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Abstract 
 

This thesis presents, critical compares and develops new methods to control and 

optimise locomotion for a range of systems.  Jumping and running locomotion skills are 

examined in detail, and intelligent methods are discussed and adapted to optimise for 

correct form of motion, and performance outcomes.  Existing control techniques are 

summarised and compared, including traditional analytical methods, central pattern 

generator oscillator systems, pattern generating neural networks, rule based systems and 

other specialist methods. 

Optimisation and learning methods presented in the literature are also summarised, and 

while several methods exist, modern global search methods were limited to genetic 

algorithms.  This thesis applies particle swarm optimisation and quantum inspired 

evolutionary algorithms to vertical jump and walking optimisation, comparing their 

performance to a genetic algorithm.  Improvements were developed for both binary and 

real-value variants of quantum inspired evolutionary algorithms, to benefit performance 

on the real-value problems involved in locomotion control.  These improvements 

consisted of modifications to their rotation gate operators, including a novel scheme to 

reduce premature convergence in the binary methods, based on limiting the range of 

less significant bits. 

Methods were applied in simulated environments, although they can be adapted to real 

world robotic control, or for reference in optimising motion in humans.  A discussion 

of the susceptibility of simulation runs to poor physical modelling was presented, as 

this was a significant problem during research.  Results were generally mixed, to the 

extent that all tested methods may be usefully examined more in future work.  The 

central pattern generators tested generated successful patterns more often than a 

recurrent neural network, and the results of the optimisation algorithms did not show 

sufficient advantage of one over the others. 
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1 Introduction 
 

1.1 Motivation 
 

A challenge for modern computer science is the development of algorithms to deal with 

increasingly complex optimisation problems.  Such challenges include a variety of  

practical real-world problems, such as structural engineering [1], [2], antenna design 

[3], electric power systems [4], digital image watermarking [5], EEG classification [6], 

benchmark problems [7], or mathematical functions designed to test or challenge 

aspects of optimisation [8], [9]. 

This thesis investigates the task of optimising the control of legged mechanical or 

biomechanical systems (robots, human models, etc…) to produce various locomotion 

patterns, including walking, running and jumping, with a focus on coping with the 

complexity present in detailed models of a target system. 

When using analytical approaches to these problems, we need to be able to express a 

measure of the desired outcome (such as maximum distance obtained), as a function of 

the parameters of the model of motion, and apply optimisation techniques to the model 

formulae.  This is simplified if we can differentiate the system of equations in order to 

find minima but, in order to do this, real world applications may require an amount of 

simplification in the modelling process, such as in [10].  For example, predicting 

projectile flight distance from a throw can be done as a function of launch speed and 

angle.  However, such simplifications reduce the range of questions that can be 

answered, and are susceptible to false conclusions due to omission of key factors.  In 

this throwing example, can we say how the body should best move in order to maximise 

speed?  Also, do we make false conclusions over the preferred angle by ignoring spin 

and material characteristics of the projectile, its interaction with air, etc..? 
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The initial inspiration for this thesis was looking at how these questions relate to sport, 

and a related discussion was identified in [11] including an justification for the need of 

optimisation in sport, the limitations of current approaches and requirements that will 

need to be met by new methods. The authors of [11] noted that simple models used in 

analytical approaches can result in three problems.  Firstly, the reliability of the results 

is questionable – movement patterns derived in the simplified model may not be (even 

approximately) optimal in the real world system.  Secondly, the simplified model may 

not contain the detail required - some sport skills have significant contributions from 

large and small muscle groups simultaneously [12], but it is difficult to incorporate both 

scales in a simple model.  Finally, it is difficult to express differences between 

individuals in a simplified model. 

In order to improve the predictions, our models should become more detailed.  

However, we soon reach the point where we cannot solve their dynamics (in the form 

of a system of differential equations) analytically and must determine their behaviour 

through real-life observation [13], or computer simulation.  More detailed models of the 

human body have been developed in [14], [15], but these models have many degrees of 

freedom, and to optimise locomotion using them we need to develop techniques that 

can cope with their complexity.  Furthermore, we need to develop control algorithms 

that can generate movement patterns with enough parameterisation and range of output, 

such that the optimisation algorithm can locate good solutions. 

This introduction opened with the goal of investigation optimisation of both biological 

and mechanical systems.  Although the subsequent discussion has focussed on human 

sport, movement control of legged systems is required in other disciplines.  These are 

outlined in a later literature review, but the largest identified use of locomotion control, 

and optimisation of that control, is in the field of robotics.  Unlike for sport applications, 

robotics (and potentially other fields) can use control methods directly, and therefore 

the questions outlined above will become reframed into objectives for the control 

algorithm: how do we optimise a desired goal such as maximum speed, and can we 

develop a control method that is consistent, resilient to changes in environment or body 

state, able to control many degrees of freedom, and customised to the specific design or 

implementation of the target system?  Increasingly complicated robotic systems will 

require optimisation procedures that can deal with more degrees of freedom and 
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accurately match the demands of the system, so both the sport perspective goals and 

robotic goals (and other domains’ goals) will impose the same requirements. 

If the target system can be programmed, optimisation of control can be performed in a 

real-world setting.  However, this process may be slow, prone to damage when 

optimisation candidates result in a poorly configured control method, or simply not 

possible if the target system cannot be programmed (as is the case with human targets).  

In these cases, computer simulation can be used to determine optimal control and the 

resulting algorithm could then be copied to the target system if it is programmable, or 

the movement patterns be used as an instruction guide for human targets. 

1.2 Problem statement and objectives 
 

The problem under investigation by this thesis, is to establish and critically compare 

methods suitable for optimisation of locomotion control in simulated physical systems 

designed to closely model real-world targets.  Given the motivation from section 1.1, 

these methods should be able to work with complicated models and support detailed 

conclusions on viable control methods or optimal gaits/movement patterns.  The 

modelling should be accurate enough that control algorithms can be rapidly transferred 

from simulated environments to real-world systems, such as legged robots, or that 

optimised movement patterns can be used as a template for human instruction, with a 

reliable expectation that the pattern will be approximately optimal for them too.  The 

control algorithms need to be general enough, and the optimisation techniques powerful 

enough, to attain good results that can be assumed to be approximately optimal and not 

overly constrained by the framework of the control algorithm. 

In an attempt to address this problem, the following objectives were stated for the 

research covered in this thesis: 

 Review and compare successful control methods for locomotion.  To enable 

experimentation, this objective seeks to identify, categorise and critical compare 

published control algorithms.  Then suitable candidates can be selected, 

according to the evaluation based on applicability and optimisation potential, 

for use in later research conducted for this thesis. 

 Review, compare and add successful optimisation techniques for locomotion.  

The fundamental goal of this thesis is to investigate an optimisation process, and 
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so this objective is set to identify the types of optimisation algorithm presented 

in the literature that have been applied to locomotion.  Furthermore, this goal 

seeks to apply techniques not previously identified as being used in the field, to 

expand the knowledge of what methods can be used and how different 

optimisation techniques compare to each other when applied to locomotion. 

 Develop new optimisation algorithm variants and apply to locomotion.  

Following the review of used optimisation algorithms, and application of 

previously unused techniques, this objective seeks to expand further the options 

and points of comparison for optimisation techniques by developing new or 

modified optimisation algorithms, both for locomotion and for general 

application. 

 Develop new fitness functions to describe motion skills not identified in the 

literature.  This goal aims to expand the type of locomotion skills that can be 

evolved, crucial in order to be able to generalise techniques to answer questions 

for any sport skill, to enable robots to do more tasks in an environment, or to 

expand the range of useful activities in any equivalent application.  Skills must 

be encoded in a fitness function that the optimisation algorithm can then 

minimise (or maximise) – a task that is potentially non-trivial as poorly specified 

functions may promote sub-optimal solutions relative to the desired outcome, or 

even an unforeseen outcome that does not match the original intention of the 

developer.  

 Compare presented methods across these different skill objectives, and for 

different physical systems.  While establishing working methods is a useful 

endeavour, this objective also seeks to critical compare developed methods in 

terms of success rates relative to skill criteria and the fitness values achieved.  

This will enable a discussion to begin on the relative usefulness of tested control 

methods and optimisation techniques, in differing physical system contexts and 

for different movement skills. 

 Implement simulation techniques with different software platforms, emphasising 

their advantages and disadvantages.  It is not a goal of this thesis to develop 

physics simulation platforms, and so a review of existing options must be 

conducted, and suitable candidates chosen for experimentation.  It is an 
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objective to use more than one platform in order establish that the methods do 

work across different physics software, and to make use of advantages one 

package may have over others. 

 Examine the process of simulating physical systems, and how model design 

affects outcomes with a variety of model complexity.  A range of physical models 

should be developed for the physics platforms that can vary the difficulty of 

optimisation (through the complexity of the model), type of system (ideally both 

bipeds and quadrupeds) and realism when compared to target systems (e.g. 

human body).  The modelling process should examine how best to express the 

desired system with the physics package and how the dynamic properties, such 

as joint actuator models, affect the types of movement possible and suitability 

for optimisation. 

 

1.3 Original contributions 

 

The original contributions of this thesis are: 

 Development of new fitness functions, in order to optimise movement for 

vertical and long jumping; 

 Investigation and development of a new quantum inspired evolutionary 

algorithms (QIEA), adapted and tested for use with real-value optimisation 

problems.  Adaptations were made for both binary and real-coded QIEA.  The 

binary QIEA included a scheme to prevent premature convergence of least-

significant bits in the solution strings.  The modified real-coded QIEA proposes 

a new rotation gate formula; 

 Application of particle swarm optimisation (PSO) and QIEA to running and 

jumping locomotion tasks; 

 Critical analysis, comparison and evaluation of central pattern generators 

(CPG) and recurrent neural networks (RNN) for locomotion control; 

 Critical analysis, comparison and evaluation of genetic algorithms (GA), PSO 

and QIEA for locomotion optimisation; 
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 Guidance on developing physical models for use in simulations, that are capable 

of and likely to produce the desired movement skills; 

 Analysis of the ability of the studied control methods and optimisation 

techniques to scale from stable quadruped to unstable biped models, with 

increasingly realistic actuator models. 

 

1.4 Thesis outline 

 

This thesis is arranged into six chapters. Chapter 1 introduces this work, with the 

motivation for the research in section 1.1, a statement and explanation of objectives in 

1.2, a list of original contributions presented in 1.3 and an outline of the thesis in section 

1.4. 

Although this introduction has talked about human locomotion, the literature reviews 

presented in chapters 2 and 3 largely covers robotics.  Applicable methods typically 

meet the demands of legged locomotion but other systems have also been examined.  

Control methods which allow motion patterns to be generated from a parameter vector 

are presented in section 2.1 and a comparative summary of the reviewed control 

methods is presented in section 2.2. 

A summary of optimisation techniques identified that have been applied to locomotion 

in the literature is given in section 3.1 and a background to three different types or 

classes of optimisation algorithm is presented in section 3.2.  A small review of physical 

simulation packages in given in section 3.3 and, following a discussion on selecting 

suitable physics platforms, a set of physical models are described in section 3.4 for use 

in experiments. 

To expand upon the available optimisation methods, with recognition that evolving 

some patterns may be a difficult task, quantum inspired evolutionary algorithms 

(QIEA) are presented in chapter 4.  After an introduction in section 4.1, binary QIEA 

are presented in section 4.2, along with an identified convergence problem and a 

proposed solution.  A real-coded QIEA from the literature is given in section 4.3, and a 

problem in the rotation gate formulae is shown, along with an alternative solution.  
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Methodologies for analysing the adapted QIEA are given in section 0, with results and 

discussion in sections 4.5 and 4.6 respectively. 

Chapter 5 presents experiments in locomotion optimisation.  A bipedal vertical jump 

skill is developed in section 5.1 for two different platforms, in detailed bipedal models 

with qualitative discuss and quantitative comparison between control methods and 

optimisation algorithms.  This approach is continued for walking gaits in quadruped and 

bipedal models in section 5.2 and long jumping in a biped in section 5.3.  Some 

experiments allowed a large amount of comparison between techniques, including 

significance tests.  An important discussion is also given into problems encountered in 

physical simulation, how they affected experimentation and the implications for future 

work. 

The main content of the thesis concludes with chapter 6, with a summary and discussion 

in section 6.1 with reference to the objectives of the thesis, suggestions for future work 

in section 6.2 and a list of the author’s publications in section 6.3.  Chapter 7 lists the 

references used in this document, Appendix A presents additional results from the 

quantum inspired evolutionary algorithm research, Appendix B gives formulae for 

fitness functions used in that investigation and Appendix C presents the code for 

modified joint actuator functions used in the locomotion optimisation experiments. 
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2 Review of locomotion control 
 

Locomotion is the process of moving an organism or synthetic creature around an 

environment.  Artificially producing locomotion is required in a range of disciplines 

including robot control [16]–[19], artificial limb control [20], [21], computer animation 

[22], [23], and biological studies [24].  Locomotion may be needed for simulated 

models [25] or real world systems such as robots [26]. 

This chapter details a number of different techniques for control of locomotion present 

in the literature, and compares their strengths and weaknesses.  Arguments are presented 

as to which methods are relevant to the research topic of this thesis, to be examined in 

later chapters.  As can be seen from their dominance in the reference list, applications 

to robotics formed the bulk of this review.  This is a reflection of what was found in the 

literature search, rather than a bias towards that field in presentation. 

2.1 Control methods 
 

2.1.1 Analytical 

 

As was explained in chapter 1, analytical approaches to biomechanics generally involve 

simplification.  During the literature search outlined in this chapter, analytical 

approaches for robotic locomotion also involved simplification in the modelling stage, 

and so the outline here will be relatively brief. 

Legged movement starts from a simple premise - if the feet are placed in a forward 

moving pattern, and the rest of the body remains supported without falling to the 

ground, then the whole mass of the system will be moved forward continuously.  Motion 

is therefore a combination of gait and whole (and especially upper) body stability.  As 

bipedal motion stresses the stability constraint, it presents a challenge to locomotion 
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control, and was found to be the most investigated form in the literature [27].  A typical 

procedure for constructing bipedal motion would be: 

 Plan a path to determine foot placements; 

 Apply stability constraints to determine the Centre of Gravity (CoG) trajectory, 

based on a model of the weight distribution; 

 Construct a plausible gait algorithm, addressing the double support (both feet 

on the ground) and single support (one foot off the ground) phases; 

 Solve any remaining degrees of freedom (DoF) by any sensible manner.  

Methods may include copying human movement, simplifying movement, or 

even producing something that ‘looks right’. 

The first and most common stability constraint is the Zero Moment Point (ZMP) [28].  

It is calculated as the point under the foot where the ground reaction force will 

completely negate the effects of moments and forces on the foot from the rest of the 

body (assuming sufficient friction).  If the ZMP exists under the foot, then the system 

is stable, but if the calculated point is outside the foot, then the ZMP does not exist and 

the body (robot) will topple, rotating around an edge of the foot. The ZMP equations 

are used to ensure that the robot remains upright as the feet are moved.  They are 

combined with a model of the mass distribution in order to determine a trajectory for 

the centre of gravity (CoG).  The model is often simplified to make deriving the 

equations simpler.  A common model is the inverted pendulum model (IPM), which has 

a single point mass connected to the ground by a weightless rod [29].  In two dimensions 

this is given as: 

 
 

 
  0,

CoG

CoG CoG ZMP

CoG ZMP

z g
x x x

z z


  


  (2.1) 

 

where xCoG and zCoG are the x and z components of the Centre of Gravity respectively, 

xZMP and zZMP are the x and z components of the desired Zero Moment Point, α is a 

constant with value 1 in the standard inverted pendulum model, and g is the gravitational 

acceleration. 
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The gait algorithm is anything that raises a foot (now labelled as belonging to the swing 

leg) off the ground, moves it forwards, and places it back on the ground. Often, the mass 

models used assume that all of the mass is contained above the hip.  Therefore, the CoG 

trajectory, as determined by the ZMP constraint, defines the hip angle trajectory.  This 

is calculated to produce the CoG position relative to the hip position, which in turn is 

specified by the foot placements and leg joint angles.  The foot trajectories are used to 

determine the leg joint angles and the overall motion is determined by the desired ZMP.  

It is located under the support foot in the single support phase and transitions to the 

other foot during the double support phase.  Solving for the final trajectories is covered 

in [30]. 

Variations to the above procedure involve alterations to the stability constraint, 

alterations to the mass distribution model and alterations to the gait algorithm.  Some 

of these variations are discussed below. 

Equation (2.1) is a general form of the ZMP inverted pendulum constraint, but in many 

experiments it is simplified with the condition that there is no vertical movement of the 

CoG (i.e., ).  This is often referred to as the Three Dimensional Linear Inverted 

Pendulum Model (3D-LIPM). The simplicity of the 3D-LIPM algorithm made it 

popular in [17], [18], [18], [19], [26], [30]–[32]. In [25], a comparison was made 

between several different mass models.  The authors found that all of the models could 

be written in the form of equation (2.1) but with α varying depending on which mass 

model was used.  Since different mass models will result in varying levels of accuracy 

to the true model, the identification of the constant α allows the mass model to be fine-

tuned.  By experimentally varying α, the ZMP error can be reduced.  As α multiplies 

the height zCoG, the model was called a Virtual Height Inverted Pendulum.  A simple 

error minimisation procedure was used to find optimal values for α for different step 

periods.  The procedure involved incrementing or decrementing α by a fixed amount, if 

the ZMP error was outside a threshold interval. 

To further increase the accuracy, more complicated mass models can be used, at the 

expense of increased complexity of analysis.  For example, multi-mass models were 

used in [33], [34].  In [34], three different bipedal control methods were evaluated and 

validated by comparing them to a reference multi-mass model with ZMP constraint.  

The compared models used polynomial interpolation between start and end states, 

0CoGz 
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actuator driving in the double-support phase, and a combined approach with added toe 

support and shock absorption, respectively.  The toe support phase is omitted in normal 

ZMP based methods because it is, by definition, a failure with the foot beginning to 

rotate about the front edge.  The authors included it to allow real-time freedom of choice 

for placing the landing foot.  They argued this would allow for better walking on uneven 

ground. 

The ZMP can only be used to classify a state as stable or unstable.  More informative 

alternatives include the Foot Rotation Indicator (FRI) [35], used to determine the 

stability margin or degree of instability, and the Centroidal Moment Point (CMP) [36], 

which provides information on the whole body rotational.  After analysing how the 

various stability constraints performed for a human gait, the authors of [36] 

recommended a modified FRI that was more sensitive, and that the CMP and ZMP 

should both be used, for human-like locomotion.  A reason to improve upon ZMP 

control is illustrated in [37], where significant differences were found between human 

and ZMP gaits, such as CoG trajectory, free leg trajectory, and the position of the ZMP 

under the foot. 

With extra legs, stability becomes less of a problem, and the focus then shifts to 

developing gait algorithms – methods of moving the feet in order to move the system 

in a particular direction.  Different types of gaits for quadrupeds have been developed, 

to be used at different speeds, such as ambling, trotting, bounding and galloping [38]–

[41].  In order to improve manoeuvrability, forward and crab (perpendicular) gaits for 

flat and sloped terrain were developed in [42].  Other research has looked at fine tuning 

the gaits, including comparing different modelling assumptions on final real-world 

accuracy [41], and increasing efficiency by utilising the natural dynamics of the system 

[43]. 

2.1.2 Central pattern generators 

 

In motor skills science there was a debate over whether locomotion is reflex based or is 

generated internally.  Experiments in the second half of the 20th century demonstrated 

that internal generation had to be a significant part of locomotion [44].  This was proved 

by severing sensory neural pathways in animal subjects and observing that they could 

still perform locomotion.  In more recent times, dissections have enabled a reverse 

engineering of the neural networks that control this innate locomotion.  Those networks 
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that have been discovered, exist in spinal regions and have therefore been called ‘central 

pattern generators’, or CPGs [45]–[48]. 

A biological CPG can be defined as a neural network that produces rhythmic pattern 

outputs without the need for patterned input.  However, a distinction should be made 

between CPG neural networks and more traditional NNs, which are discussed in 

sections 2.1.3 and 2.1.4.  In reviewing the engineering use of CPGs, it was determined 

that it is better to see CPGs as systems of oscillators, rather than as neural networks.  In 

biological systems, the primary unit of rhythm is built around a pair of 

inhibitory/excitatory neurons that produce oscillations.  A detailed examination of a 

biological CPG from an engineering perspective was conducted in [49] but shall not be 

described in detail here.  The workings of the neurological systems are modelled, 

including membrane potentials, neuron resistance and capacitance, receptor channel 

dynamics, among other properties.  As described below, the applied literature in 

locomotion control generally uses more abstract mathematical forms. 

The review of CPGs here focuses on application to robotic control and generalises the 

concept to oscillator models.  For other perspectives, including historical and biological 

contexts, see the reviews in [50], [51]. Some approaches, that are referred to as CPGs, 

do not even explicitly use differential equations, but rather use oscillators with more 

transparent sinusoidal forms, as discussed in the next section. 

A detailed mathematical modelling of biological CPGs has been performed in [49].  The 

first examples of artificial CPGs described here take inspiration from biology, but 

without directly modelling biological processes.  First developed in [52], the Matsuoka 

oscillating system models networks of mutually inhibiting neurons and is presented in 

equation (2.2).  In this system, xi and yi are the internal and external states of oscillator 

(or neuron) i respectively.  The model includes an adaptation, or self-inhibitory, 

component xi
’ which was shown to help produce oscillatory behaviour, when certain 

conditions on the constants were met.  Oscillators are linked with the weight matrix aij, 

b and T are timing constants, and si is an input from outside of the network.  Mutually 

inhibiting pairs of neurons can conveniently be arranged into units that represent 

extensor/flexor muscle pairs [53], and units can then be linked to others to control inter-

limb coordination, all determined by the weight matrix aij. 
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Matsuoka oscillators have often been used for locomotion [20], [52]–[63], and as well 

as proving successful, they have been found to elegantly produce different gaits, such 

as walking, trotting and pacing quadruped gaits, simply by specifying different phase 

relationships [53].  Furthermore, they are capable of producing smooth gait transitions, 

which was dramatically demonstrated in [57] where a 2D four legged robot switched 

between a bipedal gait for walking, and a quadrupedal gait for climbing up a slope. 

A final example of a biologically inspired CPG oscillator is the Ellias-Grossberg 

oscillator outlined in detail in [64] and specified in equation (2.3).  This has some 

similarities to the Matsuoka oscillator above but slightly different combinations of 

contribution to the change in internal state (interpreted in [64] as the membrane potential 

of a neuron), from the current internal state xi, external input Ii and interlink weight 

matrix Dij.  In this equation, A, B, C, E, F1, F2, G1, G2 are constants.  Besides its initial 

introduction in [64], and use in controlling insect locomotion in [65], this oscillator 

appears to be rarely used. 
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  (2.3) 

Moving away from a direct biological inspiration, the following CPG systems are based 

on oscillators that are not trying to emulate some biological control process.  The most 

obvious of these are systems that explicitly use sinusoidal equations to produce 

oscillations.  A typical example, from [66], is shown in equation (2.4), and gives an 

output θi using an offset xi, and amplitude ri, and a phase angle ϕi for oscillator i.  The 
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constants ar and br, are used in smoothing equations to change ri to a new value Ri, with 

ax and bx doing the same for xi with respect to Xi.  The phase angle is changed at a 

specified rate of ωi plus a summation produces a link with the other oscillations based 

on phase difference, and interlink matrices α and β. 
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  (2.4) 

Other examples of using this type of CPG include [67]–[69], where serpentine 

locomotion was developed, and by using a hierarchy of oscillators, bipedal locomotion 

was produced in [70]. 

Finally in this section are presented oscillators that are expressed as differential 

equations, but without emulating biological processes.  A typical example is the Van 

der Pol oscillator [71]–[74], shown in equation (2.5).  It has a simple structure with 

controls for dampening μi, amplitude pi, frequency gi and offset qi for oscillator i 

(although there is some interaction between the parameters).  Coupling with other 

oscillators in the system is achieved through the matrix λ.  As with Matsuoka oscillators, 

Van der Pol oscillators have been able to produce walking, trotting, pacing and 

bounding gaits [72], as well as forward jumping movements [73], with smoothly gait 

transitions achieved by varying the control parameters. 
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Finally, the two state variable Hopf oscillator is shown in equation (2.6) [75], [76].  The 

state variables x and y interact to create oscillations, with frequency controlled by ω.  In 

equation (2.7) a driving term εF(t) from [77] has been added, along with a coupling 

matrix k [78] to connect a system of oscillators, indexed by i.  Additional constants γi 

and μi are included to control speed of recovery for perturbation and amplitude 

respectively.  An interesting variation in CPG constructions was presented in [77], 

where a series of Hopf oscillators was investigated, that included feedback terms 

allowing learning of an input trajectory, with each sub-oscillator matching a partial of 
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the input.  A CPG using these combined oscillators was trained with a reference bipedal 

locomotion pattern, thus converting a reference trajectory into a system with limit cycle 

properties, so that it became resilient to perturbation. 
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2.1.3 Feed Forward Neural Networks for movement control 

 

Feed forward NNs are limited in their ability to generate movement patterns over time.  

They have been used to specify parameters for an analytically derived control method, 

in response to control inputs encoding stair height to be climbed, in order to interpolate 

GA derived optimal patterns (with respect to energy consumption) [79], [80]. 

For actual pattern generation, radial basis function networks (RBFN, Figure 1) have 

been used to generate movement actions in response to sensory input [81].  In RBFNs 

the output of the input layer is fed into each neuron in the RBF layer as a vector.  The 

neurons in this layer have a reference vector and activate depending on how close the 

input vector is to their particular reference.  Weighted sums of the RBF neuron outputs 

are then fed into the output layer.  The sensors in [81] gave information about the 

hexapod robot’s current state (limb positions) and the network was trained to choose a 

suitable action in order to maintain a walking gait.  RBFN were used as part of the 

network has neurons that compare input vectors to stored reference vectors, and respond 

strongly when the distance between them is below a threshold value.  This enables the 

network to classify states, and these then feed forward towards output layers for actions.  
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By basing output on the current state, movement patterns are limited to those in which 

a one to one relationship can be established between the analysed state and suitable 

action. 

 

Figure 1: Radial Basis Function Network (RBFN) 

By including a time signal, a feed forward NN was developed in [82] that could output 

actuator values as a function of time.  The authors used a Cerebellar Model Articulation 

Controller or CMAC network (Figure 2), which is a type of associative memory network 

based on the cerebellum [83].  The continuous input space is divided into hyper-

rectangles so that an input is located in one rectangle at any one time.  Multiple layers 

are used with the placement of the rectangles slightly offset for each layer, so a rectangle 

in one layer will overlap several in the other layers.  In this way one input is associated 

with multiple hyper-rectangles, one in each layer, but changes in the input will result in 

different changes in activation in each layer.  Each hyper-rectangle in each layer has a 

weighted connection to the output neurons.  The output of each node is the weighted 

sum of the activated rectangles, and the weights are adjusted through training. 

The CMAC was trained to learn basic walking patterns for a hexapod, as a function of 

time and control variables for desired step length and walking period. 

 

Figure 2: Cerebellar Model Articulation Controller (CMAC) 
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2.1.4 Recurrent Neural Network pattern generators 

 

Recurrent neural networks (RNN) recycle information, via time delays, back into 

themselves, which makes them useful for processing inputs that evolve over time.  Of 

particular interest to locomotion is that they can also exhibit limit cycle behaviour and 

self-generated patterns, and so are capable of producing periodic trajectories. 

Upon this simple premise, more complicated networks can be developed to produce 

complex patterns and handle different types of input.  With the RNNs outlined here 

there is a partnership between processing external sensor data and internally generating 

patterns. Inputs into the RNNs for locomotion generally consist of gait selection and 

sensory information.  For non-recurrent networks, the inputs are vital to produce the 

trajectories but, for the RNN, the pattern is produced internally and modified or selected 

by the inputs. 

A simple way of making an RNN is to recycle the output of a layer, back into the hidden 

layer (as additional inputs to those neurons).  In Jordan networks (Figure 3), which were 

used in [84] to learn locomotion trajectories, this is done by feeding the output layer 

back into the network, and with Elman networks (used in [85] to learn trajectories for a 

hexapod robot), this is done by feeding the hidden layer back into itself, via time-

delayed connections.  In [84] accurate, fault tolerant trajectories were learned, and the 

system could interpolate between forms found in the training set, by varying the control 

inputs accordingly. 

 

 

Figure 3: Jordan network 
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In [86]–[88], networks of fully connected leaky-integrator neurons were used as pattern 

generators (Figure 4 and Eq. (2.8)).  In [86], a network of 10 neurons was used to evolve 

biped walking patterns. The output functions of the neurons insured changing outputs 

over time, even if the network was initialized with zero outputs for all neurons.  In [87] 

a similar network was used to evolve hexapod locomotion, and in [88] another network 

was evolve to hunt a chemical marker in 2D space. 

 

 

Figure 4: Fully connected neural network with six output neurons (shaded). 
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This chapter began by outlining analytically methods, utilising bespoke equations to 

meet the task, followed by CPGs, which although more general than analytical methods, 

are explicitly systems of oscillators.  The neural networks presented in this and the 

previous section represent the most general solutions investigated for the field of 

locomotion control.  The structure of neural networks do not impose the same 

constraints on function as the other methods.  This is taken to the fullest extent in 

reservoir networks (Figure 5).  These networks are generally large (relative to other 

RNNs for a given task), the structure is initialised randomly rather than having defined 

layers, and this combines with the size of the network to create a highly dynamic 

information flow.  Unlike other neural networks, the weights of connections are not 

evolved or learned.  Rather, the output neurons are evolved to ‘listen’ in to desired 
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patterns from the network.  This enables linear regression methods to simplify learning.  

Therefore, size and processing power requirements are traded for simplicity of 

learning/evolving.  In [89] a reservoir network was developed that could learn human 

walking trajectories captured from a motion capture system.  The system was resilient 

to perturbation and able to interpolate between trained references, controlled by inputs. 

 

 

Figure 5: Reservoir neural network. 

 

2.1.5 Rule based systems 

 

By classifying the current state, the next action can be determined through a table 

lookup or rule based system.  The simplicity of these approaches enables clear 

interpretation, and therefore the use of expert knowledge or learning/optimising 

techniques to specify transition rules. 

If a calculation of the current state vector can be performed, with discrete values or 

categorisation, then a state index can be calculated and used to select an action from a 

lookup table.  In [90], a transition table was evolved, in order to specify actions based 

on the current system state, for a hexapod.  Body states were classified into an integer 

value and this was used to index a list of actions, which specified leg movements. For 

a given transition table, generated using a GA, the hexapod was simulated starting with 

each possible initial configuration, and the fitness function was the proportion of those 

starting positions that led to a tripod gait.  The best table evolved gave stable tripod 

gates for 98.4% of the initial states, with the failures arising from initial symmetrical 

leg positions that could not lead to asymmetrical tripod gaits. 

A transition table was also used in [91] to control a hexapod, but this time, the state 

value was calculated as a binary string where each bit represented either supporting 

(down) or not supporting (up) leg. With one leg being raised or lowered at a time, the 
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goal was to move through a terrain that had specified bad patches (pre-known to the 

algorithm).  Using a graph search technique, locomotion was successfully generated 

and exhibited different gates. 

Fuzzy logic algorithms allow decisions based on continuous data.  Processing sensor 

information (for system state and environmental data) these systems have been used to 

augment analytical solutions in [33] (to modify ZMP positions to match shifting 

observed in human gaits) and [92] (to control four free parameters in order to improve 

stability and efficiency). 

More directly, fuzzy logic controllers have been developed to fully control movement.  

In [93] they were used for path planning, ditch crossing, and turning for a hexapod.  The 

controllers processed ditch distance and angle information, and outputted actions for 

each leg.  Initially, the rules were specified by the author, but it was assumed that a 

subset could be more effective.  To achieve this, GAs were used to prune the rules, 

using a fitness function developed to minimize travel time and maximize walking 

efficiency.  Through simulation it was found that, whatever the composition of the 

original rule set, the GA always improved the fitness. 

Others examples include bipedal stair climbing [94] and bipedal flat walking [95], as 

well as systems that learned during real-world performance (on-line learning) [96], [97].  

A valuable property of rule based systems, including fuzzy-logic algorithms, is that the 

techniques (as expressed as rules) can easily be interpreted [94]. 

 

2.1.6 Hidden Markov models 

 

One other specialist technique was identified in the literature – constructing hidden 

Markov models (HMM) for imitating observed movement patterns.  The goal for these 

methods is to observe a motion patterns and then to reproduce them.  Often, a human 

may be the source of the motion pattern to be copied and because the physical workings 

and capabilities of the source and target systems are different, simple copying will not 

work.  Imitation therefore becomes a process of observation and re-synthesis.  Here, 

observing is estimating the underlying state variables of the source system where only 

the output is available, and Hidden Markov Models (HMM) have been used in robotics 

for this task [98]–[101]. 
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When imitating, the system first observes a movement pattern and a recognition 

algorithm is then used to determine if the movement is already known, in which case 

the pattern is used to refine the stored one.  If the pattern is not recognized, then it is 

added to the database as a new, learned pattern.  The observed kinematic or kinetic 

values, as well as the synthesized values, are called ‘motion elements’ in the HMM 

papers reviewed here.  One motion element represents the kinematic/kinetic values at 

one discrete moment of time.  The hidden states of the HMM provide an abstraction of 

the movement patterns, which can be used to re-synthesise the motion in the target 

system. 

The first part of imitation is recognition, where a recursive algorithm calculates the 

probability of observing a movement pattern, if the candidate HMM was used to 

generate it.  If this probability exceeds a threshold value (which can be varied to control 

grouping of similar observations), then the observation is determined to have fit the 

stored model and is, therefore, recognized [98], [99]. 

If recognition does not occur, then the next stage of imitation is learning.  A new HMM 

is generated from the observation sequence using an expectation-maximisation 

algorithm (EM), such as the Baum-Welch algorithm [102]. 

To synthesize, or produce the movement once stored, it is usually generated 

stochastically from the HMM.  Because of its probabilistic nature, typically, the 

synthesis is repeated several times, with each sequence normalized in time.  The 

sequences are then averaged to produce a final output.  Alternatively, in [99] the Viterbi 

algorithm [103] was used instead, to generate a sequence that most closely matches the 

observation.  Finally, an error value is generated based on the difference between the 

synthesized and observed sequences.  This error value can then be used in a learning 

rule to modify the matrices of the HMM and refine the stored pattern. 

 

 

2.2 Summary 

 

A continuum of approaches exists to produce locomotive movement, from those that 

rely fully on prior knowledge and require no training, to those that are very generic 

pattern generators that require intensive training or optimisation (see Figure 6 for a 



Chapter 2 - Review of locomotion control  22 

 

relative visual depiction of algorithm optimisation demand versus constraint profile).  

A summary of the highlighted advantages and disadvantages of the methods presented 

in this chapter is given in Table 1. 

For this thesis, analytical approaches are rejected, for the reasons specified in Chapter 

1 – the process of simplification required for modelling reduces reliability, obscures 

detail and requires reworking to adapt for individual differences [11].  For similar 

reasons the rule based systems are also excluded as they impose a level of simplification 

through the selection of discrete action.  Furthermore, rule based systems produce 

actions as a function of the current state and therefore may need additional internal state 

variables, or a time input (as described in section 2.1.3 for the CMAC network [82]), to 

have a comprehensive enough output range of patterns to meet the task goal. 

Lastly, hidden Markov models are also not considered for this thesis as they have 

fulfilled the special task of imitation in the literature.  That leaves CPGs and neural 

networks as applicable techniques.  Because of their oscillator based design, CPGs will 

be best suited to cyclic behaviours.  Movement skills that are non-cyclic and discrete 

may be difficult to realise in a CPG, unless a suitable window of time is chosen, the 

CPG is configured in such a way that it does not oscillate, or some multi-stage 

techniques are implemented.  Prior to conducting the research presented in subsequent 

chapters, it was assumed neural networks have the potential to provide a framework 

than can produce both cyclic and non-cyclic movement patterns. 

 

 

Figure 6: Constraint/adaptability and learning demands of the reviewed control methods. 
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Table 1: Advantages and disadvantages of the reviewed control methods. 

 Advantages Disadvantages 

Analytical  Accurate analysis can produce immediate 

results 

 Training not required so implementation 

in hardware can be easier 

 Long research history 

 Easy to interpret solutions 

 Usually very task specific 

 Generally task limited with no 

emergent behaviours 

 Approximate modelling can produce 

inaccuracy or inefficiency 

 Simplification of analysis through 

over-constraint can lead to sub-optimal 

solutions 

 Constraints can produce ‘un-natural’ 

gaits 

CPG  Limit cycles are resilient to perturbation 

 Emergent behaviours 

 Clear parameter structure, good for 

optimisation 

 Less constrained than analytical, possible 

that better solutions exist 

 Calibration, training or evolution often 

required 

 Less easy to interpret solutions 

compared to analytical 

 Still more constrained than some other 

approaches 

 Non-cyclic behaviour difficult to 

implement 

Neural 
networks 

 Least constrained approach 

 Capable of good limit cycle behaviour, 

resilient to perturbation, and able to 

interpolate behaviours 

 Emergent, new behaviours possible 

 Suitable for training or optimisation 

 Some interpretation possible with FFNNs 

 Training costs can be high 

 Difficult to interpret method of 

solutions (black box solutions) 

HMM  Used for imitation tasks 

 Often used with a database of skills 

 No emergent behaviour 

 Lack of resilience to perturbation 

 Difficult to interpret method of 

solutions 

Rule 
based 

 Can be very simple to implement 

 Easy to interpret solutions 

 Easy to optimise 

 Fuzzy systems can cope with varied 

environments 

 Often only coarse movements can be 

specified 

 Over constrained so less optimisation 

potential 
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3 Review and discussion of locomotion optimisation and 

physical modelling methods 
 

Following the presentation of locomotion control methods in chapter 2, this chapter 

reviews and discusses methods of parameterisation, particularly from the viewpoint of 

optimisation, reviewing existing techniques and presenting a background in other 

optimisation algorithms that could be applied to the field, in accordance with the 

objectives of this thesis.  Then this chapter summarises physical simulation and model 

design used in the research presented later in the thesis.  That section explains choice 

of software platforms, methods to design physical models and influences from the 

literature. 

 

3.1 Optimisation techniques in locomotion 
 

Although chapter 2 outlined important methods in locomotion control, little has been 

said about how these methods are configured for a particular application.  For the non-

analytical techniques, and even for several analytically derived solutions, there exist 

some or many parameters which will need to be specified.  By evaluating a parameter 

set according to some constraint or fitness criteria, such parameterisation can be viewed 

as an optimisation process.  For analytical approaches, the specification of gait form 

and the use of conservative stability constraints usually limits the scope of optimisation.  

However, there are sometimes parameters available to adjust, such as gait parameters 

including stride length and cycle frequency.  These parameters can therefore be 

candidates for optimisation, according to some desired goal. 

As can be seen with the formulae and structures presented in chapter 2, CPGs and NNs 

generally require a sizable number of parameters to be set.  The goal of configuring 
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these parameters may simply be to produce a viable solution, or to approach an optimal 

solution with regards to one or more goals (e.g. energy efficiency or speed).  By proper 

encoding of fitness functions, even the basic requirement of viability may be achieved 

through an optimisation process. 

3.1.1 Review of optimisation goals 

 

Achieving viable solutions is generally not a problem for analytical solutions, as the 

point of the analysis is to construct a successful locomotion control system.  However, 

for the less constrained CPGs, the system may have a wider range of possible outputs 

than the task specific goal, and therefore configuration may be needed to produce 

success, such as for generating walking patterns in [60], [61].  A simpler method, if a 

known successful gait pattern for the physical system is available, is to train the control 

algorithm to match that reference.  Examples for CPGs can be found in [62], [74], [77], 

[104]. 

Beyond finding solutions where the criterion is simply to produce an acceptable motion, 

other research has been conducted into attempting to find optimal solutions in terms of 

the stability of the gait, efficiency or accuracy.  Improving the form, particularly 

dynamic stability, has been the goal for research using analytical method [25], [105], 

[106], and  CPGs [20], [56], [59]. 

Energy, and the related goal of effort, feature widely as optimising them can help 

realising the solutions as robots in the real world.  For analytical control methods, 

minimisation of energy expenditure was investigated in [79], [80], [105]–[108], with a 

CPG example in [68], and minimisation of actuating effort, determined as a function of 

the actuator torques, was looked at in [109], [110] for analytical control methods.  

Finally, maximising speed, which is a typical performance goal usually expressed as 

maximum distance covered over a set time frame, was attempted in [111] for an 

analytical method, and in [78], [112], [113] for CPGs.  Alternatively, minimised error 

in keeping to a desired speed can be seen in [114] for analytical, and [75] for CPG 

control methods. 
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3.1.2 Review of optimisation methods 

 

When specifying values, the simplest technique is to input them manually.  This 

approach has been common, for example for analytical methods [25], [105]–[107], 

[109]–[111], [111], [114] and for CPGs [21], [54], [55], [65], [66], [70]–[73], [115]–

[119].  Analysis can provide readily interpretable parameters such as end and 

intermediate gait coordinates [79], [80], [108], but otherwise, successful manual 

specification will rely on parameter ranges being a large subset of possible inputs, there 

being a simple interaction of the parameters and the output (e.g., a linear relationship), 

a large amount of time to be available to discover suitable values, or luck, or a 

combination of all of those factors. 

Various algorithmic search techniques have been applied to locomotion control.  At the 

simplest level, random search for minimising speed error in an analytical method was 

deployed in [114] (and was found to be better in that situation than sequential 

programming and gradient searches), and an exhaustive search for a CPG in [68].  Next, 

sequential quadratic programming has been applied for analytical [105], [106], [109], 

[110], and CPG [74] methods. 

Local search has been used in [78] where a hill climbing algorithm was used for a CPG 

based method, but the most common technique found was the global genetic algorithms 

(GA).  These were applied for the analytical method in [79], [80], [108] and for CPGs 

in [20], [24], [59]–[62], [104], [113]. 

Various alternative techniques were attempted, in order to speed up the search.  For an 

analytical method, sequential surrogate optimisation was used in [111] (using 

successive approximations of the objective function), and for CPGs a policy gradient 

search was conducted in [112] and actor/critic learning was used in [56]. 

Alternative techniques used include Hebbian style learning rules [75], integrated 

oscillator learning terms [77] (equation (2.7)), and genetic programming constructed 

sinusoidal systems [120] for CPGs, and Depth First Search [121] and A* search [121] 

for analytical path planning.  Multi staged optimisation has been used to simplify the 

process when there is a large number of degrees of freedom [62], [104].  For example, 

in [42] a GA was used to find parameters for the hip joints first, then all joints in the 
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left leg, the whole lower body, the upper body, and then finally, the whole body (which 

in total had 271 parameters). 

Few papers identified in the literature search compared different optimisation 

techniques.  Although reasons were given for the choice of technique in some cases 

(such as actor/critic methods being used to speed up search), those reasons were 

untested relative to other techniques.  That is why one main aim of this thesis was to 

compare and contrast various optimisation techniques applied to locomotion. 

Using outcome measures to produce walking in an unconstrained system can be 

difficult.  The optimisation process needs to find a workable solution from a large 

solution space.  Using travelled distance as a fitness function was successful in [60] 

when combined with analysing final height, to detect possible falling, and average step 

length.  In [61], the authors initially failed to produce a walking gait with the outcome 

measures of travelled distance, frequency of foot strikes, and uprightness.  They 

presented a theory that control systems in nature may have co-evolved with the structure 

of the physical system.  With this in mind, they added support structures to the biped 

that allowed it to evolve effective gaits without the risk of falling down.  Although not 

investigated, the authors suggested that the supports could then be removed and 

optimisation continued. 

3.2 Background on global search heuristics 
 

Typical heuristic approaches to optimisation problems include particle swarm 

optimisation (PSO) [122], [123], genetic algorithms (GA) [124], [125], and differential 

evolution [126], [127].  However, as highlighted in the previous section, of these only 

GA were identified in the literature review for locomotion control.  Following the 

objectives of this thesis, more optimisation methods were examined, with the results 

presented in later chapters, for use in locomotion control.  This section provides a brief 

background on the techniques that were later examined. 

3.2.1 Genetic algorithms 

 

A genetic algorithm (GA) is a search heuristic inspired by the biological process of 

evolution [128].  Candidate solutions are encoded as a string of genes called a 

chromosome.  Several chromosomes (initially randomly generated) are contained in a 
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population pool and each chromosome is assessed for its fitness.  In the experiments 

presented here, a chromosome encodes the parameter set of each control algorithm, with 

one gene representing a parameter.  The algorithm is then used in the physical 

simulation to test the candidate solutions and the fitness is derived accordingly to the 

sport skill under evaluation. 

A new generation of the chromosome population is produced at each iteration.  The 

prevalence of chromosomes and genes carried through to the next generation is related 

to how good their fitness was, so more information from fitter chromosomes will be 

present and propagated, than such from less fit chromosomes, in general.  Candidate 

solutions are combined, inspired by breeding in nature, using cross-over reproduction 

operators in an attempt to build better solutions by finding combinations of good 

elements of multiple solution attempts.  Furthermore, mutation is used to randomly alter 

individual genes in an additional attempt to move through and explore the search space. 

3.2.2 Particle swarm optimisation 

 

Particle swarm optimisation (PSO) [129] uses a swarm of particles to move through the 

search space, with each particle’s position changing according to its own experience, 

and the experience of other particles in the swarm.  By recording the best position found 

for each particle, and for the whole swarm or for sets of neighbouring (by index) 

particles, candidates for optimal solutions can be exploited.  By using momentum, each 

particle can explore the search space and potentially find better solutions, which can 

then be exploited. 

The candidate solutions are represented by the location of each particle in the search 

space with the number of dimensions equal to the number of parameters to optimise.  

The position ix   of each particle i is updated according to equation (3.1): 

      1 1 ,i i it t t   x x v   (3.1) 

where vi is the velocity of each particle i.  The velocity for each particle i and dimension 

j is calculated according to equation (3.2). 
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where pij is the best solution found so far by particle i, lij is the best solution found in 

the set of local (by particle index) neighbouring particles, c1, c2 are constants balance 

exploration (ability to find useful areas of the search space) versus exploitation (ability 

to refine solutions), and r1j, r2j are random numbers calculated for each iteration t.  The 

use of a local neighbourhood characterises this as the Local Best PSO variant.  The size 

of the neighbourhood around each particle controls how information about good 

solutions is communicated throughout the swarm.  When using a PSO in the research 

presented in later chapters, it was configured as in Table 2 with standard values outlined 

in [130]. 

Table 2: PSO configuration. 

1c
 2c

  0ijv t 
 

1.49445 1.49445 0.0 

 

3.2.3 Estimation of distribution algorithms 

 

GA and PSO techniques evolve candidate solutions over time, sharing information 

across the population in order to locate regions with better fitness, and then to exploit 

those areas in an attempt to find the optimal solution in the search space.  In contrast, 

estimation of distribution algorithms (EDA) evolve explicit probability distributions 

from which new candidates are sampled for each generation.  A typical example of 

EDAs is the population-based incremental learning (PBIL) algorithm [131], which 

evolves probability strings that are sampled to produce binary candidate strings.  After 

determining the fitness values for all of the candidates, the probability string is updated 

in order to increase the probability of sampling a string that was the same as the fittest 

candidate. 

It was established in [132] that a relatively new type of optimisation algorithm – 

Quantum Inspired Evolutionary Algorithms (QIEA), belonged to the family of EDAs.  

Following the objective of expanding upon the number of optimisation algorithms 

applied to locomotion, as outlined in the introduction, variants of QIEAs were 

developed and tested for real-value functions, and are presented in chapter 4.  They 

were then compared in locomotion optimisation experiments to GA and PSO in chapter 

5. 
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3.3 Review and specification of physical simulation 

 

Movement optimisation can either occur in a simulated or a real environment.  To apply 

computational optimisation to human tasks, or to robotic tasks where repeated runs are 

of practical difficulty, a simulated physical model is required.  This section begins with 

a brief description of available simulation platforms, outlining their advantages and 

disadvantages, and concludes with a series of physical model specifications that were 

used in the research for this thesis. 

 

3.3.1 Review of physical simulation platforms 

 

The optimisation procedure adopted for this research has four components: a physical 

simulator where the participants, environment and props are modelled and are simulated 

to experience forces generated externally (e.g., gravity) and internally (e.g., muscle 

forces); a control algorithm that specifies desired joint torques or angles (to approximate 

muscle or actuator actions) for each time iteration of the physical system; an optimiser 

that specifies the parameters for the control algorithm; a fitness function that drives the 

optimisation towards a desired movement skill goal. 

The control and optimisation algorithms were to be produced for this thesis, and were 

generally coded in C++ (for speed, and author familiarity).  For visualisation many 

software packages exist, and different ones were used for the work in this thesis.  The 

main choice to be made, was selection of a suitable physical simulator. 

In the literature, two options were identified – a game orientated package used in [86] 

and a robotics platform in [31].  The game package that was used is no longer available.  

Game packages tend to be built for speed but are usually rigid body simulators and may 

set accuracy as a low priority.  The robotics platform identified is useful because it has 

been used in other studies, and includes a bipedal robot model.  Additionally, there are 

biomechanics packages available that include more detailed models, although the 

computational time will be significantly increased.  A short, non-exhaustive summary 

of packages available is provided in Table 3. 
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Table 3: Non-exhaustive summary of physical simulation packages. 

Type Name Location Notes 

Game Newton 
Dynamics 

newtondynamics.com Built for speed, open source, 
good communication from 
author. Freely available 

Game Unity unity3d.com Contains a whole development 
environment so includes 
visualisation.  Can be used for 
free. 

Robotics OpenHRP3 fkanehiro.github.io/ 
openhrp3-doc/ 

Used in the literature search.  
Includes a bipedal robot model.  
Stopped development in 2012.  
Freely available 

Biomechanics SIMM nmbl.stanford.edu/ 
research/software/ 
index.htm 

Collection of software packages.  
Reasonably high detail.  Models 
provided by the user community.  
Freely available. 

Biomechanics LifeMOD lifemodeler.com High detail, soft body.  High cost. 

 

As optimisation requires multiple simulation runs, it was decided to include a game 

orientated physics engine for speed purposes.  Newton Dynamics was selected as the 

author of this thesis was already familiar with the package, it was free to use and there 

was good free support available from the developer and user community.  Although this 

research project has not tested Newton Dynamics for accuracy, the developer claims 

accurate performance due to a deterministic solver, and in turn suggests the platform 

can be applied to scientific research.  The software has support for GPU acceleration 

and can be used on multiple platforms.  It is designed to be integrated into other systems 

but sample projects exist that include visualisation, interface and logic so prototyping 

can be started quickly. 

To offer a point of comparison with research in the literature, the popular robotics 

simulation platform Open Architecture Human-centered Robotics Platform version 3 

(OpenHRP3) [31], [133], was included in the research for this thesis.  It allows external 

automation so can readily be used for the multiple simulations required by optimisation.  

It can be used for bipedal simulations and includes a humanoid model that was 

reasonably detailed (although distinctly robotic in nature).  The main environment is 

typically run as a java programme hosted in Eclipse (Figure 7).  This provides a user 

interface for visualising the simulation, loading and creating physical models, 

specifying control scripts, as well as other functions. 
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Figure 7: Open Architecture Human-centered Robotics Platform 3 (OpenHRP3). 

 

3.4 Model design 

 

The physics platforms used in this thesis are rigid body simulators, meaning that 

geometry cannot be deformed (compressed, bent, etc…).  This is a good approximation 

for basic solid structures, especially robotic systems which are generally built using 

very rigid materials such as metal, but will lose some accuracy in modelling biological 

system which can be significantly deformed and contain tissues with viscoelastic 

properties [134].  Some rigid body simulators, including Newton Dynamics, can be used 

to simulate soft body mechanics and even fluids, using a network of particles to 

approximate volumes, but this advanced usage was not performed for this thesis.  All 

models used in experiments consisted of rigid geometry parts (cuboids and spheroids) 

connected with mathematical models of joints. 

In addition to the bipedal robot from OpenHRP3 [31], which was a relatively high 

degrees of freedom model, a set of models were designed to be used in Newton 

Dynamics.  They are described in the following subsections. 

3.4.1 Simple quadruped model 

 

To provide an option that would present the least difficulty to optimise locomotion 

patterns for, a quadruped was designed.  Quadrupeds are generally more stable than 

bipeds and so presumably gaits are easier to find.  The system described here is statically 

stable (will remain still without joint activation) in its default stance, and it was observed 
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in testing that the model would only fall over if either the rear legs or front legs act as a 

pair, moving in the same direction sufficiently to flip the model.  The added stability of 

this design provided a solid testbed with which to compare control and optimisation 

techniques. 

The quadruped was constructed with cuboids, hinge joints and linear slider joints.  The 

main body was situated at the top, supported by four legs at each corner, with each leg 

consisting of an upper and lower part.  The upper and lower sections of each leg were 

joined with a linear slider actuator.  The role of this joint was to lift the leg up and place 

it back down onto the floor and the legs were attached to the main body using hinge 

joints, allowing forward and back rotations.  There was no special design for the feet, 

and default friction coefficients were used in the physical simulator.  The visual design 

for the quadruped is given in Figure 8 and a specification of the physical attributes of 

each body part is given in Table 4. 

 

 

Figure 8: Schematic of the quadruped design. 

 

Table 4: Quadruped part specification. 

Part x size (m) y size (m) z size (m) Mass (kg) 

Main body 0.30 0.10 0.50 15.000 

Upper leg 0.06 0.16 0.06 0.576 

Lower leg 0.06 0.16 0.06 0.576 
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3.4.2 Simple biped model 

 

Based on the biped design from [86], a simple biped model with a small number of parts 

was included to investigate bipedal gaits with minimal degrees of freedom.  Cuboids 

were used for the body parts and hinge joints connected parts together.  The original 

inspiration for the design from [86] was used for walking gaits, and included very little 

upper body structure.  The system contains just two legs and a short torso, and used a 

constant density to decide masses.  It was later found that the performance of the system, 

and ability to form suitable gaits, was heavily dependent on the joint actuation model.  

This is discussed in chapter 5.  The schematic of the simple biped model is given in 

Figure 9 and part sizes are given in Table 5. 

 

Figure 9: Simple biped schematic 

Table 5: Simple biped specification. 

Part x size (m) y size (m) z size (m) Mass (kg) 

Torso 0.300 0.200 0.200 12.00 

Hip 0.100 0.100 0.100 1.00 

Thigh 0.100 0.500 0.100 5.00 

Shank 0.100 0.500 0.100 5.00 

 

3.4.3 Detailed biped model 

 

This model was designed to investigate producing movement in more complicated 

systems.  The primary goal was to increase the number of body parts, thereby increasing 
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the degrees of freedom and, potentially, making movement control more difficult.  

Dimensions were specified in an ad-hoc fashion, with sizes constructed to give a 

visually humanoid structure, although this was done by eye rather than using 

anthropometric data.  Initially masses were specified using a constant density but this 

criterion was soon broken as experiments into the dynamics of the body were conducted 

in the physical modelling software.  When testing out the behaviour of joint movements, 

parts were added and their size and mass modified, until satisfactory movement patterns 

were produced when manually testing joint actuation, and no wild behaviour 

(unrealistic explosive movements) was observed in early test optimisation runs. 

Articulation was provided through hinge joints.  Additional body parts (neck, shoulders, 

abdomen, hips and ankles) were used to enable rotation around two axes by joining a 

pair of orthogonal hinges.  The design is shown in Figure 10 and part sizes are shown 

in Table 6. 

 

Figure 10: Detailed biped schematic 
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Table 6: Detailed biped specification. 

Part x size (m) y size (m) z size (m) Mass (kg) 

Head 0.152 0.232 0.200 4.69 

Torso 0.400 0.520 0.200 29.80 

Upper arm 0.100 0.282 0.100 1.83 

Forearm 0.080 0.269 0.080 1.13 

Hand 0.100 0.086 0.050 1.00 

Thigh 0.160 0.422 0.160 9.67 

Shank 0.110 0.434 0.120 3.03 

Foot 0.100 0.100 0.258 0.86 

Neck 0.150 0.010 0.200 0.21 

Shoulder 0.100 0.010 0.100 0.07 

Abdomen 0.400 0.010 0.200 0.60 

Hip 0.160 0.010 0.160 0.24 

Ankle 0.100 0.010 0.260 0.10 

 

3.5 Summary 

 

A range of optimisation or learning techniques were identified in the literature.  The 

main aim of this thesis is to attempt to locate optimal solutions, rather than find accepted 

solutions quickly.  For that reason globally orientated searches, rather than gradient 

based solutions will be favoured and only GA fits this requirement from the literature 

review.  Therefore, this thesis will examine other techniques, and compare them to GA, 

to establish the most appropriate techniques for the domain.  A background to PSO and 

EDAs was presented, and they will be further discussed, developed and implemented 

in subsequent chapters. 

A small number of physics software platforms were surveyed, encompassing fast game 

orientated systems, purpose specific robotics platforms and biomechanics software.  A 

game focussed package, Newton Dynamics, was selected for being free, fast and having 

good support, while OpenHRP3 was selected as an example of a robotics platform 

popular in the literature. 

To experiment with different locomotion tasks, a set of physical models were developed 

– a quadruped model with good stability, a simple biped model and a more detailed 

biped model.  These models were designed to provide differing levels of difficulty for 

optimisation, in order to establish a relatively simple starting point, and the option to 

develop techniques for increasingly complex models. 
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4 Quantum inspired evolutionary algorithms 
 

Given the complexity of physical models and tasks which this thesis investigates, it is 

possible that the search space may contain a very small area of successful parameter 

vectors.  It was therefore one of the objectives of this thesis to apply different types of 

optimisation algorithms, in order to expand the knowledge of what may work best for 

this type of problem.  In section 3.1 the well-established optimisation techniques GA 

and PSO were described, as well as a class of algorithms called estimation of 

distribution algorithms (EDA).  In this research, the opportunity was taken to examine 

a new type of EDA optimisation algorithm called quantum inspired evolution algorithm 

(QIEA).  As well as implementing versions from the literature, changes were made to 

improve QIEA performance when applied to real-value functions and engineering 

problems, and the background, results and discussion are presented in this chapter. 

 

4.1 Introduction 
 

In 2002 a new optimization algorithm was presented [135], that took inspiration from 

quantum computing to evolve a probability distribution, which in turn was used to 

search a solution space.  The method used a string of quantum bits (Qbit), each storing 

the probability of sampling a one or a zero.  Successive sampling of the string produced 

a series of candidate binary solutions.  If any of these were found to be an improvement, 

the underlying Qbit probabilities were adjusted to make the candidate more likely to 

appear in successive samples.  A detailed explanation of the algorithm is presented in 

section 4.2. 

Originally, this quantum-inspired evolutionary algorithm (QEIA) was applied to the 

Knapsack problem - a binary combinatorial optimisation problem [135], and then 
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modified versions were applied by others to OneMax, Noisy-flat and NK-landscapes 

[132], neural-network training [136], [137], and networking [138].  In [132] it was 

argued that QIEAs should be categorised as multi-modal EDAs.  As discussed in section 

3.2.3, EDAs evolve probability distributions, as do QIEAs, and include popular 

examples such as PBIL [131], cGA [139] and UMDA [140].  A comparison of EDAs 

with respect to QIEAs, the multi-modal nature of QIEAs and the distinguishing features 

of QIEAs are given and discussed in [132]. 

Although some attempts have been made to apply binary QIEA to real-value problems 

[141], most applications to such tasks have used real-value QIEA [142]–[147].  These 

algorithms took, at least superficially, the concepts of superposition and quantum 

rotation gates that were introduced with the binary QIEA, and adopted them for 

application to real-value problems.  However, when reviewing them a number of 

problems were encountered.  Many were incompletely described and could therefore 

not be reproduced, one was trivial to implement [142] but performed extremely badly 

on a set of multimodal mathematical test functions, and of greatest concern, one paper 

[143] claimed superior performance to another optimization algorithm that was later 

found to not have performed as well as claimed [148].  A second issue, more of a 

philosophical concern than a practical problem, is that in making the adaptation to real-

value problems, the purity of the original quantum inspiration (that are naturally applied 

to binary problems) may be lost.  These concerns are discussed in sections 4.3 and 4.6.  

Various attempts at a real QIEA can be found in the literature, including [145]–[147], 

and [149] presents a review of both binary and real QIEA.  In this investigation I have 

chosen [150] to build a real-coded QIEA upon as it performed the best in initial tests 

and contained features common to many real QIEA. 

The goals of the research presented here were to see how the Classic version [135] of 

the binary QIEA, as well as a representative real QIEA, would perform on a number of 

recent benchmark test functions and several real-world problems, and  to investigate, 

design, and develop modified binary and real QIEA, proposed to improve the 

performance of these approaches in terms of convergence and accuracy. 

In sections 4.2 and 4.3 the binary and the real QIEA under investigation are presented, 

including the proposed modifications.  Section 0 outlines the methods used for testing, 
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and section 4.5 presents the obtained results, with a conclusion and discussion in section 

4.6. 

 

4.2 Binary QIEA 
 

This section presents the original binary quantum inspired evolutionary algorithm 

(bQIEA)  [135], along with a preliminary investigation highlighting arising problems 

when applying it to real-value tasks. Then a modified method designed to tackle these 

issues is introduced. 

4.2.1 Classic QIEA 

 

The original QIEA [135], here labelled Classic, contains the core properties of QIEA: 

Qbit sampling; and the rotation gate operator.  Unlike a traditional binary evolutionary 

algorithm, Classic stores a string of probability values called Qbits.  For each individual 

i in a population of size p, Qbit value Qij(t) gives the probability of sampling a zero or 

one for bit j (from a string with length of N bits) at iteration t.  Through repeated 

iterations of sampling, the same Qbit value can be used to sample a sequence of random 

binary values.  If a Qbit has a value of 0.5 (highest entropy), both one and zero have an 

equal chance of being sampled.  A Qbit value near 1.0 favours sampling 1s, and a value 

close to 0.0 favours sampling 0s. 

Even in the absence of evolution of the chromosomes, Classic will continue to produce 

different candidates for the fitness function, unlike a traditional evolutionary algorithm.  

The combination of probability and sampling is inspired by the quantum computing 

principal of superposition.  Superposition is the ability of a Qbit to hold multiple states 

simultaneously.  The string Qi therefore provides a probability distribution function for 

generating candidate solutions Ci at each iteration. 

While random sampling allows the solution space to be searched, the Qbits need to be 

changed in order to localise and refine the search.  By interpreting the Qbit probability 

as an angle, a quantum logic gate called a rotation gate (as given in equation (4.1)), can 

be used to adjust the probabilities.  This simply shifts the angle, and therefore the 

probability, one way or the other.  By using the best solution found so far (called the 

attractor Ai) for an individual, this gate can be made to rotate towards a position that 

reinforces the attractor probabilities, if it is still the best solution, or away, if the current 
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candidate is better (Table 7).  The magnitude of rotation |Δθ| is fixed to π / 100 and 

rotation saturates at the extremes, as given by equation (4.2). 

Information is distributed around the population via the attractors A.  Every G-th 

iteration, a global migration is performed, where the best attractor in the population is 

copied to all individuals.  Every L-th iteration, a local migration is conducted, where 

the best attractor in a subset of the population is copied to the whole subset.  For the 

investigations presented here, G=20, L=1 (meaning improvements to attractors were 

copied to subsets at the end of each iteration), and the number of subset groups was 

assumed to be 5.  Pseudo-code for the Classic approach is given in Algorithm 1. 
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Table 7: Direction of rotation gate. 
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Algorithm 1: Pseudo-code for the Classic algorithm. 

 

4.2.2 Application to real-value problems and convergence issues 

 

In this investigation, for the binary optimization algorithms, real values were encoded 

using a simple scheme.  Binary strings of length 24 bits were used to generate numbers 

in the [0, 224-1] range, which were then linearly mapped onto the domain for the fitness 

function being optimized. 

Initialise each Qi with each bit Qij=π/4  

Initialise each Ai with random strings 

Initialise each Qbit of each string to equal π/4 so that sin2(Qbit)=0.5  

while not termination condition do 

 for all i∈[1,p]  

  sample new Ci from Qi  

  evaluate fitness of Ci using a binary to real mapping 

  for each t∈[1,N]  

   if f(Ai) is better than f(Ci) then 

    select a rotation direction that would   

    reinforce Aij  

   else 

    select a rotation direction that would   

    move away from Aij 

   end if 

   update Qij with rotation gate 

  end for 

  if f(Ci) is better than f(Ai) then 

   Ai= Ci 

  end if 

 end for 

 every L iterations perform local migration 

 every G iterations perform global migration 

end while 
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An initial application of Classic to real-valued problems highlighted a convergence 

issue.  A plot of a typical evolution is shown in Figure 11a, where bits for one real value 

are shown with most significant bits to the left.  Numbers shown are iterations indices.  

Light values are unsaturated, dark blue are saturated near to zero, red are saturated near 

to one.  The plot shows that the least significant Qbits (LSBs) were saturating before 

the most significant Qbits.  Once a Qbit saturates, it will no longer evolve because 

sampling will continuously produce ones or zeros, depending on which end of the scale 

the Qbit has saturated to.  This means that the LSBs had become randomly fixed 

relatively early on in the optimization, thus preventing fine scale exploitation. 

For reasonably smooth search spaces, the early stages of the search should focus on 

finding the general locations of extrema, rather than refining solutions to a precise 

position.  During this phase, the fitness function will be affected more by large 

movements than by small ones.  With a binary representation, this will manifest in the 

most significant bits (MSBs) dominating the search, as changes to them are likely to 

find larger improvements to the fitness than changes to the LSBs. 

Therefore, in the early stages, the LSBs provide little selection pressure, and so random 

values for these bits will be tolerated, while the MSBs are optimised.  The early 

evolution of the LSBs can therefore be modelled as random walk processes.  Given that, 

it would be reasonable to expect several bits to have deviated substantially from the 

neutral middle probability position.  Furthermore, the process is reinforced - as an 

attractor adopts a solution, shifts in the random walks will make producing a zero or 

one more likely, and this will lead to the random walk being attracted to a probability 

of zero or one respectively.  By the time the MSBs have been optimised, it is likely 

therefore that the LSBs have saturated their probabilities. 

 

4.2.3 Improved bQIEA convergence performance for real value problems – HSB 

(Half Significant Bit). 

 

One possible solution to these convergence problems was presented in [141], where the 

rotation gate operator had limits imposed that were slightly within the zero to one range.  

This meant that, even late in the evolution, it is always possible to sample new bit values 

as the Qbits never completely saturate. 
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This type of scheme was tested but the obtained results were mixed at best.  As an 

alternative, presented here is a method that directly addresses the problem of LSB 

premature convergence.  When rotating a Qbit, a limit is imposed upon the range that it 

can move to, based on the current value of a more significant bit, so that it cannot move 

to a more extreme value.  This has the effect of delaying large movements in the LSBs 

until the MSBs have saturated. 

 

a)  

 

b)  

 

Figure 11: Evolution of Qbit probabilities on Griewank function using (a) Classic and (b) HSB 
algorithms. 

Initially, using the more significant immediate neighbour bit as the limiting condition 

was tested, but eventually it was found that picking a bit index that was half the position 

value of the Qbit being rotated (assuming bit index zero is most significant) was better.  

This is a somewhat less aggressive limiting condition presenting a compromise between 

premature convergence and overly slow convergence.  The adjusted formula for the 

rotation is given in equation (4.3), with the general algorithm code staying the same as 

for Classic (Algorithm 1).  This modified algorithm is called HSB (Half Significant Bit) 

in this thesis, and preliminary results of an evolution are shown in Figure 11b. 
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4.3 Real QIEA 

 

In order to apply QIEA to real-value problems, numerous attempts have been made to 

develop real QIEA (rQIEA) [149] and so were included in this investigation.  A simple 

attempt at this is shown in [142] where the rotation angles from the Classic bQIEA are 

re-interpreted as actual solutions.  This approach was very simplistic and arbitrary, and 

completely failed in all of our initial testing.  Searching for other rQIEA in the literature 

was made difficult by poorly described methods or suspect data.  However, one 

algorithm called RCQIEA, presented in [150], was well defined and so was included in 

this study, along with a modification. 

4.3.1 The RCQIEA algorithm 

 

Whereas Classic produces fresh solutions at each generation, RCQIEA stores and 

updates a candidate solution.  Classic takes the inspiration of superposition and uses it 

to evolve a probability density function (pdf), as described by the probability angles for 

each bit.  By not doing this directly, RCQIEA begins to move away from the original 

quantum metaphor.  However, as described below, the generation of new candidates 

through creep mutation, can be seen as using the candidate as a string of mean values 

for an evolving pdf. 

At each iteration, a set of offspring Oj is generated from each individual’s candidate Ci  

using creep mutation with variances stored in a string Vi.  The values in Vi are stored as 

angles and transformed into a pair αi and βi in the same way as for the Classic.  The 

offspring are generated in two subsets: one using αi for the variances; and one using 

βi/5, to allow for both fine and coarse searching.  The offspring are tested for fitness and 

if one is found to be better than the current candidate, it replaces that candidate.  

Otherwise, a rotation gate is applied to the variance angles in the same way as in Classic, 

but with a rotation step given with equation (4.4).   
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where α and β are the angles as defined in equation (4.1), and θ0 and γ are constants. 

A cross-over operator is also applied during the evolution.  For this investigation, it was 

applied four times during the course of each run (G=N/4).  The pseudo-code for the 

rQIEA presented here, is given in Algorithm 2. 

4.3.2 Problems with rotation gate 

 

In [150], the constants for equation (4.4) were specified as θ0=0.4π and γ=0.05.  In the 

testing, the RCQIEA performed well for many functions.  However, values of large 

magnitudes for Δθ were detected, which suggested a problem with the behaviour of the 

rotation gate.  For example, if the angles are α=0.01 and β=0.99995 (satisfying α2 + 

β2=1) then equation (4.4) produces a value for Δθ in excess of 2.0e7.  As a rotation 

angle in this context, such a magnitude for Δθ does not make sense, as it represents 

many complete rotations in one iteration. In effect this leads to somewhat random 

updates of the angle variables, and in turn, the variances for the creep mutation. 

 

4.3.3 SRQEA – fixing RCQIEA 

 

To alleviate this problem, a modified version of the rotation gate was developed, 

keeping the rest of the RCQIEA algorithm (Algorithm 2), called Stepwise Real QEA 

(SRQEA).  The change rotates the angles by a constant magnitude in the rotation gate, 

as shown in equation (4.5). 

  sgn 250.      (4.5) 

This was motivated by making the update similar to the constant step size used in 

Classic.  A step size analysis was performed with the results presented in Table 8.  A 

range of parameter values were used to optimise test functions presented in section 4.4.1 

and the parameter value that produced the minimum value for each function is listed in 

the table.  Some functions had the same minimum value with different parameter 

settings, and these were separated using the SP metric outlined in section 4.4.3.  The 

results gave a spread of values, and so a compromise choice was made of π/250. 
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Algorithm 2: Pseudo-code for RCQIEA 

 

 

4.4 Numerical Simulation 
 

Each algorithm was tested against several fitness functions.  In accordance with the 

procedures outlined in [9], functions were tested with 10, 30 and 50 dimensions (except 

for the real-world problems which had specific dimension requirements), and each 

optimization run was performed 51 times.  The number of function evaluations was 

limited in each run to 10000 x number of generations.  Given that more than one 

function evaluation per generation was performed for the rQIEA, their generations per 

run were adjusted accordingly. 

Initialise each Ci with random values 

Initialise each Vi with random values 

Evaluate fitness f(Ci) for each  individual 

while not termination condition do 

 for all i∈[1,p]  

construct two sets of offspring Oj from Ci using 

creep mutation from a normal distribution with variances Vi.  One set 

uses the αi angles, one uses the βi angles, scaled for coarse and fine 

search respectively 

  for each offspring 

   if f(Oj) is better than f(Ci) then 

    replace Ci with Cj 

   else apply rotation gate to Vi 

   end if 

  end for 

 end for 

 adjust coarse and fine search scale factors over course of run to move 

 towards finer search at the end of the simulation 

 every G iterations perform crossover mutation 

end while 
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Table 8: Step size analysis for SRQEA 

Function – 30 dimensions SRQEA / π 

Sphere 0.001 (SP) 

Rotated high conditioned elliptic 0.0064 

Rotated bent cigar 0.0010 

Rotated discuss 0.0019 

Different powers 0.0013 (SP) 

Rotated Rosenbrock 0.0010 

Rotated Schaffers F7 0.0064 

Rotated Ackley 0.0010 

Rotated Weierstrass 0.0052 

Rotated Griewank 0.0070 

Rastrigin 0.001 (SP) 

Rotated Rastrigin 0.0010 

Non continuous rotated Rastrigin 0.0010 

Schwefel 7 0.0040 

Rotated Schwefel 7 0.0019 

Rotated Katsuura 0.0046 

Lunacek bi-Rastrigin 0.0031 (SP) 

Rotated Lunacek bi-Rastrigin 0.0052 

Rotated expanded Griewank Rosenbrock 0.0061 

Rotated expanded Schaffers F6 0.0010 

 

4.4.1 Test functions 

 

Firstly, a set of traditional, basic functions, was taken from the first 13 presented in [8] 

(Appendix B).  A second set of more complicated functions was added from the first 20 

functions defined in the CEC-2013 specification [9] (Appendix B).  These are based on 

the traditional functions but are highly modified and transformed, including application 

of rotations.  It should be noted that both sets share one function in common – the Sphere 

function.  For this function, presentation of the results is duplicated in order to be 

consistent when comparing to other published results.  Finally, real-world problems 

from CEC-2011 [7] were added: frequency modulated sound wave matching; atom 

configuration; and radar waveform parameter optimisation. 

The frequency modulated sound wave matching problem optimises the constants of 

equation (4.6), so that the output of the wave, measured for integer t = [0 , 100], where 

θ=2π/100, matches the output of equation (4.7). 

      
1 1 2 2 3 3
sin sin sin ,y t a t a t a t          (4.6) 

      1.0sin 5.0 1.5sin 4.8 2.0sin 4.9 ,y t t t t       (4.7) 

where α and ω are the constants to be optimised. 
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The Lennard-Jones atom potential configuration problem, aims to minimise the 

potential energy VN of a set of N atoms with position  , , z
i i i i

p x y  according to 

equation (4.8). 
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Finally, the radar polyphase pulse design problem seeks to minimise a function f(x) 

based upon set of n parameters x={x1,…, xn} according to equation (4.9). 
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  (4.9) 

 

4.4.2 Population size analysis 

 

Before conducting an extensive evaluation of the proposed methods, an investigation 

into choosing a suitable population size was conducted.  An initial run for 30 dimensions 

was performed for the optimisation algorithms on the non-real world functions, with a 

series of different population sizes being used.  The number of individuals ranged from 

5 to 50, in increments of five, but the total number of functions evaluations was kept to 

300000.  After running the simulations, the number of times an algorithm had a best 

performance (assessed just for that algorithm) was counted for each population size.  A 

best performance was assessed according to minimum values and mean values for two 

separate analyses, and occurred when the value was the lowest, or equal lowest, for that 

fitness function across all of the different population sizes tested for the optimisation 

algorithm.  The results according to the best minimum and mean values found are shown 

in Figure 12.  Results for the bQIEA Classic and HSB are shown in Figure 12a and 

Figure 12b respectively, and results for the rQIEA RCQIEA and SRQEA are shown in 

Figure 12c and Figure 12d respectively. 
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Figure 12: Population analysis for the QIEA: a) Classic; b) HSB; c) RCQIEA; d) SRQEA. 

a) 

b) 

d) 

c) 
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Generally, the bQIEA performed better with higher population sizes, while the rQIEA 

were better with smaller population sizes.  For Classic (Figure 12a), the best minimum 

values were found more often with a population size of 50, with an additional peak at 

20/25, while HSB  (Figure 12b) had a peak at 35/40 but reasonable performance from 

25 to 50.  When looking at the mean performance, both bQIEA improved with 

increasing population size, with the best being 50 for both.  After combining these 

results, it was chosen to proceed with 50 individuals for both bQIEA algorithms in the 

later simulations and analysis.  These results suggest bQIEA are biased towards 

exploitation and therefore require a larger population size to achieve good exploration. 

For both rQIEA, the results (Figure 12c and Figure 12d) were very clear – a population 

size of five performed the best for both minimum and mean values, and so was used for 

subsequent investigations.  RCQIEA had a sharp drop-off in performance above five, 

while SRQEA had a smoother decline with increasing population size.  In contrast to 

the findings for bQIEA, this suggests that the rQIEA have relatively good exploration, 

so benefit from a small population in order to improve exploitation by increasing the 

number of function evaluations per individual. 

 

4.4.3 Performance metrics 

 

1) Summary statistics 

To present a basic analysis and compare across publications, summary information is 

generated from error values (from the known minimum value) or absolute values if the 

global minimum is unknown.  From the raw data, simple statistical measures such as 

minimum, mean and standard deviations are calculated and summarised, with lower 

values for each being preferred in the comparisons. 

 

2) Success Rates 

Using metrics introduced in [151], a success rate and measure of time taken by the run 

to succeed (converging to a minimum) are calculated.  Success Rate (SR) is calculated 

as the number of successful runs divided by the total number of runs.  A run is regarded 

as successful if it finds an error below a threshold (as defined in results section, which 

can vary depending on the particular analysis or comparisons being made). 
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3) Success Performance 

To measure the speed at which an algorithm obtains good results, a metric called 

Success Performance (SP) is calculated.  This is defined as SP = (SNFEs)*(number of 

total runs)/(number of successful runs), where SNFEs is the average number of function 

evaluations required by each successful run to reach the tolerance.  A lower value of SP 

is preferred because it indicates a better combination of speed and consistency for the 

algorithm. 

4) Timeline plots 

In order to analyse the behaviour of the algorithms, graphical representations of their 

evolution are produced for every test function.  Across all runs, for each iteration the 

mean error is calculated and plotted.  The time is normalised with respect to the number 

of function evaluations in the [0, 1] range so that the performance of each algorithm can 

be compared directly. 

5) Empirical cumulative probability distribution 

Performance across all functions is summarised using the empirical cumulative 

probability distribution function (ECDF) presented in [152].  An ECDF is constructed 

by firstly determining the performance of each algorithm on each test function, by 

comparing its mean error ME with the mean error achieved by the best algorithm, and 

formulating a normalized mean error NME (equation (4.10)).  Then, the distribution is 

formed by counting, for each value x  in the domain of the distribution, how many 

normalized means (across all test functions) were obtained below x  (equation (4.11)).  

Normalizing and plotting these values produces a graph where superior algorithms 

reach the top of the chart faster than less well performing algorithms.  In this analysis, 

all the test functions were included, as well as additional graphs for subsets (traditional, 

CEC-2013 and real-world).  The NME and ECDF are given by: 
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where indices A and f denote the optimisation algorithm and the test function 

respectively, and nA and nf are the number of algorithms and test functions respectively. 
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4.5 Results and Discussion 
 

Examples of methods used to optimise CEC-2013 problems include Particle Swarm 

Optimization [123], Adaptive Differential Evolution [127], [153], [154], Mean Variance 

Mapping [155] and GA [125].  The methods for optimisation of the traditional test 

functions, covered in this work, include Evolutionary Programming [8], Particle 

Swarm Optimization [156], GA [157], and Hybrid Bee Colony/QEA [158].  This section 

presents the obtained bQIEA and rQIEA results. 

4.5.1 Functionality of the tested QIEA 

 

First examined was the suitability of the four tested QIEA to be used as optimisation 

algorithms for real-value problems.  In order to be useful, they must find solutions close 

to the optimum, as seen by reaching small error values.  The first results examined are 

the performance on the traditional test functions, with minimum, mean and standard 

deviation data presented in Table 9, and Table 26 and Table 27 in Appendix A for 10 

and 30 dimensions respectively. 

These functions (listed in Appendix B) are reasonably smooth, at least locally, and 

therefore obtaining a good error score will require good exploitation abilities of the 

algorithm.  Section 4.2 highlighted the difficulties for the Classic method in optimising 

the LSBs, and so it would be reasonable to expect that this would be reflected in poor 

minimum values as the exploitation would be hampered.  Most solutions had errors of 

magnitude above 1e-01, the only exceptions being the 10 dimensional Schwefel 2.26, 

Griewank and Penalised1 functions.  Interpreting raw error values is difficult because 

it relates to the numerical properties of the fitness function.  For example, the 

Rosenbrock has a constant factor of 100 (Appendix B), so the 10-dimension result of 

7.39e02 is relatively not as bad as it would first appear.  However, as the number of 

dimensions increases, the performance becomes obviously poorer, with four minima 

with magnitude of 1e07 at 50 dimensions.  Means performance for all of the tested 

dimensions tested follows the same pattern in general, although there are some large 

discrepancies for the 10-dimension batch.  These are a mean of 2.10e05 compared to a 

minimum of 7.39e02 for Rosenbrock, 2.73e04 versus 1.40e02 for Quartic, and 5.38e04 

versus 1.99e00 for Penalised2.  This implies, at least for the low dimensions, that 

running Classic several times is a necessity.  
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Table 9: Summary statistics for the 13 traditional test functions with 50 dimensions. Bold are best. 

Traditional test functions 

50 Dimensions 

bQIEA rQIEA 

Classic HSB RCQIEA SRQEA 

Function Min Mean Std dev Min Mean Std dev Min Mean Std dev Min Mean Std dev 

01 Sphere 3.32E+03 5.54E+03 7.22E+02 7.89E+02 1.71E+03 3.85E+02 3.01E-04 5.81E-04 1.79E-04 0.00E+00 0.00E+00 0.00E+00 

02 Schwefel 222 2.17E+02 3.08E+02 2.79E+01 8.59E+01 1.28E+02 1.57E+01 7.98E-02 1.08E-01 1.30E-02 0.00E+00 0.00E+00 0.00E+00 

03 Schwefel 12 1.72E+06 2.89E+06 5.98E+05 2.77E+05 7.09E+05 1.86E+05 2.03E-01 4.26E-01 2.13E-01 0.00E+00 0.00E+00 0.00E+00 

04 Schwefel 221 4.26E+01 4.80E+01 2.80E+00 3.05E+01 3.80E+01 2.41E+00 1.81E-01 3.05E-01 4.89E-02 2.00E-02 3.29E-02 7.54E-03 

05 Rosenbrock 8.12E+07 3.42E+08 9.89E+07 9.02E+06 4.92E+07 2.19E+07 9.37E+00 1.27E+02 5.77E+01 4.49E-02 4.34E+01 3.09E+01 

06 Step 3.59E+03 5.26E+03 8.57E+02 1.14E+03 1.77E+03 2.99E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

07 Quartic 4.50E+07 7.79E+07 1.73E+07 1.59E+06 9.86E+06 5.05E+06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

08 Schwefel 226 3.42E+02 5.80E+02 7.91E+01 8.64E+01 1.83E+02 4.35E+01 3.17E-05 6.60E-05 2.20E-05 0.00E+00 0.00E+00 0.00E+00 

09 Basic Rastrigin 9.28E+01 1.33E+02 1.11E+01 6.74E+01 8.26E+01 6.64E+00 1.56E-04 2.89E-04 8.13E-05 0.00E+00 0.00E+00 0.00E+00 

10 Basic Ackley 2.01E+01 2.01E+01 9.47E-03 1.89E+01 1.96E+01 2.09E-01 1.02E-02 1.66E-02 3.10E-03 0.00E+00 5.63E-07 3.26E-06 

11 Basic Griewank 3.73E+01 5.03E+01 6.97E+00 8.13E+00 1.54E+01 2.89E+00 4.01E-04 8.45E-03 9.66E-03 0.00E+00 1.48E-02 2.59E-02 

12 Penalised 1 1.13E+07 5.69E+07 3.00E+07 2.36E+04 2.60E+06 2.00E+06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

13 Penalised 2 5.72E+07 1.56E+08 4.87E+07 3.80E+06 1.41E+07 6.33E+06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
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Table 10: Summary statistics for the 20 CEC-2013 test functions with 50 dimensions.  Bold are best. 

CEC-2013 test functions 

50 Dimensions 

bQIEA rQIEA 

Classic HSB RCQIEA SRQEA 

Function Min Mean Std dev Min Mean Std dev Min Mean Std dev Min Mean Std dev 

14 Sphere [duplicated] 3.32E+03 5.54E+03 7.22E+02 7.89E+02 1.71E+03 3.85E+02 3.01E-04 5.81E-04 1.79E-04 0.00E+00 0.00E+00 0.00E+00 

15 R HC elliptic 6.52E+07 1.23E+08 2.30E+07 4.66E+07 7.09E+07 1.32E+07 5.84E+06 1.15E+07 3.01E+06 1.55E+06 2.96E+06 6.43E+05 

16 Rotated bent cigar 4.50E+10 7.15E+10 1.08E+10 1.45E+10 2.46E+10 3.30E+09 1.18E+03 6.45E+06 2.26E+07 4.98E-02 1.58E+05 1.08E+06 

17 Rotated discus 9.87E+04 1.59E+05 1.62E+04 9.61E+04 1.28E+05 1.27E+04 1.38E+05 1.92E+05 2.88E+04 1.14E+05 1.75E+05 2.47E+04 

18 Different powers 1.20E+03 2.99E+03 8.85E+02 3.18E+02 6.81E+02 1.35E+02 1.57E-03 4.14E-03 1.94E-03 0.00E+00 0.00E+00 0.00E+00 

19 Rotated Rosenbrock 2.81E+02 4.74E+02 6.76E+01 1.35E+02 2.41E+02 4.52E+01 2.98E+01 4.51E+01 3.43E+00 2.38E+01 4.19E+01 7.54E+00 

20 Rotated Schaffers F7 1.71E+02 2.15E+02 1.70E+01 1.28E+02 1.76E+02 1.41E+01 1.79E+02 2.54E+02 1.22E+02 1.47E+02 2.46E+02 9.28E+01 

21 Rotated Ackley 2.10E+01 2.12E+01 3.96E-02 2.10E+01 2.11E+01 3.88E-02 2.10E+01 2.11E+01 3.74E-02 2.10E+01 2.11E+01 4.68E-02 

22 Rotated Weierstrass 4.75E+01 5.65E+01 2.47E+00 4.72E+01 5.22E+01 2.35E+00 5.71E+01 6.34E+01 3.36E+00 6.16E+01 6.74E+01 3.76E+00 

23 Rotated Griewank 9.90E+02 1.43E+03 1.95E+02 4.96E+02 7.13E+02 1.01E+02 1.54E+00 2.25E+00 3.02E-01 2.71E-02 1.31E-01 4.96E-02 

24 Rastrigin 1.86E+02 2.37E+02 2.04E+01 7.87E+01 1.04E+02 1.05E+01 5.83E-04 1.10E-03 3.38E-04 0.00E+00 0.00E+00 0.00E+00 

25 Rotated Rastrigin 4.26E+02 5.34E+02 4.14E+01 2.31E+02 4.00E+02 3.99E+01 3.58E+02 6.08E+02 1.25E+02 4.60E+02 6.85E+02 1.38E+02 

26 NC rotated Rastrigin 5.69E+02 6.63E+02 3.95E+01 4.41E+02 5.54E+02 4.39E+01 4.71E+02 6.30E+02 9.74E+01 5.01E+02 6.89E+02 1.01E+02 

27 Schwefel 7 1.60E+03 2.29E+03 2.72E+02 3.88E+02 8.10E+02 1.46E+02 2.96E-02 8.57E-02 2.41E-02 9.99E-02 6.71E-01 2.94E-01 

28 Rotated Schwefel 7 6.26E+03 7.88E+03 4.70E+02 4.63E+03 6.47E+03 5.08E+02 4.37E+03 6.25E+03 7.15E+02 4.69E+03 6.22E+03 6.23E+02 

29 Rotated Katsuura 9.79E-01 1.67E+00 2.62E-01 8.09E-01 1.39E+00 2.11E-01 8.74E-01 1.64E+00 3.49E-01 8.93E-01 1.83E+00 4.41E-01 

30 Lunacek bi-Rastrigin 3.78E+02 4.57E+02 3.80E+01 1.46E+02 1.95E+02 2.29E+01 3.82E-02 9.98E-02 3.51E-02 0.00E+00 1.96E-04 1.40E-03 

31 R Lunacek bi-Rastrigin 8.64E+02 1.04E+03 8.09E+01 6.00E+02 7.50E+02 5.49E+01 3.05E+02 4.80E+02 7.87E+01 4.53E+02 6.12E+02 9.30E+01 

32 RE Griewank Rosen. 4.75E+02 1.61E+03 6.75E+02 1.30E+02 2.75E+02 9.06E+01 5.73E+01 1.45E+02 4.66E+01 1.46E+02 2.91E+02 6.26E+01 

33 RE Schaffers F6 1.77E+01 2.09E+01 1.21E+00 1.58E+01 1.87E+01 1.13E+00 2.05E+01 2.43E+01 5.97E-01 1.90E+01 2.44E+01 7.68E-01 
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For every test function in the traditional batch, HSB had better minimum values than 

Classic, apart from the 10-dimension Penalised1 function.  Although the magnitudes 

were generally similar, some were substantially better, e.g., 30-dimension Rosenbrock, 

Penalised1 and Penalised2, and 50-dimension Penalised1.  The consistently better 

performance suggests both that the LSB problems of Classic hampered its performance, 

and that the tested improvement of limiting the LSB probability saturation was 

successful.  

Despite apparent functional performance by the bQIEA, the two rQIEA were 

substantially better.  The worst performance for the rQIEA was for RCQIEA on the 30-

dimension Rosenbrock with a minimum of 1.65e01, but most minima had magnitudes 

of less than 1e-01.  RCQIEA found smaller than 1e-08 solutions (clamped to 0.00 in the 

results) for Step, Quartic, Penalised1 and Penalised2 in all tested dimensions. Despite 

RCQIEA performing well on these test functions, it was eclipsed by SRQEA.  With the 

exception of Schwefel 2.21 and Rosenbrock, it obtained clamped 0.00 results for all of 

the functions, in all dimensions.  Even for Schwefel 2.21 and Rosenbrock it had the best 

performance across the QIEA tested.  The superior performance of the real algorithms 

over their binary counterparts is unsurprising, given the application to real-value 

problems, and the superior performance of SRQEA justifies the modification of the 

rotation gate function for these functions. 

As CEC-2013 are a set of real-value problems, some being modified versions of the 

functions from the traditional set tested here, it was predicted that a similar pattern of 

results would be generated, with the rQIEA dominating the bQIEA.  Although HSB 

outperformed Classic, and SRQEA outperformed RCQIEA, the performance of the 

bQIEA compared to the rQIEA was very different from its previous performance (Table 

10 for 50 dimensions, and Table 28 and Table 29 in Appendix A for 10 and 30 

dimensions respectively). 

For several of the test functions - Rotated Discus, Rotated Schaffers F7, Rotated 

Weierstrass, Rotated Rastrigin, Non-continuous Rotated Rastrigin, Rotated Katsuura, 

Rotated Expanded Grienwank, Rosenbrock and Rotated Expanded Schaffers F6, one of 

the bQIEA had the best performance for one or more dimensions tested.  When the 

bQIEA performed best, the rQIEA approached a similar order of magnitude, but when 

one of the rQIEA gave the best result, it sometimes considerably outperformed the 
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bQIEA (for example, on the Rotated Bent Cigar, SRQEA achieved 4.98e-02 compared 

to 4.50e10 and 1.45e10 for Classic and HSB respectively).  Nevertheless, the positive 

results of the bQIEA are significant and surprising, given that they can outperform the 

rQIEA on some real-value benchmark functions. 

The CEC-2013 functions are highly manipulated versions of traditional basic functions 

(many based on the traditional test functions used in this chapter). The manipulations 

include rotations, scalings and non-linear transforms.  It may be that these 

transformations allow the bQIEA to perform well in one of two possible ways.  Firstly, 

the transformations may increase the nonlinear interactions between dimensions, 

producing a fitness landscape that is very rough, and therefore more resembling a 

discrete space at scales above the very small.  These search spaces may be suited to the 

binary methods presented here, possibly possessing similarities to the combinatorial 

problems that bQIEA have been successful with (e.g., Knapsack [135]).  Alternatively, 

the search pattern may be the key.  In the rQIEA, the search space is traversed using 

creep mutations with distances drawn from a normal distribution, while the movement 

in the bQIEA is performed using multi-scaled jumps as the bits flip between zero and 

one and move the search to an adjacent binary partition at the scale of the significance 

of the bit.  This binary space partitioning could reflect, to some degree, the underlying 

structure of the search spaces. 

For the CEC-2013 set of test functions, the bQIEA achieved several minimum scores 

with a magnitude of 1e02 or less and, given that the test functions often contain large 

constants (1e06), it could be argued that they performed better on the more difficult test 

functions than on the traditional set of functions.  It would be interesting to see if this 

scales, so that the bQIEA have increasingly better relative performance as the fitness 

landscape becomes more complex. 

Although SRQEA was the best performer, in terms of number of best minimum values 

found and the ability to find threshold zero error values for some functions (which none 

of the other algorithms managed to do), when looking at the general performance across 

all of the functions and algorithms, the picture was somewhat more mixed.  A heat map 

of best minimum values, scaled relatively from the best performing algorithm to the 

worst on each test function, is presented in Figure 13, with a green (zero) rectangle 

indicating best performance, and a light-green (one) rectangle indicating worst 
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performance.  In this plot, judging by the number of darker rectangles, RCQIEA 

performs well, arguably outperforming SRQEA.  From the raw data in Table 10, it can 

be seen that when the performances of the rQIEA are close, SRQEA produces better 

results than RCQIEA, but this is not generally noticeable in the heat map, where the 

larger degrees of magnitude produced by the bQIEA obscure the rQIEA differences.  

Summarising the raw data and the heat map, it can be said that RCQIEA had a slightly 

better average performance but SRQEA was able to produce much better individual 

scores for some functions.  The more random nature of the rotation gate of RCQIEA 

may produce desirable search characteristics for the CEC-2013 test functions, at the 

expense of more exploitation. 

 
Figure 13: Heat map of best convergence to a minimum by the QIEA on the CEC-2013 test 

functions. 

 

For the CEC-2011 real-world problems, converging to the minima was best for the 

rQIEA (Table 11) - RCQIEA generated the best minimum for the Radar Polly Phase 

problem, while SRQEA had the best minimum results for the other three functions.  

However, for the mean values, both Classic and HSB outperformed the rQIEA for the 

Frequency Modulation and Radar Polly Phase problems.  The nested functions present 

in both of these benchmarks suggest a highly nonlinear search space, so these results 

are consistent with the findings and interpretations of the performance of the bQIEA on 

the CEC-2013 functions. 

 

Finally, a summary of algorithms’ mean performance across multiple test functions in 

Figure 14.  The plots show a cumulative normalised count, for each algorithm, of how 

many functions possess a normalised mean performance below the horizontal 
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coordinate value.  The sooner the plot reaches 1.0 in the vertical axis, the better the 

algorithm performs (as this indicates a high probability of achieving low mean error 

values). 

The best performance on the traditional test functions (Figure 14a) is dominated by the 

two rQIEA methods, which can also be seen for all of the test functions taken together 

(Figure 14d), with Classic performing poorly for both of those cases.  For the CEC-

2013 functions HSB is much closer (Figure 14b), catching up sooner with the rQIEA in 

the plot, although it starts with poorer results, indicating a low probability of producing 

very low mean scores across the function set.  The performance of RCQIEA compared 

to SRQEA for CEC-2013 is in line with the results presented in the heat map (Figure 

13).  SRQEA outperforms RCQIEA for low mean values, but takes a slight lead for 

normalised means between 0.2 and 0.4.  For the real-world test functions (Figure 14c), 

the situation is completely reversed, with Classic performing the best, followed by HSB. 

In summarising the ECDF and the results given in the tables, it can be concluded that, 

although the rQIEA have superior best performance (minimum values found), the 

bQIEA algorithms do have good mean performance, often superior to their real-value 

counterparts.  Again, it is with the more complicated CEC-2013 and real-world CEC-

2011 functions that the bQIEA perform at their best, often outperforming the rQIEA. 
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Table 11: Summary statistics for CEC-2011 real world problems.  Bold are best. 

 bQIEA rQIEA 

Classic HSB RCQIEA SRQEA 

Function Min Mean Std dev Min Mean Std dev Min Mean Std dev Min Mean Std dev 

Frequency Modulation 1.79E+00 1.29E+01 3.98E+00 7.40E-02 7.22E+00 4.73E+00 2.71E-04 1.57E+01 5.78E+00 0.00E+00 1.70E+01 4.68E+00 

Lennard Jones 5 atoms -1.07E+01 -9.23E+00 6.66E-01 -1.21E+01 -1.05E+01 5.97E-01 -1.27E+01 -1.18E+01 1.03E+00 -1.27E+01 -1.21E+01 1.02E+00 

Lennard Jones 10 atoms -1.91E+01 -1.50E+01 1.34E+00 -2.27E+01 -1.77E+01 1.50E+00 -3.08E+01 -2.26E+01 3.87E+00 -3.18E+01 -2.41E+01 4.23E+00 

Radar Polly Phase 1.60E+00 1.98E+00 1.25E-01 1.65E+00 1.85E+00 8.72E-02 1.50E+00 2.00E+00 2.31E-01 1.59E+00 2.11E+00 2.10E-01 

 



Chapter 4 - Quantum inspired evolutionary algorithms  60 

 

4.5.2 Evolution properties of the QIEA 

 

Mean error values per generation (averaged across the 51 runs) are shown for four 

functions in Figure 15.  For most functions, Classic outperformed HSB early on the 

evolution, but tends to stall earlier and is generally overtaken by HSB at around the 30% 

(of the total number of generations) time point (for example, see the Sphere and Rotated 

Rosenbrock function timelines in Figure 15a,b).  This gives additional support to the 

argument that Classic was prematurely converging when applied to real-value 

problems, and justifies the approach when formulating the HSB adaptation.  It should 

also be noted though that HSB also usually approaches an approximately zero gradient 

relatively early on (50% of time or less), implying there is further need to improve 

premature convergence. 
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Figure 14: Empirical cumulative probability distribution function of mean errors across a) 
traditional, b) CEC-2013, c) real-world and d) all test functions, comparing the four QIEA. 

  

a) 

b) 
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d) 
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Figure 15: Timeline evolution of mean error values for a) Sphere, b) Rotated Rosenbrock, c) 
Rotated Griewank and d) Schwefel 2.21. 

a) 

b) 

c) 

d) 



Chapter 4 - Quantum inspired evolutionary algorithms  63 

 

For the majority of cases where SRQEA outperformed RCQIEA, their early 

performances were very similar, but SRQEA would establish a lead from typically the 

10-30% time mark (Rotated Griewank in Figure 15c).  This can be interpreted as 

indicating that the corrected rotation formula allowed a more refined search in later 

stages.  Both rQIEA demonstrated a clear non-zero gradient at the end of the timeline 

in several of the plots (such as Figure 15c,d).  This suggests they are capable of finding 

significantly better results if the algorithm is run for longer.  As the plots display the 

fitness to the 10th root, this is relevant for fine convergence to the optimal value, 

indicating room for improvement of precision. 

4.5.3 Comparison of QIEA with published results 

 

As the best performing QIEA on the traditional test functions, SRQEA was chosen to 

compare with two other algorithms – FEP [8] and MADE [151] (Table 12).  Comparison 

is made difficult by varying numbers of function evaluations across the published 

methods, but in general, SRQEA outperformed FEP except for the Rosenbrock, Ackley 

and Griewank functions where FEP had a superior mean and standard deviation.  

MADE was better than SRQEA for Schwefel 2.21, Rosenbrock, Ackley and Griewank, 

but SRQEA beat MADE for Quartic and matched it for all of the other functions.  

Unfortunately, best minimum values found were not published for either algorithm, but 

since MADE produced several zero means, it is clear those results would have been 

good as well. 

The exploitation ability of RCQIEA and SRQEA was compared to data published on a 

set of differential algorithms (DE) [151] and is presented in Table 13, using the success 

rate (SR) and success performance (SP) metrics, using a success threshold of 1E-08, 

except for 1E-02 for Quartic in order to compare to published data.  In general, the DE 

algorithms achieved success more often, and quicker, than the rQIEA. The SRQEA is 

overall superior to RCQIEA for these metrics (with a better SR), but when RCQIEA was 

successful it tended to achieve success more quickly than SRQEA (better SP).  These 

results represent the weakest performance for the QIEA, and indicate room for 

improvement in their search and exploitation abilities for the traditional test functions, 

although success rates were based on very low thresholds (usually 1e-08) and therefore 

may not be important in practical cases.  Unfortunately MADE was not applied to the 
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CEC-2013 functions, so it cannot be said if these conclusions hold for the more 

complicated test functions. 

Table 14, and Table 30 and Table 31 in Appendix A, show the performance of SRQEA 

against two algorithms that were applied to the CEC-2013 fitness functions [9].  The 

two algorithms compared are a particle swarm optimization algorithm SPSO-2011 [123] 

and a genetic algorithm GA [125].  SRQEA was chosen for comparison as, overall, it 

was the best performing QIEA tested here, in terms of minimum values found. 

Looking at all dimensions, all three algorithms achieved some best performances.  

SPSO-2011 performed least well, having fewer best minimum results, and most of those 

being joint equal with one or both of the other algorithms.  The main competition for 

SRQEA came from the GA.  For 10 dimensions it achieved 16 best performances, with 

SRQEA only achieving seven.  For 30 dimensions GA scored 12 best performances, 

while the SRQEA reached 8, but for 50 dimensions, SRQEA took the lead with 11 

compared to 9 best results for the GA.  This demonstrates better scaling with increased 

number of dimensions for SRQEA than for the GA.  Mean performance was similarly 

distributed across all dimensions but SRQEA showed improved standard deviation 

performance again for 50 dimensions, outperforming the other algorithms substantially.  

This shows a more consistent relative performance at higher dimensions for SRQEA as 

well as better minima and means.  

  



Chapter 4 - Quantum inspired evolutionary algorithms  65 

 

 

Table 12: Comparison between SRQEA, Fast Evolutionary Programming (FEP) [8], and MADE 
[151] on the traditional test functions. Bold are best. 

30 Dimensions SRQEA FEP MADE 

Function F Evals Min Mean Std dev F Evals Mean Std dev F Evals Mean Std dev 

1 Sphere 300000 0.00E+00 0.00E+00 0.00E+00 150000 8.10E-03 7.70E-04 150000 0.00E+00 0.00E+00 

2 Schwefel 222 300000 0.00E+00 0.00E+00 0.00E+00 200000 8.10E-03 7.70E-04 150000 0.00E+00 0.00E+00 

3 Schwefel 12 300000 0.00E+00 0.00E+00 0.00E+00 500000 1.60E-02 1.40E-02 200000 0.00E+00 0.00E+00 

4 Schwefel 221 300000 3.51E-03 6.16E-03 1.56E-03 500000 3.00E-01 5.00E-01 500000 0.00E+00 0.00E+00 

5 Rosenbrock 300000 1.04E-02 8.86E+01 1.80E+02 2000000 5.06E+00 5.87E+00 500000 3.97E-01 1.63E+00 

6 Step 300000 0.00E+00 0.00E+00 0.00E+00 150000 0.00E+00 0.00E+00 500000 0.00E+00 0.00E+00 

7 Quartic 300000 0.00E+00 0.00E+00 0.00E+00 300000 7.60E-03 2.60E-03 300000 1.24E-03 3.78E-04 

8 Schwefel 226 300000 0.00E+00 0.00E+00 0.00E+00 900000 1.50E+01 5.26E+01 200000 0.00E+00 0.00E+00 

9 Basic Rastrigin 300000 0.00E+00 0.00E+00 0.00E+00 500000 4.60E-02 1.20E-02 300000 0.00E+00 0.00E+00 

10 Basic Ackley 300000 0.00E+00 9.20E-01 4.01E+00 150000 1.80E-02 2.10E-03 150000 0.00E+00 0.00E+00 

11 Basic Griewank 300000 0.00E+00 2.06E-02 2.25E-02 200000 1.60E-02 2.20E-02 200000 0.00E+00 0.00E+00 

12 Penalised 1 300000 0.00E+00 0.00E+00 0.00E+00 150000 9.20E-06 3.60E-06 300000 0.00E+00 0.00E+00 

13 Penalised 2 300000 0.00E+00 0.00E+00 0.00E+00 150000 1.60E-04 7.30E-05 300000 0.00E+00 0.00E+00 

 
Table 13: Comparison of success rates (SR) and speed of convergence (SP), between RCQIEA, 
SRQEA and 4 differential evolution algorithms, for the 13 traditional test functions with 30 

dimensions.  Bold are best. 

Function RCQIEA SRQEA jDE SDE JADE MADE 

SP SR SP SR SP SR SP SR SP SR SP SR 

1 Sphere — 0 2.48E+05 1 5.93E+04 1 3.91E+04 1 3.04E+04 1 2.29E+04 1 

2 Schwefel 222 — 0 7.19E+05 1 8.16E+04 1 5.31E+04 1 5.61E+04 1 3.64E+04 1 

3 Schwefel 12 — 0 3.56E+05 1 3.37E+05 1 — 0 7.17E+04 1 1.34E+05 1 

4 Schwefel 221 — 0 — 0 2.99E+05 1 4.72E+05 0.44 — 0 1.27E+05 1 

5 Rosenbrock — 0 — 0 5.89E+06 0.08 — 0 1.22E+05 0.92 1.97E+05 0.92 

6 Step 7.77E+04 1 1.20E+05 1 2.27E+04 1 1.44E+04 1 1.16E+04 1 7.89E+03 1 

7 Quartic 1.37E+05 1 1.80E+05 1 1.12E+05 1 8.34E+04 1 2.97E+04 1 2.83E+04 1 

8 Schwefel 226 — 0 2.12E+05 1 7.85E+04 1 5.50E+04 1 1.00E+05 1 6.00E+04 1 

9 Basic Rastrigin — 0 2.53E+05 1 1.17E+05 1 6.14E+05 0.36 1.31E+05 1 1.14E+05 1 

10 Basic Ackley — 0 1.54E+06 0.63 9.02E+04 1 5.95E+04 1 4.75E+04 1 3.55E+04 1 

11 Basic Griewank — 0 8.50E+05 0.31 6.21E+04 1 4.07E+04 1 3.30E+04 1 2.41E+04 1 

12 Penalised 1 5.61E+04 1 9.46E+04 1 5.40E+04 1 3.66E+04 1 2.95E+04 1 2.03E+04 1 

13 Penalised 2 3.85E+04 1 7.15E+04 1 5.76E+04 1 3.77E+04 1 2.95E+04 1 2.19E+04 1 
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Table 14: SRQEA compared to SPSO-2011 and a GA algorithm for the CEC-2013 functions with 50 dimensions. Bold are best. 

50 Dimensions SRQEA SPSO-2011 [123] GA [125] 

Function Min Mean Std dev Min Median Std dev Min Median Mean Std dev 

14 Sphere [duplicated] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.18E-13 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

15 R HC elliptic 1.55E+06 2.96E+06 6.43E+05 3.79E+05 6.80E+05 1.87E+05 1.74E+05 4.28E+05 4.76E+05 2.14E+05 

16 Rotated bent cigar 4.98E-02 1.58E+05 1.08E+06 2.00E+07 4.37E+08 9.47E+08 2.55E+06 3.44E+07 1.06E+08 1.49E+08 

17 Rotated discus 1.14E+05 1.75E+05 2.47E+04 3.22E+04 5.10E+04 8.72E+03 4.90E-01 2.25E+00 3.33E+00 4.88E+00 

18 Different powers 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.41E-05 0.00E+00 0.00E+00 4.77E+04 1.70E+05 

19 Rotated Rosenbrock 2.38E+01 4.19E+01 7.54E+00 1.84E+01 4.35E+01 2.41E+01 3.66E+01 4.36E+01 4.72E+01 1.40E+01 

20 Rotated Schaffers F7 1.47E+02 2.46E+02 9.28E+01 5.61E+01 8.64E+01 1.53E+01 1.51E+01 3.97E+01 4.17E+01 1.83E+01 

21 Rotated Ackley 2.10E+01 2.11E+01 4.68E-02 2.10E+01 2.11E+01 4.25E-02 2.11E+01 2.12E+01 2.12E+01 3.98E-02 

22 Rotated Weierstrass 6.16E+01 6.74E+01 3.76E+00 4.52E+01 5.40E+01 6.74E+00 5.21E+01 7.53E+01 7.43E+01 3.97E+00 

23 Rotated Griewank 2.71E-02 1.31E-01 4.96E-02 1.00E-01 4.00E-01 2.38E-01 2.71E-02 9.36E-02 1.05E-01 7.09E-02 

24 Rastrigin 0.00E+00 0.00E+00 0.00E+00 1.50E+02 2.30E+02 4.18E+01 1.49E+01 5.37E+01 5.57E+01 2.23E+01 

25 Rotated Rastrigin 4.60E+02 6.85E+02 1.38E+02 1.62E+02 2.35E+02 4.87E+01 5.07E+01 9.75E+01 9.83E+01 2.45E+01 

26 NC rotated Rastrigin 5.01E+02 6.89E+02 1.01E+02 3.20E+02 4.28E+02 6.22E+01 1.04E+02 1.86E+02 1.93E+02 5.30E+01 

27 Schwefel 7 9.99E-02 6.71E-01 2.94E-01 5.51E+03 7.26E+03 8.53E+02 1.06E+03 2.30E+03 2.55E+03 1.14E+03 

28 Rotated Schwefel 7 4.69E+03 6.22E+03 6.23E+02 5.68E+03 7.92E+03 1.14E+03 6.20E+03 8.24E+03 9.84E+03 3.19E+03 

29 Rotated Katsuura 8.93E-01 1.83E+00 4.41E-01 1.40E+00 2.00E+00 3.87E-01 2.23E+00 3.76E+00 3.68E+00 3.88E-01 

30 Lunacek bi-Rastrigin 0.00E+00 1.96E-04 1.40E-03 2.08E+02 3.11E+02 6.62E+01 8.25E+01 1.13E+02 1.15E+02 2.00E+01 

31 R Lunacek bi-Rastrigin 4.53E+02 6.12E+02 9.30E+01 1.70E+02 2.91E+02 6.24E+01 8.83E+01 1.32E+02 1.68E+02 1.02E+02 

32 RE Griewank Rosen. 1.46E+02 2.91E+02 6.26E+01 1.70E+01 3.72E+01 1.20E+01 3.60E+00 9.02E+00 8.92E+00 3.17E+00 

33 RE Schaffers F6 1.90E+01 2.44E+01 7.68E-01 1.99E+01 2.27E+01 1.19E+00 1.99E+01 2.36E+01 2.35E+01 8.02E-01 

 

Table 15: Comparison of performance on real-world problems between SRQEA and three differential evolutionary algorithms.  The starred value has been 
clamped to zero as it was below the threshold of 1E-08 (used in the QIEA simulations).  Bold are best. 

  SRQEA MADE-WS EA-DE-Memetic Adaptive DE 

Function Min Mean Std dev Min Mean Std dev Min Mean Std dev Min Mean Std Dev 

FM Wave match 0.00E+00 1.70E+01 4.68E+00 - 8.81E-01 2.47E+00 0.00E+00* 3.81E+00 5.21E+00 0.00E+00 4.85E+00 6.69E+00 

Lennard-Jones 5 atoms -1.27E+01 -1.21E+01 1.02E+00 - -9.09E+00 8.83E-02 - - - - - - 

Lennard-Jones 10 atoms -3.18E+01 -2.41E+01 4.23E+00 - -2.66E+01 8.64E-01 -2.84E+01 -2.59E+01 2.24E+00 -2.80E+01 -2.68E+01 2.11E+00 

Radar Polly Phase 1.59E+00 2.10E+00 2.09E-01 - - - 2.20E+02 2.20E+02 0.00E+00 2.20E+02 2.20E+02 0.00E+00 
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The poorer performance of SPSO-2011 (Table 14) and the better performance of the 

GA may suggest that the recombinatorial properties of the cross-over operator may aid 

the search pattern for the CEC-2013 functions.  This is consistent with both of the 

presented hypotheses for why the bQIEA performed relatively well against the rQIEA 

– either treating the rougher space as more discrete and looking for recombination, or 

navigating through hops (swapping genes in the case of GA, and flipping bits in the case 

of the bQIEA).  Although overall SRQEA was better, it would be interesting to see how 

bQIEA perform against rQIEA and other algorithms on even more complex search 

spaces. 

A heat map of the relative performance by the three compared algorithms on 50-

dimensional CEC-2013 test functions is shown in Figure 16.  SRQEA has the highest 

number of best performances, but GA has fewer worst performances.  Again, this 

indicates better exploitation properties for SRQEA at the expense of exploration. 

 

Figure 16: Heat map of best minimum performance by SRQEA compared to published PSO 
and GA algorithms on the CEC-2013 test functions. 

 

A comparison between SRQEA and two alternative algorithms, when applied to the real-

world problems is shown in Table 15.  For the frequency modulation wave matching 

problem, MADE-WS [151] had the best mean and standard deviation.  Unfortunately, 

the authors did not report a minimum value.  SRQEA outperformed the hybrid algorithm 

[159] and the DE algorithm [160], in terms of mean and standard deviation, while 

equalling the best minimum performance.  The mean and standard deviation were worse 

but comparable with the MADE-WS results. 
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For the Lennard-Jones problems, SRQEA again established the best minimum values, 

but MADE-WS did not have a comparable values published.  SRQEA did have the best 

mean value for Lennard-Jones5 but only outperformed the hybrid algorithm for 

Lennard-Jones10. 

For the radar waveform parameter specification problem, SRQEA was the clear winner.  

The published results [159] and [160] both gave a suspiciously poor value though, and 

it may be worth considering whether there were issues in using shared code for the 

function evaluations.  The problem was directly tackled in [161] where a variable 

neighbourhood search algorithm gave  a minimum value of 8.58e-01 which was better 

than that achieved by the SRQEA. 

 

4.6 Conclusion 

 

When applied to real-value optimization tasks, all of the QIEA tested and validated in 

this investigation produced usually excellent results for basic test functions, and 

acceptable to excellent results for the more complicated benchmarks.  Binary QIEA are 

a direct implementation of the quantum computing metaphor, which is built around 

repeated sampling of binary strings, analogous to superposition of states on a set of 

quantum bits.  The Qbit probabilities define a probability distribution that elegantly 

specifies both the region of the best solution found so far, and the variance of the search 

radius.  As the probabilities saturate, the mean position of the search becomes clearly 

defined, and the variance of the search narrows.  Although the original Classic 

algorithm performed relatively poorly on the optimization tasks examined here, the 

modified HSB did substantially improve the results.  In many instances it outperformed 

RCQIEA, especially for the more difficult CEC-2013 test functions.  The timeline plots 

highlighted the premature convergence of Classic (Figure 15a), giving further 

justification for the choice of modification, which was developed in response to the 

analysis of individual bit evolution.  By explicitly limiting the saturation of less 

significant bits to the magnitude of saturation of more significant bits, HSB avoids the 

problems that Classic encountered for real-value problems, although horizontal lines in 

the latter half of some timeline plots suggest there is still room for improvement.  The 

population size results (Figure 12a and Figure 12b) also suggest exploration issues, as 
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the bQIEA benefit from a larger population size for a fixed number of function 

evaluations. 

The best results came from the rQIEA, especially from the modified version - SRQEA 

(Table 9, Table 10 and Table 11) but the rQIEA specifications require a compromise 

with respect to the quantum metaphor.  In most rQIEA, and certainly the ones presented 

here, the Qbits and the quantum rotation gate give a mechanism for adjusting the radius 

of search throughout the evolution, such as through the creep mutation operators of the 

rQIEA presented here, or in the velocity equations in PSO algorithms [147].  Although 

that is not a problem of itself, it may be useful to view these quantum inspired 

algorithms as operator algorithms used within other optimization methods.  Presented 

on their own, rQIEA can largely resemble other techniques.  For example, the RCQIEA 

algorithm used here looks similar to simulated annealing, with the rotation gate 

adjusting the variance for neighbour selection. 

The modification to the rotation gate produced superior results, particularly with regards 

to the exploitation (Table 10), although as it can be seen from the heatmaps of Figure 

16 and Figure 13, the average performance across the functions is slightly 

compromised.  This suggests the superior exploitation may come at the expense of some 

exploration limitation.  As well as being beneficial in this specific implementation, it 

would be interesting for future work to explore the possibility of using the modified 

rotation in other algorithms, as a way of adjusting search variance. 

When compared to other published results, the modified algorithms were superior for 

the more complex CEC-2013 functions (Table 14).  For the traditional test functions, 

they were generally outperformed by other published results (in particular, the DE 

algorithms [151], Table 13).  However, timeline plots (Figure 15) suggest the rQIEA 

may continue to improve if left for longer.  It would therefore be interesting to see if 

these algorithms are suitable for increasingly complicated test functions, where longer 

processing times are to be expected. 

Surprisingly, the bQIEA appeared to perform better for the more complex CEC-2013 

and the real-world test functions (Table 10 and Table 11).  It can be speculated that this 

may be because either the transferred search space begins to resemble the binary space 

portioning that the bQIEA generate, or that the search hops at different scales 

(depending on bit significance) may result in more suitable search patterns when 



Chapter 4 - Quantum inspired evolutionary algorithms  70 

 

compared to rQIEA or other algorithms.  The ability of bQIEA to combine different 

scales, through bit manipulation, may explain their improved performance on these 

more sophisticated tasks.  As more complex fitness functions are published in the future, 

it would be worth including bQIEA (and perhaps other binary optimisation algorithms) 

in attempting to optimise them. 

QIEA provide a good starting point for optimization.  Deficiencies, when compared to 

competing algorithms, were largely down to fine exploitation, with results being of a 

similar degree of magnitude in error (Table 12).  Future work would be beneficial on 

improving exploration for SRQEA, or further reducing the premature convergence for 

HSB.  This may be achieved through an analysis of the effect of changing algorithm 

parameters (as discussed below), or by including the QIEA in hybrid algorithms with a 

two-stage exploration and exploitation process.  Using the configuration of step size 

and other parameters presented here, the two rQIEA are more orientated towards 

exploration than exploitation.  This is demonstrated by the populations analysis (Figure 

12), which showed they both benefitted from a small population size for a given number 

of function evaluations (thereby increasing the number of iterations per individual). The 

bQIEA in contrast performed best with a larger population size and so appear to be 

balanced more towards exploitation than exploration, thus needing larger population 

size to effectively explore the search space. 

One final advantage of QIEA is the low number of parameters they require for the main 

part of their implementation.  Generally, only the number of individuals and step size 

for the rotation gate are needed.  The rQIEA presented here also include a parameter for 

the number of children produced in each generation.  For all of the investigated 

algorithms, the number of individuals and rotation gate step magnitude need specifying. 

The bQIEA also have parameters for local and global update rates, while rQIEA have 

crossover rates.  How these affect the overall performance was not evaluated.  The 

rQIEA also add a parameter for the number of offspring spawned at each iteration.  

Again, changing this was not analysed and further investigation into the optimisation of 

these parameters would be worth conducting. 
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5 Comparative experiments in evolution of locomotion 
 

In this chapter, a series of experiments is presented, examining the evolution of vertical 

jump, long jump and walking gaits.  All of the skills were developed for biped models, 

and walking was developed for a quadruped model.  Different models, platforms, 

control algorithms and optimisation algorithms were compared and the results are 

presented, along with problems encountered in simulation, with conclusions and 

directions for future work concluding the chapter. 

 

5.1 Vertical jump skill 
 

The first experiments presented here sought to produce vertical jumps in a biped model, 

optimising maximum height achieved.  A counter-movement element in a vertical jump 

has been identified as important in human jumping [162].  One reason for this is called 

a stretch shortening cycle, which increases performance due to storage of elastic energy 

and increased muscle activation [163].  These advantageous properties will be missing 

in a physical simulation consisting of rigid bodies, which is the case for the systems 

used here as soft body dynamics are more complicated to simulate.  However, the 

increased acceleration phase made possible by bending the knees before jumping still 

favours a counter-movement jump for maximum height, and so an additional criterion 

will be used in evaluation - optimisation of a vertical jump skills will be regarded as 

successful if a counter-movement is observed. 

5.1.1 Vertical jump in detailed biped model 

 

The vertical jump was first used to test the process of optimisating movement and the 

first experiment is described briefly here, in a qualitative way as no comparative 
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experiments were performed at this stage.  However, the results demonstrate a proof of 

concept, and a description is given of issues encountered.  Newton Dynamics was 

selected for speed, but since a vertical jump is a discrete skill (short duration, not 

continuous) it was decided to use the detailed biped model as optimisation was assumed 

to be less taxing in this scenario.  Visualisation was provided by Ogre3D and software 

was written in C#. 

A Van der Pol based CPG was used for control and a genetic algorithm was used for 

optimisation, these being described in detail in sections 2.1.2 and 3.2.1 respectively.  

The fitness function was simply maximum height obtained in a fixed time period, 

although it was later modified to only accept one jump phase, as some evolutions 

produced higher jumps using multiple jump phases.  Evolution was often successful, as 

per counter-movement criterion, and an example animation is presented in Figure 17. 

  

  

Figure 17: Still frames from an animation of a vertical jump evolved for a biped model, in 
Newton Dynamics Engine, from left to right, top to bottom. 

 

Care had to be taken in specifying the physical model.  As noted in section 3.4.3 it was 

constructed using cuboids and hinge joints, for simplicity.  However, results were 

sensitive to the control properties, especially maximum joint speeds.  Unrealistic, 

explosive movements were produced when maximum speeds were allowed to be too 

high.  Although this is somewhat obvious, it does highlight the need for proper 
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calibration even in theoretical experiments (not with a real-world target system in 

mind). 

 

5.1.2 Vertical jump in detailed robot biped model 

 

Following the proof of concept work, a quantitative comparative study was conducted 

into evolving and optimising vertical jumps.  Given the success from the previous 

section, it was felt that the slower OpenHRP3 software could be used, in order to use a 

platform that was common in the literature, and meeting the thesis objective of testing 

methods on multiple physics platforms. 

The control algorithms outlined below (a CPG and a RNN) output desired joint angles 

at each time iteration.  They are then converted into joint torque values, which in turn 

are fed into the physical simulation.  This was done using a proportional–integral–

derivative controller (PID controller) [164].  A PID controller outputs control values 

based on the error between the current measured position and desired position 

(expressed for this experiment in terms of the joint angles).  It is given in discrete time 

form by equation (5.1): 
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where tk is the time at iteration k, u(tk) the output torque for joint k, e(tk) the error 

(difference between target joint angle and measured joint angle), and Kp, Ki, and Kd are 

tuning parameters representing proportional, integral and derivative gains respectively.  

Additionally, in order to cope with situations where the control algorithms changed their 

output too rapidly the output joint torque was limited to a maximum value. 

As well as developing a vertical jump in a more complicated model, two methods from 

the literature were compared – a Van der Pol oscillator based CPG and a fully connected 

leaky integrator recurrent neural network. 
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5.1.3 CPG – Van der Pol 

 

For the central pattern generator controller, a Van der Pol oscillator model (see section 

2.1.2) was selected.  It was chosen because the literature search had highlighted it as a 

popular choice, plus it was relatively simple to implement.  A discrete time version is 

presented in equation (5.2) using the simple Euler method to perform the numerical 

integration.  Using the Euler method is simple to implement, and so was chosen, but 

more precise experiments could have been achieved with an improved numerical 

integration, such as Runge-Kutta [165]. 
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 (5.2) 

where xi(t) is the output of oscillator i at iteration t, αi, pi, ωi and ki are constants to be 

tuned by optimisation, controlling shape, amplitude, frequency and amplitude 

respectively, λ is the interconnection matrix (with λii = 0 ), Δt is the length of time 

between iterations, and n is the number of oscillators. 

The parameter ranges used in this investigation, and encoding scheme used during 

optimisation, are given in Table 16 and Table 17. 

Table 16: CPG parameter ranges. 

Initial oscillator phase x  Set equal to the initial joint 

positions in the standing pose 

Initial oscillator speed x  [-4.0,4.0]  

  [0.0,4.0] 

2p
 

[0.0,8.0] 

k  0 

2   [0.0,40.0] 

ij  
[-1.0,1.0] 

 

Table 17: CPG encoding scheme. 

 

 

 constants in   2 constants in p  2 constants n    1  matrix ijn n   
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5.1.4 RNN – Fully connected leaky integrator 

 

To compare with the CPG, a RNN from [86]–[88] with topology given in Figure 4 and 

described in equation (2.8) was chosen.  This network was selected due to being well 

described in the literature, suitably generic and easy to implement.  In [86]–[88] it was 

used for evolving continuous skills such as walking gaits so this experiment had the 

potential to establish a larger capability for this topology, if it were capable of discrete 

jumping skills. 

Parameter ranges used during optimisation are given in Table 18. 

 

Table 18: Parameter ranges for RNN 

Initial oscillator phase x  Set equal to the initial joint 

positions in the standing pose 

j  [0.001,5.0] 

ijw
 [-16.0,16.0] 

j
 [-4.0,4.0] 

 

5.1.5 Optimisation 

 

In this investigation a standard GA [128] was compared with a particle swarm 

optimisation (PSO) algorithm [129], for their ability to successfully develop counter-

movement jumps (expressed as success rates).  As mentioned in section 3.1.2, GA has 

often been used to optimise locomotion, and was used in [86] to generate walking gaits 

with the RNN.  In contrast, no uses of PSO for this field were identified, and therefore 

it would be useful to compare the two techniques to start the process of establishing the 

most useful techniques for locomotion. 

For the GA, the genes of each chromosome consisted of real values in the interval [0.0 

, 1.0].  These specified the parameters for the control algorithms, being linearly mapped 

onto the desired parameter ranges.  The configuration of the GA is shown in Table 19 

with constants adapted from [86] after initial testing.  The PSO was configured 

according to section 3.2.2. 
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Table 19: GA configuration 

Population size 50 chromosomes 

Chromosome length Dependent on control algorithm 

Randomisation Normal distribution 0.5   , 
2 0.5    

Selection Tournament selection, 0.9p    

Crossover Genes crossed 0.01p    

Mutation Creep mutation from (0.5,0.5)N  , 0.04p    

Elitism Best 4 chromosome copied unaltered 

 

5.1.6 Fitness function 

 

The fitness function for the vertical jump was kept as simple as possible, with the 

emphasis being placed on the methods to produce a solution.  However, it was found 

that including some a-priori knowledge greatly helped results.  The specification for the 

modified function is shown in Table 20. 

Termination criteria can be used to frame the skill in time, to quickly stop failing 

attempts such as falling over, or to avoid undesirable movements such as jumping while 

attempting running.  In this case, only the time frame was considered as important.  It 

was found that a fitness function based on chest height was preferable to one based on 

waist height.  This was because the waist based function ignored toppling of the upper 

body.  The results using the modified version emphasising counter-movement is 

discussed in the next section. 

Table 20: Fitness function for vertical jump. 

Skill Fitness score Termination criteria 

Vertical jump Maximum height attained by chest 

 

Modified to favour counter-movement jumps 

by measuring the maximum height achieved 

by the chest after the waist had lowered 

below 0.65m 

3 seconds of simulated 

time 

 

5.1.7 Results 

 

All control and optimisation combinations tested were able to produce satisfactory 

vertical jumps.  An optimisation run was deemed to be successful if the final output 
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consisted of a counter movement jump.  The frequency of successes and best jump 

heights varied across the different combinations of control and optimisation algorithms.  

The results from 25 optimisation runs are summarised in Table 21. 

Table 21: Comparison of vertical jump evolution between GA and PSO, using CPG and RNN 
control methods. 

Optimser GA PSO 

In 25 

runs 

Successes Best height after 

100 generations 

Successes Best height after 

100 iterations 

CPG 25 2.26m 25 2.55m 

RNN 4 2.23m 7 1.54m 

 

CPG runs were always successful but RNN controlled runs often failed to produce a 

success.  When failure occurred, optimisation tended to hit a local maximum – typically 

using ankle plantarflexion to jump up a little.  In an attempt to combat this, the fitness 

function was modified to include a threshold criterion.  The waist had to lower below 

0.65m before maximum height was measured.  This favoured counter-movement jumps 

over ankle jumps.  Even so, RNN control had a very poor success rate.  Using a normal 

distribution approximation there was little evidence supporting a difference in the 

success rates of RNN optimisation between GA and PSO (p>0.3).  However, this 

approximation is unreliable as the GA optimised RNN had fewer than 5 successes. 

The results are suggestive of PSO optimisation producing more successes for RNN 

controlled jumps, with GA better at refining solutions to give greater heights.  More 

simulations are needed to establish strong evidence of the PSO having better exploration 

(finding successful solutions) and the GA better exploitation (refining those solutions 

to get a near optimal height), and in contrast to the results for the RNN, PSO found the 

best height for the CPG controller. 

The use of this modified fitness function includes a priori expert knowledge – that a 

counter-movement jump is preferential to maximum height.  This is problematic as 

expert knowledge for other skills may be missing or wrong, and highlights the need to 

further develop the control and optimisation algorithms so that they can consistently 

find global maxima.  In this experiment, only the CPG was able to find suitable solutions 

without expert knowledge. 
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The higher success rate of the CPG can be attributed to its explicit oscillatory form.  

Counter movements (cycling knee flexion to knee extension) are generally present in 

the first, random, population.  Optimisation is then simply a process of identifying and 

refining these patterns.  For the RNN, the optimisation task is more complicated as 

many configurations of the network do not produce any periods of oscillation at all. 

Although very successful, the ease of optimising the CPG created instances of solutions 

that would not be appropriate for real life – even though they scored very high jumps.  

These solutions involved one or more preparatory mini-jumps before the final big jump.  

For real world applications such as robotic control or templates for human action, 

further modification to the fitness function may be needed to measure only the first 

jump, otherwise the form may be too energy demanding, time demanding, or 

aesthetically unpleasing.  Both CPG and RNN algorithms were capable of producing 

unnecessary movements after the launch phase.  This was often pronounced for the CPG 

as oscillations tended to continue after the launch phase.  To improve the form, there 

would need to be some cut-off or transition control added to the CPG to control for 

these movements, and these form elements to be accounted for in the fitness function. 

Lastly, it was observed that the CPG was capable of producing very explosive 

movements.  This was possible because large amplitudes of oscillation were allowed 

(but clipped to control joint ranges).  The movement pattern was probably not realistic 

but attempts to constrain the range more appropriately were less successful.  Further 

work is needed to address this problem. 

For use in a sport context, the simulation software can be used to produce a video of the 

optimised movement (Figure 18).  This video can then be shown to coaches and athletes 

to help them visually understand the optimised pattern, or to be used as a reference in 

video analysis. 
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Figure 18: Frames from the animation of a successfully optimised vertical jump. 

 

Alternatively, the raw output of the control algorithms (joint angles over time – Figure 

19), or the calculated torques over time can be used in training.  To do this, the traces 

can be compared to data collected using motion tracking techniques. 

 

Figure 19: CPG output trace for the right knee angle during a vertical jump 

 

Finally, the researcher could extract key features from either the video or control 

algorithm output data.  Key features may include extrema positions of joints, timing 

information, and movement sequence description.  Identification of important features 

can be done by comparing to pre-existing technique and highlighting major differences. 

Fitness functions have to be carefully chosen because they can affect the ability of the 

system to optimise and fundamentally define the form of the final solution.  In the 

vertical jump choosing to measure height achieved by the waist is successful in 

producing vertical jumps but, in general, the upper body tends to rotate towards the 

horizontal.  Measuring height achieved by the chest corrects this problem.  For a more 

realistic jump skill, it would be appropriate to add horizontal plane factors to the fitness 

function.  This is to ensure that the direction of the jump is task appropriate. 
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In this experiment, the CPG consistently outperformed the RNN.  It was always 

successful whereas the RNN sometimes failed to produce satisfactory results.  

However, the CPG does have issues with unsuitable movements (such as multiple jump 

patterns) that are less of a problem with RNN controlled movement. For GA optimised 

RNN jumping, the success rate was 1 in 10.  This compares to a similar success rate for 

GA optimised RNN controlling a walk gait found in [86].  Although the movement 

skills are different the vertical jump can be viewed as possessing one cycle of an 

oscillation, and so the similar success rates may represent a similar difficulty in finding 

oscillatory patterns in the RNN using GA.  The PSO found acceptable solutions for the 

RNN more often than the GA, but the GA generated the best height across the test for 

the RNN. 

5.2 Walking gaits 

 

This section presents investigations into producing and optimising walking gaits for 

quadrupeds and bipeds.  Physical model design, control algorithms and optimisation 

techniques are explained, tested and contrasted. 

Experiments were conducted using Newton Dynamics version 3.13 for physics 

simulation (driven with a time step of 0.02 seconds), wxWidgets for the user interface 

and OpenGL for graphical rendering. 

5.2.1 Evolving quadruped walking gaits 

 

To start with a less demanding walking task, the quadruped model was selected.  As 

mentioned in section 3.4.1 it is statically stable and making it fall over is difficult.  It 

was assumed that this property would make optimisation of gaits easier. 

To control the quadruped, a sinusoidal CPG based on a body phase driven set of 

oscillators [70] was compared to a fully connected neural network ([86] and section 

2.1.4).  The CPG is given in equation (5.3). 
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where θB and ωB are the body phase angle, and phase speed respectively, θi is the angle 

of oscillator i, ωi is the phase speed of oscillator i and λ is an entrainment factor.  The 

output of the oscillator is given by yi, with xi and ai being an offset and amplitude 

respectively. 

The design of the CPG gives a clear interpretation for each parameter, and therefore the 

effects of changing them can be predicted to some degree, giving the potential for 

applying expert knowledge/reasoning to the configuration.  The goal of this thesis was 

to develop methods that do not include expert knowledge, as the assumptions may be 

wrong, or may limit the solutions to sub-optimal results, but the opportunity was taken 

here to compare expert and non-expert adjusted configurations, in order to determine 

the added optimisational complexity of fully specifying the results by the optimisation 

process. 

Therefore, two versions of the CPG were tested – one with the full configuration 

specified by the optimisation algorithm, and one where some parameters were hand 

coded.  These were initial body phase (set to zero), body phase speed (set to one radian 

per second), oscillator offset (set to 0.5) and oscillator amplitude (set to 0.5).  The 

justification for these manual adjustments was that initial body phase is somewhat 

arbitrary, a phase speed dictates the walking pace and so can be chosen freely, and that 

actuator movement would probably be best if full range and symmetrical. 

The genetic algorithm (GA) and particle swarm optimiser (PSO) from chapter 5 were 

used, with the addition of SRQEA from chapter 4.  The GA and PSO had 50 

chromosomes or individuals respectively, and the SRQEA had a population size of 5 but 

performed 40 fitness evaluations per generation, as per the child spawning process 

outlined in chapter 4.  The fitness function was simply distance travelled along the z-

axis after 20 seconds of simulated time (1000 physical simulation iterations).  Since the 

optimisation algorithms were configured to minimise the fitness function, this favoured 

movement in the negative direction.  The body and hinges were aligned in the z-axis 

and had reflection symmetry in the x-axis so requiring positive or negative movement 

was arbitrary. 

An additional termination condition was added that stopped simulation if the body tilted 

too far.  This was done to stop processing simulations where the body flips.  Initial 

experiments indicated this could save time, but it did not seem to be a necessary 
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condition for successful gait production.  Nevertheless, it was included as a time saving 

measure. 

5.2.2 Quadruped walking results 

 

All methods produced walking gaits that transported the quadruped negatively along 

the z axis.  However, some of these movement patterns relied upon friction to drag the 

body along, with some other legs moving in an opposing fashion.  A well-functioning 

gait was one that moved diagonally opposite legs in unison and co-ordinated the two 

pairs of opposite legs.  Rotating backwards, a pair of legs propel the model forward, 

while the other two legs retract and rotate forwards.  This maintains dynamic stability 

while creating forward movement. 

Detecting this behaviour would allow a ‘success’ status to be applied to runs, and in 

turn, would allow metrics based on success rates to be compared.  Although an 

algorithm was not implemented to detect this directly, it was visually determined that 

distances of 2 metres in the negative z direction (a fitness score of -2.00) were generally 

associated with a strongly recognisable gait, as described above.  Therefore, a run was 

regarded as successful if the fitness was less than or equal to -2. 

The results of applying the GA, PSO and SRQEA optimisers to the expert adjusted CPG 

(labelled simple CPG), fully specified CPG (labelled full CPG) and RNN are presented 

in Table 22.  Data presented are minimum, maximum, mean, median and standard 

deviation values, as well as SP and SR metrics described in section 4.4.3.  Simulations 

were run for 200 iterations/generations and repeated for 100 runs, with no early 

termination criteria. 

Only the CPG was able to produce a walking gait that travelled at least 2 metres (screen 

captures of a typical successful walk are shown in Figure 20) but managed this in both 

the simple and full versions.  The RNN struggled to establish cyclic behaviour.  This 

was achieved in [86] but only for a small percentage of runs.  Additionally, the network 

was tested for its ability to copy sinusoidal waveforms (unpresented), which confirms 

the version coded in this work was capable of cyclic behaviour.  It must therefore be 

regarded as a failure of the optimisation process that a RNN controlled walk of more 

than 2 metres was not obtained.  As the failure occurred for all three optimisation 

algorithms, it is more likely to be a problem of optimiser configuration, than choice of 
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algorithm.  This is discussed further when looking at time evolutions of the optimisation 

processes.  When comparing the three control methods, it can clearly be seen that simple 

CPG outperforms the other methods, achieving a best score of -2.60m, followed by full 

CPG which achieved a best of -2.09m, with RNN having the worst performances with 

a best fitness of -1.09m. 

 

    

     

Figure 20: Typical evolved successful quadruped gait. 

 

Overall the GA produced better results than SRQEA and PSO, achieving the best score 

for simple Sin and full Sin, but PSO scored the best for RNN.  In general, the 

performance of the three optimisation algorithms was similar, with the exception of 

PSO for full Sin where the best value (minimum) was substantially worse than for the 

other two algorithms.  However, looking at the average values for full Sin, good runs 

may be regarded as rare events and, as discussed below when looking at the time 

evolutions, may be an indication that more runs, over a longer period, may reduce the 

differences between the optimisers.  Furthermore, PSO achieved the best minimum on 

the RNN, which probably presents the greatest optimisation challenge because of its 

open architecture, and this suggests that PSO is perhaps not fundamentally bad with full 

Sin but rather that the rare good results did not appear in the 100 runs performed for this 

work.  The GA always had the best, or equal best, average performance and, as it also 

found the best values overall for two of the three controller configurations, should be 

regarded as the best performer in these tests. 
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Table 22: Comparison of GA, SRQEA and PSO optimisation of a quadruped gait controlled by 
a sinusoidal based CPG in an expert opinion assisted simple version (Simple Sin) and fully 
specified version (Full Sin), and a fully connected recurrent neural network (RNN). 

  Simple Sin Full Sin RNN 

GA 

Min -2.60 -2.09 -1.04 

Max -1.50 -0.79 -0.60 

Mean -2.39 -1.25 -0.84 

Median -2.45 -1.18 -0.84 

Std 0.22 0.32 0.08 

SR 0.94 0.03 0.00 

SP 1379.26 6350.00 - 

SRQEA 

Min -2.59 -1.98 -0.92 

Max -1.16 -0.68 -0.40 

Mean -2.29 -1.07 -0.67 

Median -2.38 -1.05 -0.68 

Std 0.26 0.23 0.12 

SR 0.88 0.00 0.00 

SP 3658.52 - - 

PSO 

Min -2.46 -1.48 -1.09 

Max -1.91 -0.68 -0.66 

Mean -2.23 -0.94 -0.84 

Median -2.25 -0.93 -0.83 

Std 0.10 0.15 0.07 

SR 0.99 0.00 0.00 

SP 1621.21 - - 

 

Most of the differences between the configurations were found to be statistically 

significant, with the test results shown in Table 23 using Kruskal-Wallis 1-way 

ANOVA in SPSS 23.  The non-parametric Kruskal-Wallis test was used as many of the 

distributions were found to be non-normal.  The data for Simple Sin were not found to 

be significantly different across the optimisation algorithms, but PSO did underperform 

GA for full Sin.  SRQEA was statistically significantly worse for the RNN when 

compared to both GA and PSO. 
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Table 23: Pairwise significance tests between each combination of controller and optimiser, 
with another. Significant results are in bold, and numbers are adjusted p-value generated by 
SPSS. 
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SIMPLE SIN GA  1.000 0.091 0.000 0.000 0.000 0.000 0.000 0.000 

SIMPLE SIN 

SRQEA 

1.000  1.000 0.000 0.000 0.000 0.000 0.000 0.000 

SIMPLE SIN PSO 0.091 1.000  0.000 0.000 0.000 0.000 0.000 0.000 

FULL SIN GA 0.000 0.000 0.000  1.000 0.000 0.000 0.000 0.000 

FULL SIN SRQEA 0.000 0.000 0.000 1.000  1.000 0.000 0.000 0.000 

FULL SIN PSO 0.000 0.000 0.000 0.000 1.000  0.184 0.000 0.149 

RNN GA 0.000 0.000 0.000 0.000 0.000 0.184  0.000 1.000 

RNN SRQEA 0.000 0.000 0.000 0.000 0.000 0.000 0.000  0.000 

RNN PSO 0.000 0.000 0.000 0.000 0.000 0.149 1.000 0.000  

 

Variants of SRQEA and PSO were also tested for full Sin and the results are presented 

in Table 24.  SRQEA10 had a population size of 10 but 4 offspring, compared to 5 

individuals and 8 offspring for the default configuration.  This maintained the number 

of evaluations per iteration at 40.  SRQEA10,20 performed 20 cross-overs per run 

compared with 4 for the default version.  Overall differences between the SRQEA 

versions were small, although the mean performance was improved for both variants.  

SPSO-2011 [123] is the same algorithm as contrasted in chapter 4, and produced sizable 

improvements for minimum and mean performance, but increased variance between 

runs. 

Table 24: Alternative versions of SRQEA and PSO applied to the full Sin controller for a 
quadruped walking gait. 

 Full Sin 

 Min Max Mean Median Std 

SRQEA -1.98 -0.68 -1.07 -1.05 0.23 

SRQEA10 -1.83 -0.72 -1.14 -1.11 0.21 

SRQEA10,20 -1.89 -0.71 -1.13 -1.13 0.24 

PSO -1.48 -0.68 -0.94 -0.93 0.15 

SPSO2011 -1.84 -0.54 -1.22 -1.18 0.25 

 

The time evolutions of each optimisation/control algorithm pair, are shown in Figure 

21, where the horizontal time axis shows the generation/iteration, ranging from 1 – 200.  

The vertical axis shows the fitness score which measures z-direction distance travelled, 
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with lower scores being better.  Quite a few of the plots show that the minimum value 

(green) is still decreasing close to the end of the evolution.  This suggests that these 

algorithms would benefit from being run for longer.  The PSO may especially benefit 

from a longer time as substantial improvements in minimum score were seen in the later 

stages for full Sin (where it underperformed relative to GA and SRQEA) and RNN 

(where it was the best performer).  The evolution of SRQEA shows a continual, albeit 

slow, improvement of minimum value throughout the evolution, with a higher SP value 

suggesting modifications to speed convergence may be beneficial for this application 

of the optimisation algorithm. 

 

 

 

a)  

b)  
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c)  

d)  

e)  
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g)  

h)  

i)  

 

Figure 21: Time evolutions of each optimisation algorithm for each controller.  Results for GA, 
SRQEA and PSO are shown, respectively, for Simple Sin (a – c), Full Sin (d – f) and RNN (g – i). 

 

5.2.3 Evolving biped walking gaits 

 

To make methods more applicable to human and many robot systems, biped models 

need to have their movement controlled and optimised.  At the beginning of this chapter 

a vertical jump skill was successfully evolved, so in contrast, the continuous cyclical 

skill of walking was examined here.  The simple biped model from section 3.4.2 was 

used as it was assumed the optimisation task would be more difficult than for a vertical 

jump, so a model with less degrees of freedom was used. 
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5.2.4 Difficulties 

 

For a long time the investigation was unsuccessful at producing a convincing walking 

gait in a biped model.  Optimisation would produce stumble and fall patterns, a series 

of hops, or somersaulting in an attempt to improve distance travelled.  This was finally 

solved by altering characteristics of the physical model.  The solution was to essentially 

copy the joint actuator algorithm from [86], which converts desired joint angles to 

torques based on the difference between the current angle, and the desired angle, with 

a degree of smoothing.  This replaced the original hinge code that came with the physics 

simulation package (appendix C.1) and can be seen in appendix C.2.  With this change, 

successful walking gaits were produced, albeit in a small percentage of runs. 

Frames from an animation of a successful walk sequence are shown in Figure 22.  

Another problem was that foot contact with the ground formed point contacts which 

could not prevent rotations around the normal to the floor plain.  This allowed the feet 

to twist in place and, strangely, the effective walking gaits started with a 90 degree spin 

before walking away.  A few different feet designs were tried, such as sphere feet, multi-

sphere and cuboid feet but all had the problem of producing a single point contact at 

certain times.  In the real-world, feet will deform when touching the floor and create an 

area of contact, which in turn will provide friction against these rotations around the 

normal.  This problem was not solved in this experiment, but future work is suggested 

in the conclusion section to address this.  Towards the end of the simulation time for 

the gait the model appeared to be becoming unbalanced.  This was quite possibly due 

to accumulated error and therefore a minor detail rather than a fundamental problem 

with the solution.  To improve upon this, a finer evolutionary strategy could be 

employed to precisely specify the gait, or sensory feedback could be incorporated to 

help maintain balance, but was left for future work. 

 

5.2.5 Bipedal walking results 

 

The fitness function was the negative square of distance travelled in the x-z plane when 

termination occurred, favouring walking in any direction.  A run was terminated if the 

simulation time had elapsed, or if the body fell below a threshold height.  It is difficult 

to present a quantitative analysis here as fitness scores were often due to erroneous 
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behaviour.  For example, although distance travelled could be substantial, the form used 

was sometimes not a walking gait – hopping or spinning gaits were often observed.  

However, once the new joint model was implemented, a set of reliable data could be 

produced, and basic information presented that could be relied upon. 

 

 

 

 

 

Figure 22: Successful bipedal walking gait. 
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In Table 25 data are shown for successful evolutions of a biped gait for a CPG 

(configured the same as full Sin previously) and the fully connected RNN.  A threshold 

of -3.00m was taken as successful, as by inspection it appeared that this was associated 

with a proper walking gait.  The authors of [86] reported a success rate of approximately 

0.10 so the results of 0.15 for the CPG, and 0.06 for the RNN demonstrate a similar 

order of magnitude of success.  Not surprisingly, the CPG achieved the correct, cyclic 

behaviour more often than the RNN, and had a better minimum score. 

Table 25: Walking evolution performance for biped model. 

 CPG RNN 

GA 

Min -4.46 -3.41 

Mean -2.36 -2.06 

SR 0.15 0.06 

 

 

5.3 A long jump skill 

 

To conclude the investigation into biped control, a brief examination of a new skill – 

long jumping was conducted.  This gave an opportunity to demonstrate a wider range 

of skill production, and also the results highlighted difficulties with correctly expressing 

fitness functions and how optimisation may exploit characteristics in the physical model 

to produce unrealistic movements. 

The fitness function for the long jump was the furthest distance travelled in the negative 

z direction by either foot at termination time.  Termination time was either when a foot 

hit the ground beyond a start line (0.1m in front of the system along the negative z 

direction) or when the upper body hit the ground.  The intention was to evolve a jump 

and land phase, favouring distance travelled in the air before landing.  This was partially 

successful but the evolved movement technique had some undesirable features.  

Shown in Figure 23 the long jump began with a counter-movement, bending and then 

extending the knees.  Although some propulsion will have come from this movement, 

most came from a flinging action by one of the legs.  It quickly swung forwards and up, 

lifting and propelling the model forward.  As well as being unrealistic compared to 

expected movement from humans, this action created a spinning effect on the body.  

Finally, the other leg pointed forwards to achieve a good fitness score.  The odd form, 

compared to human jumping technique, is probably due to two factors.  Firstly, the 
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physical model is not very accurate, and probably favours ballistic single limb 

movements, rather than co-ordinating body parts to propel the system.  Secondly, the 

fitness function may benefit from having certain form elements included, in order to 

prevent spinning (although, if arms were present they may make contact with the 

ground, so automatically would penalise these patterns). 

 

 

 

  

Figure 23: Typical long jump evolution. 
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5.3.1 Conclusion 

 

In this chapter research results have been presented applying three different 

optimisation techniques to locomotion – GA, PSO and SRQEA.  Results were mixed, 

with GA achieving the best results in walking tasks and some of the vertical jump and 

long jump tests, but PSO demonstrated superior results for the vertical jump in terms of 

best height obtained and the number of successful evolutions when using a RNN control 

method, and the best results for RNN controller quadrupedal walking.  SRQEA did not 

perform as well in general, never attaining the best results, although it did outperform 

PSO and the SPSO-2011 algorithms for quadruped walking with a fully specified Sin 

controller. 

It should be noted that GA, PSO and SRQEA algorithms have several variables and 

sub-functions that can be changed.  This will all have an impact on exploitation versus 

exploration.  For example, some versions of PSO systematically vary their parameters 

over the course of the run, so that they favour exploration in the beginning but 

exploitation towards the end.  Therefore, conclusions on the overall properties of the 

optimisation algorithms tested here in comparison to each other cannot be made just on 

the experiment presented in this thesis. 

Evolving vertical jumping gaits was quite successful, in both Newton Dynamics and 

OpenHRP3.  Even in these discrete tasks, the CPG proved very successful.  This can be 

understood by interpreting the counter-movement jump as one cycle in a potentially 

continuous process, with the coordination of various limbs acting out across that cycle. 

When using the RNN controller for the vertical jump.  Expert knowledge was required 

to ensure the counter-movement property.  The process of including expert knowledge 

risks constraining the problem to sub-optimal solutions.  Using a sinusoidal based 

controller, evolving a walking gait was relatively easy for quadrupeds.  The fitness 

function only analysed distance travelled which is desirable, as it is an outcome measure 

and assumes nothing about desired form.  However, best performance came when 

manually specifying some of the parameters of the sinusoidal CPG, which violates the 

principal of making minimal assumptions.  Performing 100 runs typically took more 

than 10 hours to complete, but extending running time may be beneficial in finding 

good solutions, as seen by the time evolution plots.  A two phase or hybrid technique 
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may be employed to aggressively search early on, as the rare-event nature of full Sin 

suggests adequate solutions occupy a small region of the search space when optimising 

more open control architectures, and then refine the results with a search focussed on 

exploitation. 

The biped model is inherently less stable than the quadruped, and therefore movement 

control should be expected to be more difficult.  The success of the simulations was 

also sensitive to the specification of the physical model and future work should include 

more accurate modelling to overcome these issues.  Success rates for bipedal walking 

was low, but similar to other published research [86].  It was easier to evolve walking 

gaits with the CPG, which is not surprising given the oscillatory nature of the gait.  Long 

jumping had some elements of success but was hampered by poor form – which would 

lead to unachievable or destructive movement in real-world applications such as 

robotics. 

To expand upon the biped research presented here, firstly the foot contact problem 

should be solved.  This may be done by creating a temporary hinge joint while the foot 

is in contact with the floor, but one that allows translation away from the floor plane so 

that the foot can lift away.  Following that, additional optimisation and control 

techniques should be investigated to establish the more successful method 

combinations. 

Once a suitable solution has been found, it can be utilised by either copying the control 

algorithm to the real-word robotic host, or taking information that may be 

communicated in order to train a human.  Video of the evolution is easy to generate 

from the simulation software, and sample frames have been included in this chapter as 

illustration.  Alternatively, joint trajectories or body part trajectories can be plotted, 

although for training purposes these will probably require significant transformation or 

interpretation to be understood. 
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6 Conclusions and future directions 
 

This chapter presents a conclusion based on how the work presented in this thesis meets 

the objectives outlined in the introduction.  It also presents recommendations for future 

work to further these objectives, and concludes with a list of publications produced 

during the development of this work. 

6.1 Conclusions 

 

The first objective of this thesis was to review published methods for locomotion 

control, and this process identified several techniques (chapter 2).  These were 

traditional analytical methods, CPGs, neural networks, rule based systems, and HMMs.  

As optimisation was the primary theme of the thesis objectives, analytical methods were 

not used in subsequent research because of the constraints imposed on parameterisation.  

Also, the simplification imposed by the modelling process would limit analytical 

techniques in their application to detailed questions on optimisation of complex 

systems.  For similar reasons, rule based systems were also rejected.  In principal they 

could be detailed but their use in published literature demonstrated a sizeable degree of 

simplification.  HMMs were used solely for imitation tasks and so were also not 

included in experimentation.  This left CPGs and NNs as suitable candidates to test, as 

they provided extensive parameter optimisation potential and had demonstrated 

successful results in the literature. 

To meet the thesis objective of comparing different control methods, which is generally 

lacking in the literature, experiments were conducted using a range of techniques.  A 

fully connected RNN, Van der Pol CPG and sinusoidal CPG were compared.  These 

proved to be popular in the literature, and the sinusoidal CPG was easy to modify to 

include expert knowledge regarding symmetry constraints. 
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Many optimisation techniques to accompany the use of the control methods in 

locomotion had been identified in the literature (section 3.1) but these were either 

simple optimisation algorithms, specialised learning algorithms to use in real-world 

experiments, or GA.  The optimisation objectives of this thesis were to review, compare 

and add new methods.  The review clearly identified a gap in application of different 

optimisation algorithm types so it was decided to add different methods and compare 

to GAs in experimentation.  These were a standard PSO, and a type of EDA called 

SRQEA. 

SRQEA was developed for this thesis (chapter 4) to meet the objective of developing 

new optimisation variants, from a multi-modal EDA called a quantum inspired 

evolutionary algorithm.  In developing this, a binary variant was also produced called 

HSB, as QIEAs were originally presented as binary algorithms.  Both of the new QIEAs 

were tested on real-value problems as the objectives of this thesis required 

parameterisation of real-valued control methods. 

Binary QIEA were examined (chapter 4) because the inspiration behind this class of 

algorithm is most coherently expressed when using a binary encoding.  The problem 

with applying bQIEA to real-value problems is that premature convergence of the least 

significant bits tends to occur (due to reinforced random walk processes).  A 

modification was proposed and tested that restricted evolution of these bits until the 

more significant bits had saturated their probabilities of producing ones or zeros.  This 

modification improved the performance of the algorithm and, although generally 

outperformed by rQIEA, had some interesting successes that may be due to the way a 

binary algorithm partitions and transverses the search space. 

The real QIEA identified in the literature often suffered from poor specification in their 

presentation, but a representative algorithm, RCQIEA, was examined.  The formula for 

its rotation gate (the method by which the underlying search probability function is 

updated) produced wild, and effectively random updates.  Replacing this with a simple 

step function improved performance and the resulting SRQEA method performed well 

against other published algorithms (including GA, PSO and DE methods), achieving 

superior performance for the CEC-2013 benchmarks for the larger dimensions. 

The process of optimisating locomotion is performed typically (although not 

exclusively in the literature) in a virtual environment, as faster than real-time simulation 
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speeds up optimisation, and control failure does not cause real damage.  An objective 

of this thesis was to review physical simulation platforms and develop physical models 

for experimentation.  The literature search identified OpenHRP3 as a common platform, 

but otherwise, platforms were not possible to determine, or were no longer available.  

A small review (section 3.3) of software available online identified game orientated 

packages Newton Dynamics and Unity (which also provided and application platform), 

robotics platform OpenHRP3, and biomechanics software SIMM and LifeMod.  The 

biomechanics packages would be useful when techniques progress to being able to 

handle the level of detail in their models (with associated high degrees of freedom), but 

were not included for the research in this thesis.  OpenHRP3 was selected in keeping 

with its profile in the literature search, and Newton Dynamics was selected as a fast and 

free alternative. 

OpenHRP3 provided a robotic biped model which was used to evolve a vertical jump.  

Additional models designed and presented in section 3.4 were a simple quadruped 

model, a simple biped and a more detailed biped, all for use in the Newton Dynamics 

platform.  They were designed with specific goals in mind.  The simple quadruped was 

the most stable, being statically stable in most conditions, and was included for use 

when researching difficult gaits before moving on to more complicated systems.  It was 

used to evolve a walking gait and enabled extensive quantitative comparison between 

different control methods and optimisation techniques.  The simple biped addressed a 

similar need for bipedal investigation.  Although not as stable as the quadruped, it had 

a low number of degrees of freedom and was used for walking and long jump skills.  

Finally, a more detailed biped model was used, with more degrees of freedom and 

detailed upper as well as lower body modelling in comparison to the simple biped 

model.  It was used for the vertical jump skill. 

A significant discovery was the sensitivity of the overall optimisation process to the 

quality of the physical simulation.  The approach used in this thesis combines physical 

modelling through simulation, a control algorithm and an optimisation technique.  In 

principal, any of these could be a weak link and prevent successful evolutions, but the 

experience of the bipedal model when used for walking and long jumping suggests that 

the physical simulation can provide the biggest problems.  As these techniques are 

applied to real-world modelling, this should hopefully become less of a problem, as the 

physical modelling will be more validated, rather than using the informal model design 
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approach employed here.  Nevertheless, the importance of correct physical simulation 

was highlighted across all tests on the Newton Dynamics platform.  Problems 

encountered included explosive movements due to joint activation speeds becoming too 

high, and poor foot-floor interaction with point contacts not preventing rotations that 

real-world area contacts would do. 

In general, the literature review identified only transportation locomotion skills 

(walking, running, swimming).  To meet the thesis objective of developing fitness 

functions for new skills, a vertical jump and a long jump skill were developed in chapter 

5, these two skills having not been observed during the literature review.  In general, 

encoding the fitness functions was quite simple – an outcome of maximum height in a 

set time, impact point of lead leg or maximum distance in a set time in vertical jumping, 

long jumping and walking respectively.  However, in some instances, expert knowledge 

needed to be included, such a criterion to develop a counter-movement jump or 

symmetry simplifications in walking, to enable successful evolution with some 

skill/control method/optimisation technique combinations.  As noted in chapter 5 the 

inclusion of expert knowledge risks development of sub-optimal solutions as they 

effectively impose constraints on the process.  However, when applying the patterns, 

constraints may be useful to reject certain patterns on aesthetic, practicality or safety 

grounds. 

For jumping and walking skills the CPGs were the most consistent performers.  Their 

structures are custom designed for oscillatory behaviour so should be expected to 

perform well for continuous walking control, but they were also successful in producing 

vertical jumps (and partially long jumps) which are discrete short action skills.  Counter-

movements are often advantageous to skills, whether continuous or discrete and so 

some form of oscillation is clearly beneficial.  The RNN investigated had low success 

rates, lower mean and fewer best performances in general, and the inclusion of expert 

knowledge appeared necessary in some of the experiments.  There may be skills that 

are more suited to this type of structure, but alternative neural network designs may be 

worth investigating in the future. 

The model design decisions were suited to the type of evolution tasks performed.  As 

expected, the vertical jump has capable in being evolved in the more detailed biped 

models both on Newton Dynamics and OpenHRP3.  The walking tasks were more 
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difficult but the stable quadruped model allowed extensive testing and quantitative 

comparison between methods.  Experiments suffered from poor specification of 

actuator behaviour, and friction models used for feet-floor interactions.  It was not until 

the actuator models were improved that evolution could be successful for vertical 

jumping and walking.  Long jumping had some elements of success but was hampered 

by poor form – which would lead to unachievable or destructive movement in real-

world applications such as robotics.  It is expected that improvements to the physical 

modelling would correct these problems. 

For optimisation, GA outperformed the other techniques in most of the experiments, 

although there appeared to be an affinity between optimisation technique and control 

method combinations, with PSO giving the best results for the RNN.  SRQEA did not 

dominate in any of the tests but it did outperform PSO and SPSO-2011 variants in some 

of the quadruped walking experiments.  The objective of expanding upon the number 

of optimisation algorithms applied to locomotion has been met with this research, but 

it is too early to tell if any algorithm should be preferred.  All of them can be configured 

or parameterised differently, presenting many configurations worth testing. 

Although it has been demonstrated that a vertical jump skill can be evolved in a more 

detailed model, more work needs to be done to successfully evolve a range of skills in 

complex models.  This may be a case of better physically modelling, but improved 

control methods and optimisation techniques will probably be required as well. 

 

6.2 Future directions 

 

Substantial problems were encountered with the physical modelling during 

experiments.  Not until the joint actuators were altered, could results be produced for 

jumping and walking that did not get stuck in evolving odd jumping or other ballistic 

patterns.  Furthermore, the rigid body simulations often produce point contacts for the 

feet upon the floor.  In normal usage, this will not prevent rotations.  In the real world,  

feet tend to form area contacts which will resist rotations relative to the floor.  It is 

therefore strongly recommend that better physical designs are established for 

experimentation, focussing on joint and actuator modelling so systems have a range of 
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capabilities, but do not produce excessively ballistic movement, and improved feet 

models so proper friction dynamics can be modelled. 

The original inspiration for this thesis was the optimisation of sport skills in realistic 

models of human movement.  As the techniques are also applicable to robot models, 

which in principal could feature more complicated designs in the future, a continued 

drive for this work should be the evolution of gaits in increasingly complex models.  

This can be done with the development of more complicated models, or by adopting 

pre-existing complex models.  Publically available biomechanical models, of varying 

complexity, could be used to test methods and hopefully produce results relevant to 

humans, and the resulting methods should be powerful enough to apply to non-human 

or mechanical models. 

The literature search highlighted a lack of comparative studies, and future work should 

build upon this thesis by continuing comparison between optimisation techniques and 

control methods.  Only one neural network design was tested here and it had low success 

rates.  It would be useful to test others - for example, reservoir networks may be worth 

study and comparison with other techniques, as they provide both a flexible structure 

and should be easier to optimise as only the output weights are evolved. 

Although comparison of different optimisation techniques was presented in this thesis, 

optimisation algorithms used either traditional default parameter values, or values taken 

for other publications.  Although possibly requiring a great deal of simulation time, it 

would be important to analyse the effect of varying parameters, introducing schemes to 

control diversity, or combining techniques into hybrid methods. 
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Appendix A Additional QIEA Results 
 

This appendix presents additional data produced in the QIEA development (chapter 4), providing results for 10 and 30 dimension versions fo the 

fitness functions. 

 

Table 26: Summary statistics for the 13 traditional test functions with 10 dimensions. Bold are best. 

Traditional test functions 

10 Dimensions 

bQIEA rQIEA 

Classic HSB RCQIEA SRQEA 

Function Min Mean Std dev Min Mean Std dev Min Mean Std dev Min Mean Std dev 

01 Sphere 3.08E+00 4.70E+01 3.55E+01 2.33E+00 1.48E+01 9.74E+00 1.94E-05 1.02E-04 6.11E-05 0.00E+00 0.00E+00 0.00E+00 

02 Schwefel 222 1.97E+00 8.83E+00 3.62E+00 1.36E+00 5.79E+00 2.15E+00 6.98E-03 2.05E-02 5.46E-03 0.00E+00 0.00E+00 0.00E+00 

03 Schwefel 12 7.70E+01 4.45E+02 3.12E+02 9.39E+00 1.16E+02 7.02E+01 2.79E-04 2.71E-03 2.74E-03 0.00E+00 0.00E+00 0.00E+00 

04 Schwefel 221 3.78E+00 1.03E+01 2.83E+00 2.75E+00 6.70E+00 2.22E+00 1.51E-02 3.26E-02 1.09E-02 1.14E-05 4.67E-05 2.43E-05 

05 Rosenbrock 7.39E+02 2.10E+05 4.98E+05 6.51E+02 6.52E+03 5.00E+03 3.25E-01 2.19E+01 3.26E+01 3.61E-03 1.98E+01 2.72E+01 

06 Step 6.00E+00 6.73E+01 5.94E+01 1.00E+00 2.07E+01 1.51E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

07 Quartic 1.40E+02 2.73E+04 3.37E+04 2.99E+01 1.77E+03 3.47E+03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

08 Schwefel 226 7.33E-01 6.27E+00 5.60E+00 1.43E-01 1.94E+00 1.55E+00 2.76E-06 1.26E-05 8.59E-06 0.00E+00 0.00E+00 0.00E+00 

09 Basic Rastrigin 5.13E+00 9.51E+00 1.90E+00 3.68E+00 7.22E+00 1.69E+00 7.96E-06 6.38E-05 4.83E-05 0.00E+00 0.00E+00 0.00E+00 

10 Basic Ackley 8.44E+00 1.77E+01 1.59E+00 5.17E+00 1.49E+01 3.51E+00 3.75E-03 1.35E-02 4.59E-03 0.00E+00 0.00E+00 0.00E+00 

11 Basic Griewank 4.71E-01 1.46E+00 5.70E-01 4.23E-01 9.03E-01 2.42E-01 3.11E-04 3.87E-02 2.27E-02 0.00E+00 1.09E-02 1.02E-02 

12 Penalised 1 2.09E-01 2.60E+02 7.28E+02 3.97E-01 1.26E+01 6.53E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

13 Penalised 2 1.99E+00 5.38E+04 8.75E+04 3.65E-01 2.58E+03 1.83E+04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
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Table 27: Summary statistics for the 13 traditional test functions with 30 dimensions.  Bold are best. 

Traditional test functions 

30 Dimensions 

bQIEA rQIEA 

Classic HSB RCQIEA SRQEA 

Function Min Mean Std dev Min Mean Std dev Min Mean Std dev Min Mean Std dev 

01 Sphere 4.03E+02 1.27E+03 3.82E+02 2.35E+02 5.33E+02 1.52E+02 9.05E-05 3.38E-04 1.48E-04 0.00E+00 0.00E+00 0.00E+00 

02 Schwefel 222 8.18E+01 1.08E+02 1.21E+01 3.14E+01 5.54E+01 1.03E+01 4.00E-02 6.24E-02 1.12E-02 0.00E+00 0.00E+00 0.00E+00 

03 Schwefel 12 9.50E+04 2.05E+05 5.15E+04 3.02E+04 6.42E+04 2.08E+04 2.09E-02 7.79E-02 4.29E-02 0.00E+00 0.00E+00 0.00E+00 

04 Schwefel 221 2.22E+01 3.18E+01 3.80E+00 1.94E+01 2.44E+01 2.09E+00 8.27E-02 1.43E-01 3.05E-02 3.51E-03 6.16E-03 1.56E-03 

05 Rosenbrock 2.02E+07 4.04E+07 1.40E+07 3.03E+05 6.65E+06 5.30E+06 1.65E+01 1.16E+02 5.33E+01 1.04E-02 8.86E+01 1.80E+02 

06 Step 5.25E+02 1.34E+03 3.65E+02 1.93E+02 5.91E+02 1.95E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

07 Quartic 1.50E+06 5.15E+06 2.09E+06 1.85E+05 9.82E+05 6.14E+05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

08 Schwefel 226 7.50E+01 1.49E+02 3.64E+01 1.11E+01 5.90E+01 2.10E+01 1.15E-05 4.03E-05 1.46E-05 0.00E+00 0.00E+00 0.00E+00 

09 Basic Rastrigin 4.61E+01 5.86E+01 5.32E+00 3.26E+01 4.15E+01 4.57E+00 8.00E-05 1.65E-04 6.63E-05 0.00E+00 0.00E+00 0.00E+00 

10 Basic Ackley 1.99E+01 2.00E+01 2.15E-02 1.84E+01 1.95E+01 3.28E-01 8.80E-03 1.61E-02 4.55E-03 0.00E+00 9.20E-01 4.01E+00 

11 Basic Griewank 5.97E+00 1.33E+01 3.07E+00 1.79E+00 5.68E+00 1.42E+00 2.32E-04 1.30E-02 1.39E-02 0.00E+00 2.06E-02 2.25E-02 

12 Penalised 1 8.03E+04 2.03E+06 1.47E+06 8.37E+01 1.51E+05 3.28E+05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

13 Penalised 2 2.55E+05 1.35E+07 6.56E+06 7.33E+03 1.75E+06 1.72E+06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
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Table 28: Summary statistics for the 20 CEC-2013 test functions with 10 dimensions.  Bold are best. 

CEC-2013 test functions 

10 Dimensions 

bQIEA rQIEA 

Classic HSB RCQIEA SRQEA 

Function Min Mean Std dev Min Mean Std dev Min Mean Std dev Min Mean Std dev 

14 Sphere [duplicated] 3.08E+00 4.70E+01 3.55E+01 2.33E+00 1.48E+01 9.74E+00 1.94E-05 1.02E-04 6.11E-05 0.00E+00 0.00E+00 0.00E+00 

15 R HC elliptic 3.87E+05 2.17E+06 1.12E+06 2.21E+05 1.38E+06 8.52E+05 3.97E+05 2.13E+06 1.24E+06 4.61E+04 5.22E+05 4.18E+05 

16 Rotated bent cigar 6.70E+06 1.72E+08 1.09E+08 1.47E+06 4.95E+07 3.11E+07 1.39E+03 5.27E+03 1.80E+03 4.59E+01 3.48E+03 2.00E+03 

17 Rotated discus 6.79E+03 1.44E+04 3.82E+03 4.34E+03 1.24E+04 4.51E+03 9.97E+03 3.14E+04 1.04E+04 7.17E+03 3.09E+04 1.19E+04 

18 Different powers 4.15E+00 3.39E+01 1.38E+01 2.86E+00 1.06E+01 6.65E+00 1.96E-04 2.13E-03 1.72E-03 0.00E+00 0.00E+00 0.00E+00 

19 Rotated Rosenbrock 8.12E+00 1.55E+01 4.34E+00 1.89E+00 1.00E+01 4.00E+00 2.16E-03 4.69E+00 4.66E+00 5.59E-04 2.76E+00 4.01E+00 

20 Rotated Schaffers F7 2.36E+01 4.17E+01 9.59E+00 1.77E+01 3.40E+01 6.81E+00 2.13E+01 7.13E+01 3.23E+01 3.31E+01 8.88E+01 3.64E+01 

21 Rotated Ackley 2.02E+01 2.04E+01 8.11E-02 2.01E+01 2.03E+01 8.29E-02 2.02E+01 2.04E+01 6.97E-02 2.01E+01 2.03E+01 8.04E-02 

22 Rotated Weierstrass 3.32E+00 5.05E+00 6.45E-01 2.68E+00 4.20E+00 5.51E-01 3.00E+00 6.02E+00 1.43E+00 3.05E+00 7.26E+00 1.38E+00 

23 Rotated Griewank 4.82E+00 2.85E+01 1.21E+01 3.74E+00 1.96E+01 7.69E+00 4.59E-01 1.52E+00 6.96E-01 7.03E-01 2.87E+00 1.67E+00 

24 Rastrigin 3.03E+00 1.07E+01 2.58E+00 3.97E+00 7.95E+00 1.88E+00 3.11E-05 2.09E-04 1.39E-04 0.00E+00 0.00E+00 0.00E+00 

25 Rotated Rastrigin 1.08E+01 2.61E+01 6.00E+00 8.19E+00 2.18E+01 5.71E+00 1.80E+01 3.55E+01 1.30E+01 1.49E+01 4.48E+01 1.62E+01 

26 NC rotated Rastrigin 2.15E+01 3.71E+01 7.88E+00 1.66E+01 3.02E+01 7.59E+00 1.85E+01 4.67E+01 1.47E+01 1.64E+01 5.21E+01 1.46E+01 

27 Schwefel 7 2.70E+01 7.86E+01 2.99E+01 1.19E+01 5.77E+01 1.75E+01 1.03E-03 7.30E-03 6.87E-03 0.00E+00 6.66E-02 1.79E-01 

28 Rotated Schwefel 7 3.34E+02 5.88E+02 1.40E+02 2.21E+02 4.90E+02 1.28E+02 1.32E+02 6.86E+02 2.20E+02 4.01E+02 8.14E+02 2.12E+02 

29 Rotated Katsuura 2.15E-01 4.70E-01 1.22E-01 1.50E-01 4.13E-01 1.07E-01 1.94E-01 4.88E-01 1.68E-01 2.20E-01 5.95E-01 2.11E-01 

30 Lunacek bi-Rastrigin 1.12E+01 2.12E+01 5.70E+00 6.79E+00 1.39E+01 3.90E+00 2.95E-03 1.99E-02 1.65E-02 0.00E+00 0.00E+00 0.00E+00 

31 R Lunacek bi-Rastrigin 2.56E+01 5.27E+01 9.40E+00 1.76E+01 4.34E+01 8.59E+00 1.74E+01 3.72E+01 9.29E+00 2.17E+01 4.27E+01 1.02E+01 

32 RE Griewank Rosen. 4.35E-01 2.40E+00 9.78E-01 9.33E-01 1.91E+00 4.47E-01 8.77E-01 3.85E+00 1.88E+00 8.65E-01 5.92E+00 3.54E+00 

33 RE Schaffers F6 1.33E+00 1.92E+00 2.90E-01 1.09E+00 1.71E+00 2.79E-01 1.24E+00 2.22E+00 4.46E-01 1.00E+00 2.30E+00 5.94E-01 
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Table 29: Summary statistics for the 20 CEC-2013 test functions with 30 dimensions.  Bold are best. 

CEC-2013 test functions 

30 Dimensions 

bQIEA rQIEA 

Classic HSB RCQIEA SRQEA 

Function Min Mean Std dev Min Mean Std dev Min Mean Std dev Min Mean Std dev 

14 Sphere [duplicated] 4.03E+02 1.27E+03 3.82E+02 2.35E+02 5.33E+02 1.52E+02 9.05E-05 3.38E-04 1.48E-04 0.00E+00 0.00E+00 0.00E+00 

15 R HC elliptic 2.52E+07 4.90E+07 1.13E+07 1.26E+07 3.14E+07 7.10E+06 2.72E+06 7.04E+06 2.23E+06 8.12E+05 1.78E+06 6.45E+05 

16 Rotated bent cigar 1.19E+10 1.94E+10 4.16E+09 3.41E+09 7.47E+09 1.63E+09 2.40E+02 5.01E+03 8.83E+03 1.27E-02 8.81E+01 2.63E+02 

17 Rotated discus 4.82E+04 8.84E+04 1.37E+04 4.98E+04 7.60E+04 1.10E+04 8.14E+04 1.20E+05 2.05E+04 7.49E+04 1.19E+05 2.06E+04 

18 Different powers 2.79E+02 6.66E+02 2.01E+02 8.30E+01 1.97E+02 6.44E+01 9.81E-04 3.19E-03 2.21E-03 0.00E+00 0.00E+00 0.00E+00 

19 Rotated Rosenbrock 1.42E+02 1.80E+02 1.58E+01 7.42E+01 1.17E+02 1.52E+01 1.98E-01 2.17E+01 1.24E+01 6.54E-02 1.43E+01 7.99E+00 

20 Rotated Schaffers F7 1.09E+02 1.49E+02 1.98E+01 1.07E+02 1.31E+02 1.22E+01 1.12E+02 1.79E+02 4.02E+01 1.32E+02 1.79E+02 3.00E+01 

21 Rotated Ackley 2.08E+01 2.10E+01 6.04E-02 2.09E+01 2.10E+01 4.68E-02 2.07E+01 2.09E+01 5.74E-02 2.07E+01 2.09E+01 7.01E-02 

22 Rotated Weierstrass 2.44E+01 2.85E+01 1.35E+00 1.83E+01 2.57E+01 1.69E+00 2.57E+01 3.27E+01 3.03E+00 2.87E+01 3.50E+01 2.42E+00 

23 Rotated Griewank 3.24E+02 5.77E+02 1.27E+02 1.36E+02 3.15E+02 8.79E+01 1.33E+00 1.90E+00 2.94E-01 4.19E-02 2.11E-01 7.20E-02 

24 Rastrigin 6.82E+01 8.84E+01 9.08E+00 4.13E+01 5.25E+01 5.75E+00 2.12E-04 5.58E-04 2.85E-04 0.00E+00 0.00E+00 0.00E+00 

25 Rotated Rastrigin 1.82E+02 2.27E+02 2.26E+01 1.31E+02 1.74E+02 2.01E+01 1.20E+02 2.55E+02 7.84E+01 1.50E+02 2.73E+02 6.74E+01 

26 NC rotated Rastrigin 2.26E+02 2.83E+02 2.41E+01 1.78E+02 2.38E+02 2.37E+01 1.35E+02 2.76E+02 5.10E+01 2.04E+02 2.97E+02 5.15E+01 

27 Schwefel 7 3.89E+02 8.37E+02 1.47E+02 1.71E+02 3.41E+02 8.30E+01 8.81E-03 4.12E-02 2.33E-02 2.72E-02 4.40E-01 2.56E-01 

28 Rotated Schwefel 7 2.81E+03 3.79E+03 3.48E+02 2.17E+03 3.18E+03 3.58E+02 2.17E+03 3.34E+03 5.00E+02 2.48E+03 3.46E+03 4.66E+02 

29 Rotated Katsuura 6.84E-01 1.04E+00 1.63E-01 6.96E-01 9.40E-01 1.35E-01 4.48E-01 1.10E+00 3.28E-01 6.13E-01 1.25E+00 3.28E-01 

30 Lunacek bi-Rastrigin 9.90E+01 1.58E+02 2.09E+01 5.95E+01 9.06E+01 1.32E+01 1.57E-02 5.53E-02 2.60E-02 0.00E+00 4.77E-04 2.30E-03 

31 R Lunacek bi-Rastrigin 3.07E+02 4.11E+02 3.63E+01 2.36E+02 3.11E+02 3.35E+01 1.15E+02 2.19E+02 4.49E+01 1.50E+02 2.45E+02 5.13E+01 

32 RE Griewank Rosen. 2.01E+01 1.29E+02 6.90E+01 1.39E+01 5.15E+01 1.81E+01 3.26E+01 5.78E+01 1.79E+01 4.89E+01 1.30E+02 4.51E+01 

33 RE Schaffers F6 9.90E+00 1.12E+01 5.69E-01 8.07E+00 9.65E+00 6.20E-01 9.44E+00 1.33E+01 1.59E+00 9.16E+00 1.38E+01 1.36E+00 
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Table 30: SRQEA compared to SPSO-2011 and a GA algorithm for the CEC-2013 functions with 10 dimensions.  Bold are best. 

10 Dimensions SRQEA SPSO-2011 [123] GA [125] 

Function Min Mean Std dev Min Median Std dev Min Median Mean Std dev 

14 Sphere [duplicated] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

15 R HC elliptic 4.61E+04 5.22E+05 4.18E+05 2.09E+03 3.63E+04 7.36E+04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

16 Rotated bent cigar 4.59E+01 3.48E+03 2.00E+03 0.00E+00 2.68E+05 1.66E+07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

17 Rotated discus 7.17E+03 3.09E+04 1.19E+04 1.35E+03 8.87E+03 4.56E+03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

18 Different powers 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.14E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

19 Rotated Rosenbrock 5.59E-04 2.76E+00 4.01E+00 0.00E+00 9.80E+00 4.97E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

20 Rotated Schaffers F7 3.31E+01 8.88E+01 3.64E+01 2.60E+00 2.11E+01 1.33E+01 2.94E-06 1.42E-03 4.44E-02 2.10E-01 

21 Rotated Ackley 2.01E+01 2.03E+01 8.04E-02 2.02E+01 2.03E+01 6.72E-02 2.02E+01 2.04E+01 2.04E+01 8.64E-02 

22 Rotated Weierstrass 3.05E+00 7.26E+00 1.38E+00 1.30E+00 4.80E+00 1.50E+00 0.00E+00 2.60E+00 3.43E+00 2.90E+00 

23 Rotated Griewank 7.03E-01 2.87E+00 1.67E+00 1.00E-01 3.00E-01 2.71E-01 0.00E+00 3.69E-02 4.03E-02 2.82E-02 

24 Rastrigin 0.00E+00 0.00E+00 0.00E+00 3.00E+00 1.09E+01 5.66E+00 0.00E+00 0.00E+00 2.73E-01 4.91E-01 

25 Rotated Rastrigin 1.49E+01 4.48E+01 1.62E+01 3.00E+00 1.39E+01 6.56E+00 1.99E+00 5.97E+00 6.36E+00 2.29E+00 

26 NC rotated Rastrigin 1.64E+01 5.21E+01 1.46E+01 5.40E+00 2.08E+01 9.82E+00 1.99E+00 8.52E+00 1.01E+01 6.30E+00 

27 Schwefel 7 0.00E+00 6.66E-02 1.79E-01 3.23E+02 8.34E+02 2.34E+02 1.87E-01 1.86E+01 2.74E+01 2.75E+01 

28 Rotated Schwefel 7 4.01E+02 8.14E+02 2.12E+02 3.37E+02 7.74E+02 2.51E+02 2.53E+02 8.51E+02 8.31E+02 2.58E+02 

29 Rotated Katsuura 2.20E-01 5.95E-01 2.11E-01 2.00E-01 5.00E-01 2.46E-01 5.18E-02 1.34E+00 1.28E+00 3.26E-01 

30 Lunacek bi-Rastrigin 0.00E+00 0.00E+00 0.00E+00 1.04E+01 1.89E+01 5.87E+00 1.02E+01 1.11E+01 1.12E+01 7.73E-01 

31 R Lunacek bi-Rastrigin 2.17E+01 4.27E+01 1.02E+01 1.25E+01 1.78E+01 4.53E+00 1.22E+01 1.74E+01 1.86E+01 5.22E+00 

32 RE Griewank Rosen. 8.65E-01 5.92E+00 3.54E+00 3.00E-01 9.00E-01 3.89E-01 2.45E-01 5.11E-01 5.32E-01 1.48E-01 

33 RE Schaffers F6 1.00E+00 2.30E+00 5.94E-01 2.00E+00 3.40E+00 4.19E-01 1.70E+00 3.21E+00 3.21E+00 5.05E-01 
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Table 31: SRQEA compared to SPSO-2011 and a GA algorithm for the CEC-2013 functions with 30 dimensions.  Bold are best. 

30 Dimensions SRQEA SPSO-2011 [123] GA [125] 

Function Min Mean Std dev Min Median Std dev Min Median Mean Std dev 

14 Sphere [duplicated] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.88E-13 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

15 R HC elliptic 8.12E+05 1.78E+06 6.45E+05 6.92E+04 3.09E+05 1.67E+05 2.26E+04 1.10E+05 1.55E+05 1.37E+05 

16 Rotated bent cigar 1.27E-02 8.81E+01 2.63E+02 1.17E+06 1.19E+08 5.24E+08 5.62E+02 8.41E+06 3.28E+07 7.55E+07 

17 Rotated discus 7.49E+04 1.19E+05 2.06E+04 2.73E+04 3.91E+04 6.70E+03 2.18E-02 2.77E-01 9.08E-01 1.26E+00 

18 Different powers 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.91E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

19 Rotated Rosenbrock 6.54E-02 1.43E+01 7.99E+00 2.00E-01 2.83E+01 2.83E+01 1.96E+00 1.97E+01 2.04E+01 7.92E+00 

20 Rotated Schaffers F7 1.32E+02 1.79E+02 3.00E+01 5.02E+01 8.69E+01 2.11E+01 4.70E+00 4.04E+01 4.58E+01 2.97E+01 

21 Rotated Ackley 2.07E+01 2.09E+01 7.01E-02 2.07E+01 2.09E+01 5.89E-02 2.08E+01 2.10E+01 2.10E+01 5.34E-02 

22 Rotated Weierstrass 2.87E+01 3.50E+01 2.42E+00 2.11E+01 2.84E+01 4.43E+00 1.98E+01 4.03E+01 3.70E+01 6.44E+00 

23 Rotated Griewank 4.19E-02 2.11E-01 7.20E-02 1.00E-01 3.00E-01 1.48E-01 7.40E-03 7.39E-02 8.35E-02 4.66E-02 

24 Rastrigin 0.00E+00 0.00E+00 0.00E+00 5.07E+01 1.08E+02 2.74E+01 5.97E+00 1.99E+01 2.13E+01 1.07E+01 

25 Rotated Rastrigin 1.50E+02 2.73E+02 6.74E+01 4.88E+01 9.45E+01 3.54E+01 1.99E+01 3.68E+01 3.77E+01 9.55E+00 

26 NC rotated Rastrigin 2.04E+02 2.97E+02 5.15E+01 1.12E+02 1.98E+02 3.86E+01 3.68E+01 8.02E+01 8.10E+01 1.95E+01 

27 Schwefel 7 2.72E-02 4.40E-01 2.56E-01 2.96E+03 4.02E+03 6.19E+02 5.90E+01 9.66E+02 1.01E+03 4.74E+02 

28 Rotated Schwefel 7 2.48E+03 3.46E+03 4.66E+02 1.94E+03 3.80E+03 6.94E+02 2.88E+03 4.11E+03 4.10E+03 6.93E+02 

29 Rotated Katsuura 6.13E-01 1.25E+00 3.28E-01 4.00E-01 1.40E+00 3.59E-01 2.22E-01 2.83E+00 2.72E+00 5.05E-01 

30 Lunacek bi-Rastrigin 0.00E+00 4.77E-04 2.30E-03 7.27E+01 1.15E+02 2.02E+01 4.27E+01 5.78E+01 6.01E+01 1.10E+01 

31 R Lunacek bi-Rastrigin 1.50E+02 2.45E+02 5.13E+01 7.68E+01 1.17E+02 2.46E+01 5.08E+01 7.23E+01 7.45E+01 1.80E+01 

32 RE Griewank Rosen. 4.89E+01 1.30E+02 4.51E+01 2.80E+00 9.00E+00 4.42E+00 1.68E+00 3.65E+00 4.14E+00 1.99E+00 

33 RE Schaffers F6 9.16E+00 1.38E+01 1.36E+00 1.05E+01 1.40E+01 1.11E+00 1.23E+01 1.39E+01 1.37E+01 4.78E-01 
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Appendix B Fitness functions 
 

In this section, formulae are given for the fitness functions used in the QIEA analysis in chapter 4. 

 

Traditional fitness functions [8] 

 

D is the number of dimensions. 
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CEC-2013 fitness functions [9] 

 

fn
* is a minimum height offset, o is an origin offset, M1 and M2 are 

rotation matrices, Ʌα is a diaganol matrix, TOSZ and Tasy are non-linear 

transformation functions. 
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Appendix C Code Listings 
 

While experimenting with optimising locomotion in models on the Newton Dynamics 

system, it was necessary to change the hinge joint code in order produce successful 

movement patterns.  The original version is shown in C.1 and the successful modified 

version is in C.2. 

C.1 Original hinge code 
 

void CustomHingeActuator::SubmitConstraintsFreeDof(dFloat timestep, const 
dMatrix& matrix0, const dMatrix& matrix1) 
{ 
 if (m_flag) { 
  dFloat jointangle = GetActuatorAngle(); 
  dFloat relAngle = jointangle - m_angle; 
  NewtonUserJointAddAngularRow(m_joint, -relAngle, 
&matrix0.m_front[0]); 
 
  dFloat step = m_angularRate * timestep; 
  if (dAbs(relAngle) > 2.0f * dAbs(step)) { 
   dFloat desiredSpeed = -dSign(relAngle) * m_angularRate; 
   dFloat currentSpeed = GetJointOmega(); 
   dFloat accel = (desiredSpeed - currentSpeed) / timestep; 
   NewtonUserJointSetRowAcceleration(m_joint, accel); 
  } 
  NewtonUserJointSetRowMinimumFriction(m_joint, -m_maxForce); 
  NewtonUserJointSetRowMaximumFriction(m_joint, m_maxForce); 
  NewtonUserJointSetRowStiffness(m_joint, 1.0f); 
 } 
 else { 
  CustomHinge::SubmitConstraintsFreeDof(timestep, matrix0, 
matrix1); 
 } 

} 

C.2 Modified hinge code 

 

void CustomHingeActuator::SubmitConstraintsFreeDof(dFloat timestep, const 
dMatrix& matrix0, const dMatrix& matrix1) 
{ 
 if (m_flag) { 
  dFloat jointangle = GetActuatorAngle(); 
  dFloat relAngle = jointangle - m_angle; 
  NewtonUserJointAddAngularRow(m_joint, -relAngle, 
&matrix0.m_front[0]); 
 
  dFloat desiredSpeed = -dSign(relAngle) * 50.0; 
  dFloat currentSpeed = GetJointOmega() * 40.0; 
  dFloat accel = (desiredSpeed - currentSpeed);// / timestep; 
  NewtonUserJointSetRowAcceleration(m_joint, accel); 
 
  NewtonUserJointSetRowMinimumFriction(m_joint, -m_maxForce); 
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  NewtonUserJointSetRowMaximumFriction(m_joint, m_maxForce); 
  NewtonUserJointSetRowStiffness(m_joint, 1.0f); 
 } 
 else { 
  CustomHinge::SubmitConstraintsFreeDof(timestep, matrix0, 
matrix1); 
 } 
} 


