88 research outputs found

    Load frequency controllers considering renewable energy integration in power system

    Get PDF
    Abstract: Load frequency control or automatic generation control is one of the main operations that take place daily in a modern power system. The objectives of load frequency control are to maintain power balance between interconnected areas and to control the power flow in the tie-lines. Electric power cannot be stored in large quantity that is why its production must be equal to the consumption in each time. This equation constitutes the key for a good management of any power system and introduces the need of more controllers when taking into account the integration of renewable energy sources into the traditional power system. There are many controllers presented in the literature and this work reviews the traditional load frequency controllers and those, which combined the traditional controller and artificial intelligence algorithms for controlling the load frequency

    Study and Analysis of Power System Stability Based on FACT Controller System

    Get PDF
    Energy framework soundness is identified with standards rotational movement and the swing condition administering electromechanical unique conduct. In the exceptional instance of two limited machines, the basis of equivalent territory security can be utilized to ascertain the basic clearing point in the force framework, It is important to look after synchronization, in any case the degree of administration for customers won't be accomplished. This term steadiness signifies "looking after synchronization." This paper is an audit of three kinds of consistent state. The main sort of adjustment, consistent state steadiness clarifies the most extreme consistent state quality and force point chart. The transient solidness clarifies the wavering condition and the idleness steady while dynamic soundness manages the transient security time frame. There are a few different ways to improve framework soundness a portion of the techniques are clarified. Versatile AC Transmission Frameworks (FACTS) Flexible AC Transmission System (FACTS) regulators have been utilized frequently to comprehend the different issues of a non-variable force structure. Versatile AC Transmission Frames or FACTS are devices that permit versatile and dynamic control of intensity outlines. Improving casing respectability has been explored with FACTS regulators. This examination focuses to the upsides of utilizing FACTS apparatuses with the explanation behind improving electric force tire activity. There has been discussion of an execution check for different FACTS regulators

    Advanced and Innovative Optimization Techniques in Controllers: A Comprehensive Review

    Get PDF
    New commercial power electronic controllers come to the market almost every day to help improve electronic circuit and system performance and efficiency. In DC–DC switching-mode converters, a simple and elegant hysteretic controller is used to regulate the basic buck, boost and buck–boost converters under slightly different configurations. In AC–DC converters, the input current shaping for power factor correction posts a constraint. But, several brilliant commercial controllers are demonstrated for boost and fly back converters to achieve almost perfect power factor correction. In this paper a comprehensive review of the various advanced optimization techniques used in power electronic controllers is presented

    Utilizing Unified Power Flow Controller for Voltage Stability Improvement of the Electric Power Transmission System of Ghana

    Get PDF
    Interconnecting power transmission systems provide reliability of electric power supply. The security of the system is however questioned when a disturbance in any part of the interconnected system causes instability in the entire network. Unified Power Flow Controller (UPFC), which is a member of the flexible alternating current transmission system (FACTS) family, has the capability of controlling active and reactive power flow in a transmission line thereby improving the voltage stability of the system especially at the 500 kV configuration level. The performance of a 161-kV UPFC modelled in SimPowerSystems is tested on Ghana’s power transmission network.  The optimal placement of the UPFC is done using fast voltage stability index (FVSI) and maximum loadability assessment (MLA). The results show that the device improved the connecting bus voltage from 0.88 p.u. to 0.98 p.u. Active power loss in the network was also reduced from 13.40 MW to 10.39 MW when the UPFC was in circuit.Keywords: Ghana, Stability, Transmission system and Unified Power Flow Controller (UPFC

    Self-adaptive fuzzy-PID controller for AGC study in deregulated Power System

    Get PDF
    The aim of this paper elucidates the AGC issues in a large scale interconnected power system incorporating HVDC link under the deregulated environment. The performance of the system is degraded under the influence of abrupt load change, and parameter variation. To perceive a reliable and quality power supply, secondary robust controllers are essential. A novel self-adaptive Fuzzy-PID controller is proposed to ameliorate the dynamic performance of both the conventional PID and Fuzzy-PID controller, employed in the restructured power system. In self-adaptive Fuzzy-PID controller unlike the Fuzzy-PID controller, the output scaling factors are tuned dynamically while the controller is functioning. These three controllers are designed by enumerating different gains and scaling factors, applying a budding nature-inspired algorithm known as Wild Goat Algorithm (WGA). The superior dynamic performance of frequency and tie-line power deviation under self-adaptive Fuzzy-PID controller in comparison to its' counterparts is investigated by dispatching the scheduled and unscheduled power under different contracts such as poolco based transaction, bilateral transaction and contract violation based transaction through different tie-lines. The dynamic response under parameter variation and random load perturbation confers the robustness of the proposed controller

    Optimal fuzzy-PID controller with derivative filter for load frequency control including UPFC and SMES

    Get PDF
    A newly adopted optimization technique known as sine-cosine algorithm (SCA) is suggested in this research article to tune the gains of Fuzzy-PID controller along with a derivative filter (Fuzzy-PIDF) of a hybrid interconnected system for the Load Frequency Control (LFC). The scrutinized multi-generation system considers hydro, gas and thermal sources in all areas of the dual area power system integrated with UPFC (unified power flow controller) and SMES (Super-conducting magnetic energy storage) units. The preeminence of the offered Fuzzy-PIDF controller is recognized over Fuzzy-PID controller by comparing their dynamic performance indices concerning minimum undershoot, settling time and also peak overshoot. Finally, the sensitiveness and sturdiness of the recommended control method are proved by altering the parameters of the system from their nominal values and by the implementation of random loading in the system

    Optimisation of Smart Grid performance using centralised and distributed control techniques

    Get PDF
    A massive change is currently taking place in the manner in which power networks are operated. Traditionally, power networks consisted of large power stations which were controlled from centralised locations. The trend in modern power networks is for generated power to be produced by a diverse array of energy sources which are spread over a large geographical area. As a result, controlling these systems from a centralised controller is impractical. Thus, future power networks will be controlled by a large number of intelligent distributed controllers which must work together to coordinate their actions. The term Smart Grid is the umbrella term used to denote this combination of power systems, artificial intelligence, and communications engineering. This thesis focuses on the application of optimal control techniques to Smart Grids with a focus in particular on iterative distributed MPC. A novel convergence and stability proof for iterative distributed MPC based on the Alternating Direction Method of Multipliers is derived. Distributed and centralised MPC, and an optimised PID controllers' performance are then compared when applied to a highly interconnected, nonlinear, MIMO testbed based on a part of the Nordic power grid. Finally, a novel tuning algorithm is proposed for iterative distributed MPC which simultaneously optimises both the closed loop performance and the communication overhead associated with the desired control

    Mitigation of Power System Oscillation in a DFIG-Wind Integrated Grid: A Review

    Get PDF
    The continuous rise in demand for power supply has made researchers and power system engineers seek alternatives through renewable energy sources to complement the power supply in the power system grid. Wind energy conversion system (WECS) which is the means of harnessing power generation through wind is reportedly one of the most widely installed renewable alternative sources globally. Integrating WECS into the conventional power system grid results in a complex power system grid. Thus, during a disturbance or a fault period on the grid, if proper control measures are not put in place, power system instability due to power system oscillations arises. One such control measure is the damping controller which is coupled to the generating plant through its excitation system. Damping controllers help to dampen power system oscillations, but due to the dynamic nature of the power system and uncertainties inherent in a wind-integrated power grid system, fixed damping controller parameters cannot effectively dampen power system oscillations. Hence, damping controller design becomes an optimization problem. This research reviews damping controller design in a wind-integrated system using optimization techniques

    Frequency deviations stabilizations in restructured power systems using coordinative controllers

    Get PDF
    Modern restructured power system faces excessive frequency aberrations due to the intermittent renewable generations and persistently changing load demands. An efficient and robust control strategy is obligatory to minimise deviations in the system frequency and tie-line to avoid any possible blackout. Hence, in this research, to achieve this target, automatic generation control (AGC) is utilized as a secondary controller to alleviate the changes in interconnected restructured systems at uncertainties. The objective of AGC is to quickly stabilize the deviations in frequency and tie-line power following load fluctuations. This thesis addresses the performance of AGC in two-area restructured power systems with many sophisticated control strategies in the presence of renewable and traditional power plants. As per literature of research work, there are quite a few research studies on AGC of a restructured system using optimized coordinative controllers. Besides, investigations on advanced optimized-based coordinative controller approaches are also rare to find in the literature. So, various combinations of two degrees of freedom (2DOF) controllers are utilized as supplementary controllers to diminish the frequency deviations. Nevertheless, the interconnected tie-lines are typically congested in areas with huge penetration of renewable sources, which may reduce the tie -line capability. Therefore, distinct FACTS controllers and ultra-capacitor (UC) are integrated into two-area restructured systems for strengthening the tie-line power and frequency. Further, new optimization techniques such as cuckoo search (CS), bat algorithm (BA), moth-flame optimization (MFO) are utilized in this work for investigating the suggested 2DOF controllers and compared their performance in all contracts of restructured systems. As per the simulation outcomes, the amalgamation of DPFC and UC with MFObased 2DOF PID-FOPDN shows low fluctuation rate in frequency and tie-line power. Besides, the settling times (ST) of two areas are 9.5 S for ΔF1, 8.2 S for ΔF2, and 10.15 S for ΔPtie. The robustness of the suggested controller has been verified by ±25% variations in system parameters and loading conditions
    corecore