2,832 research outputs found

    Power System Stabilizer Tuning Based on Multiobjective Design Using Hierarchical and Parallel Micro Genetic Algorithm

    No full text
    In order to achieve the optimal design based on some specific criteria by applying conventional techniques, sequence of design, selected locations of PSSs are critical involved factors. This paper presents a method to simultaneously tune PSSs in multimachine power system using hierarchical genetic algorithm (HGA) and parallel micro genetic algorithm (parallel micro-GA) based on multiobjective function comprising the damping ratio, damping factor and number of PSSs. First, the problem of selecting proper PSS parameters is converted to a simple multiobjective optimization problem. Then, the problem is solved by a parallel micro GA based on HGA. The stabilizers are tuned to simultaneously shift the lightly damped and undamped oscillation modes to a specific stable zone in the s-plane and to self identify the appropriate choice of PSS locations by using eigenvalue-based multiobjective function. Many scenarios with different operating conditions have been included in the process of simultaneous tuning so as to guarantee the robustness and their performance. A 68-bus and 16-generator power system has been employed to validate the effectiveness of the proposed tuning method

    Robust fuzzy PSS design using ABC

    Get PDF
    This paper presents an Artificial Bee Colony (ABC) algorithm to tune optimal rule-base of a Fuzzy Power System Stabilizer (FPSS) which leads to damp low frequency oscillation following disturbances in power systems. Thus, extraction of an appropriate set of rules or selection of an optimal set of rules from the set of possible rules is an important and essential step toward the design of any successful fuzzy logic controller. Consequently, in this paper, an ABC based rule generation method is proposed for automated fuzzy PSS design to improve power system stability and reduce the design effort. The effectiveness of the proposed method is demonstrated on a 3-machine 9-bus standard power system in comparison with the Genetic Algorithm based tuned FPSS under different loading condition through ITAE performance indices

    Chaotic multi-objective optimization based design of fractional order PI{\lambda}D{\mu} controller in AVR system

    Get PDF
    In this paper, a fractional order (FO) PI{\lambda}D\mu controller is designed to take care of various contradictory objective functions for an Automatic Voltage Regulator (AVR) system. An improved evolutionary Non-dominated Sorting Genetic Algorithm II (NSGA II), which is augmented with a chaotic map for greater effectiveness, is used for the multi-objective optimization problem. The Pareto fronts showing the trade-off between different design criteria are obtained for the PI{\lambda}D\mu and PID controller. A comparative analysis is done with respect to the standard PID controller to demonstrate the merits and demerits of the fractional order PI{\lambda}D\mu controller.Comment: 30 pages, 14 figure

    Application of Grey Wolf Optimizer Algorithm for Optimal Power Flow of Two-Terminal HVDC Transmission System

    Get PDF
    This paper applies a relatively new optimization method, the Grey Wolf Optimizer (GWO) algorithm for Optimal Power Flow (OPF) of twoterminal High Voltage Direct Current (HVDC) electrical power system. The OPF problem of pure AC power systems considers the minimization of total costs under equality and inequality constraints. Hence, the OPF problem of integrated AC-DC power systems is extended to incorporate HVDC links, while taking into consideration the power transfer control characteristics using a GWO algorithm. This algorithm is inspired by the hunting behavior and social leadership of grey wolves in nature. The proposed algorithm is applied to two different case-studies: the modified 5-bus and WSCC 9-bus test systems. The validity of the proposed algorithm is demonstrated by comparing the obtained results with those reported in literature using other optimization techniques. Analysis of the obtained results show that the proposed GWO algorithm is able to achieve shorter CPU time, as well as minimized total cost when compared with already existing optimization techniques. This conclusion proves the efficiency of the GWO algorithm

    Application of differential evolution to power system stabilizer design

    Get PDF
    Includes synopsis.Includes bibliographical references.In recent years, many Evolutionary Algorithms (EAs) such as Genetic Algorithms (GAs) have been proposed to optimally tune the parameters of the PSS. GAs are population based search methods inspired by the mechanism of evolution and natural genetic. Despite the fact that GAs are robust and have given promising results in many applications, they still have some drawbacks. Some of these drawbacks are related to the problem of genetic drift in GA which restricts the diversity in the population. ... To cope with the above mentioned drawbacks, many variants of GAs have been proposed often tailored to a particular problem. Recently, several simpler and yet effective heuristic algorithms such as Population Based Incremental Learning (PBIL) and Differential Evolution (DE), etc., have received increasing attention

    Design of power system stabilizers using evolutionary algorithms

    Get PDF
    Includes synopsis.Includes bibliographical references (leaves 151-159).Includes bibliographical references (leaves 125-134).Over the past decades, the issue of low frequency oscillations has been of major concern to power system engineers. These oscillations range from 0.1 to 3Hz and tend to be poorly damped especially in systems equipped with high gain fast acting AVRs and highly interconnected networks. If these oscillations are not adequately damped, they may sustain and grow, which may lead to system separation and loss of power transfer
    • 

    corecore