+02 2.96E-02 8.57E-02 2.41E-02 9.99E-02 6.71E-01 2.94E-01

28 Rotated Schwefel 7 6.26E+03 7.88E+03 4.70E+02 4.63E+03 6.47E+03 5.08E+02 4.37E+03 6.25E+03 7.15E+02 4.69E+03 6.22E+03 6.23E+02

29 Rotated Katsuura 9.79E-01 1.67E+00 2.62E-01 8.09E-01 1.39E+00 2.11E-01 8.74E-01 1.64E+00 3.49E-01 8.93E-01 1.83E+00 4.41E-01

30 Lunacek bi-Rastrigin 3.78E+02 4.57E+02 3.80E+01 1.46E+02 1.95E+02 2.29E+01 3.82E-02 9.98E-02 3.51E-02 0.00E+00 1.96E-04 1.40E-03

31 R Lunacek bi-Rastrigin 8.64E+02 1.04E+03 8.09E+01 6.00E+02 7.50E+02 5.49E+01 3.05E+02 4.80E+02 7.87E+01 4.53E+02 6.12E+02 9.30E+01

32 RE Griewank Rosen. 4.75E+02 1.61E+03 6.75E+02 1.30E+02 2.75E+02 9.06E+01 5.73E+01 1.45E+02 4.66E+01 1.46E+02 2.91E+02 6.26E+01

33 RE Schaffers F6 1.77E+01 2.09E+01 1.21E+00 1.58E+01 1.87E+01 1.13E+00 2.05E+01 2.43E+01 5.97E-01 1.90E+01 2.44E+01 7.68E-01

Chapter 4 - Quantum inspired evolutionary algorithms 55

For every test function in the traditional batch, HSB had better minimum values than

Classic, apart from the 10-dimension Penalised1 function. Although the magnitudes

were generally similar, some were substantially better, e.g., 30-dimension Rosenbrock,

Penalised1 and Penalised2, and 50-dimension Penalised1. The consistently better

performance suggests both that the LSB problems of Classic hampered its performance,

and that the tested improvement of limiting the LSB probability saturation was

successful.

Despite apparent functional performance by the bQIEA, the two rQIEA were

substantially better. The worst performance for the rQIEA was for RCQIEA on the 30-

dimension Rosenbrock with a minimum of 1.65e01, but most minima had magnitudes

of less than 1e-01. RCQIEA found smaller than 1e-08 solutions (clamped to 0.00 in the

results) for Step, Quartic, Penalised1 and Penalised2 in all tested dimensions. Despite

RCQIEA performing well on these test functions, it was eclipsed by SRQEA. With the

exception of Schwefel 2.21 and Rosenbrock, it obtained clamped 0.00 results for all of

the functions, in all dimensions. Even for Schwefel 2.21 and Rosenbrock it had the best

performance across the QIEA tested. The superior performance of the real algorithms

over their binary counterparts is unsurprising, given the application to real-value

problems, and the superior performance of SRQEA justifies the modification of the

rotation gate function for these functions.

As CEC-2013 are a set of real-value problems, some being modified versions of the

functions from the traditional set tested here, it was predicted that a similar pattern of

results would be generated, with the rQIEA dominating the bQIEA. Although HSB

outperformed Classic, and SRQEA outperformed RCQIEA, the performance of the

bQIEA compared to the rQIEA was very different from its previous performance (Table

10 for 50 dimensions, and Table 28 and Table 29 in Appendix A for 10 and 30

dimensions respectively).

For several of the test functions - Rotated Discus, Rotated Schaffers F7, Rotated

Weierstrass, Rotated Rastrigin, Non-continuous Rotated Rastrigin, Rotated Katsuura,

Rotated Expanded Grienwank, Rosenbrock and Rotated Expanded Schaffers F6, one of

the bQIEA had the best performance for one or more dimensions tested. When the

bQIEA performed best, the rQIEA approached a similar order of magnitude, but when

one of the rQIEA gave the best result, it sometimes considerably outperformed the

Chapter 4 - Quantum inspired evolutionary algorithms 56

bQIEA (for example, on the Rotated Bent Cigar, SRQEA achieved 4.98e-02 compared

to 4.50e10 and 1.45e10 for Classic and HSB respectively). Nevertheless, the positive

results of the bQIEA are significant and surprising, given that they can outperform the

rQIEA on some real-value benchmark functions.

The CEC-2013 functions are highly manipulated versions of traditional basic functions

(many based on the traditional test functions used in this chapter). The manipulations

include rotations, scalings and non-linear transforms. It may be that these

transformations allow the bQIEA to perform well in one of two possible ways. Firstly,

the transformations may increase the nonlinear interactions between dimensions,

producing a fitness landscape that is very rough, and therefore more resembling a

discrete space at scales above the very small. These search spaces may be suited to the

binary methods presented here, possibly possessing similarities to the combinatorial

problems that bQIEA have been successful with (e.g., Knapsack [135]). Alternatively,

the search pattern may be the key. In the rQIEA, the search space is traversed using

creep mutations with distances drawn from a normal distribution, while the movement

in the bQIEA is performed using multi-scaled jumps as the bits flip between zero and

one and move the search to an adjacent binary partition at the scale of the significance

of the bit. This binary space partitioning could reflect, to some degree, the underlying

structure of the search spaces.

For the CEC-2013 set of test functions, the bQIEA achieved several minimum scores

with a magnitude of 1e02 or less and, given that the test functions often contain large

constants (1e06), it could be argued that they performed better on the more difficult test

functions than on the traditional set of functions. It would be interesting to see if this

scales, so that the bQIEA have increasingly better relative performance as the fitness

landscape becomes more complex.

Although SRQEA was the best performer, in terms of number of best minimum values

found and the ability to find threshold zero error values for some functions (which none

of the other algorithms managed to do), when looking at the general performance across

all of the functions and algorithms, the picture was somewhat more mixed. A heat map

of best minimum values, scaled relatively from the best performing algorithm to the

worst on each test function, is presented in Figure 13, with a green (zero) rectangle

indicating best performance, and a light-green (one) rectangle indicating worst

Chapter 4 - Quantum inspired evolutionary algorithms 57

performance. In this plot, judging by the number of darker rectangles, RCQIEA

performs well, arguably outperforming SRQEA. From the raw data in Table 10, it can

be seen that when the performances of the rQIEA are close, SRQEA produces better

results than RCQIEA, but this is not generally noticeable in the heat map, where the

larger degrees of magnitude produced by the bQIEA obscure the rQIEA differences.

Summarising the raw data and the heat map, it can be said that RCQIEA had a slightly

better average performance but SRQEA was able to produce much better individual

scores for some functions. The more random nature of the rotation gate of RCQIEA

may produce desirable search characteristics for the CEC-2013 test functions, at the

expense of more exploitation.

Figure 13: Heat map of best convergence to a minimum by the QIEA on the CEC-2013 test

functions.

For the CEC-2011 real-world problems, converging to the minima was best for the

rQIEA (Table 11) - RCQIEA generated the best minimum for the Radar Polly Phase

problem, while SRQEA had the best minimum results for the other three functions.

However, for the mean values, both Classic and HSB outperformed the rQIEA for the

Frequency Modulation and Radar Polly Phase problems. The nested functions present

in both of these benchmarks suggest a highly nonlinear search space, so these results

are consistent with the findings and interpretations of the performance of the bQIEA on

the CEC-2013 functions.

Finally, a summary of algorithms’ mean performance across multiple test functions in

Figure 14. The plots show a cumulative normalised count, for each algorithm, of how

many functions possess a normalised mean performance below the horizontal

Classic HSB RCQIEA SRQEA

f14

f15

f16

f17

f18

f19

f20

f21

f22

f23

f24

f25

f26

f27

f28

f29

f30

f31

f32

f33

0

0.2

0.4

0.6

0.8

1

Chapter 4 - Quantum inspired evolutionary algorithms 58

coordinate value. The sooner the plot reaches 1.0 in the vertical axis, the better the

algorithm performs (as this indicates a high probability of achieving low mean error

values).

The best performance on the traditional test functions (Figure 14a) is dominated by the

two rQIEA methods, which can also be seen for all of the test functions taken together

(Figure 14d), with Classic performing poorly for both of those cases. For the CEC-

2013 functions HSB is much closer (Figure 14b), catching up sooner with the rQIEA in

the plot, although it starts with poorer results, indicating a low probability of producing

very low mean scores across the function set. The performance of RCQIEA compared

to SRQEA for CEC-2013 is in line with the results presented in the heat map (Figure

13). SRQEA outperforms RCQIEA for low mean values, but takes a slight lead for

normalised means between 0.2 and 0.4. For the real-world test functions (Figure 14c),

the situation is completely reversed, with Classic performing the best, followed by HSB.

In summarising the ECDF and the results given in the tables, it can be concluded that,

although the rQIEA have superior best performance (minimum values found), the

bQIEA algorithms do have good mean performance, often superior to their real-value

counterparts. Again, it is with the more complicated CEC-2013 and real-world CEC-

2011 functions that the bQIEA perform at their best, often outperforming the rQIEA.

Chapter 4 - Quantum inspired evolutionary algorithms 59

Table 11: Summary statistics for CEC-2011 real world problems. Bold are best.

 bQIEA rQIEA

Classic HSB RCQIEA SRQEA

Function Min Mean Std dev Min Mean Std dev Min Mean Std dev Min Mean Std dev

Frequency Modulation 1.79E+00 1.29E+01 3.98E+00 7.40E-02 7.22E+00 4.73E+00 2.71E-04 1.57E+01 5.78E+00 0.00E+00 1.70E+01 4.68E+00

Lennard Jones 5 atoms -1.07E+01 -9.23E+00 6.66E-01 -1.21E+01 -1.05E+01 5.97E-01 -1.27E+01 -1.18E+01 1.03E+00 -1.27E+01 -1.21E+01 1.02E+00

Lennard Jones 10 atoms -1.91E+01 -1.50E+01 1.34E+00 -2.27E+01 -1.77E+01 1.50E+00 -3.08E+01 -2.26E+01 3.87E+00 -3.18E+01 -2.41E+01 4.23E+00

Radar Polly Phase 1.60E+00 1.98E+00 1.25E-01 1.65E+00 1.85E+00 8.72E-02 1.50E+00 2.00E+00 2.31E-01 1.59E+00 2.11E+00 2.10E-01

Chapter 4 - Quantum inspired evolutionary algorithms 60

4.5.2 Evolution properties of the QIEA

Mean error values per generation (averaged across the 51 runs) are shown for four

functions in Figure 15. For most functions, Classic outperformed HSB early on the

evolution, but tends to stall earlier and is generally overtaken by HSB at around the 30%

(of the total number of generations) time point (for example, see the Sphere and Rotated

Rosenbrock function timelines in Figure 15a,b). This gives additional support to the

argument that Classic was prematurely converging when applied to real-value

problems, and justifies the approach when formulating the HSB adaptation. It should

also be noted though that HSB also usually approaches an approximately zero gradient

relatively early on (50% of time or less), implying there is further need to improve

premature convergence.

Chapter 4 - Quantum inspired evolutionary algorithms 61

Figure 14: Empirical cumulative probability distribution function of mean errors across a)
traditional, b) CEC-2013, c) real-world and d) all test functions, comparing the four QIEA.

a)

b)

c)

d)

Chapter 4 - Quantum inspired evolutionary algorithms 62

Figure 15: Timeline evolution of mean error values for a) Sphere, b) Rotated Rosenbrock, c)
Rotated Griewank and d) Schwefel 2.21.

a)

b)

c)

d)

Chapter 4 - Quantum inspired evolutionary algorithms 63

For the majority of cases where SRQEA outperformed RCQIEA, their early

performances were very similar, but SRQEA would establish a lead from typically the

10-30% time mark (Rotated Griewank in Figure 15c). This can be interpreted as

indicating that the corrected rotation formula allowed a more refined search in later

stages. Both rQIEA demonstrated a clear non-zero gradient at the end of the timeline

in several of the plots (such as Figure 15c,d). This suggests they are capable of finding

significantly better results if the algorithm is run for longer. As the plots display the

fitness to the 10th root, this is relevant for fine convergence to the optimal value,

indicating room for improvement of precision.

4.5.3 Comparison of QIEA with published results

As the best performing QIEA on the traditional test functions, SRQEA was chosen to

compare with two other algorithms – FEP [8] and MADE [151] (Table 12). Comparison

is made difficult by varying numbers of function evaluations across the published

methods, but in general, SRQEA outperformed FEP except for the Rosenbrock, Ackley

and Griewank functions where FEP had a superior mean and standard deviation.

MADE was better than SRQEA for Schwefel 2.21, Rosenbrock, Ackley and Griewank,

but SRQEA beat MADE for Quartic and matched it for all of the other functions.

Unfortunately, best minimum values found were not published for either algorithm, but

since MADE produced several zero means, it is clear those results would have been

good as well.

The exploitation ability of RCQIEA and SRQEA was compared to data published on a

set of differential algorithms (DE) [151] and is presented in Table 13, using the success

rate (SR) and success performance (SP) metrics, using a success threshold of 1E-08,

except for 1E-02 for Quartic in order to compare to published data. In general, the DE

algorithms achieved success more often, and quicker, than the rQIEA. The SRQEA is

overall superior to RCQIEA for these metrics (with a better SR), but when RCQIEA was

successful it tended to achieve success more quickly than SRQEA (better SP). These

results represent the weakest performance for the QIEA, and indicate room for

improvement in their search and exploitation abilities for the traditional test functions,

although success rates were based on very low thresholds (usually 1e-08) and therefore

may not be important in practical cases. Unfortunately MADE was not applied to the

Chapter 4 - Quantum inspired evolutionary algorithms 64

CEC-2013 functions, so it cannot be said if these conclusions hold for the more

complicated test functions.

Table 14, and Table 30 and Table 31 in Appendix A, show the performance of SRQEA

against two algorithms that were applied to the CEC-2013 fitness functions [9]. The

two algorithms compared are a particle swarm optimization algorithm SPSO-2011 [123]

and a genetic algorithm GA [125]. SRQEA was chosen for comparison as, overall, it

was the best performing QIEA tested here, in terms of minimum values found.

Looking at all dimensions, all three algorithms achieved some best performances.

SPSO-2011 performed least well, having fewer best minimum results, and most of those

being joint equal with one or both of the other algorithms. The main competition for

SRQEA came from the GA. For 10 dimensions it achieved 16 best performances, with

SRQEA only achieving seven. For 30 dimensions GA scored 12 best performances,

while the SRQEA reached 8, but for 50 dimensions, SRQEA took the lead with 11

compared to 9 best results for the GA. This demonstrates better scaling with increased

number of dimensions for SRQEA than for the GA. Mean performance was similarly

distributed across all dimensions but SRQEA showed improved standard deviation

performance again for 50 dimensions, outperforming the other algorithms substantially.

This shows a more consistent relative performance at higher dimensions for SRQEA as

well as better minima and means.

Chapter 4 - Quantum inspired evolutionary algorithms 65

Table 12: Comparison between SRQEA, Fast Evolutionary Programming (FEP) [8], and MADE
[151] on the traditional test functions. Bold are best.

30 Dimensions SRQEA FEP MADE

Function F Evals Min Mean Std dev F Evals Mean Std dev F Evals Mean Std dev

1 Sphere 300000 0.00E+00 0.00E+00 0.00E+00 150000 8.10E-03 7.70E-04 150000 0.00E+00 0.00E+00

2 Schwefel 222 300000 0.00E+00 0.00E+00 0.00E+00 200000 8.10E-03 7.70E-04 150000 0.00E+00 0.00E+00

3 Schwefel 12 300000 0.00E+00 0.00E+00 0.00E+00 500000 1.60E-02 1.40E-02 200000 0.00E+00 0.00E+00

4 Schwefel 221 300000 3.51E-03 6.16E-03 1.56E-03 500000 3.00E-01 5.00E-01 500000 0.00E+00 0.00E+00

5 Rosenbrock 300000 1.04E-02 8.86E+01 1.80E+02 2000000 5.06E+00 5.87E+00 500000 3.97E-01 1.63E+00

6 Step 300000 0.00E+00 0.00E+00 0.00E+00 150000 0.00E+00 0.00E+00 500000 0.00E+00 0.00E+00

7 Quartic 300000 0.00E+00 0.00E+00 0.00E+00 300000 7.60E-03 2.60E-03 300000 1.24E-03 3.78E-04

8 Schwefel 226 300000 0.00E+00 0.00E+00 0.00E+00 900000 1.50E+01 5.26E+01 200000 0.00E+00 0.00E+00

9 Basic Rastrigin 300000 0.00E+00 0.00E+00 0.00E+00 500000 4.60E-02 1.20E-02 300000 0.00E+00 0.00E+00

10 Basic Ackley 300000 0.00E+00 9.20E-01 4.01E+00 150000 1.80E-02 2.10E-03 150000 0.00E+00 0.00E+00

11 Basic Griewank 300000 0.00E+00 2.06E-02 2.25E-02 200000 1.60E-02 2.20E-02 200000 0.00E+00 0.00E+00

12 Penalised 1 300000 0.00E+00 0.00E+00 0.00E+00 150000 9.20E-06 3.60E-06 300000 0.00E+00 0.00E+00

13 Penalised 2 300000 0.00E+00 0.00E+00 0.00E+00 150000 1.60E-04 7.30E-05 300000 0.00E+00 0.00E+00

Table 13: Comparison of success rates (SR) and speed of convergence (SP), between RCQIEA,
SRQEA and 4 differential evolution algorithms, for the 13 traditional test functions with 30

dimensions. Bold are best.

Function RCQIEA SRQEA jDE SDE JADE MADE

SP SR SP SR SP SR SP SR SP SR SP SR

1 Sphere — 0 2.48E+05 1 5.93E+04 1 3.91E+04 1 3.04E+04 1 2.29E+04 1

2 Schwefel 222 — 0 7.19E+05 1 8.16E+04 1 5.31E+04 1 5.61E+04 1 3.64E+04 1

3 Schwefel 12 — 0 3.56E+05 1 3.37E+05 1 — 0 7.17E+04 1 1.34E+05 1

4 Schwefel 221 — 0 — 0 2.99E+05 1 4.72E+05 0.44 — 0 1.27E+05 1

5 Rosenbrock — 0 — 0 5.89E+06 0.08 — 0 1.22E+05 0.92 1.97E+05 0.92

6 Step 7.77E+04 1 1.20E+05 1 2.27E+04 1 1.44E+04 1 1.16E+04 1 7.89E+03 1

7 Quartic 1.37E+05 1 1.80E+05 1 1.12E+05 1 8.34E+04 1 2.97E+04 1 2.83E+04 1

8 Schwefel 226 — 0 2.12E+05 1 7.85E+04 1 5.50E+04 1 1.00E+05 1 6.00E+04 1

9 Basic Rastrigin — 0 2.53E+05 1 1.17E+05 1 6.14E+05 0.36 1.31E+05 1 1.14E+05 1

10 Basic Ackley — 0 1.54E+06 0.63 9.02E+04 1 5.95E+04 1 4.75E+04 1 3.55E+04 1

11 Basic Griewank — 0 8.50E+05 0.31 6.21E+04 1 4.07E+04 1 3.30E+04 1 2.41E+04 1

12 Penalised 1 5.61E+04 1 9.46E+04 1 5.40E+04 1 3.66E+04 1 2.95E+04 1 2.03E+04 1

13 Penalised 2 3.85E+04 1 7.15E+04 1 5.76E+04 1 3.77E+04 1 2.95E+04 1 2.19E+04 1

Chapter 4 - Quantum inspired evolutionary algorithms 66

Table 14: SRQEA compared to SPSO-2011 and a GA algorithm for the CEC-2013 functions with 50 dimensions. Bold are best.

50 Dimensions SRQEA SPSO-2011 [123] GA [125]

Function Min Mean Std dev Min Median Std dev Min Median Mean Std dev

14 Sphere [duplicated] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.18E-13 0.00E+00 0.00E+00 0.00E+00 0.00E+00

15 R HC elliptic 1.55E+06 2.96E+06 6.43E+05 3.79E+05 6.80E+05 1.87E+05 1.74E+05 4.28E+05 4.76E+05 2.14E+05

16 Rotated bent cigar 4.98E-02 1.58E+05 1.08E+06 2.00E+07 4.37E+08 9.47E+08 2.55E+06 3.44E+07 1.06E+08 1.49E+08

17 Rotated discus 1.14E+05 1.75E+05 2.47E+04 3.22E+04 5.10E+04 8.72E+03 4.90E-01 2.25E+00 3.33E+00 4.88E+00

18 Different powers 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.41E-05 0.00E+00 0.00E+00 4.77E+04 1.70E+05

19 Rotated Rosenbrock 2.38E+01 4.19E+01 7.54E+00 1.84E+01 4.35E+01 2.41E+01 3.66E+01 4.36E+01 4.72E+01 1.40E+01

20 Rotated Schaffers F7 1.47E+02 2.46E+02 9.28E+01 5.61E+01 8.64E+01 1.53E+01 1.51E+01 3.97E+01 4.17E+01 1.83E+01

21 Rotated Ackley 2.10E+01 2.11E+01 4.68E-02 2.10E+01 2.11E+01 4.25E-02 2.11E+01 2.12E+01 2.12E+01 3.98E-02

22 Rotated Weierstrass 6.16E+01 6.74E+01 3.76E+00 4.52E+01 5.40E+01 6.74E+00 5.21E+01 7.53E+01 7.43E+01 3.97E+00

23 Rotated Griewank 2.71E-02 1.31E-01 4.96E-02 1.00E-01 4.00E-01 2.38E-01 2.71E-02 9.36E-02 1.05E-01 7.09E-02

24 Rastrigin 0.00E+00 0.00E+00 0.00E+00 1.50E+02 2.30E+02 4.18E+01 1.49E+01 5.37E+01 5.57E+01 2.23E+01

25 Rotated Rastrigin 4.60E+02 6.85E+02 1.38E+02 1.62E+02 2.35E+02 4.87E+01 5.07E+01 9.75E+01 9.83E+01 2.45E+01

26 NC rotated Rastrigin 5.01E+02 6.89E+02 1.01E+02 3.20E+02 4.28E+02 6.22E+01 1.04E+02 1.86E+02 1.93E+02 5.30E+01

27 Schwefel 7 9.99E-02 6.71E-01 2.94E-01 5.51E+03 7.26E+03 8.53E+02 1.06E+03 2.30E+03 2.55E+03 1.14E+03

28 Rotated Schwefel 7 4.69E+03 6.22E+03 6.23E+02 5.68E+03 7.92E+03 1.14E+03 6.20E+03 8.24E+03 9.84E+03 3.19E+03

29 Rotated Katsuura 8.93E-01 1.83E+00 4.41E-01 1.40E+00 2.00E+00 3.87E-01 2.23E+00 3.76E+00 3.68E+00 3.88E-01

30 Lunacek bi-Rastrigin 0.00E+00 1.96E-04 1.40E-03 2.08E+02 3.11E+02 6.62E+01 8.25E+01 1.13E+02 1.15E+02 2.00E+01

31 R Lunacek bi-Rastrigin 4.53E+02 6.12E+02 9.30E+01 1.70E+02 2.91E+02 6.24E+01 8.83E+01 1.32E+02 1.68E+02 1.02E+02

32 RE Griewank Rosen. 1.46E+02 2.91E+02 6.26E+01 1.70E+01 3.72E+01 1.20E+01 3.60E+00 9.02E+00 8.92E+00 3.17E+00

33 RE Schaffers F6 1.90E+01 2.44E+01 7.68E-01 1.99E+01 2.27E+01 1.19E+00 1.99E+01 2.36E+01 2.35E+01 8.02E-01

Table 15: Comparison of performance on real-world problems between SRQEA and three differential evolutionary algorithms. The starred value has been
clamped to zero as it was below the threshold of 1E-08 (used in the QIEA simulations). Bold are best.

 SRQEA MADE-WS EA-DE-Memetic Adaptive DE

Function Min Mean Std dev Min Mean Std dev Min Mean Std dev Min Mean Std Dev

FM Wave match 0.00E+00 1.70E+01 4.68E+00 - 8.81E-01 2.47E+00 0.00E+00* 3.81E+00 5.21E+00 0.00E+00 4.85E+00 6.69E+00

Lennard-Jones 5 atoms -1.27E+01 -1.21E+01 1.02E+00 - -9.09E+00 8.83E-02 - - - - - -

Lennard-Jones 10 atoms -3.18E+01 -2.41E+01 4.23E+00 - -2.66E+01 8.64E-01 -2.84E+01 -2.59E+01 2.24E+00 -2.80E+01 -2.68E+01 2.11E+00

Radar Polly Phase 1.59E+00 2.10E+00 2.09E-01 - - - 2.20E+02 2.20E+02 0.00E+00 2.20E+02 2.20E+02 0.00E+00

Chapter 4 - Quantum inspired evolutionary algorithms 67

The poorer performance of SPSO-2011 (Table 14) and the better performance of the

GA may suggest that the recombinatorial properties of the cross-over operator may aid

the search pattern for the CEC-2013 functions. This is consistent with both of the

presented hypotheses for why the bQIEA performed relatively well against the rQIEA

– either treating the rougher space as more discrete and looking for recombination, or

navigating through hops (swapping genes in the case of GA, and flipping bits in the case

of the bQIEA). Although overall SRQEA was better, it would be interesting to see how

bQIEA perform against rQIEA and other algorithms on even more complex search

spaces.

A heat map of the relative performance by the three compared algorithms on 50-

dimensional CEC-2013 test functions is shown in Figure 16. SRQEA has the highest

number of best performances, but GA has fewer worst performances. Again, this

indicates better exploitation properties for SRQEA at the expense of exploration.

Figure 16: Heat map of best minimum performance by SRQEA compared to published PSO
and GA algorithms on the CEC-2013 test functions.

A comparison between SRQEA and two alternative algorithms, when applied to the real-

world problems is shown in Table 15. For the frequency modulation wave matching

problem, MADE-WS [151] had the best mean and standard deviation. Unfortunately,

the authors did not report a minimum value. SRQEA outperformed the hybrid algorithm

[159] and the DE algorithm [160], in terms of mean and standard deviation, while

equalling the best minimum performance. The mean and standard deviation were worse

but comparable with the MADE-WS results.

SRQEA SPSO-2011 GA

f14

f15

f16

f17

f18

f19

f20

f21

f22

f23

f24

f25

f26

f27

f28

f29

f30

f31

f32

f33

0

0.2

0.4

0.6

0.8

1

Chapter 4 - Quantum inspired evolutionary algorithms 68

For the Lennard-Jones problems, SRQEA again established the best minimum values,

but MADE-WS did not have a comparable values published. SRQEA did have the best

mean value for Lennard-Jones5 but only outperformed the hybrid algorithm for

Lennard-Jones10.

For the radar waveform parameter specification problem, SRQEA was the clear winner.

The published results [159] and [160] both gave a suspiciously poor value though, and

it may be worth considering whether there were issues in using shared code for the

function evaluations. The problem was directly tackled in [161] where a variable

neighbourhood search algorithm gave a minimum value of 8.58e-01 which was better

than that achieved by the SRQEA.

4.6 Conclusion

When applied to real-value optimization tasks, all of the QIEA tested and validated in

this investigation produced usually excellent results for basic test functions, and

acceptable to excellent results for the more complicated benchmarks. Binary QIEA are

a direct implementation of the quantum computing metaphor, which is built around

repeated sampling of binary strings, analogous to superposition of states on a set of

quantum bits. The Qbit probabilities define a probability distribution that elegantly

specifies both the region of the best solution found so far, and the variance of the search

radius. As the probabilities saturate, the mean position of the search becomes clearly

defined, and the variance of the search narrows. Although the original Classic

algorithm performed relatively poorly on the optimization tasks examined here, the

modified HSB did substantially improve the results. In many instances it outperformed

RCQIEA, especially for the more difficult CEC-2013 test functions. The timeline plots

highlighted the premature convergence of Classic (Figure 15a), giving further

justification for the choice of modification, which was developed in response to the

analysis of individual bit evolution. By explicitly limiting the saturation of less

significant bits to the magnitude of saturation of more significant bits, HSB avoids the

problems that Classic encountered for real-value problems, although horizontal lines in

the latter half of some timeline plots suggest there is still room for improvement. The

population size results (Figure 12a and Figure 12b) also suggest exploration issues, as

Chapter 4 - Quantum inspired evolutionary algorithms 69

the bQIEA benefit from a larger population size for a fixed number of function

evaluations.

The best results came from the rQIEA, especially from the modified version - SRQEA

(Table 9, Table 10 and Table 11) but the rQIEA specifications require a compromise

with respect to the quantum metaphor. In most rQIEA, and certainly the ones presented

here, the Qbits and the quantum rotation gate give a mechanism for adjusting the radius

of search throughout the evolution, such as through the creep mutation operators of the

rQIEA presented here, or in the velocity equations in PSO algorithms [147]. Although

that is not a problem of itself, it may be useful to view these quantum inspired

algorithms as operator algorithms used within other optimization methods. Presented

on their own, rQIEA can largely resemble other techniques. For example, the RCQIEA

algorithm used here looks similar to simulated annealing, with the rotation gate

adjusting the variance for neighbour selection.

The modification to the rotation gate produced superior results, particularly with regards

to the exploitation (Table 10), although as it can be seen from the heatmaps of Figure

16 and Figure 13, the average performance across the functions is slightly

compromised. This suggests the superior exploitation may come at the expense of some

exploration limitation. As well as being beneficial in this specific implementation, it

would be interesting for future work to explore the possibility of using the modified

rotation in other algorithms, as a way of adjusting search variance.

When compared to other published results, the modified algorithms were superior for

the more complex CEC-2013 functions (Table 14). For the traditional test functions,

they were generally outperformed by other published results (in particular, the DE

algorithms [151], Table 13). However, timeline plots (Figure 15) suggest the rQIEA

may continue to improve if left for longer. It would therefore be interesting to see if

these algorithms are suitable for increasingly complicated test functions, where longer

processing times are to be expected.

Surprisingly, the bQIEA appeared to perform better for the more complex CEC-2013

and the real-world test functions (Table 10 and Table 11). It can be speculated that this

may be because either the transferred search space begins to resemble the binary space

portioning that the bQIEA generate, or that the search hops at different scales

(depending on bit significance) may result in more suitable search patterns when

Chapter 4 - Quantum inspired evolutionary algorithms 70

compared to rQIEA or other algorithms. The ability of bQIEA to combine different

scales, through bit manipulation, may explain their improved performance on these

more sophisticated tasks. As more complex fitness functions are published in the future,

it would be worth including bQIEA (and perhaps other binary optimisation algorithms)

in attempting to optimise them.

QIEA provide a good starting point for optimization. Deficiencies, when compared to

competing algorithms, were largely down to fine exploitation, with results being of a

similar degree of magnitude in error (Table 12). Future work would be beneficial on

improving exploration for SRQEA, or further reducing the premature convergence for

HSB. This may be achieved through an analysis of the effect of changing algorithm

parameters (as discussed below), or by including the QIEA in hybrid algorithms with a

two-stage exploration and exploitation process. Using the configuration of step size

and other parameters presented here, the two rQIEA are more orientated towards

exploration than exploitation. This is demonstrated by the populations analysis (Figure

12), which showed they both benefitted from a small population size for a given number

of function evaluations (thereby increasing the number of iterations per individual). The

bQIEA in contrast performed best with a larger population size and so appear to be

balanced more towards exploitation than exploration, thus needing larger population

size to effectively explore the search space.

One final advantage of QIEA is the low number of parameters they require for the main

part of their implementation. Generally, only the number of individuals and step size

for the rotation gate are needed. The rQIEA presented here also include a parameter for

the number of children produced in each generation. For all of the investigated

algorithms, the number of individuals and rotation gate step magnitude need specifying.

The bQIEA also have parameters for local and global update rates, while rQIEA have

crossover rates. How these affect the overall performance was not evaluated. The

rQIEA also add a parameter for the number of offspring spawned at each iteration.

Again, changing this was not analysed and further investigation into the optimisation of

these parameters would be worth conducting.

Chapter 5 - Comparative experiments in evolution of

locomotion 71

5 Comparative experiments in evolution of locomotion

In this chapter, a series of experiments is presented, examining the evolution of vertical

jump, long jump and walking gaits. All of the skills were developed for biped models,

and walking was developed for a quadruped model. Different models, platforms,

control algorithms and optimisation algorithms were compared and the results are

presented, along with problems encountered in simulation, with conclusions and

directions for future work concluding the chapter.

5.1 Vertical jump skill

The first experiments presented here sought to produce vertical jumps in a biped model,

optimising maximum height achieved. A counter-movement element in a vertical jump

has been identified as important in human jumping [162]. One reason for this is called

a stretch shortening cycle, which increases performance due to storage of elastic energy

and increased muscle activation [163]. These advantageous properties will be missing

in a physical simulation consisting of rigid bodies, which is the case for the systems

used here as soft body dynamics are more complicated to simulate. However, the

increased acceleration phase made possible by bending the knees before jumping still

favours a counter-movement jump for maximum height, and so an additional criterion

will be used in evaluation - optimisation of a vertical jump skills will be regarded as

successful if a counter-movement is observed.

5.1.1 Vertical jump in detailed biped model

The vertical jump was first used to test the process of optimisating movement and the

first experiment is described briefly here, in a qualitative way as no comparative

Chapter 5 - Comparative experiments in evolution of

locomotion 72

experiments were performed at this stage. However, the results demonstrate a proof of

concept, and a description is given of issues encountered. Newton Dynamics was

selected for speed, but since a vertical jump is a discrete skill (short duration, not

continuous) it was decided to use the detailed biped model as optimisation was assumed

to be less taxing in this scenario. Visualisation was provided by Ogre3D and software

was written in C#.

A Van der Pol based CPG was used for control and a genetic algorithm was used for

optimisation, these being described in detail in sections 2.1.2 and 3.2.1 respectively.

The fitness function was simply maximum height obtained in a fixed time period,

although it was later modified to only accept one jump phase, as some evolutions

produced higher jumps using multiple jump phases. Evolution was often successful, as

per counter-movement criterion, and an example animation is presented in Figure 17.

Figure 17: Still frames from an animation of a vertical jump evolved for a biped model, in
Newton Dynamics Engine, from left to right, top to bottom.

Care had to be taken in specifying the physical model. As noted in section 3.4.3 it was

constructed using cuboids and hinge joints, for simplicity. However, results were

sensitive to the control properties, especially maximum joint speeds. Unrealistic,

explosive movements were produced when maximum speeds were allowed to be too

high. Although this is somewhat obvious, it does highlight the need for proper

Chapter 5 - Comparative experiments in evolution of

locomotion 73

calibration even in theoretical experiments (not with a real-world target system in

mind).

5.1.2 Vertical jump in detailed robot biped model

Following the proof of concept work, a quantitative comparative study was conducted

into evolving and optimising vertical jumps. Given the success from the previous

section, it was felt that the slower OpenHRP3 software could be used, in order to use a

platform that was common in the literature, and meeting the thesis objective of testing

methods on multiple physics platforms.

The control algorithms outlined below (a CPG and a RNN) output desired joint angles

at each time iteration. They are then converted into joint torque values, which in turn

are fed into the physical simulation. This was done using a proportional–integral–

derivative controller (PID controller) [164]. A PID controller outputs control values

based on the error between the current measured position and desired position

(expressed for this experiment in terms of the joint angles). It is given in discrete time

form by equation (5.1):

 1

1

() ()
() () ()

i

k
k k

k p k i d

i

e t e t
u t K e t K e t t K

t





 
     

 
 (5.1)

where tk is the time at iteration k, u(tk) the output torque for joint k, e(tk) the error

(difference between target joint angle and measured joint angle), and Kp, Ki, and Kd are

tuning parameters representing proportional, integral and derivative gains respectively.

Additionally, in order to cope with situations where the control algorithms changed their

output too rapidly the output joint torque was limited to a maximum value.

As well as developing a vertical jump in a more complicated model, two methods from

the literature were compared – a Van der Pol oscillator based CPG and a fully connected

leaky integrator recurrent neural network.

Chapter 5 - Comparative experiments in evolution of

locomotion 74

5.1.3 CPG – Van der Pol

For the central pattern generator controller, a Van der Pol oscillator model (see section

2.1.2) was selected. It was chosen because the literature search had highlighted it as a

popular choice, plus it was relatively simple to implement. A discrete time version is

presented in equation (5.2) using the simple Euler method to perform the numerical

integration. Using the Euler method is simple to implement, and so was chosen, but

more precise experiments could have been achieved with an improved numerical

integration, such as Runge-Kutta [165].

            

   

22 2

1

1 1

1 ()

n

i i i i i i i i ij j i

j

i i i

x t x t t p x t x t x t x t k

x t x t x t t

  


   
               


   



 (5.2)

where xi(t) is the output of oscillator i at iteration t, αi, pi, ωi and ki are constants to be

tuned by optimisation, controlling shape, amplitude, frequency and amplitude

respectively, λ is the interconnection matrix (with λii = 0), Δt is the length of time

between iterations, and n is the number of oscillators.

The parameter ranges used in this investigation, and encoding scheme used during

optimisation, are given in Table 16 and Table 17.

Table 16: CPG parameter ranges.

Initial oscillator phase x Set equal to the initial joint

positions in the standing pose

Initial oscillator speed x [-4.0,4.0]

 [0.0,4.0]

2p

[0.0,8.0]

k 0

2 [0.0,40.0]

ij
[-1.0,1.0]

Table 17: CPG encoding scheme.

 constants in  2 constants in p 2 constants n   1 matrix ijn n 

Chapter 5 - Comparative experiments in evolution of

locomotion 75

5.1.4 RNN – Fully connected leaky integrator

To compare with the CPG, a RNN from [86]–[88] with topology given in Figure 4 and

described in equation (2.8) was chosen. This network was selected due to being well

described in the literature, suitably generic and easy to implement. In [86]–[88] it was

used for evolving continuous skills such as walking gaits so this experiment had the

potential to establish a larger capability for this topology, if it were capable of discrete

jumping skills.

Parameter ranges used during optimisation are given in Table 18.

Table 18: Parameter ranges for RNN

Initial oscillator phase x Set equal to the initial joint

positions in the standing pose

j [0.001,5.0]

ijw
 [-16.0,16.0]

j
 [-4.0,4.0]

5.1.5 Optimisation

In this investigation a standard GA [128] was compared with a particle swarm

optimisation (PSO) algorithm [129], for their ability to successfully develop counter-

movement jumps (expressed as success rates). As mentioned in section 3.1.2, GA has

often been used to optimise locomotion, and was used in [86] to generate walking gaits

with the RNN. In contrast, no uses of PSO for this field were identified, and therefore

it would be useful to compare the two techniques to start the process of establishing the

most useful techniques for locomotion.

For the GA, the genes of each chromosome consisted of real values in the interval [0.0

, 1.0]. These specified the parameters for the control algorithms, being linearly mapped

onto the desired parameter ranges. The configuration of the GA is shown in Table 19

with constants adapted from [86] after initial testing. The PSO was configured

according to section 3.2.2.

Chapter 5 - Comparative experiments in evolution of

locomotion 76

Table 19: GA configuration

Population size 50 chromosomes

Chromosome length Dependent on control algorithm

Randomisation Normal distribution 0.5  ,
2 0.5 

Selection Tournament selection, 0.9p 

Crossover Genes crossed 0.01p 

Mutation Creep mutation from (0.5,0.5)N , 0.04p 

Elitism Best 4 chromosome copied unaltered

5.1.6 Fitness function

The fitness function for the vertical jump was kept as simple as possible, with the

emphasis being placed on the methods to produce a solution. However, it was found

that including some a-priori knowledge greatly helped results. The specification for the

modified function is shown in Table 20.

Termination criteria can be used to frame the skill in time, to quickly stop failing

attempts such as falling over, or to avoid undesirable movements such as jumping while

attempting running. In this case, only the time frame was considered as important. It

was found that a fitness function based on chest height was preferable to one based on

waist height. This was because the waist based function ignored toppling of the upper

body. The results using the modified version emphasising counter-movement is

discussed in the next section.

Table 20: Fitness function for vertical jump.

Skill Fitness score Termination criteria

Vertical jump Maximum height attained by chest

Modified to favour counter-movement jumps

by measuring the maximum height achieved

by the chest after the waist had lowered

below 0.65m

3 seconds of simulated

time

5.1.7 Results

All control and optimisation combinations tested were able to produce satisfactory

vertical jumps. An optimisation run was deemed to be successful if the final output

Chapter 5 - Comparative experiments in evolution of

locomotion 77

consisted of a counter movement jump. The frequency of successes and best jump

heights varied across the different combinations of control and optimisation algorithms.

The results from 25 optimisation runs are summarised in Table 21.

Table 21: Comparison of vertical jump evolution between GA and PSO, using CPG and RNN
control methods.

Optimser GA PSO

In 25

runs

Successes Best height after

100 generations

Successes Best height after

100 iterations

CPG 25 2.26m 25 2.55m

RNN 4 2.23m 7 1.54m

CPG runs were always successful but RNN controlled runs often failed to produce a

success. When failure occurred, optimisation tended to hit a local maximum – typically

using ankle plantarflexion to jump up a little. In an attempt to combat this, the fitness

function was modified to include a threshold criterion. The waist had to lower below

0.65m before maximum height was measured. This favoured counter-movement jumps

over ankle jumps. Even so, RNN control had a very poor success rate. Using a normal

distribution approximation there was little evidence supporting a difference in the

success rates of RNN optimisation between GA and PSO (p>0.3). However, this

approximation is unreliable as the GA optimised RNN had fewer than 5 successes.

The results are suggestive of PSO optimisation producing more successes for RNN

controlled jumps, with GA better at refining solutions to give greater heights. More

simulations are needed to establish strong evidence of the PSO having better exploration

(finding successful solutions) and the GA better exploitation (refining those solutions

to get a near optimal height), and in contrast to the results for the RNN, PSO found the

best height for the CPG controller.

The use of this modified fitness function includes a priori expert knowledge – that a

counter-movement jump is preferential to maximum height. This is problematic as

expert knowledge for other skills may be missing or wrong, and highlights the need to

further develop the control and optimisation algorithms so that they can consistently

find global maxima. In this experiment, only the CPG was able to find suitable solutions

without expert knowledge.

Chapter 5 - Comparative experiments in evolution of

locomotion 78

The higher success rate of the CPG can be attributed to its explicit oscillatory form.

Counter movements (cycling knee flexion to knee extension) are generally present in

the first, random, population. Optimisation is then simply a process of identifying and

refining these patterns. For the RNN, the optimisation task is more complicated as

many configurations of the network do not produce any periods of oscillation at all.

Although very successful, the ease of optimising the CPG created instances of solutions

that would not be appropriate for real life – even though they scored very high jumps.

These solutions involved one or more preparatory mini-jumps before the final big jump.

For real world applications such as robotic control or templates for human action,

further modification to the fitness function may be needed to measure only the first

jump, otherwise the form may be too energy demanding, time demanding, or

aesthetically unpleasing. Both CPG and RNN algorithms were capable of producing

unnecessary movements after the launch phase. This was often pronounced for the CPG

as oscillations tended to continue after the launch phase. To improve the form, there

would need to be some cut-off or transition control added to the CPG to control for

these movements, and these form elements to be accounted for in the fitness function.

Lastly, it was observed that the CPG was capable of producing very explosive

movements. This was possible because large amplitudes of oscillation were allowed

(but clipped to control joint ranges). The movement pattern was probably not realistic

but attempts to constrain the range more appropriately were less successful. Further

work is needed to address this problem.

For use in a sport context, the simulation software can be used to produce a video of the

optimised movement (Figure 18). This video can then be shown to coaches and athletes

to help them visually understand the optimised pattern, or to be used as a reference in

video analysis.

Chapter 5 - Comparative experiments in evolution of

locomotion 79

Figure 18: Frames from the animation of a successfully optimised vertical jump.

Alternatively, the raw output of the control algorithms (joint angles over time – Figure

19), or the calculated torques over time can be used in training. To do this, the traces

can be compared to data collected using motion tracking techniques.

Figure 19: CPG output trace for the right knee angle during a vertical jump

Finally, the researcher could extract key features from either the video or control

algorithm output data. Key features may include extrema positions of joints, timing

information, and movement sequence description. Identification of important features

can be done by comparing to pre-existing technique and highlighting major differences.

Fitness functions have to be carefully chosen because they can affect the ability of the

system to optimise and fundamentally define the form of the final solution. In the

vertical jump choosing to measure height achieved by the waist is successful in

producing vertical jumps but, in general, the upper body tends to rotate towards the

horizontal. Measuring height achieved by the chest corrects this problem. For a more

realistic jump skill, it would be appropriate to add horizontal plane factors to the fitness

function. This is to ensure that the direction of the jump is task appropriate.

Chapter 5 - Comparative experiments in evolution of

locomotion 80

In this experiment, the CPG consistently outperformed the RNN. It was always

successful whereas the RNN sometimes failed to produce satisfactory results.

However, the CPG does have issues with unsuitable movements (such as multiple jump

patterns) that are less of a problem with RNN controlled movement. For GA optimised

RNN jumping, the success rate was 1 in 10. This compares to a similar success rate for

GA optimised RNN controlling a walk gait found in [86]. Although the movement

skills are different the vertical jump can be viewed as possessing one cycle of an

oscillation, and so the similar success rates may represent a similar difficulty in finding

oscillatory patterns in the RNN using GA. The PSO found acceptable solutions for the

RNN more often than the GA, but the GA generated the best height across the test for

the RNN.

5.2 Walking gaits

This section presents investigations into producing and optimising walking gaits for

quadrupeds and bipeds. Physical model design, control algorithms and optimisation

techniques are explained, tested and contrasted.

Experiments were conducted using Newton Dynamics version 3.13 for physics

simulation (driven with a time step of 0.02 seconds), wxWidgets for the user interface

and OpenGL for graphical rendering.

5.2.1 Evolving quadruped walking gaits

To start with a less demanding walking task, the quadruped model was selected. As

mentioned in section 3.4.1 it is statically stable and making it fall over is difficult. It

was assumed that this property would make optimisation of gaits easier.

To control the quadruped, a sinusoidal CPG based on a body phase driven set of

oscillators [70] was compared to a fully connected neural network ([86] and section

2.1.4). The CPG is given in equation (5.3).

  

 

,

,

sin ,

B B

i i i B i

i i i iy x a

 

    





  

 

 (5.3)

Chapter 5 - Comparative experiments in evolution of

locomotion 81

where θB and ωB are the body phase angle, and phase speed respectively, θi is the angle

of oscillator i, ωi is the phase speed of oscillator i and λ is an entrainment factor. The

output of the oscillator is given by yi, with xi and ai being an offset and amplitude

respectively.

The design of the CPG gives a clear interpretation for each parameter, and therefore the

effects of changing them can be predicted to some degree, giving the potential for

applying expert knowledge/reasoning to the configuration. The goal of this thesis was

to develop methods that do not include expert knowledge, as the assumptions may be

wrong, or may limit the solutions to sub-optimal results, but the opportunity was taken

here to compare expert and non-expert adjusted configurations, in order to determine

the added optimisational complexity of fully specifying the results by the optimisation

process.

Therefore, two versions of the CPG were tested – one with the full configuration

specified by the optimisation algorithm, and one where some parameters were hand

coded. These were initial body phase (set to zero), body phase speed (set to one radian

per second), oscillator offset (set to 0.5) and oscillator amplitude (set to 0.5). The

justification for these manual adjustments was that initial body phase is somewhat

arbitrary, a phase speed dictates the walking pace and so can be chosen freely, and that

actuator movement would probably be best if full range and symmetrical.

The genetic algorithm (GA) and particle swarm optimiser (PSO) from chapter 5 were

used, with the addition of SRQEA from chapter 4. The GA and PSO had 50

chromosomes or individuals respectively, and the SRQEA had a population size of 5 but

performed 40 fitness evaluations per generation, as per the child spawning process

outlined in chapter 4. The fitness function was simply distance travelled along the z-

axis after 20 seconds of simulated time (1000 physical simulation iterations). Since the

optimisation algorithms were configured to minimise the fitness function, this favoured

movement in the negative direction. The body and hinges were aligned in the z-axis

and had reflection symmetry in the x-axis so requiring positive or negative movement

was arbitrary.

An additional termination condition was added that stopped simulation if the body tilted

too far. This was done to stop processing simulations where the body flips. Initial

experiments indicated this could save time, but it did not seem to be a necessary

Chapter 5 - Comparative experiments in evolution of

locomotion 82

condition for successful gait production. Nevertheless, it was included as a time saving

measure.

5.2.2 Quadruped walking results

All methods produced walking gaits that transported the quadruped negatively along

the z axis. However, some of these movement patterns relied upon friction to drag the

body along, with some other legs moving in an opposing fashion. A well-functioning

gait was one that moved diagonally opposite legs in unison and co-ordinated the two

pairs of opposite legs. Rotating backwards, a pair of legs propel the model forward,

while the other two legs retract and rotate forwards. This maintains dynamic stability

while creating forward movement.

Detecting this behaviour would allow a ‘success’ status to be applied to runs, and in

turn, would allow metrics based on success rates to be compared. Although an

algorithm was not implemented to detect this directly, it was visually determined that

distances of 2 metres in the negative z direction (a fitness score of -2.00) were generally

associated with a strongly recognisable gait, as described above. Therefore, a run was

regarded as successful if the fitness was less than or equal to -2.

The results of applying the GA, PSO and SRQEA optimisers to the expert adjusted CPG

(labelled simple CPG), fully specified CPG (labelled full CPG) and RNN are presented

in Table 22. Data presented are minimum, maximum, mean, median and standard

deviation values, as well as SP and SR metrics described in section 4.4.3. Simulations

were run for 200 iterations/generations and repeated for 100 runs, with no early

termination criteria.

Only the CPG was able to produce a walking gait that travelled at least 2 metres (screen

captures of a typical successful walk are shown in Figure 20) but managed this in both

the simple and full versions. The RNN struggled to establish cyclic behaviour. This

was achieved in [86] but only for a small percentage of runs. Additionally, the network

was tested for its ability to copy sinusoidal waveforms (unpresented), which confirms

the version coded in this work was capable of cyclic behaviour. It must therefore be

regarded as a failure of the optimisation process that a RNN controlled walk of more

than 2 metres was not obtained. As the failure occurred for all three optimisation

algorithms, it is more likely to be a problem of optimiser configuration, than choice of

Chapter 5 - Comparative experiments in evolution of

locomotion 83

algorithm. This is discussed further when looking at time evolutions of the optimisation

processes. When comparing the three control methods, it can clearly be seen that simple

CPG outperforms the other methods, achieving a best score of -2.60m, followed by full

CPG which achieved a best of -2.09m, with RNN having the worst performances with

a best fitness of -1.09m.

Figure 20: Typical evolved successful quadruped gait.

Overall the GA produced better results than SRQEA and PSO, achieving the best score

for simple Sin and full Sin, but PSO scored the best for RNN. In general, the

performance of the three optimisation algorithms was similar, with the exception of

PSO for full Sin where the best value (minimum) was substantially worse than for the

other two algorithms. However, looking at the average values for full Sin, good runs

may be regarded as rare events and, as discussed below when looking at the time

evolutions, may be an indication that more runs, over a longer period, may reduce the

differences between the optimisers. Furthermore, PSO achieved the best minimum on

the RNN, which probably presents the greatest optimisation challenge because of its

open architecture, and this suggests that PSO is perhaps not fundamentally bad with full

Sin but rather that the rare good results did not appear in the 100 runs performed for this

work. The GA always had the best, or equal best, average performance and, as it also

found the best values overall for two of the three controller configurations, should be

regarded as the best performer in these tests.

Chapter 5 - Comparative experiments in evolution of

locomotion 84

Table 22: Comparison of GA, SRQEA and PSO optimisation of a quadruped gait controlled by
a sinusoidal based CPG in an expert opinion assisted simple version (Simple Sin) and fully
specified version (Full Sin), and a fully connected recurrent neural network (RNN).

 Simple Sin Full Sin RNN

GA

Min -2.60 -2.09 -1.04

Max -1.50 -0.79 -0.60

Mean -2.39 -1.25 -0.84

Median -2.45 -1.18 -0.84

Std 0.22 0.32 0.08

SR 0.94 0.03 0.00

SP 1379.26 6350.00 -

SRQEA

Min -2.59 -1.98 -0.92

Max -1.16 -0.68 -0.40

Mean -2.29 -1.07 -0.67

Median -2.38 -1.05 -0.68

Std 0.26 0.23 0.12

SR 0.88 0.00 0.00

SP 3658.52 - -

PSO

Min -2.46 -1.48 -1.09

Max -1.91 -0.68 -0.66

Mean -2.23 -0.94 -0.84

Median -2.25 -0.93 -0.83

Std 0.10 0.15 0.07

SR 0.99 0.00 0.00

SP 1621.21 - -

Most of the differences between the configurations were found to be statistically

significant, with the test results shown in Table 23 using Kruskal-Wallis 1-way

ANOVA in SPSS 23. The non-parametric Kruskal-Wallis test was used as many of the

distributions were found to be non-normal. The data for Simple Sin were not found to

be significantly different across the optimisation algorithms, but PSO did underperform

GA for full Sin. SRQEA was statistically significantly worse for the RNN when

compared to both GA and PSO.

Chapter 5 - Comparative experiments in evolution of

locomotion 85

Table 23: Pairwise significance tests between each combination of controller and optimiser,
with another. Significant results are in bold, and numbers are adjusted p-value generated by
SPSS.

S
IM

P
L

E
 S

IN

G
A

S
IM

P
L

E
 S

IN

S
R

Q
E

A

S
IM

P
L

E
 S

IN

P
S

O

F
U

L
L

 S
IN

 G
A

F
U

L
L

 S
IN

S
R

Q
E

A

F
U

L
L

 S
IN

P
S

O

R
N

N
 G

A

R
N

N

S
R

Q
E

A

R
N

N
 P

S
O

SIMPLE SIN GA 1.000 0.091 0.000 0.000 0.000 0.000 0.000 0.000

SIMPLE SIN

SRQEA

1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

SIMPLE SIN PSO 0.091 1.000 0.000 0.000 0.000 0.000 0.000 0.000

FULL SIN GA 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000

FULL SIN SRQEA 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000

FULL SIN PSO 0.000 0.000 0.000 0.000 1.000 0.184 0.000 0.149

RNN GA 0.000 0.000 0.000 0.000 0.000 0.184 0.000 1.000

RNN SRQEA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

RNN PSO 0.000 0.000 0.000 0.000 0.000 0.149 1.000 0.000

Variants of SRQEA and PSO were also tested for full Sin and the results are presented

in Table 24. SRQEA10 had a population size of 10 but 4 offspring, compared to 5

individuals and 8 offspring for the default configuration. This maintained the number

of evaluations per iteration at 40. SRQEA10,20 performed 20 cross-overs per run

compared with 4 for the default version. Overall differences between the SRQEA

versions were small, although the mean performance was improved for both variants.

SPSO-2011 [123] is the same algorithm as contrasted in chapter 4, and produced sizable

improvements for minimum and mean performance, but increased variance between

runs.

Table 24: Alternative versions of SRQEA and PSO applied to the full Sin controller for a
quadruped walking gait.

 Full Sin

 Min Max Mean Median Std

SRQEA -1.98 -0.68 -1.07 -1.05 0.23

SRQEA10 -1.83 -0.72 -1.14 -1.11 0.21

SRQEA10,20 -1.89 -0.71 -1.13 -1.13 0.24

PSO -1.48 -0.68 -0.94 -0.93 0.15

SPSO2011 -1.84 -0.54 -1.22 -1.18 0.25

The time evolutions of each optimisation/control algorithm pair, are shown in Figure

21, where the horizontal time axis shows the generation/iteration, ranging from 1 – 200.

The vertical axis shows the fitness score which measures z-direction distance travelled,

Chapter 5 - Comparative experiments in evolution of

locomotion 86

with lower scores being better. Quite a few of the plots show that the minimum value

(green) is still decreasing close to the end of the evolution. This suggests that these

algorithms would benefit from being run for longer. The PSO may especially benefit

from a longer time as substantial improvements in minimum score were seen in the later

stages for full Sin (where it underperformed relative to GA and SRQEA) and RNN

(where it was the best performer). The evolution of SRQEA shows a continual, albeit

slow, improvement of minimum value throughout the evolution, with a higher SP value

suggesting modifications to speed convergence may be beneficial for this application

of the optimisation algorithm.

a)

b)

Chapter 5 - Comparative experiments in evolution of

locomotion 87

c)

d)

e)

f)

Chapter 5 - Comparative experiments in evolution of

locomotion 88

g)

h)

i)

Figure 21: Time evolutions of each optimisation algorithm for each controller. Results for GA,
SRQEA and PSO are shown, respectively, for Simple Sin (a – c), Full Sin (d – f) and RNN (g – i).

5.2.3 Evolving biped walking gaits

To make methods more applicable to human and many robot systems, biped models

need to have their movement controlled and optimised. At the beginning of this chapter

a vertical jump skill was successfully evolved, so in contrast, the continuous cyclical

skill of walking was examined here. The simple biped model from section 3.4.2 was

used as it was assumed the optimisation task would be more difficult than for a vertical

jump, so a model with less degrees of freedom was used.

Chapter 5 - Comparative experiments in evolution of

locomotion 89

5.2.4 Difficulties

For a long time the investigation was unsuccessful at producing a convincing walking

gait in a biped model. Optimisation would produce stumble and fall patterns, a series

of hops, or somersaulting in an attempt to improve distance travelled. This was finally

solved by altering characteristics of the physical model. The solution was to essentially

copy the joint actuator algorithm from [86], which converts desired joint angles to

torques based on the difference between the current angle, and the desired angle, with

a degree of smoothing. This replaced the original hinge code that came with the physics

simulation package (appendix C.1) and can be seen in appendix C.2. With this change,

successful walking gaits were produced, albeit in a small percentage of runs.

Frames from an animation of a successful walk sequence are shown in Figure 22.

Another problem was that foot contact with the ground formed point contacts which

could not prevent rotations around the normal to the floor plain. This allowed the feet

to twist in place and, strangely, the effective walking gaits started with a 90 degree spin

before walking away. A few different feet designs were tried, such as sphere feet, multi-

sphere and cuboid feet but all had the problem of producing a single point contact at

certain times. In the real-world, feet will deform when touching the floor and create an

area of contact, which in turn will provide friction against these rotations around the

normal. This problem was not solved in this experiment, but future work is suggested

in the conclusion section to address this. Towards the end of the simulation time for

the gait the model appeared to be becoming unbalanced. This was quite possibly due

to accumulated error and therefore a minor detail rather than a fundamental problem

with the solution. To improve upon this, a finer evolutionary strategy could be

employed to precisely specify the gait, or sensory feedback could be incorporated to

help maintain balance, but was left for future work.

5.2.5 Bipedal walking results

The fitness function was the negative square of distance travelled in the x-z plane when

termination occurred, favouring walking in any direction. A run was terminated if the

simulation time had elapsed, or if the body fell below a threshold height. It is difficult

to present a quantitative analysis here as fitness scores were often due to erroneous

Chapter 5 - Comparative experiments in evolution of

locomotion 90

behaviour. For example, although distance travelled could be substantial, the form used

was sometimes not a walking gait – hopping or spinning gaits were often observed.

However, once the new joint model was implemented, a set of reliable data could be

produced, and basic information presented that could be relied upon.

Figure 22: Successful bipedal walking gait.

Chapter 5 - Comparative experiments in evolution of

locomotion 91

In Table 25 data are shown for successful evolutions of a biped gait for a CPG

(configured the same as full Sin previously) and the fully connected RNN. A threshold

of -3.00m was taken as successful, as by inspection it appeared that this was associated

with a proper walking gait. The authors of [86] reported a success rate of approximately

0.10 so the results of 0.15 for the CPG, and 0.06 for the RNN demonstrate a similar

order of magnitude of success. Not surprisingly, the CPG achieved the correct, cyclic

behaviour more often than the RNN, and had a better minimum score.

Table 25: Walking evolution performance for biped model.

 CPG RNN

GA

Min -4.46 -3.41

Mean -2.36 -2.06

SR 0.15 0.06

5.3 A long jump skill

To conclude the investigation into biped control, a brief examination of a new skill –

long jumping was conducted. This gave an opportunity to demonstrate a wider range

of skill production, and also the results highlighted difficulties with correctly expressing

fitness functions and how optimisation may exploit characteristics in the physical model

to produce unrealistic movements.

The fitness function for the long jump was the furthest distance travelled in the negative

z direction by either foot at termination time. Termination time was either when a foot

hit the ground beyond a start line (0.1m in front of the system along the negative z

direction) or when the upper body hit the ground. The intention was to evolve a jump

and land phase, favouring distance travelled in the air before landing. This was partially

successful but the evolved movement technique had some undesirable features.

Shown in Figure 23 the long jump began with a counter-movement, bending and then

extending the knees. Although some propulsion will have come from this movement,

most came from a flinging action by one of the legs. It quickly swung forwards and up,

lifting and propelling the model forward. As well as being unrealistic compared to

expected movement from humans, this action created a spinning effect on the body.

Finally, the other leg pointed forwards to achieve a good fitness score. The odd form,

compared to human jumping technique, is probably due to two factors. Firstly, the

Chapter 5 - Comparative experiments in evolution of

locomotion 92

physical model is not very accurate, and probably favours ballistic single limb

movements, rather than co-ordinating body parts to propel the system. Secondly, the

fitness function may benefit from having certain form elements included, in order to

prevent spinning (although, if arms were present they may make contact with the

ground, so automatically would penalise these patterns).

Figure 23: Typical long jump evolution.

Chapter 5 - Comparative experiments in evolution of

locomotion 93

5.3.1 Conclusion

In this chapter research results have been presented applying three different

optimisation techniques to locomotion – GA, PSO and SRQEA. Results were mixed,

with GA achieving the best results in walking tasks and some of the vertical jump and

long jump tests, but PSO demonstrated superior results for the vertical jump in terms of

best height obtained and the number of successful evolutions when using a RNN control

method, and the best results for RNN controller quadrupedal walking. SRQEA did not

perform as well in general, never attaining the best results, although it did outperform

PSO and the SPSO-2011 algorithms for quadruped walking with a fully specified Sin

controller.

It should be noted that GA, PSO and SRQEA algorithms have several variables and

sub-functions that can be changed. This will all have an impact on exploitation versus

exploration. For example, some versions of PSO systematically vary their parameters

over the course of the run, so that they favour exploration in the beginning but

exploitation towards the end. Therefore, conclusions on the overall properties of the

optimisation algorithms tested here in comparison to each other cannot be made just on

the experiment presented in this thesis.

Evolving vertical jumping gaits was quite successful, in both Newton Dynamics and

OpenHRP3. Even in these discrete tasks, the CPG proved very successful. This can be

understood by interpreting the counter-movement jump as one cycle in a potentially

continuous process, with the coordination of various limbs acting out across that cycle.

When using the RNN controller for the vertical jump. Expert knowledge was required

to ensure the counter-movement property. The process of including expert knowledge

risks constraining the problem to sub-optimal solutions. Using a sinusoidal based

controller, evolving a walking gait was relatively easy for quadrupeds. The fitness

function only analysed distance travelled which is desirable, as it is an outcome measure

and assumes nothing about desired form. However, best performance came when

manually specifying some of the parameters of the sinusoidal CPG, which violates the

principal of making minimal assumptions. Performing 100 runs typically took more

than 10 hours to complete, but extending running time may be beneficial in finding

good solutions, as seen by the time evolution plots. A two phase or hybrid technique

Chapter 5 - Comparative experiments in evolution of

locomotion 94

may be employed to aggressively search early on, as the rare-event nature of full Sin

suggests adequate solutions occupy a small region of the search space when optimising

more open control architectures, and then refine the results with a search focussed on

exploitation.

The biped model is inherently less stable than the quadruped, and therefore movement

control should be expected to be more difficult. The success of the simulations was

also sensitive to the specification of the physical model and future work should include

more accurate modelling to overcome these issues. Success rates for bipedal walking

was low, but similar to other published research [86]. It was easier to evolve walking

gaits with the CPG, which is not surprising given the oscillatory nature of the gait. Long

jumping had some elements of success but was hampered by poor form – which would

lead to unachievable or destructive movement in real-world applications such as

robotics.

To expand upon the biped research presented here, firstly the foot contact problem

should be solved. This may be done by creating a temporary hinge joint while the foot

is in contact with the floor, but one that allows translation away from the floor plane so

that the foot can lift away. Following that, additional optimisation and control

techniques should be investigated to establish the more successful method

combinations.

Once a suitable solution has been found, it can be utilised by either copying the control

algorithm to the real-word robotic host, or taking information that may be

communicated in order to train a human. Video of the evolution is easy to generate

from the simulation software, and sample frames have been included in this chapter as

illustration. Alternatively, joint trajectories or body part trajectories can be plotted,

although for training purposes these will probably require significant transformation or

interpretation to be understood.

Chapter 6 - Conclusions and future directions 95

6 Conclusions and future directions

This chapter presents a conclusion based on how the work presented in this thesis meets

the objectives outlined in the introduction. It also presents recommendations for future

work to further these objectives, and concludes with a list of publications produced

during the development of this work.

6.1 Conclusions

The first objective of this thesis was to review published methods for locomotion

control, and this process identified several techniques (chapter 2). These were

traditional analytical methods, CPGs, neural networks, rule based systems, and HMMs.

As optimisation was the primary theme of the thesis objectives, analytical methods were

not used in subsequent research because of the constraints imposed on parameterisation.

Also, the simplification imposed by the modelling process would limit analytical

techniques in their application to detailed questions on optimisation of complex

systems. For similar reasons, rule based systems were also rejected. In principal they

could be detailed but their use in published literature demonstrated a sizeable degree of

simplification. HMMs were used solely for imitation tasks and so were also not

included in experimentation. This left CPGs and NNs as suitable candidates to test, as

they provided extensive parameter optimisation potential and had demonstrated

successful results in the literature.

To meet the thesis objective of comparing different control methods, which is generally

lacking in the literature, experiments were conducted using a range of techniques. A

fully connected RNN, Van der Pol CPG and sinusoidal CPG were compared. These

proved to be popular in the literature, and the sinusoidal CPG was easy to modify to

include expert knowledge regarding symmetry constraints.

Chapter 6 - Conclusions and future directions 96

Many optimisation techniques to accompany the use of the control methods in

locomotion had been identified in the literature (section 3.1) but these were either

simple optimisation algorithms, specialised learning algorithms to use in real-world

experiments, or GA. The optimisation objectives of this thesis were to review, compare

and add new methods. The review clearly identified a gap in application of different

optimisation algorithm types so it was decided to add different methods and compare

to GAs in experimentation. These were a standard PSO, and a type of EDA called

SRQEA.

SRQEA was developed for this thesis (chapter 4) to meet the objective of developing

new optimisation variants, from a multi-modal EDA called a quantum inspired

evolutionary algorithm. In developing this, a binary variant was also produced called

HSB, as QIEAs were originally presented as binary algorithms. Both of the new QIEAs

were tested on real-value problems as the objectives of this thesis required

parameterisation of real-valued control methods.

Binary QIEA were examined (chapter 4) because the inspiration behind this class of

algorithm is most coherently expressed when using a binary encoding. The problem

with applying bQIEA to real-value problems is that premature convergence of the least

significant bits tends to occur (due to reinforced random walk processes). A

modification was proposed and tested that restricted evolution of these bits until the

more significant bits had saturated their probabilities of producing ones or zeros. This

modification improved the performance of the algorithm and, although generally

outperformed by rQIEA, had some interesting successes that may be due to the way a

binary algorithm partitions and transverses the search space.

The real QIEA identified in the literature often suffered from poor specification in their

presentation, but a representative algorithm, RCQIEA, was examined. The formula for

its rotation gate (the method by which the underlying search probability function is

updated) produced wild, and effectively random updates. Replacing this with a simple

step function improved performance and the resulting SRQEA method performed well

against other published algorithms (including GA, PSO and DE methods), achieving

superior performance for the CEC-2013 benchmarks for the larger dimensions.

The process of optimisating locomotion is performed typically (although not

exclusively in the literature) in a virtual environment, as faster than real-time simulation

Chapter 6 - Conclusions and future directions 97

speeds up optimisation, and control failure does not cause real damage. An objective

of this thesis was to review physical simulation platforms and develop physical models

for experimentation. The literature search identified OpenHRP3 as a common platform,

but otherwise, platforms were not possible to determine, or were no longer available.

A small review (section 3.3) of software available online identified game orientated

packages Newton Dynamics and Unity (which also provided and application platform),

robotics platform OpenHRP3, and biomechanics software SIMM and LifeMod. The

biomechanics packages would be useful when techniques progress to being able to

handle the level of detail in their models (with associated high degrees of freedom), but

were not included for the research in this thesis. OpenHRP3 was selected in keeping

with its profile in the literature search, and Newton Dynamics was selected as a fast and

free alternative.

OpenHRP3 provided a robotic biped model which was used to evolve a vertical jump.

Additional models designed and presented in section 3.4 were a simple quadruped

model, a simple biped and a more detailed biped, all for use in the Newton Dynamics

platform. They were designed with specific goals in mind. The simple quadruped was

the most stable, being statically stable in most conditions, and was included for use

when researching difficult gaits before moving on to more complicated systems. It was

used to evolve a walking gait and enabled extensive quantitative comparison between

different control methods and optimisation techniques. The simple biped addressed a

similar need for bipedal investigation. Although not as stable as the quadruped, it had

a low number of degrees of freedom and was used for walking and long jump skills.

Finally, a more detailed biped model was used, with more degrees of freedom and

detailed upper as well as lower body modelling in comparison to the simple biped

model. It was used for the vertical jump skill.

A significant discovery was the sensitivity of the overall optimisation process to the

quality of the physical simulation. The approach used in this thesis combines physical

modelling through simulation, a control algorithm and an optimisation technique. In

principal, any of these could be a weak link and prevent successful evolutions, but the

experience of the bipedal model when used for walking and long jumping suggests that

the physical simulation can provide the biggest problems. As these techniques are

applied to real-world modelling, this should hopefully become less of a problem, as the

physical modelling will be more validated, rather than using the informal model design

Chapter 6 - Conclusions and future directions 98

approach employed here. Nevertheless, the importance of correct physical simulation

was highlighted across all tests on the Newton Dynamics platform. Problems

encountered included explosive movements due to joint activation speeds becoming too

high, and poor foot-floor interaction with point contacts not preventing rotations that

real-world area contacts would do.

In general, the literature review identified only transportation locomotion skills

(walking, running, swimming). To meet the thesis objective of developing fitness

functions for new skills, a vertical jump and a long jump skill were developed in chapter

5, these two skills having not been observed during the literature review. In general,

encoding the fitness functions was quite simple – an outcome of maximum height in a

set time, impact point of lead leg or maximum distance in a set time in vertical jumping,

long jumping and walking respectively. However, in some instances, expert knowledge

needed to be included, such a criterion to develop a counter-movement jump or

symmetry simplifications in walking, to enable successful evolution with some

skill/control method/optimisation technique combinations. As noted in chapter 5 the

inclusion of expert knowledge risks development of sub-optimal solutions as they

effectively impose constraints on the process. However, when applying the patterns,

constraints may be useful to reject certain patterns on aesthetic, practicality or safety

grounds.

For jumping and walking skills the CPGs were the most consistent performers. Their

structures are custom designed for oscillatory behaviour so should be expected to

perform well for continuous walking control, but they were also successful in producing

vertical jumps (and partially long jumps) which are discrete short action skills. Counter-

movements are often advantageous to skills, whether continuous or discrete and so

some form of oscillation is clearly beneficial. The RNN investigated had low success

rates, lower mean and fewer best performances in general, and the inclusion of expert

knowledge appeared necessary in some of the experiments. There may be skills that

are more suited to this type of structure, but alternative neural network designs may be

worth investigating in the future.

The model design decisions were suited to the type of evolution tasks performed. As

expected, the vertical jump has capable in being evolved in the more detailed biped

models both on Newton Dynamics and OpenHRP3. The walking tasks were more

Chapter 6 - Conclusions and future directions 99

difficult but the stable quadruped model allowed extensive testing and quantitative

comparison between methods. Experiments suffered from poor specification of

actuator behaviour, and friction models used for feet-floor interactions. It was not until

the actuator models were improved that evolution could be successful for vertical

jumping and walking. Long jumping had some elements of success but was hampered

by poor form – which would lead to unachievable or destructive movement in real-

world applications such as robotics. It is expected that improvements to the physical

modelling would correct these problems.

For optimisation, GA outperformed the other techniques in most of the experiments,

although there appeared to be an affinity between optimisation technique and control

method combinations, with PSO giving the best results for the RNN. SRQEA did not

dominate in any of the tests but it did outperform PSO and SPSO-2011 variants in some

of the quadruped walking experiments. The objective of expanding upon the number

of optimisation algorithms applied to locomotion has been met with this research, but

it is too early to tell if any algorithm should be preferred. All of them can be configured

or parameterised differently, presenting many configurations worth testing.

Although it has been demonstrated that a vertical jump skill can be evolved in a more

detailed model, more work needs to be done to successfully evolve a range of skills in

complex models. This may be a case of better physically modelling, but improved

control methods and optimisation techniques will probably be required as well.

6.2 Future directions

Substantial problems were encountered with the physical modelling during

experiments. Not until the joint actuators were altered, could results be produced for

jumping and walking that did not get stuck in evolving odd jumping or other ballistic

patterns. Furthermore, the rigid body simulations often produce point contacts for the

feet upon the floor. In normal usage, this will not prevent rotations. In the real world,

feet tend to form area contacts which will resist rotations relative to the floor. It is

therefore strongly recommend that better physical designs are established for

experimentation, focussing on joint and actuator modelling so systems have a range of

Chapter 6 - Conclusions and future directions 100

capabilities, but do not produce excessively ballistic movement, and improved feet

models so proper friction dynamics can be modelled.

The original inspiration for this thesis was the optimisation of sport skills in realistic

models of human movement. As the techniques are also applicable to robot models,

which in principal could feature more complicated designs in the future, a continued

drive for this work should be the evolution of gaits in increasingly complex models.

This can be done with the development of more complicated models, or by adopting

pre-existing complex models. Publically available biomechanical models, of varying

complexity, could be used to test methods and hopefully produce results relevant to

humans, and the resulting methods should be powerful enough to apply to non-human

or mechanical models.

The literature search highlighted a lack of comparative studies, and future work should

build upon this thesis by continuing comparison between optimisation techniques and

control methods. Only one neural network design was tested here and it had low success

rates. It would be useful to test others - for example, reservoir networks may be worth

study and comparison with other techniques, as they provide both a flexible structure

and should be easier to optimise as only the output weights are evolved.

Although comparison of different optimisation techniques was presented in this thesis,

optimisation algorithms used either traditional default parameter values, or values taken

for other publications. Although possibly requiring a great deal of simulation time, it

would be important to analyse the effect of varying parameters, introducing schemes to

control diversity, or combining techniques into hybrid methods.

Chapter 6 - Conclusions and future directions 101

6.3 List of publications

Journal

J. Wright and I. Jordanov, ‘Convergence Properties of Quantum Evolutionary

Algorithms on High Dimension Problems’, Neurocomputing, under submission.

J. Wright and I. Jordanov, ‘Quantum Inspired Evolutionary Algorithms’ Performance

on Challenging Global Optimization Problems’, ICAE, under submission.

J. Wright and I. Jordanov, ‘Intelligent Approaches in Locomotion - A Review’, J. Intell.

Robot. Syst., vol. 80, no. 2, pp. 255–277, Oct. 2014.

Conference

J. Wright and I. Jordanov, ‘Quantum Evolutionary Methods for Real Value Problems’,

in Hybrid Artificial Intelligent Systems, Springer, 2015, pp. 282–293.

J. Wright and I. Jordanov, ‘Intelligent computational optimisation of sport skills’, Math

Sport 2013, pp. 383-390

J. Wright and I. Jordanov, ‘Intelligent approaches in locomotion’, in Neural Networks

(IJCNN), The 2012 International Joint Conference on, 2012, pp. 1–8.

Chapter 7 - References 102

7 References

[1] M. Kociecki and H. Adeli, ‘Two-phase genetic algorithm for size optimization of free-form
steel space-frame roof structures’, J. Constr. Steel Res., vol. 90, pp. 283–296, Nov. 2013.

[2] M. Kociecki and H. Adeli, ‘Two-phase genetic algorithm for topology optimization of
free-form steel space-frame roof structures with complex curvatures’, Eng. Appl. Artif.
Intell., vol. 32, pp. 218–227, Jun. 2014.

[3] T. Chabuk, J. Reggia, J. Lohn, and D. Linden, ‘Causally-guided evolutionary optimization
and its application to antenna array design’, Integr. Comput.-Aided Eng., vol. 19, no. 2,
pp. 111–124, Jan. 2012.

[4] M. R. AlRashidi and M. E. El-Hawary, ‘A Survey of Particle Swarm Optimization
Applications in Electric Power Systems’, IEEE Trans. Evol. Comput., vol. 13, no. 4, pp.
913–918, Aug. 2009.

[5] H. Tao, J. M. Zain, M. M. Ahmed, A. N. Abdalla, and W. Jing, ‘A wavelet-based particle
swarm optimization algorithm for digital image watermarking’, Integr. Comput.-Aided
Eng., vol. 19, no. 1, pp. 81–91, Jan. 2012.

[6] W.-Y. Hsu, ‘Application of quantum-behaved particle swarm optimization to motor
imagery EEG classification’, Int. J. Neural Syst., vol. 23, no. 6, p. 1350026, Jul. 2013.

[7] S. Das and P. Suganthan, ‘Problem definitions and evaluation criteria for CEC 2011
competition on testing evolutionary algorithms on real world optimization problems’,
Jadavpur Univ. Nanyang Technol. Univ. Kolkata, 2010.

[8] X. Yao, Y. Liu, and G. Lin, ‘Evolutionary programming made faster’, IEEE Trans. Evol.
Comput., vol. 3, no. 2, pp. 82–102, Jul. 1999.

[9] B. Y. Q. J. J.Liang, ‘Problem Definitions and Evaluation Criteria for the CEC 2013 Special
Session on Real-Parameter Optimization’, Tech. Rep. 201212 Comput. Intell. Lab.
Zhengzhou Univ. Zhengzhou China, 2013.

[10] E. J. Sprigings and S. J. Mackenzie, ‘Examining the delayed release in the golf swing using
computer simulation’, Sports Eng., vol. 5, no. 1, pp. 23–32, 2002.

[11] P. S. Glazier and K. Davids, ‘Constraints on the Complete Optimization of Human
Motion’, Sports Med., vol. 39, pp. 15–28, 2009.

[12] J. Hore and S. Watts, ‘Timing Finger Opening in Overarm Throwing Based on a Spatial
Representation of Hand Path’, J. Neurophysiol., vol. 93, pp. 3189–3199, Jun. 2005.

[13] S. Leigh, H. Liu, M. Hubbard, and B. Yu, ‘Individualized optimal release angles in discus
throwing’, J. Biomech., vol. 43, no. 3, pp. 540–545, Feb. 2010.

[14] M. Damsgaard, J. Rasmussen, S. T. Christensen, E. Surma, and M. de Zee, ‘Analysis of
musculoskeletal systems in the AnyBody Modeling System’, Simul. Model. Pract. Theory,
vol. 14, pp. 1100–1111, 2006.

[15] E. Arnold, S. Ward, R. Lieber, and S. Delp, ‘A Model of the Lower Limb for Analysis of
Human Movement’, Ann. Biomed. Eng., vol. 38, pp. 269–279, Feb. 2010.

[16] F. Asano and Z.-W. Luo, ‘Energy-Efficient and High-Speed Dynamic Biped Locomotion
Based on Principle of Parametric Excitation’, Robot. IEEE Trans. On, vol. 24, pp. 1289–
1301, Dec. 2008.

[17] Y.-D. Kim, B.-J. Lee, J.-H. Ryu, and J.-H. Kim, ‘Landing Force Control for Humanoid Robot
by Time-Domain Passivity Approach’, Robot. IEEE Trans. On, vol. 23, pp. 1294–1301, Dec.
2007.

[18] B.-J. Lee, D. Stonier, Y.-D. Kim, J.-K. Yoo, and J.-H. Kim, ‘Modifiable Walking Pattern of a
Humanoid Robot by Using Allowable ZMP Variation’, Robot. IEEE Trans. On, vol. 24, pp.
917–925, Aug. 2008.

[19] S. Czarnetzki, S. Kerner, and O. Urbann, ‘Observer-based dynamic walking control for
biped robots’, Robot. Auton. Syst., vol. 57, pp. 839–845, 2009.

Chapter 7 - References 103

[20] J. Xiao, J. Su, Y. Cheng, F. Wang, and X. Xu, ‘Research on gait planning of artificial leg
based on central pattern generator’, presented at the Control and Decision Conference,
2008. CCDC 2008. Chinese, 2008, pp. 2147–2151.

[21] G. C. Nandi, A. J. Ijspeert, P. Chakraborty, and A. Nandi, ‘Development of Adaptive
Modular Active Leg (AMAL) using bipedal robotics technology’, Robot. Auton. Syst., vol.
57, pp. 603–616, 2009.

[22] V. B. Zordan, A. Majkowska, B. Chiu, and M. Fast, ‘Dynamic response for motion capture
animation’. Jul-2005.

[23] Y. Lee, K. Lee, S.-S. Kwon, J. Jeong, C. O’Sullivan, M. S. Park, and J. Lee, ‘Push-recovery
Stability of Biped Locomotion’, ACM Trans Graph, vol. 34, no. 6, p. 180:1–180:9, Oct.
2015.

[24] A. J. Ijspeert, J. Hallam, and D. Willshaw, ‘Evolving swimming controllers for a simulated
lamprey with inspiration from neurobiology’, Adapt. Behav., vol. 7, p. 151, 1999.

[25] T. Ha and C.-H. Choi, ‘An effective trajectory generation method for bipedal walking’,
Robot. Auton. Syst., vol. 55, pp. 795–810, 2007.

[26] H. Hirukawa, F. Kanehiro, K. Kaneko, S. Kajita, K. Fujiwara, Y. Kawai, F. Tomita, S. Hirai, K.
Tanie, T. Isozumi, K. Akachi, T. Kawasaki, S. Ota, K. Yokoyama, H. Handa, Y. Fukase, J.
ichiro Maeda, Y. Nakamura, S. Tachi, and H. Inoue, ‘Humanoid robotics platforms
developed in HRP’, Robot. Auton. Syst., vol. 48, pp. 165–175, 2004.

[27] J. Wright and I. Jordanov, ‘Intelligent Approaches in Locomotion - A Review’, J. Intell.
Robot. Syst., vol. 80, no. 2, pp. 255–277, Oct. 2014.

[28] M. Vukobratovic and B. Borovac, ‘Zero-moment point-thirty five years of its life’, Int. J.
Humanoid Robot., vol. 1, pp. 157--173, 2004.

[29] T. Sugihara, Y. Nakamura, and H. Inoue, ‘Real-time humanoid motion generation
through ZMP manipulation based on inverted pendulum control’, vol. 2, pp. 1404–1409
vol.2, 2002.

[30] Y. Choi, D. Kim, Y. Oh, and B.-J. You, ‘Posture/Walking Control for Humanoid Robot
Based on Kinematic Resolution of CoM Jacobian With Embedded Motion’, Robot. IEEE
Trans. On, vol. 23, pp. 1285–1293, Dec. 2007.

[31] F. Kanehiro, H. Hirukawa, and S. Kajita, ‘Openhrp: Open architecture humanoid robotics
platform’, Int. J. Robot. Res., vol. 23, p. 155, 2004.

[32] J.-K. Yoo, B.-J. Lee, and J.-H. Kim, ‘Recent progress and development of the humanoid
robot HanSaRam’, Robot. Auton. Syst., vol. 57, pp. 973–981, 2009.

[33] J. H. Park, ‘Fuzzy-logic zero-moment-point trajectory generation for reduced trunk
motions of biped robots’, Fuzzy Sets Syst., vol. 134, pp. 189–203, 2003.

[34] T. Furuta, T. Tawara, Y. Okumura, M. Shimizu, and K. Tomiyama, ‘Design and
construction of a series of compact humanoid robots and development of biped walk
control strategies’, Robot. Auton. Syst., vol. 37, pp. 81–100, 2001.

[35] A. Goswami, ‘Postural stability of biped robots and the foot-rotation indicator (FRI)
point’, Int. J. Robot. Res., vol. 18, p. 523, 1999.

[36] M. B. Popovic, A. Goswami, and H. Herr, ‘Ground reference points in legged locomotion:
Definitions, biological trajectories and control implications’, Int. J. Robot. Res., vol. 24, p.
1013, 2005.

[37] S. Kagami, M. Mochimaru, Y. Ehara, N. Miyata, K. Nishiwaki, T. Kanade, and H. Inoue,
‘Measurement and comparison of humanoid H7 walking with human being’, Robot.
Auton. Syst., vol. 48, pp. 177–187, 2004.

[38] H. M. Herr and T. A. McMahon, ‘A trotting horse model’, Int. J. Robot. Res., vol. 19, p.
566, 2000.

[39] H. M. Herr and T. A. McMahon, ‘A galloping horse model’, Int. J. Robot. Res., vol. 20, p.
26, 2001.

Chapter 7 - References 104

[40] A. Formal’sky, C. Chevellereau, and B. Perrin, ‘On ballistic walking locomotion of a
quadruped’, Int. J. Robot. Res., vol. 19, pp. 743--61, 2000.

[41] I. Poulakakis, J. A. Smith, and M. Buehler, ‘Modeling and Experiments of Untethered
Quadrupedal Running with a Bounding Gait: The Scout II Robot’, Int. J. Robot. Res., vol.
24, p. 256, 2005.

[42] T.-T. Lee, C.-M. Liao, and T. K. Chen, ‘On the stability properties of hexapod tripod gait’,
Robot. Autom. IEEE J. Of, vol. 4, pp. 427–434, Aug. 1988.

[43] D. J. Braun and M. Goldfarb, ‘A Control Approach for Actuated Dynamic Walking in Biped
Robots’, Robot. IEEE Trans. On, vol. 25, pp. 1292–1303, Dec. 2009.

[44] S. Grillner, ‘Locomotion in vertebrates: central mechanisms and reflex interaction’,
Physiol. Rev., vol. 55, p. 247, 1975.

[45] E. Marder and D. Bucher, ‘Central pattern generators and the control of rhythmic
movements’, Curr. Biol., vol. 11, pp. R986–R996, 2001.

[46] J. Duysens and H. W. A. A. Van de Crommert, ‘Neural control of locomotion; Part 1: The
central pattern generator from cats to humans’, Gait Posture, vol. 7, pp. 131--141, 1998.

[47] M. MacKay-Lyons, ‘Central pattern generation of locomotion: a review of the evidence’,
Phys. Ther., vol. 82, p. 69, 2002.

[48] N. I. Syed, A. G. Bulloch, and K. Lukowiak, ‘In vitro reconstruction of the respiratory
central pattern generator of the mollusk Lymnaea’, Science, vol. 250, p. 282, 1990.

[49] K. Zhu, D. Zhang, and L. Lan, ‘On Central Pattern Generator of Biological Motor System’,
presented at the Control, Automation, Robotics and Vision, 2006. ICARCV ’06. 9th
International Conference on, 2006, pp. 1–5.

[50] Q. Wu, C. Liu, J. Zhang, and Q. Chen, ‘Survey of locomotion control of legged robots
inspired by biological concept’, Sci. China Ser. F Inf. Sci., vol. 52, pp. 1715–1729, 2009.

[51] A. J. Ijspeert, ‘Central pattern generators for locomotion control in animals and robots: a
review’, Neural Netw., vol. 21, pp. 642–653, 2008.

[52] K. Matsuoka, ‘Sustained oscillations generated by mutually inhibiting neurons with
adaptation’, Biol. Cybern., vol. 52, pp. 367--376, 1985.

[53] Y. Fukuoka, H. Kimura, and A. H. Cohen, ‘Adaptive dynamic walking of a quadruped
robot on irregular terrain based on biological concepts’, Int. J. Robot. Res., vol. 22, p.
187, 2003.

[54] K. Feng, C.-M. Chew, G.-S. Hong, and T. Zielinska, ‘Bipedal locomotion control using a
four-compartmental central pattern generator’, presented at the Mechatronics and
Automation, 2005 IEEE International Conference, 2005, vol. 3, p. 1515–1520 Vol. 3.

[55] T. Komatsu and M. Usui, ‘Dynamic walking and running of a bipedal robot using hybrid
central pattern generator method’, presented at the Mechatronics and Automation,
2005 IEEE International Conference, 2005, vol. 2, p. 987–992 Vol. 2.

[56] G. Endo, J. Morimoto, T. Matsubara, J. Nakanishi, and G. Cheng, ‘Learning CPG-based
Biped Locomotion with a Policy Gradient Method: Application to a Humanoid Robot’,
Int. J. Robot. Res., vol. 27, pp. 213--228, 2008.

[57] K. Asa, K. Ishimura, and M. Wada, ‘Behavior transition between biped and quadruped
walking by using bifurcation’, Robot. Auton. Syst., vol. 57, pp. 155–160, 2009.

[58] H. Takemura, M. Deguchi, J. Ueda, Y. Matsumoto, and T. Ogasawara, ‘Slip-adaptive walk
of quadruped robot’, Robot. Auton. Syst., vol. 53, pp. 124–141, 2005.

[59] J. Shan, C. Junshi, and C. Jiapin, ‘Design of central pattern generator for humanoid robot
walking based on multi-objective GA’, presented at the Intelligent Robots and Systems,
2000. (IROS 2000). Proceedings. 2000 IEEE/RSJ International Conference on, 2000, vol. 3,
pp. 1930–1935 vol.3.

[60] J.-J. Kim and J.-J. Lee, ‘Gait adaptation method of biped robot for various terrains using
central pattern generator (CPG) and learning mechanism’, presented at the Control,

Chapter 7 - References 105

Automation and Systems, 2007. ICCAS ’07. International Conference on, 2007, pp. 10–
14.

[61] K. Wolff, J. Pettersson, A. Heralic, and M. Wahde, ‘Structural Evolution of Central Pattern
Generators for Bipedal Walking in 3D Simulation’, presented at the Systems, Man and
Cybernetics, 2006. SMC ’06. IEEE International Conference on, 2006, vol. 1, pp. 227–234.

[62] H. Inada and K. Ishii, ‘Behavior generation of bipedal robot using central pattern
generator(CPG) (1st report: CPG parameters searching method by genetic algorithm)’,
presented at the Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings. 2003
IEEE/RSJ International Conference on, 2003, vol. 3, pp. 2179–2184 vol.3.

[63] Q. Lu, J. Tian, Q. Lu, and J. Tian, ‘Research on Walking Gait of Biped Robot Based on a
Modified CPG Model, Research on Walking Gait of Biped Robot Based on a Modified CPG
Model’, Math. Probl. Eng. Math. Probl. Eng., vol. 2015, 2015, p. e793208, May 2015.

[64] C. Pribe, S. Grossberg, and M. A. Cohen, ‘Neural control of interlimb oscillations’, Biol.
Cybern., vol. 77, pp. 141–152, 1997.

[65] D. Micci-Barreca and H. Ogmen, ‘A central pattern generator for insect gait production’,
presented at the From Perception to Action Conference, 1994., Proceedings, 1994, pp.
348–351.

[66] D. Lachat, A. Crespi, and A. J. Ijspeert, ‘BoxyBot: a swimming and crawling fish robot
controlled by a central pattern generator’, presented at the Biomedical Robotics and
Biomechatronics, 2006. BioRob 2006. The First IEEE/RAS-EMBS International Conference
on, 2006, pp. 643–648.

[67] K. A. McIsaac and J. P. Ostrowski, ‘Experimental verification of open-loop control for an
underwater eel-like robot’, Int. J. Robot. Res., vol. 21, p. 849, 2002.

[68] V. Mehta, S. Brennan, and F. Gandhi, ‘Experimentally Verified Optimal Serpentine Gait
and Hyperredundancy of a Rigid-Link Snake Robot’, Robot. IEEE Trans. On, vol. 24, pp.
348–360, Apr. 2008.

[69] K. A. McIsaac and J. P. Ostrowski, ‘Motion planning for anguilliform locomotion’, Robot.
Autom. IEEE Trans. On, vol. 19, pp. 637–652, Aug. 2003.

[70] J. Morimoto, G. Endo, J. Nakanishi, and G. Cheng, ‘A Biologically Inspired Biped
Locomotion Strategy for Humanoid Robots: Modulation of Sinusoidal Patterns by a
Coupled Oscillator Model’, Robot. IEEE Trans. On, vol. 24, pp. 185–191, Feb. 2008.

[71] K. Watanabe, A. Tajima, and K. Izumi, ‘Locomotion pattern generation of semi-looper
type robots using central pattern generators based on van der Pol oscillators’, presented
at the Industrial Informatics, 2008. INDIN 2008. 6th IEEE International Conference on,
2008, pp. 377–382.

[72] J. S. Bay and H. Hemami, ‘Modeling of a Neural Pattern Generator with Coupled
nonlinear Oscillators’, Biomed. Eng. IEEE Trans. On, vol. BME-34, pp. 297–306, Apr. 1987.

[73] C. Liu, Q. Chen, and J. Zhang, ‘Coupled Van Der Pol oscillators utilised as Central pattern
generators for quadruped locomotion’, presented at the Control and Decision
Conference, 2009. CCDC ’09. Chinese, 2009, pp. 3677–3682.

[74] R. Hliot and B. Espiau, ‘Online generation of cyclic leg trajectories synchronized with
sensor measurement’, Robot. Auton. Syst., vol. 56, pp. 410–421, 2008.

[75] S. Akio and Y. Masaki, ‘Design of a novel central pattern generator and the hebbian
motion learning’, presented at the Control Applications, (CCA) \& Intelligent Control,
(ISIC), 2009 IEEE, 2009, pp. 1655–1660.

[76] W. Xiao and W. Wang, ‘Hopf oscillator-based gait transition for a quadruped robot’, in
2014 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2014, pp.
2074–2079.

[77] L. Righetti and A. J. Ijspeert, ‘Programmable central pattern generators: an application to
biped locomotion control’, presented at the Robotics and Automation, 2006. ICRA 2006.
Proceedings 2006 IEEE International Conference on, 2006, pp. 1585–1590.

Chapter 7 - References 106

[78] S. Rutishauser, A. Sprowitz, L. Righetti, and A. J. Ijspeert, ‘Passive compliant quadruped
robot using Central Pattern Generators for locomotion control’, presented at the
Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS \& EMBS
International Conference on, 2008, pp. 710–715.

[79] G. CAPI, Y. NASU, and L. BAROLLI, ‘Application of Genetic Algorithms for biped robot gait
synthesis optimization during walking and going up-stairs’, Adv. Robot., vol. 15, pp. 675--
694, 2001.

[80] G. Capi, Y. Nasu, L. Barolli, and K. Mitobe, ‘Real time gait generation for autonomous
humanoid robots: A case study for walking’, Robot. Auton. Syst., vol. 42, pp. 107–116,
2003.

[81] W. Ilg and K. Berns, ‘A learning architecture based on reinforcement learning for
adaptive control of the walking machine LAURON’, Robot. Auton. Syst., vol. 15, pp. 321–
334, 1995.

[82] H. Benbrahim and J. A. Franklin, ‘Biped dynamic walking using reinforcement learning’,
Robot. Auton. Syst., vol. 22, pp. 283–302, 1997.

[83] J. S. Albus, ‘A New Approach to Manipulator Control: The Cerebellar Model Articulation
Controller (CMAC)’, J. Dyn. Syst. Meas. Control, vol. 97, pp. 220–227, 1975.

[84] S. Srinivasan, R. E. Gander, and H. C. Wood, ‘A movement pattern generator model using
artificial neural networks’, Biomed. Eng. IEEE Trans. On, vol. 39, pp. 716–722, Jul. 1992.

[85] K. Berns, R. Dillmann, and S. Piekenbrock, ‘Neural networks for the control of a six-
legged walking machine’, Robot. Auton. Syst., vol. 14, pp. 233–244, 1995.

[86] T. Reil and P. Husbands, ‘Evolution of central pattern generators for bipedal walking in a
real-time physics environment’, Evol. Comput. IEEE Trans. On, vol. 6, pp. 159–168, Apr.
2002.

[87] J. C. Gallagher, R. D. Beer, K. S. Espenschied, and R. D. Quinn, ‘Application of evolved
locomotion controllers to a hexapod robot’, Robot. Auton. Syst., vol. 19, pp. 95–103,
1996.

[88] R. D. Beer and J. C. Gallagher, ‘Evolving dynamical neural networks for adaptive
behavior’, Adapt. Behav., vol. 1, pp. 91--122, 1992.

[89] F. Wyffels and B. Schrauwen, ‘Design of a Central Pattern Generator Using Reservoir
Computing for Learning Human Motion’, presented at the Advanced Technologies for
Enhanced Quality of Life, 2009. AT-EQUAL ’09., 2009, pp. 118–122.

[90] T. D. Barfoot, E. J. P. Earon, and G. M. T. D’Eleuterio, ‘Experiments in learning distributed
control for a hexapod robot’, Robot. Auton. Syst., vol. 54, pp. 864–872, 2006.

[91] P. K. Pal and D. C. Kar, ‘Gait optimization through search’, Int. J. Robot. Res., vol. 19, p.
394, 2000.

[92] P. R. Vundavilli and D. K. Pratihar, ‘Dynamically balanced optimal gaits of a ditch-crossing
biped robot’, Robot. Auton. Syst., vol. 58, pp. 349–361, 2010.

[93] D. K. Pratihar, K. Deb, and A. Ghosh, ‘Optimal path and gait generations simultaneously
of a six-legged robot using a GA-fuzzy approach’, Robot. Auton. Syst., vol. 41, pp. 1–20,
2002.

[94] R. K. Jha, B. Singh, and D. K. Pratihar, ‘On-line stable gait generation of a two-legged
robot using a genetic-fuzzy system’, Robot. Auton. Syst., vol. 53, pp. 15–35, 2005.

[95] C. Zhou and D. Ruan, ‘Integration of linguistic and numerical information for biped
control’, Robot. Auton. Syst., vol. 28, pp. 53–70, 1999.

[96] C. Zhou and Q. Meng, ‘Dynamic balance of a biped robot using fuzzy reinforcement
learning agents’, Fuzzy Sets Syst., vol. 134, pp. 169–187, 2003.

[97] C. Zhou, ‘Robot learning with GA-based fuzzy reinforcement learning agents’, Inf. Sci.,
vol. 145, pp. 45–68, 2002.

[98] T. Inamura, I. Toshima, H. Tanie, and Y. Nakamura, ‘Embodied symbol emergence based
on mimesis theory’, Int. J. Robot. Res., vol. 23, p. 363, 2004.

Chapter 7 - References 107

[99] D. Lee and Y. Nakamura, ‘Mimesis Model from Partial Observations for a Humanoid
Robot’, Int. J. Robot. Res., vol. 29, p. 60, 2010.

[100] D. Kulic and Y. Nakamura, ‘Incremental Learning and Memory Consolidation of
Whole Body Human Motion Primitives’, Adapt. Behav., vol. 17, p. 484, 2009.

[101] D. Kulic, W. Takano, and Y. Nakamura, ‘Incremental Learning, Clustering and
Hierarchy Formation of Whole Body Motion Patterns using Adaptive Hidden Markov
Chains’, Int. J. Robot. Res., vol. 27, pp. 761--784, 2008.

[102] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, ‘A Maximization Technique Occurring
in the Statistical Analysis of Probabilistic Functions of Markov Chains’, Ann. Math. Stat.,
vol. 41, pp. 164–171, Feb. 1970.

[103] A. Viterbi, ‘Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm’, Inf. Theory IEEE Trans. On, vol. 13, pp. 260–269, Apr. 1967.

[104] A. Russell, G. Orchard, and R. Etienne-Cummings, ‘Configuring of Spiking Central
Pattern Generator Networks for Bipedal Walking Using Genetic Algorthms’, presented at
the Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium on, 2007, pp.
1525–1528.

[105] E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek, ‘Hybrid zero dynamics of planar
biped walkers’, Autom. Control IEEE Trans. On, vol. 48, pp. 42–56, Jan. 2003.

[106] E. R. Westervelt, G. Buche, and J. W. Grizzle, ‘Experimental validation of a framework
for the design of controllers that induce stable walking in planar bipeds’, Int. J. Robot.
Res., vol. 23, p. 559, 2004.

[107] S. Miossec and Y. Aoustin, ‘A Simplified Stability Study for a Biped Walk with
Underactuated and Overactuated Phases’, Int. J. Robot. Res., vol. 24, p. 551, 2005.

[108] G. Capi, S. Kaneko, K. Mitobe, L. Barolli, and Y. Nasu, ‘Optimal trajectory generation
for a prismatic joint biped robot using genetic algorithms’, Robot. Auton. Syst., vol. 38,
pp. 119–128, 2002.

[109] G. Bessonnet, P. Seguin, and P. Sardain, ‘A Parametric Optimization Approach to
Walking Pattern Synthesis’, Int. J. Robot. Res., vol. 24, p. 536, 2005.

[110] C. Chevallereau, J. W. Grizzle, and C.-L. Shih, ‘Asymptotically Stable Walking of a Five-
Link Underactuated 3-D Bipedal Robot’, Robot. IEEE Trans. On, vol. 25, pp. 37–50, Feb.
2009.

[111] T. Hemker, M. Stelzer, O. von Stryk, and H. Sakamoto, ‘Efficient Walking Speed
Optimization of a Humanoid Robot’, Int. J. Robot. Res., vol. 28, pp. 303–314, 2009.

[112] T. Geng, B. Porr, and rg\"o W\"o, ‘Fast Biped Walking with a Sensor-driven Neuronal
Controller and Real-time Online Learning’, Int. J. Robot. Res., vol. 25, p. 259, 2006.

[113] G. S. Hornby, S. Takamura, T. Yamamoto, and M. Fujita, ‘Autonomous evolution of
dynamic gaits with two quadruped robots’, Robot. IEEE Trans. On, vol. 21, pp. 402–410,
Jun. 2005.

[114] M. Sznaier and M. J. Damborg, ‘An adaptive controller for a one-legged mobile
robot’, Robot. Autom. IEEE Trans. On, vol. 5, pp. 253–259, Apr. 1989.

[115] H. Yuasa and M. Ito, ‘A Theory on Autonomous Distributed Systems with Application
to a Gait Pattern Generator of Quadruped’, presented at the American Control
Conference, 1991, 1991, pp. 2268–2273.

[116] L. Righetti and A. J. Ijspeert, ‘Pattern generators with sensory feedback for the
control of quadruped locomotion’, presented at the Robotics and Automation, 2008.
ICRA 2008. IEEE International Conference on, 2008, pp. 819–824.

[117] P. Arena, L. Fortuna, M. Frasca, and L. Patane, ‘CNN based central pattern generators
with sensory feedback’, presented at the Cellular Neural Networks and Their
Applications, 2002. (CNNA 2002). Proceedings of the 2002 7th IEEE International
Workshop on, 2002, pp. 275–282.

Chapter 7 - References 108

[118] W. Zhao, J. Yu, Y. Fang, and L. Wang, ‘Development of Multi-mode Biomimetic
Robotic Fish Based on Central Pattern Generator’, presented at the Intelligent Robots
and Systems, 2006 IEEE/RSJ International Conference on, 2006, pp. 3891–3896.

[119] D. Zhang, D. Hu, L. Shen, and H. Xie, ‘Design of a Central Pattern Generator for
Bionic-robot Joint with Angular Frequency Modulation’, presented at the Robotics and
Biomimetics, 2006. ROBIO ’06. IEEE International Conference on, 2006, pp. 1664–1669.

[120] I. Tanev, T. Ray, and A. Buller, ‘Automated Evolutionary Design, Robustness, and
Adaptation of Sidewinding Locomotion of a Simulated Snake-Like Robot’, Robot. IEEE
Trans. On, vol. 21, pp. 632–645, Aug. 2005.

[121] Y. Geva and A. Shapiro, ‘A combined potential function and graph search approach
for free gait generation of quadruped robots’, presented at the Robotics and
Automation (ICRA), 2012 IEEE International Conference on, 2012, pp. 5371–5376.

[122] M. Reyes-Sierra and C. C. Coello, ‘Multi-objective particle swarm optimizers: A
survey of the state-of-the-art’, Int. J. Comput. Intell. Res., vol. 2, no. 3, pp. 287–308,
2006.

[123] M. Zambrano-Bigiarini, M. Clerc, and R. Rojas, ‘Standard Particle Swarm Optimisation
2011 at CEC-2013: A baseline for future PSO improvements’, in 2013 IEEE Congress on
Evolutionary Computation (CEC), 2013, pp. 2337–2344.

[124] M. Srinivas and L. M. Patnaik, ‘Genetic algorithms: a survey’, Computer, vol. 27, no.
6, pp. 17–26, Jun. 1994.

[125] S. M. Elsayed, R. A. Sarker, and D. L. Essam, ‘A genetic algorithm for solving the
CEC’2013 competition problems on real-parameter optimization’, in 2013 IEEE Congress
on Evolutionary Computation (CEC), 2013, pp. 356–360.

[126] S. Das and P. N. Suganthan, ‘Differential Evolution: A Survey of the State-of-the-Art’,
IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 4–31, Feb. 2011.

[127] J. Tvrdik and R. Polakova, ‘Competitive differential evolution applied to CEC 2013
problems’, in 2013 IEEE Congress on Evolutionary Computation (CEC), 2013, pp. 1651–
1657.

[128] D. Goldberg and J. Holland, ‘Genetic Algorithms and Machine Learning’, Mach.
Learn., vol. 3, pp. 95–99, Oct. 1988.

[129] R. Eberhart and J. Kennedy, ‘A new optimizer using particle swarm theory’,
presented at the Micro Machine and Human Science, 1995. MHS ’95., Proceedings of the
Sixth International Symposium on, 1995, pp. 39–43.

[130] R. C. Eberhart and Y. Shi, ‘Comparing inertia weights and constriction factors in
particle swarm optimization’, in Proceedings of the 2000 Congress on Evolutionary
Computation, 2000, 2000, vol. 1, pp. 84–88 vol.1.

[131] S. Baluja, ‘Population-based incremental learning. a method for integrating genetic
search based function optimization and competitive learning’, DTIC Document, 1994.

[132] M. D. Platel, S. Schliebs, and N. Kasabov, ‘Quantum-inspired evolutionary algorithm:
a multimodel EDA’, Evol. Comput. IEEE Trans. On, vol. 13, pp. 1218–1232, 2009.

[133] Y. Guan, E. S. Neo, K. Yokoi, and K. Tanie, ‘Stepping over obstacles with humanoid
robots’, Robot. IEEE Trans. On, vol. 22, pp. 958–973, Oct. 2006.

[134] M. K. Chakouch, P. Pouletaut, F. Charleux, and S. F. Bensamoun, ‘Viscoelastic shear
properties of in vivo thigh muscles measured by MR elastography’, J. Magn. Reson.
Imaging, vol. 43, no. 6, pp. 1423–1433, Jun. 2016.

[135] K.-H. Han and J.-H. Kim, ‘Quantum-inspired evolutionary algorithm for a class of
combinatorial optimization’, Evol. Comput. IEEE Trans. On, vol. 6, pp. 580–593, 2002.

[136] G. K. Venayagamoorthy and G. Singhal, ‘Quantum-Inspired Evolutionary Algorithms
and Binary Particle Swarm Optimization for Training MLP and SRN Neural Networks’, J.
Comput. Theor. Nanosci., vol. 2, no. 4, pp. 561–568, Dec. 2005.

Chapter 7 - References 109

[137] J. Liu, H. Wang, Y. Sun, C. Fu, and J. Guo, ‘Real-Coded Quantum-Inspired Genetic
Algorithm-Based BP Neural Network Algorithm’, Math. Probl. Eng., vol. 2015, p.
e571295, Jan. 2015.

[138] H. Xing, Y. Ji, L. Bai, X. Liu, Z. Qu, and X. Wang, ‘An adaptive-evolution-based
quantum-inspired evolutionary algorithm for QoS multicasting in IP/DWDM networks’,
Comput. Commun., vol. 32, no. 6, pp. 1086–1094, Apr. 2009.

[139] G. R. Harik, F. G. Lobo, and D. E. Goldberg, ‘The compact genetic algorithm’, IEEE
Trans. Evol. Comput., vol. 3, no. 4, pp. 287–297, Nov. 1999.

[140] Q. Zhang, ‘On stability of fixed points of limit models of univariate marginal
distribution algorithm and factorized distribution algorithm’, IEEE Trans. Evol. Comput.,
vol. 8, no. 1, pp. 80–93, Feb. 2004.

[141] K.-H. Han and J.-H. Kim, ‘Quantum-inspired evolutionary algorithms with a new
termination criterion, Hε gate, and two-phase scheme’, IEEE Trans. Evol. Comput., vol. 8,
no. 2, pp. 156–169, Apr. 2004.

[142] G. Zhang and H. Rong, ‘Real-Observation Quantum-Inspired Evolutionary Algorithm
for a Class of Numerical Optimization Problems’, in Computational Science – ICCS 2007,
Y. Shi, G. D. van Albada, J. Dongarra, and P. M. A. Sloot, Eds. Springer Berlin Heidelberg,
2007, pp. 989–996.

[143] Q. Chaoyong, L. Yongjuan, and Z. Jianguo, ‘A real-coded quantum-inspired
evolutionary algorithm for global numerical optimization’, presented at the Cybernetics
and Intelligent Systems, 2008 IEEE Conference on, 2008, pp. 1160–1164.

[144] Z. Tu and Y. Lu, ‘Corrections to “A Robust Stochastic Genetic Algorithm (StGA) for
Global Numerical Optimization”’, Evol. Comput. IEEE Trans. On, vol. 12, pp. 781–781,
2008.

[145] G. S. Babu, D. B. Das, and C. Patvardhan, ‘Real-parameter quantum evolutionary
algorithm for economic load dispatch’, Gener. Transm. Distrib. IET, vol. 2, pp. 22–31,
2008.

[146] M. A. Hossain, M. K. Hossain, and M. M. A. Hashem, ‘A Generalized Hybrid Real-
Coded Quantum Evolutionary Algorithm Based on Particle Swarm Theory with
Arithmetic Crossover’, Int. J. Comput. Sci. Inf. Technol., vol. 2, no. 4, pp. 172–187, Aug.
2010.

[147] J. Xiao, J. Xu, Z. Chen, K. Zhang, and L. Pan, ‘A hybrid quantum chaotic swarm
evolutionary algorithm for DNA encoding’, Comput. Math. Appl., vol. 57, no. 11–12, pp.
1949–1958, Jun. 2009.

[148] Z. Tu and Y. Lu, ‘Corrections to “A Robust Stochastic Genetic Algorithm (StGA) for
Global Numerical Optimization”’, Evol. Comput. IEEE Trans. On, vol. 12, pp. 781–781,
2008.

[149] G. Zhang, ‘Quantum-inspired evolutionary algorithms: a survey and empirical study’,
J. Heuristics, vol. 17, pp. 303–351, 2011.

[150] R. Zhang and H. Gao, ‘Real-coded Quantum Evolutionary Algorithm for Complex
Functions with High-dimension’, in International Conference on Mechatronics and
Automation, 2007. ICMA 2007, 2007, pp. 2974–2979.

[151] J. Cheng, G. Zhang, F. Caraffini, and F. Neri, ‘Multicriteria adaptive differential
evolution for global numerical optimization’, Integr. Comput.-Aided Eng., vol. 22, no. 2,
pp. 103–107, Apr. 2015.

[152] M. G. Epitropakis, D. K. Tasoulis, N. G. Pavlidis, V. P. Plagianakos, and M. N. Vrahatis,
‘Enhancing Differential Evolution Utilizing Proximity-Based Mutation Operators’, IEEE
Trans. Evol. Comput., vol. 15, no. 1, pp. 99–119, Feb. 2011.

[153] R. Tanabe and A. Fukunaga, ‘Evaluating the performance of SHADE on CEC 2013
benchmark problems’, in 2013 IEEE Congress on Evolutionary Computation (CEC), 2013,
pp. 1952–1959.

Chapter 7 - References 110

[154] A. Zamuda, J. Brest, and E. Mezura-Montes, ‘Structured Population Size Reduction
Differential Evolution with Multiple Mutation Strategies on CEC 2013 real parameter
optimization’, in 2013 IEEE Congress on Evolutionary Computation (CEC), 2013, pp.
1925–1931.

[155] J. L. Rueda and I. Erlich, ‘Hybrid Mean-Variance Mapping Optimization for solving the
IEEE-CEC 2013 competition problems’, in 2013 IEEE Congress on Evolutionary
Computation (CEC), 2013, pp. 1664–1671.

[156] J. L. F. Martínez and E. G. Gonzalo, ‘The Generalized PSO: A New Door to PSO
Evolution’, J Artif Evol App, vol. 2008, p. 5:1–5:15, Jan. 2008.

[157] V. K. Koumousis and C. P. Katsaras, ‘A saw-tooth genetic algorithm combining the
effects of variable population size and reinitialization to enhance performance’, IEEE
Trans. Evol. Comput., vol. 10, no. 1, pp. 19–28, Feb. 2006.

[158] H.-B. Duan, C.-F. Xu, and Z.-H. Xing, ‘A hybrid artificial bee colony optimization and
quantum evolutionary algorithm for continuous optimization problems’, Int. J. Neural
Syst., vol. 20, no. 1, pp. 39–50, Feb. 2010.

[159] H. K. Singh and T. Ray, ‘Performance of a hybrid EA-DE-memetic algorithm on CEC
2011 real world optimization problems’, in 2011 IEEE Congress on Evolutionary
Computation (CEC), 2011, pp. 1322–1326.

[160] M. Asafuddoula, T. Ray, and R. Sarker, ‘An adaptive differential evolution algorithm
and its performance on real world optimization problems’, in 2011 IEEE Congress on
Evolutionary Computation (CEC), 2011, pp. 1057–1062.

[161] N. Mladenović, J. Petrović, V. Kovačević-Vujčić, and M. Čangalović, ‘Solving spread
spectrum radar polyphase code design problem by tabu search and variable
neighbourhood search’, Eur. J. Oper. Res., vol. 151, no. 2, pp. 389–399, Dec. 2003.

[162] T. Finni, P. V. Komi, and V. Lepola, ‘In vivo human triceps surae and quadriceps
femoris muscle function in a squat jump and counter movement jump’, Eur. J. Appl.
Physiol., vol. 83, pp. 416–426, Nov. 2000.

[163] P. V. Komi, ‘Stretch-shortening cycle: a powerful model to study normal and fatigued
muscle’, J. Biomech., vol. 33, no. 10, pp. 1197–1206, Oct. 2000.

[164] A. Kiam Heong, G. Chong, and L. Yun, ‘PID control system analysis, design, and
technology’, Control Syst. Technol. IEEE Trans. On, vol. 13, pp. 559–576, 2005.

[165] D. Tan and Z. Chen, ‘On a general formula of fourth order Runge–Kutta method’, J
Math Sci Math Educ, vol. 7, pp. 1–10, 2012.

Chapter Appendix A - Additional QIEA Results 111

Appendix A Additional QIEA Results

This appendix presents additional data produced in the QIEA development (chapter 4), providing results for 10 and 30 dimension versions fo the

fitness functions.

Table 26: Summary statistics for the 13 traditional test functions with 10 dimensions. Bold are best.

Traditional test functions

10 Dimensions

bQIEA rQIEA

Classic HSB RCQIEA SRQEA

Function Min Mean Std dev Min Mean Std dev Min Mean Std dev Min Mean Std dev

01 Sphere 3.08E+00 4.70E+01 3.55E+01 2.33E+00 1.48E+01 9.74E+00 1.94E-05 1.02E-04 6.11E-05 0.00E+00 0.00E+00 0.00E+00

02 Schwefel 222 1.97E+00 8.83E+00 3.62E+00 1.36E+00 5.79E+00 2.15E+00 6.98E-03 2.05E-02 5.46E-03 0.00E+00 0.00E+00 0.00E+00

03 Schwefel 12 7.70E+01 4.45E+02 3.12E+02 9.39E+00 1.16E+02 7.02E+01 2.79E-04 2.71E-03 2.74E-03 0.00E+00 0.00E+00 0.00E+00

04 Schwefel 221 3.78E+00 1.03E+01 2.83E+00 2.75E+00 6.70E+00 2.22E+00 1.51E-02 3.26E-02 1.09E-02 1.14E-05 4.67E-05 2.43E-05

05 Rosenbrock 7.39E+02 2.10E+05 4.98E+05 6.51E+02 6.52E+03 5.00E+03 3.25E-01 2.19E+01 3.26E+01 3.61E-03 1.98E+01 2.72E+01

06 Step 6.00E+00 6.73E+01 5.94E+01 1.00E+00 2.07E+01 1.51E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

07 Quartic 1.40E+02 2.73E+04 3.37E+04 2.99E+01 1.77E+03 3.47E+03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

08 Schwefel 226 7.33E-01 6.27E+00 5.60E+00 1.43E-01 1.94E+00 1.55E+00 2.76E-06 1.26E-05 8.59E-06 0.00E+00 0.00E+00 0.00E+00

09 Basic Rastrigin 5.13E+00 9.51E+00 1.90E+00 3.68E+00 7.22E+00 1.69E+00 7.96E-06 6.38E-05 4.83E-05 0.00E+00 0.00E+00 0.00E+00

10 Basic Ackley 8.44E+00 1.77E+01 1.59E+00 5.17E+00 1.49E+01 3.51E+00 3.75E-03 1.35E-02 4.59E-03 0.00E+00 0.00E+00 0.00E+00

11 Basic Griewank 4.71E-01 1.46E+00 5.70E-01 4.23E-01 9.03E-01 2.42E-01 3.11E-04 3.87E-02 2.27E-02 0.00E+00 1.09E-02 1.02E-02

12 Penalised 1 2.09E-01 2.60E+02 7.28E+02 3.97E-01 1.26E+01 6.53E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

13 Penalised 2 1.99E+00 5.38E+04 8.75E+04 3.65E-01 2.58E+03 1.83E+04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Chapter Appendix A - Additional QIEA Results 112

Table 27: Summary statistics for the 13 traditional test functions with 30 dimensions. Bold are best.

Traditional test functions

30 Dimensions

bQIEA rQIEA

Classic HSB RCQIEA SRQEA

Function Min Mean Std dev Min Mean Std dev Min Mean Std dev Min Mean Std dev

01 Sphere 4.03E+02 1.27E+03 3.82E+02 2.35E+02 5.33E+02 1.52E+02 9.05E-05 3.38E-04 1.48E-04 0.00E+00 0.00E+00 0.00E+00

02 Schwefel 222 8.18E+01 1.08E+02 1.21E+01 3.14E+01 5.54E+01 1.03E+01 4.00E-02 6.24E-02 1.12E-02 0.00E+00 0.00E+00 0.00E+00

03 Schwefel 12 9.50E+04 2.05E+05 5.15E+04 3.02E+04 6.42E+04 2.08E+04 2.09E-02 7.79E-02 4.29E-02 0.00E+00 0.00E+00 0.00E+00

04 Schwefel 221 2.22E+01 3.18E+01 3.80E+00 1.94E+01 2.44E+01 2.09E+00 8.27E-02 1.43E-01 3.05E-02 3.51E-03 6.16E-03 1.56E-03

05 Rosenbrock 2.02E+07 4.04E+07 1.40E+07 3.03E+05 6.65E+06 5.30E+06 1.65E+01 1.16E+02 5.33E+01 1.04E-02 8.86E+01 1.80E+02

06 Step 5.25E+02 1.34E+03 3.65E+02 1.93E+02 5.91E+02 1.95E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

07 Quartic 1.50E+06 5.15E+06 2.09E+06 1.85E+05 9.82E+05 6.14E+05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

08 Schwefel 226 7.50E+01 1.49E+02 3.64E+01 1.11E+01 5.90E+01 2.10E+01 1.15E-05 4.03E-05 1.46E-05 0.00E+00 0.00E+00 0.00E+00

09 Basic Rastrigin 4.61E+01 5.86E+01 5.32E+00 3.26E+01 4.15E+01 4.57E+00 8.00E-05 1.65E-04 6.63E-05 0.00E+00 0.00E+00 0.00E+00

10 Basic Ackley 1.99E+01 2.00E+01 2.15E-02 1.84E+01 1.95E+01 3.28E-01 8.80E-03 1.61E-02 4.55E-03 0.00E+00 9.20E-01 4.01E+00

11 Basic Griewank 5.97E+00 1.33E+01 3.07E+00 1.79E+00 5.68E+00 1.42E+00 2.32E-04 1.30E-02 1.39E-02 0.00E+00 2.06E-02 2.25E-02

12 Penalised 1 8.03E+04 2.03E+06 1.47E+06 8.37E+01 1.51E+05 3.28E+05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

13 Penalised 2 2.55E+05 1.35E+07 6.56E+06 7.33E+03 1.75E+06 1.72E+06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Chapter Appendix A - Additional QIEA Results 113

Table 28: Summary statistics for the 20 CEC-2013 test functions with 10 dimensions. Bold are best.

CEC-2013 test functions

10 Dimensions

bQIEA rQIEA

Classic HSB RCQIEA SRQEA

Function Min Mean Std dev Min Mean Std dev Min Mean Std dev Min Mean Std dev

14 Sphere [duplicated] 3.08E+00 4.70E+01 3.55E+01 2.33E+00 1.48E+01 9.74E+00 1.94E-05 1.02E-04 6.11E-05 0.00E+00 0.00E+00 0.00E+00

15 R HC elliptic 3.87E+05 2.17E+06 1.12E+06 2.21E+05 1.38E+06 8.52E+05 3.97E+05 2.13E+06 1.24E+06 4.61E+04 5.22E+05 4.18E+05

16 Rotated bent cigar 6.70E+06 1.72E+08 1.09E+08 1.47E+06 4.95E+07 3.11E+07 1.39E+03 5.27E+03 1.80E+03 4.59E+01 3.48E+03 2.00E+03

17 Rotated discus 6.79E+03 1.44E+04 3.82E+03 4.34E+03 1.24E+04 4.51E+03 9.97E+03 3.14E+04 1.04E+04 7.17E+03 3.09E+04 1.19E+04

18 Different powers 4.15E+00 3.39E+01 1.38E+01 2.86E+00 1.06E+01 6.65E+00 1.96E-04 2.13E-03 1.72E-03 0.00E+00 0.00E+00 0.00E+00

19 Rotated Rosenbrock 8.12E+00 1.55E+01 4.34E+00 1.89E+00 1.00E+01 4.00E+00 2.16E-03 4.69E+00 4.66E+00 5.59E-04 2.76E+00 4.01E+00

20 Rotated Schaffers F7 2.36E+01 4.17E+01 9.59E+00 1.77E+01 3.40E+01 6.81E+00 2.13E+01 7.13E+01 3.23E+01 3.31E+01 8.88E+01 3.64E+01

21 Rotated Ackley 2.02E+01 2.04E+01 8.11E-02 2.01E+01 2.03E+01 8.29E-02 2.02E+01 2.04E+01 6.97E-02 2.01E+01 2.03E+01 8.04E-02

22 Rotated Weierstrass 3.32E+00 5.05E+00 6.45E-01 2.68E+00 4.20E+00 5.51E-01 3.00E+00 6.02E+00 1.43E+00 3.05E+00 7.26E+00 1.38E+00

23 Rotated Griewank 4.82E+00 2.85E+01 1.21E+01 3.74E+00 1.96E+01 7.69E+00 4.59E-01 1.52E+00 6.96E-01 7.03E-01 2.87E+00 1.67E+00

24 Rastrigin 3.03E+00 1.07E+01 2.58E+00 3.97E+00 7.95E+00 1.88E+00 3.11E-05 2.09E-04 1.39E-04 0.00E+00 0.00E+00 0.00E+00

25 Rotated Rastrigin 1.08E+01 2.61E+01 6.00E+00 8.19E+00 2.18E+01 5.71E+00 1.80E+01 3.55E+01 1.30E+01 1.49E+01 4.48E+01 1.62E+01

26 NC rotated Rastrigin 2.15E+01 3.71E+01 7.88E+00 1.66E+01 3.02E+01 7.59E+00 1.85E+01 4.67E+01 1.47E+01 1.64E+01 5.21E+01 1.46E+01

27 Schwefel 7 2.70E+01 7.86E+01 2.99E+01 1.19E+01 5.77E+01 1.75E+01 1.03E-03 7.30E-03 6.87E-03 0.00E+00 6.66E-02 1.79E-01

28 Rotated Schwefel 7 3.34E+02 5.88E+02 1.40E+02 2.21E+02 4.90E+02 1.28E+02 1.32E+02 6.86E+02 2.20E+02 4.01E+02 8.14E+02 2.12E+02

29 Rotated Katsuura 2.15E-01 4.70E-01 1.22E-01 1.50E-01 4.13E-01 1.07E-01 1.94E-01 4.88E-01 1.68E-01 2.20E-01 5.95E-01 2.11E-01

30 Lunacek bi-Rastrigin 1.12E+01 2.12E+01 5.70E+00 6.79E+00 1.39E+01 3.90E+00 2.95E-03 1.99E-02 1.65E-02 0.00E+00 0.00E+00 0.00E+00

31 R Lunacek bi-Rastrigin 2.56E+01 5.27E+01 9.40E+00 1.76E+01 4.34E+01 8.59E+00 1.74E+01 3.72E+01 9.29E+00 2.17E+01 4.27E+01 1.02E+01

32 RE Griewank Rosen. 4.35E-01 2.40E+00 9.78E-01 9.33E-01 1.91E+00 4.47E-01 8.77E-01 3.85E+00 1.88E+00 8.65E-01 5.92E+00 3.54E+00

33 RE Schaffers F6 1.33E+00 1.92E+00 2.90E-01 1.09E+00 1.71E+00 2.79E-01 1.24E+00 2.22E+00 4.46E-01 1.00E+00 2.30E+00 5.94E-01

Chapter Appendix A - Additional QIEA Results 114

Table 29: Summary statistics for the 20 CEC-2013 test functions with 30 dimensions. Bold are best.

CEC-2013 test functions

30 Dimensions

bQIEA rQIEA

Classic HSB RCQIEA SRQEA

Function Min Mean Std dev Min Mean Std dev Min Mean Std dev Min Mean Std dev

14 Sphere [duplicated] 4.03E+02 1.27E+03 3.82E+02 2.35E+02 5.33E+02 1.52E+02 9.05E-05 3.38E-04 1.48E-04 0.00E+00 0.00E+00 0.00E+00

15 R HC elliptic 2.52E+07 4.90E+07 1.13E+07 1.26E+07 3.14E+07 7.10E+06 2.72E+06 7.04E+06 2.23E+06 8.12E+05 1.78E+06 6.45E+05

16 Rotated bent cigar 1.19E+10 1.94E+10 4.16E+09 3.41E+09 7.47E+09 1.63E+09 2.40E+02 5.01E+03 8.83E+03 1.27E-02 8.81E+01 2.63E+02

17 Rotated discus 4.82E+04 8.84E+04 1.37E+04 4.98E+04 7.60E+04 1.10E+04 8.14E+04 1.20E+05 2.05E+04 7.49E+04 1.19E+05 2.06E+04

18 Different powers 2.79E+02 6.66E+02 2.01E+02 8.30E+01 1.97E+02 6.44E+01 9.81E-04 3.19E-03 2.21E-03 0.00E+00 0.00E+00 0.00E+00

19 Rotated Rosenbrock 1.42E+02 1.80E+02 1.58E+01 7.42E+01 1.17E+02 1.52E+01 1.98E-01 2.17E+01 1.24E+01 6.54E-02 1.43E+01 7.99E+00

20 Rotated Schaffers F7 1.09E+02 1.49E+02 1.98E+01 1.07E+02 1.31E+02 1.22E+01 1.12E+02 1.79E+02 4.02E+01 1.32E+02 1.79E+02 3.00E+01

21 Rotated Ackley 2.08E+01 2.10E+01 6.04E-02 2.09E+01 2.10E+01 4.68E-02 2.07E+01 2.09E+01 5.74E-02 2.07E+01 2.09E+01 7.01E-02

22 Rotated Weierstrass 2.44E+01 2.85E+01 1.35E+00 1.83E+01 2.57E+01 1.69E+00 2.57E+01 3.27E+01 3.03E+00 2.87E+01 3.50E+01 2.42E+00

23 Rotated Griewank 3.24E+02 5.77E+02 1.27E+02 1.36E+02 3.15E+02 8.79E+01 1.33E+00 1.90E+00 2.94E-01 4.19E-02 2.11E-01 7.20E-02

24 Rastrigin 6.82E+01 8.84E+01 9.08E+00 4.13E+01 5.25E+01 5.75E+00 2.12E-04 5.58E-04 2.85E-04 0.00E+00 0.00E+00 0.00E+00

25 Rotated Rastrigin 1.82E+02 2.27E+02 2.26E+01 1.31E+02 1.74E+02 2.01E+01 1.20E+02 2.55E+02 7.84E+01 1.50E+02 2.73E+02 6.74E+01

26 NC rotated Rastrigin 2.26E+02 2.83E+02 2.41E+01 1.78E+02 2.38E+02 2.37E+01 1.35E+02 2.76E+02 5.10E+01 2.04E+02 2.97E+02 5.15E+01

27 Schwefel 7 3.89E+02 8.37E+02 1.47E+02 1.71E+02 3.41E+02 8.30E+01 8.81E-03 4.12E-02 2.33E-02 2.72E-02 4.40E-01 2.56E-01

28 Rotated Schwefel 7 2.81E+03 3.79E+03 3.48E+02 2.17E+03 3.18E+03 3.58E+02 2.17E+03 3.34E+03 5.00E+02 2.48E+03 3.46E+03 4.66E+02

29 Rotated Katsuura 6.84E-01 1.04E+00 1.63E-01 6.96E-01 9.40E-01 1.35E-01 4.48E-01 1.10E+00 3.28E-01 6.13E-01 1.25E+00 3.28E-01

30 Lunacek bi-Rastrigin 9.90E+01 1.58E+02 2.09E+01 5.95E+01 9.06E+01 1.32E+01 1.57E-02 5.53E-02 2.60E-02 0.00E+00 4.77E-04 2.30E-03

31 R Lunacek bi-Rastrigin 3.07E+02 4.11E+02 3.63E+01 2.36E+02 3.11E+02 3.35E+01 1.15E+02 2.19E+02 4.49E+01 1.50E+02 2.45E+02 5.13E+01

32 RE Griewank Rosen. 2.01E+01 1.29E+02 6.90E+01 1.39E+01 5.15E+01 1.81E+01 3.26E+01 5.78E+01 1.79E+01 4.89E+01 1.30E+02 4.51E+01

33 RE Schaffers F6 9.90E+00 1.12E+01 5.69E-01 8.07E+00 9.65E+00 6.20E-01 9.44E+00 1.33E+01 1.59E+00 9.16E+00 1.38E+01 1.36E+00

Chapter Appendix A - Additional QIEA Results 115

Table 30: SRQEA compared to SPSO-2011 and a GA algorithm for the CEC-2013 functions with 10 dimensions. Bold are best.

10 Dimensions SRQEA SPSO-2011 [123] GA [125]

Function Min Mean Std dev Min Median Std dev Min Median Mean Std dev

14 Sphere [duplicated] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

15 R HC elliptic 4.61E+04 5.22E+05 4.18E+05 2.09E+03 3.63E+04 7.36E+04 0.00E+00 0.00E+00 0.00E+00 0.00E+00

16 Rotated bent cigar 4.59E+01 3.48E+03 2.00E+03 0.00E+00 2.68E+05 1.66E+07 0.00E+00 0.00E+00 0.00E+00 0.00E+00

17 Rotated discus 7.17E+03 3.09E+04 1.19E+04 1.35E+03 8.87E+03 4.56E+03 0.00E+00 0.00E+00 0.00E+00 0.00E+00

18 Different powers 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.14E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00

19 Rotated Rosenbrock 5.59E-04 2.76E+00 4.01E+00 0.00E+00 9.80E+00 4.97E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

20 Rotated Schaffers F7 3.31E+01 8.88E+01 3.64E+01 2.60E+00 2.11E+01 1.33E+01 2.94E-06 1.42E-03 4.44E-02 2.10E-01

21 Rotated Ackley 2.01E+01 2.03E+01 8.04E-02 2.02E+01 2.03E+01 6.72E-02 2.02E+01 2.04E+01 2.04E+01 8.64E-02

22 Rotated Weierstrass 3.05E+00 7.26E+00 1.38E+00 1.30E+00 4.80E+00 1.50E+00 0.00E+00 2.60E+00 3.43E+00 2.90E+00

23 Rotated Griewank 7.03E-01 2.87E+00 1.67E+00 1.00E-01 3.00E-01 2.71E-01 0.00E+00 3.69E-02 4.03E-02 2.82E-02

24 Rastrigin 0.00E+00 0.00E+00 0.00E+00 3.00E+00 1.09E+01 5.66E+00 0.00E+00 0.00E+00 2.73E-01 4.91E-01

25 Rotated Rastrigin 1.49E+01 4.48E+01 1.62E+01 3.00E+00 1.39E+01 6.56E+00 1.99E+00 5.97E+00 6.36E+00 2.29E+00

26 NC rotated Rastrigin 1.64E+01 5.21E+01 1.46E+01 5.40E+00 2.08E+01 9.82E+00 1.99E+00 8.52E+00 1.01E+01 6.30E+00

27 Schwefel 7 0.00E+00 6.66E-02 1.79E-01 3.23E+02 8.34E+02 2.34E+02 1.87E-01 1.86E+01 2.74E+01 2.75E+01

28 Rotated Schwefel 7 4.01E+02 8.14E+02 2.12E+02 3.37E+02 7.74E+02 2.51E+02 2.53E+02 8.51E+02 8.31E+02 2.58E+02

29 Rotated Katsuura 2.20E-01 5.95E-01 2.11E-01 2.00E-01 5.00E-01 2.46E-01 5.18E-02 1.34E+00 1.28E+00 3.26E-01

30 Lunacek bi-Rastrigin 0.00E+00 0.00E+00 0.00E+00 1.04E+01 1.89E+01 5.87E+00 1.02E+01 1.11E+01 1.12E+01 7.73E-01

31 R Lunacek bi-Rastrigin 2.17E+01 4.27E+01 1.02E+01 1.25E+01 1.78E+01 4.53E+00 1.22E+01 1.74E+01 1.86E+01 5.22E+00

32 RE Griewank Rosen. 8.65E-01 5.92E+00 3.54E+00 3.00E-01 9.00E-01 3.89E-01 2.45E-01 5.11E-01 5.32E-01 1.48E-01

33 RE Schaffers F6 1.00E+00 2.30E+00 5.94E-01 2.00E+00 3.40E+00 4.19E-01 1.70E+00 3.21E+00 3.21E+00 5.05E-01

Chapter Appendix A - Additional QIEA Results 116

Table 31: SRQEA compared to SPSO-2011 and a GA algorithm for the CEC-2013 functions with 30 dimensions. Bold are best.

30 Dimensions SRQEA SPSO-2011 [123] GA [125]

Function Min Mean Std dev Min Median Std dev Min Median Mean Std dev

14 Sphere [duplicated] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.88E-13 0.00E+00 0.00E+00 0.00E+00 0.00E+00

15 R HC elliptic 8.12E+05 1.78E+06 6.45E+05 6.92E+04 3.09E+05 1.67E+05 2.26E+04 1.10E+05 1.55E+05 1.37E+05

16 Rotated bent cigar 1.27E-02 8.81E+01 2.63E+02 1.17E+06 1.19E+08 5.24E+08 5.62E+02 8.41E+06 3.28E+07 7.55E+07

17 Rotated discus 7.49E+04 1.19E+05 2.06E+04 2.73E+04 3.91E+04 6.70E+03 2.18E-02 2.77E-01 9.08E-01 1.26E+00

18 Different powers 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.91E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00

19 Rotated Rosenbrock 6.54E-02 1.43E+01 7.99E+00 2.00E-01 2.83E+01 2.83E+01 1.96E+00 1.97E+01 2.04E+01 7.92E+00

20 Rotated Schaffers F7 1.32E+02 1.79E+02 3.00E+01 5.02E+01 8.69E+01 2.11E+01 4.70E+00 4.04E+01 4.58E+01 2.97E+01

21 Rotated Ackley 2.07E+01 2.09E+01 7.01E-02 2.07E+01 2.09E+01 5.89E-02 2.08E+01 2.10E+01 2.10E+01 5.34E-02

22 Rotated Weierstrass 2.87E+01 3.50E+01 2.42E+00 2.11E+01 2.84E+01 4.43E+00 1.98E+01 4.03E+01 3.70E+01 6.44E+00

23 Rotated Griewank 4.19E-02 2.11E-01 7.20E-02 1.00E-01 3.00E-01 1.48E-01 7.40E-03 7.39E-02 8.35E-02 4.66E-02

24 Rastrigin 0.00E+00 0.00E+00 0.00E+00 5.07E+01 1.08E+02 2.74E+01 5.97E+00 1.99E+01 2.13E+01 1.07E+01

25 Rotated Rastrigin 1.50E+02 2.73E+02 6.74E+01 4.88E+01 9.45E+01 3.54E+01 1.99E+01 3.68E+01 3.77E+01 9.55E+00

26 NC rotated Rastrigin 2.04E+02 2.97E+02 5.15E+01 1.12E+02 1.98E+02 3.86E+01 3.68E+01 8.02E+01 8.10E+01 1.95E+01

27 Schwefel 7 2.72E-02 4.40E-01 2.56E-01 2.96E+03 4.02E+03 6.19E+02 5.90E+01 9.66E+02 1.01E+03 4.74E+02

28 Rotated Schwefel 7 2.48E+03 3.46E+03 4.66E+02 1.94E+03 3.80E+03 6.94E+02 2.88E+03 4.11E+03 4.10E+03 6.93E+02

29 Rotated Katsuura 6.13E-01 1.25E+00 3.28E-01 4.00E-01 1.40E+00 3.59E-01 2.22E-01 2.83E+00 2.72E+00 5.05E-01

30 Lunacek bi-Rastrigin 0.00E+00 4.77E-04 2.30E-03 7.27E+01 1.15E+02 2.02E+01 4.27E+01 5.78E+01 6.01E+01 1.10E+01

31 R Lunacek bi-Rastrigin 1.50E+02 2.45E+02 5.13E+01 7.68E+01 1.17E+02 2.46E+01 5.08E+01 7.23E+01 7.45E+01 1.80E+01

32 RE Griewank Rosen. 4.89E+01 1.30E+02 4.51E+01 2.80E+00 9.00E+00 4.42E+00 1.68E+00 3.65E+00 4.14E+00 1.99E+00

33 RE Schaffers F6 9.16E+00 1.38E+01 1.36E+00 1.05E+01 1.40E+01 1.11E+00 1.23E+01 1.39E+01 1.37E+01 4.78E-01

Chapter Appendix B - Fitness functions 117

Appendix B Fitness functions

In this section, formulae are given for the fitness functions used in the QIEA analysis in chapter 4.

Traditional fitness functions [8]

D is the number of dimensions.

  2

01

1

D

i

i

f x x




 02

1 1

DD

i i

i i

f x x x
 

  

 
2

03

1 1

D i

i

i j

f x x
 

 
  

 
 

   04 max i
i

f x x

     
1

2 22

05 1

1

100 1
D

i i i

i

f x x x x






    
  

   
2

06

1

0.5
D

i

i

f x x


   

   4

07

1

random 0,1
D

i

i

f x ix


 

    08

1

sin
D

i i

i

f x x x


 

   2

09

1

10cos 2 10
D

i i

i

f x x x


    

 

 

2

10

1

1

1
20exp 0.2

30

1
exp cos 2 20

30

D

i

i

D

i

i

f x x

x e





 
   

 
 

 
   

 





Chapter Appendix B - Fitness functions 118

  2

11

1 1

1
cos 1

4000

DD
i

i

i i

x
f x x

i 

 
   

 
 

 
 

    

 

2

1

1
12 2 2

1

1

1

10sin

1 1 10sin

,10,100,4

D

i i

i

D

i

i

y

f x
D y y

u x













 
 

        







and

 

 

    

    

 

2

1

1
2 2

13 1

1

2 2

1

sin 3

0.1 1 1 sin 3

1 1 sin 2

,5,100,4

D

i i

i

D D

D

i

i

x

f x x x

x x

u x















 
 
 

      
 
   
 







where:

 

 

 

 

,

, , , 0,

,

1
1 1

4

m

i i

i i

m

i i

i i

k x a x a

u x a k m a x a

k x a x a

y x

  


   


  

  

CEC-2013 fitness functions [9]

fn
* is a minimum height offset, o is an origin offset, M1 and M2 are

rotation matrices, Ʌα is a diaganol matrix, TOSZ and Tasy are non-linear

transformation functions.

  2 *

14 14

1

,
D

i

i

f x z f


    z x o

      
1

6 2 *1
15 15 1

1

10 ,
iD

D
i osz

i

f x z f T






    z M x o

    2 6 2 * 0.5

16 1 16 1

2

10 ,
D

i asy

i

f x z z f T


     2z M M x o

    6 2 2 *

17 1 17 1

2

10 ,
D

i osz

i

f x z z f T


     z M x o

 
1

2 4 *
1

18 18

1

,
D i

D
i

i

f x z f







    z x o

      
 

1
2 22 *

19 1 19

1

1

100 1 ,

2.048
1

100

D

i i i

i

f x z z z f






    

 
  

 



x o
z M

Chapter Appendix B - Fitness functions 119

     

  

2
1

2 0.2 *

20 20

1

2 2 10 0.5

1 2 1

1
1 sin 50 ,

1

,

D

i i

i

i i i asy

f x z z f
D

z y y T







 
   

 

    



y M M x o

 

 

  

2

21

1

*

21

1

10 0.5

2 1

1
20exp 0.2

1
exp cos 2 20 ,

D

i

i

D

i

i

asy

f x z
D

z e f
D

T







 
   

 
 

 
    

 

  





z M M x o

    

 

 

20

22

1 0

20
*

22

0

10 0.5

2 1

0.5 cos 2 3 0.5

0.5 cos 2 3 0.5 ,

0.5

100

D
k k

i

i k

k k

k

asy

f x z

D f

T





 



 
     

 

 
      

 

  
     

  

 



x o
z M M

 

 

2
*

23 23

1 1

100

1

cos 1 ,
4000

600

100

DD
i i

i i

z z
f x f

i 

 
    

 

 
   

 

 

x o
z M

    

 

2 *

24 24

1

10 0.2

10cos 2 10 ,

5.12

100

D

i i

i

asy osz

f x z z f

T T




   

  
     

  



x o
z

    

 

2 *

25 25

1

10 0.2

1 2 1

10cos 2 10 ,

5.12

100

D

i i

i

asy osz

f x z z f

T T




   

   
       

   



x o
z M M M

    

 

 

  

2 *

26 26

1

1

10 0.2

1 2

10cos 2 10 ,

5.12
,

100

, 0.5
,

round 2 / 2, 0.5

D

i i

i

i i

i

i i

asy osz

f x z z f

x x
y

x x

T T y




   

 
  

 

 
 



 



x o
x M

z M M

Chapter Appendix B - Fitness functions 120

   

 

   
  

  
 

  

  
 

*

27 27

1

10

1/2

2

2

418.9829 ,

1000
4.209687462275036 002,

100

sin , 500

500 mod ,500

sin 500 mod ,500

500
,

50010000

mod ,500 500

sin mod ,500 500

500
,

50010000

D

i

i

i i i
i

i

i

i

i

i

i

i

i

f x D g z f

e

g z z z z

z

z

z

zD

z

z

z

zD



  

 
    

 

 



 


 



 








x o
z

















Chapter Appendix B - Fitness functions 121

   

 

   
  

  
 

  

  
 

*

28 28

1

10

1

1/2

2

2

418.9829 ,

1000

100

4.209687462275036 002,

sin , 500

500 mod ,500

sin 500 mod ,500

500
,

50010000

mod ,500 500

sin mod ,500 500

500
,

50010000

D

i

i

i i i
i

i

i

i

i

i

i

i

i

f x D g z f

e

g z z z z

z

z

z

zD

z

z

z

zD



  

 
   

 

 

 



 








 








x o
z M


















Chapter Appendix B - Fitness functions 122

 
 

 

1.2

10

32

29 2
11

*

292

100

2 1

2 round 210
1

2

10
,

5

100

j j D
D

i i

j
ji

z z
f x i

D

f
D



 
  
 
 

 

  
     

  



x o
z M M

     

 

 
 

 

2 2

30 0 1

1 1

*

30

1

2

0
0 1

0

100

0

min ,

10 cos 2 ,

1 1
2.5, , 1 ,

2 20 8.2

10
= , 2sign ,

100

D D

i i

i i

D

i

i

i i i

f x x D s x

D z f

s D

x x y

 




 





 



 
    

 

 
   

 


   

 


 

  

 



x o
y

z x

Chapter Appendix B - Fitness functions 123

     

 

 
 

  

2 2

31 0 1

1 1

*

31

1

2

0
0 1

0

100

0

min ,

10 cos 2 ,

1 1
2.5, , 1 ,

2 20 8.2

10
= , 2sign ,

100

D D

i i

i i

D

i

i

i i i

f x x D s x

D z f

s D

x x y

 




 





 



 
    

 

 
   

 


   

 


 

  

 



2 1

x o
y

z M M x

 

     

     
 

2

1

1 1

2 22

2

*

32 1 2 32mod , 1 1
1

cos 1
4000

, 100 1

, ,

5
1

100

DD
i i

i i

D

i i D
i

x x
g x

i

g x y x y x

f x g g z z f

 

 


 
   

 

   

 

 
  

 

 



1

x o
z M

 
 

  

     
  

2 2 2

2
2 2

*

33 1 2 33mod , 1 1
1

0.5

sin 0.5
, 0.5

1 0.001

, ,
D

i i D
i

asy

x y
g x y

x y

f x g g z z f

T

 


 
 

 

 

 



2 1
z M M x o

Chapter Appendix C - Code Listings 124

Appendix C Code Listings

While experimenting with optimising locomotion in models on the Newton Dynamics

system, it was necessary to change the hinge joint code in order produce successful

movement patterns. The original version is shown in C.1 and the successful modified

version is in C.2.

C.1 Original hinge code

void CustomHingeActuator::SubmitConstraintsFreeDof(dFloat timestep, const
dMatrix& matrix0, const dMatrix& matrix1)
{
 if (m_flag) {
 dFloat jointangle = GetActuatorAngle();
 dFloat relAngle = jointangle - m_angle;
 NewtonUserJointAddAngularRow(m_joint, -relAngle,
&matrix0.m_front[0]);

 dFloat step = m_angularRate * timestep;
 if (dAbs(relAngle) > 2.0f * dAbs(step)) {
 dFloat desiredSpeed = -dSign(relAngle) * m_angularRate;
 dFloat currentSpeed = GetJointOmega();
 dFloat accel = (desiredSpeed - currentSpeed) / timestep;
 NewtonUserJointSetRowAcceleration(m_joint, accel);
 }
 NewtonUserJointSetRowMinimumFriction(m_joint, -m_maxForce);
 NewtonUserJointSetRowMaximumFriction(m_joint, m_maxForce);
 NewtonUserJointSetRowStiffness(m_joint, 1.0f);
 }
 else {
 CustomHinge::SubmitConstraintsFreeDof(timestep, matrix0,
matrix1);
 }

}

C.2 Modified hinge code

void CustomHingeActuator::SubmitConstraintsFreeDof(dFloat timestep, const
dMatrix& matrix0, const dMatrix& matrix1)
{
 if (m_flag) {
 dFloat jointangle = GetActuatorAngle();
 dFloat relAngle = jointangle - m_angle;
 NewtonUserJointAddAngularRow(m_joint, -relAngle,
&matrix0.m_front[0]);

 dFloat desiredSpeed = -dSign(relAngle) * 50.0;
 dFloat currentSpeed = GetJointOmega() * 40.0;
 dFloat accel = (desiredSpeed - currentSpeed);// / timestep;
 NewtonUserJointSetRowAcceleration(m_joint, accel);

 NewtonUserJointSetRowMinimumFriction(m_joint, -m_maxForce);

Chapter Appendix C - Code Listings 125

 NewtonUserJointSetRowMaximumFriction(m_joint, m_maxForce);
 NewtonUserJointSetRowStiffness(m_joint, 1.0f);
 }
 else {
 CustomHinge::SubmitConstraintsFreeDof(timestep, matrix0,
matrix1);
 }
}

