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Abstract

A massive change is currently taking place in the manner in which power networks are

operated. Traditionally, power networks consisted of large power stations which were

controlled from centralised locations. The trend in modern power networks is for generated

power to be produced by a diverse array of energy sources which are spread over a large

geographical area. As a result, controlling these systems from a centralised controller

is impractical. Thus, future power networks will be controlled by a large number of

intelligent distributed controllers which must work together to coordinate their actions.

The term Smart Grid is the umbrella term used to denote this combination of power

systems, artificial intelligence, and communications engineering.

This thesis focuses on the application of optimal control techniques to Smart Grids with a

focus in particular on iterative distributed MPC. A novel convergence and stability proof

for iterative distributed MPC based on the Alternating Direction Method of Multipliers

is derived. Distributed and centralised MPC, and an optimised PID controllers’ perfor-

mance are then compared when applied to a highly interconnected, nonlinear, MIMO

testbed based on a part of the Nordic power grid. Finally, a novel tuning algorithm is

proposed for iterative distributed MPC which simultaneously optimises both the closed

loop performance and the communication overhead associated with the desired control.
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Chapter 1
Introduction

Modern society is built upon a foundation of complex, highly interconnected systems.

The traffic and transportation systems, international economic markets, information su-

perhighways, and electrical systems, to name but a few, are the invisible infrastructures

which have enabled the rapid development seen in societies across the globe in the last few

decades. In fact, it is only on the occasions when something goes wrong with these systems

that it becomes obvious to the general public just how reliant the smooth operation of

these systems is to the functioning of society. The failure of these systems can be all the

more confusing to the average person given the apparent simplicity of these systems at the

individual action level, e.g., the turning on of a light switch, looking for some information

in a search engine, or buying shares in the stock market. However, it is when hundreds

or thousands of these actions are taken collectively together with the dynamic interac-

tions between various system elements, that the complex and often unpredictable nature

of these systems arises. The goal of systems and control engineers has, thus, always been

to comprehend the complexities inherent in these systems and to minimise the potential

effects of unpredictable system elements on the operation of these systems.
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1.1 From Centralised to Distributed Control

The origins of classical feedback control date back to 1868 when J.C. Maxwell published

his paper on steam engine regulation using centrifugal governors (Maxwell, 1868). It was

Nyquist’s 1932 paper, however, that provided principles which could be applied to virtually

any feedback system (Nyquist, 1932) and over the next 20 years a solid theoretical foun-

dation in frequency domain methods was established through the work of Nyquist, Bode,

Nichols, and Evans (Bennett, 1996). These classical techniques were based on continuous-

time system models. The 1950s saw the dawn of discrete-time control, due to the arrival

of digital computers. After half a century of research and implementation, the foundations

of digital control theory are firmly established and have permeated across a multitude of

fields (Tewari, 2002). It was during the 1950s, too, that the area of optimal control was in-

troduced when Bellman developed the concept of Dynamic Programming (Bellman, 1952;

Bryson, 1996). Advanced control techniques such as Reinforcement Learning (Sutton and

Barto, 1998) and Model Predictive Control (MPC) (Maciejowski, 2002; Rossiter, 2003)

have arisen from the field of optimal control as tractable methods for solving the Dynamic

Programming problem.

Typically, decentralised control structures are used when controlling large scale systems.

Centralised control is typically problematic in large scale systems due to issues with time

delays, and because it is undesirable to have to transmit the large volume of data needed

to control all of the subsystems over a network (Baillieul and Antsaklis, 2007). In decen-

tralised control structures, inputs u and outputs y are grouped into disjoint sets. Inputs

and outputs are then coupled into non-overlapping pairs, and independent regulators are

designed for each of these pairs which operate independently of each other (Scattolini,

2009), as can be seen in Fig. 1.1. Given the relevance of decentralised control, many

methods have been designed which offer guaranteed stable closed loop control (Scattolini,

2009). Decentralised control methods have been successfully applied to a wide variety of

systems including irrigation networks (Cantoni et al., 2007), chemical plants (Ricker, 1996),

electrical power systems (Siljak et al., 2002) and teams of moving vehicles (Siljak and Ze-

cevic, 2005). However, it is known that decentralised control may not be stabilising where

there is strong interactions between subsystems (Venkat, 2006; Scattolini, 2009). Also,

in systems with Decentralised Fixed Modes (DFMs), the system may not be controllable

using a decentralised controller. DFMs are a subset of the systems open-loop eigenvalues

Optimisation of Smart Grid Performance using Centralised and Distributed Control
Techniques-Paul Mc Namara
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Regulator

Regulator

1

2

i subsystem i

bidirectional

communications

link

interacting sub-

systems

Figure 1.1: Decentralised control of 2 interacting subsystems.

which have the property that they remain fixed, independent of any linear time-invariant

controller (subject to the given decentralized control information constraint), which may

be applied to the system (Davison and Chang, 1990). Also, many decentralised control

techniques rely on the system having a certain type of state-space formulation and it may

not always be possible to describe the system in this way (Siljak and Zecevic, 2005).

Distributed control systems can overcome a lot of the disadvantages inherent in decen-

tralised control by allowing a certain degree of communication between regulators, as can

be seen for the simple system in Fig. 1.2. The development of distributed control systems

in fact, provides the potential for the improved overall performance of networked control

systems, due to reduced delays in sensing and actuation in comparison with centralised

control systems (Baillieul and Antsaklis, 2007). Hierarchical control systems can also be

created where higher level coordinating controllers can provide coordinating setpoints to

lower level controllers. This can be seen with the optional coordination layer in Fig. 1.2

(Scattolini, 2009). The development of distributed control was made possible by the de-

velopment of cheap microprocessors which could relate information to each other over a

communications network. This development was further fuelled by the savings which could

be made through the potential reduction in the use of expensive wiring and the flexibility

with which additional components could be introduced to systems as their needs changed.

One of the earliest efforts at distributed networked control began in 1983 when Bosch

GmbH began a feasibility study into the use of networked devices to control different

functions in passenger vehicles. From this the Control Area Network (CAN) communi-

cations protocol was introduced in 1986 and today networked control systems are found

in abundance in industry. The use of wireless communications with these technologies

Optimisation of Smart Grid Performance using Centralised and Distributed Control
Techniques-Paul Mc Namara
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Figure 1.2: Distributed control of 2 interacting subsystems.

introduces further advances and challenges for networked and distributed control systems

(Baillieul and Antsaklis, 2007). MPC has proved to be particularly suited for distribution

over a number of processors, typically using methods based on distributed optimisation,

game theory or using contracting constraints in order to coordinate the actions of the

different controllers (Scattolini, 2009). Distributed control has been applied in a number

of areas including process control (Christofides, 2001), power networks (Negenborn, 2007;

Camponogara et al., 2002), coordinated vehicle control (Dunbar and Murray, 2002), water

network control (Trnka et al., 2011; Javalera et al., 2010), and supply chain management

(Maestre et al., 2009).

1.2 Methods for Smart Grid Control

A number of challenges face electrical energy providers and regulators at this moment

that cannot be addressed adequately with the current power grid infrastructure. The

grid in its current form limits the amount of clean, renewable sources such as wind and

solar that can be integrated into the grid and currently is therefore heavily reliant on

polluting, carbon based fuels. Also, in its current form, the grid does not allow for the

extensive integration of the small scale energy production sources, such as micro-CHP

units and small scale solar panels and wind turbines. In addition to this, the current

grid is limited in its ability to react to serious grid faults which are becoming increasingly

common (Farhangi, 2010). The next generation electricity grid, which is known as the

Smart Grid, will enable greater control of the grid to make up for its current shortcomings.

Optimisation of Smart Grid Performance using Centralised and Distributed Control
Techniques-Paul Mc Namara



Section 1.2: Methods for Smart Grid Control 5

Smart Grid technology combines the areas of power systems, control, and communications

engineering. It maximises the potential utilisation that can be made out of the established

power system architecture and allows individual consumers significantly more autonomy

in both how they consume energy and interact with the electrical grid.

Modern optimisation and control techniques will be used extensively with new Smart

Grids. The use of advanced control techniques and optimisation for power system control

is already quite common. Stochastic optimisation algorithms such as Genetic Algorithms

(Rerkpreedapong et al., 2003b; Chiang, 2005; Liu et al., 2010) and Particle Swarm Opti-

misation (AlRashidi and El-Hawary, 2009) have been used extensively to tune controller

parameters in power systems. Neural Networks allow non-linearities to be modelled in

power systems and can be used to improve power system control over linear control tech-

niques (Anis Ibrahim and Morcos, 2002). Fuzzy systems also allow non-linearities to be

modelled and can allow knowledge from practitioners to be incorporated into the power

systems control algorithms (Shayeghi et al., 2009). There is much potential for the use for

Reinforcement Learning in power grids, due to its ability to learn how to control systems

based on experience and without the need for a model (Ernst et al., 2004; Nanduri and

Das, 2007; Momoh, 2009).

Centralised Model Predictive Control has also been very successful in providing a high

level of control for a variety of power system problems. MPC is particularly attractive

for power systems control due to the ease with which constraints can be dealt with and

the intuitive manner in which it is formulated (Xie and Ilic, 2009; Negenborn et al., 2009;

Rerkpreedapong et al., 2003a). However, centralised MPC is not suited for the control

of large scale power systems as the control problem becomes too complex to handle in

real-time. Distributed MPC on the other hand is well suited for use in large scale power

networks and can provide the level of flexibility in control that is desired for use with Smart

Grids (Negenborn, 2007; Camponogara et al., 2002; Camacho et al., 2011; Moradzadeh

et al., 2011). However, there is still a considerable amount of work needed on distributed

MPC techniques before they become viable for use in power networks. Issues relating to

the application of distributed MPC in Smart Grids will be discussed in great detail in the

following chapter.
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1.3 Scope and Aims of this Thesis

The Smart Grid will enable the simultaneous solution of a number of power grid control

goals in real-time. The satisfaction of these goals will be based on the manipulation of

both continuous and discrete control variables. Optimisation based techniques are the

most promising methods for allowing these different objectives to be fulfilled.

In situations where linear models provide an accurate approximation to the real system

model, full advantage can be taken of the host of deterministic optimisation techniques

that are available in order to control the system. In cases where an accurate model of

the system cannot be attained, and often in cases where the system is highly nonlinear,

stochastic optimisation methods can be used instead of deterministic optimisation methods

for the design of suitable control systems.

However, one the most desirable features of the Smart Grid is that individual subsystems

would have autonomy over their decisions. Also, in modern deregulated power networks,

separate companies provide electricity to different parts of the grid. In these deregulated

systems there may be more than one control system responsible for the control of the grid.

Individual countries will also typically have their own control centres, even though grids

may cross the borders of adjacent countries. Therefore, non-centralised multi-agent control

techniques are needed to control these grids. Also, the level of communication possible

between individual controllers may be limited, particularly for processes that take place at

small time scales, such as frequency control. Stability guarantees and methods of tuning

controllers to give the desired control performance will also be necessary.

This thesis investigates the optimal control of Smart Grids. Optimal control techniques

are applied to a number of systems which include discrete, continuous, linear and non-

linear systems. Of particular interest is distributed Model Predictive Control for which

stability and tuning issues are addressed.

Optimisation of Smart Grid Performance using Centralised and Distributed Control
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1.4 Thesis Outline

This thesis consists of seven chapters. This chapter establishes the progression from cen-

tralised to distributed control systems and briefly outlines the reasons for the application

of distributed control techniques to future smart power networks. The scope and aims of

the thesis were then presented.

Chapter 2 describes the manner in which power networks were originally constructed and

how it is proposed that they will develop in the coming years. The chapter then provides

an introduction to the power electronic devices that will enable the advanced control of

power networks. Issues surrounding the control of future power grids are then discussed

at length.

Chapter 3 introduces Model Predictive Control in detail. A simulation is carried out in

which MPC is applied to a highly interconnected 3-area Load Frequency Control (LFC)

problem.

In chapter 4, the iterative distributed MPC algorithm developed in (Negenborn, 2007) is

presented. A novel convergence and stability proof is given for the unconstrained linear

version of this algorithm. In the final section, the stability proof is applied to a 2-area

discrete time Load Frequency control problem and the effects of various system parameters

on the determination of the closed loop stability are discussed.

In chapter 5, a multiple link HVDC power system based on part of the Nordic power grid

is introduced. This is a highly interconnected, nonlinear, MIMO system. A multi-loop

PID controller, whose performance has been optimised using Particle Swarm Optimisation

(PSO), is first applied to this system. The performance of the optimised PID controller

is then compared to the performance of a centralised and distributed MPC controller.

It is also shown how the distributed MPC can be extended to deal with systems where

controllers have shared inputs.

In chapter 6, a novel PSO-based tuning algorithm is presented for iterative distributed

MPC. This algorithm is capable of simultaneously optimising both the closed-loop per-

formance and communication overhead of the distributed MPC, via the tuning of the

Optimisation of Smart Grid Performance using Centralised and Distributed Control
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distributed MPC weights. This tuning algorithm is applied in two situations where sys-

tems are being controlled using distributed MPC. One of the systems is a 20 area discrete

time LFC and the other system is the multiple link HVDC system which will be presented

in chapter 4.

In chapter 7, a brief summary will be given of the results in the thesis, and some conclusions

will be made. Also, potential future work that could be carried out in the areas outlined

in this thesis will be given.

Optimisation of Smart Grid Performance using Centralised and Distributed Control
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Chapter 2
Modern Power Networks and

Control

2.1 Power Systems: Tradition and Evolution

Power networks are large, complex, highly interconnected systems. The high level of in-

terconnectivity in power networks arises from the dynamic interactions between system

components such as generators, transmission lines, energy storage devices, and loads (Kun-

dur, 1994). The basic objective of a power system is to provide active and reactive power

to consumers, within tight frequency and voltage bounds. In addition, this power pro-

duction must be scheduled so as provide the desired amount of power in the right place,

at the right time. Traditionally, power systems consisted of regulated utilities which had

a monopoly franchise over the areas they provided to (Masters, 2004). A small number

of large, centralised power stations generated electrical power, which was then consumed

by end users, as can be seen in Fig. 2.1. Typically the directions of power flow in such

systems were predictable, flowing from the large scale producers to the smaller scale con-

sumers. However, radical changes in power systems structure have arisen in recent years

for a number of reasons.

Global warming has been a large factor in the need for these changes. The dominant
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Figure 2.1: Traditional centralised monopolistic power distribution.

forms of power generation have typically involved the burning of large quantities of fuels

such as coal, oil or gas. In the process of burning these fuels, large quantities of CO2

gas and other greenhouse gases are released. The overwhelming scientific consensus is

that these gases are a major contributor to global warming. In response to this, there

has been a concerted effort around the world to reduce the consumption of these fuels,

with many countries having signed up to the Kyoto protocol (United Nations, 1998).

Those countries who have not (most notably the United States), have still been investing

major amounts of money in green energy research, with global clean energy investment

reaching a record US$ 243 billion in 2010 (Liebreich et al., 2011). As a result, there has

been an increasing penetration of new clean forms of energy production into electricity

markets across the world. However, many of these new forms of energy production, such

as wind and solar, are quite different from traditional sources. They cannot be called

upon to generate desired levels of energy on demand and so can be less predictable than

traditional energy sources. Often they are combined with some sort of storage (Korpas

and Holen, 2006), or combined with backup generation (Dufo-López and Bernal-Agust́ın,

2005) to compensate for disturbances in energy production that may occur using these

forms of energy harvesting. For example, with wind turbines, if the wind speed falls
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outside certain bounds, then the turbine will shut down until the wind speed is within

these bounds again. Also, the areas most suited to the production of clean forms of energy,

particularly in the cases of wind and solar power generation, may not be located near the

areas of highest electricity demand (Tande, 2000), resulting in the generation of power

taking place over vast geographical areas.

Another driving force behind the change in power network structure has been the dereg-

ulation of power generation. This began in the 1980’s, where the success in deregulating

traditional monopolies such as the telecommunications, airline and gas industries provided

evidence that the electricity industry could also be successfully deregulated. This started

with the introduction of small-scale power plants, especially gas turbines and combined-

cycle plants, that offered both reduced first cost and operating costs compared with almost

all of the generation facilities already on line (Masters, 2004). Cogeneration or Combined

Heat and Power (CHP), in particular, allowed the generation of both heat and electricity

simultaneously and so industries producing waste heat could then use it for electricity

production. The introduction in recent years of small scale micro-CHP units, capable

of generating up to 50kW, now enable individual households to also become electricity

producers (Paepea et al., 2006). Similarly, small scale wind, solar and micro-hydroelectric

generators allow small scale production of electricity by individual households or commu-

nities (Masters, 2004; Kellogg et al., 1998). Distributed Generation (DG) is the term used

to describe these small scale energy sources that are typically located near their loads.

A number of solutions have been proposed for coordinating these disparate generation

sources into small scale coherent blocks of power production and consumption. The Mi-

crogrid concept, as depicted in Fig. 2.2, assumes a cluster of loads and microsources

operating as a single controllable system that provides both power and heat to its local

area (Lasseter, 2002). Distributed Storage (DS) devices are also used in microgrid applica-

tions where the generation and load capacities of the microgrid cannot be met (Kroposki

et al., 2008). These forms of storage can include supercapacitors, batteries and flywheels.

These storage devices require power electronic devices in order to convert their stored

DC energy to AC energy. These devices will usually be bidirectional to also allow the

charging of the devices’ power. DS devices can also be used to improve power quality of

the microgrid area and allow fluctuations from sources such as wind and solar devices to

be smoothed out. One of the main features of Microgrids is their ability to connect and

disconnect from the main grid. In the grid connected mode of operation, the microgrid
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Figure 2.2: Microgrid which can disconnect from the main grid during instances of grid

instability.

can both send and receive power to/from the main grid. When disconnected from the

grid, in what is called the ‘islanded’ mode of operation, the microgrid acts independently

from the rest of the grid, using power from its own generation sources and from storage

devices to supply the demand within the local power grid. Typically, the microgrid would

disconnect from the main grid in times of instability, reconnecting when the main grid has

been restabilised. Special power electronic switches have been developed for this connec-

tion and disconnection in order to coordinate the switching in and out of the microgrid to

the main power supply grid (Kroposki et al., 2008). Concepts such as the Virtual Power

Plant (VPP) (Pudjianto et al., 2007) and energy hubs (Camacho et al., 2011) coordinate

groups of generation sources and loads, and can be used to coordinate the distribution of

power such that preference is given to the use of renewable sources over non-renewable

sources of energy. VPPs can also be used to facilitate trading in energy markets, and can

give consumers the option of disconnecting from the grid at peak times or times when the

grid is near instability, allowing them to save money and conserve electricity usage.

Looking at the aforementioned developments, power grids can be seen to be evolving on a

number of fronts. The new grid could be expected to look like the grid presented in Fig.

2.3. Where generation and control were once centralised and highly regulated, they are
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Figure 2.3: Future of power distribution.

now decentralised and deregulated. Where typically, in the past, generation sources would

have been in few locations and close to their loads, now they are numerous and spread

over vast geographical areas. Where the source and direction of power flows would have

previously have been predictable, now they are becoming increasingly unpredictable. A

new grid infrastructure is developing to enable the transition to this new power system.

The Smart Grid is the umbrella term given to the new grid which is currently evolving.

Unlike the traditional grid, which was typically passive, and ‘dumb’ in terms of only having

a limited amount of real time system control, the Smart Grid enables far more flexilibity

in terms of where and what power production can be supplied to the grid. It also enables

the grid to automatically overcome serious contingencies, and allows consumers to become

more active in terms of how they interact with the grid.

The installation of improved sensing and communications equipment, embedded genera-

tion, and storage devices will encourage the development of the current power grid towards

this new system. As regards controlling these grids, two things will be necessary: First, an

improvement in the ability to control the physical power system parameters themselves,

i.e., the voltages, currents, powers, etc., will be needed. This is being enabled by the
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installation and continuing development of power electronics devices. Second, the use of

advanced control techniques that enable non-centralised control of the grid, such that ar-

eas of the grid can communicate with each other to coordinate the control of the overall

grid, while maintaining their own autonomous decision making capabilities, will be neces-

sary. The next two sections will discuss power electronics devices and some of the issues

involved with the non-centralised control of smart grids.

2.2 Power Electronics Devices

While power electronics devices have a widespread range of applications, it is Flexible AC

Transmission Systems (FACTS) devices which are of interest in this thesis. The original

FACTS technologies were based on Thyristor valves and converters (Kundur, 1994). In

recent years FACTS devices now utilise the more advanced technology of voltage source

converters which are based on Insulated Gate Bipolar Transistors (IGBT) or Insulated

Gate Commutated Transistors (IGCT). FACTS devices are said to be dynamic, to de-

scribe their fast controllability, and static, which means they have no moving parts like

mechanical switches to perform dynamic controllability. They achieve advanced power

system control through switched or controlled shunt compensation, series compensation

and phase shift control. These devices facilitate very fast current, voltage or impedance

control (Zhang et al., 2006). FACTS devices have been applied in the following areas:

• Power flow control (Zhihui et al., 2010),

• Transmission capacity enhancement (Ying et al., 2003),

• Voltage control (Rao et al., 2000),

• Reactive power compensation (Dizdarevic and Majstrovic, 2003),

• Stability improvement (Haque, 2005),

• Power quality improvement (Grunbaum, 2008),

• Power conditioning (Singh et al., 2011),

• Flicker mitigation (Zhang et al., 2004),
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Figure 2.4: Overview of FACTS devices (Zhang et al., 2006).

• Interconnection of renewable and distributed generation and storages (Strunz and

Brock, 2003).

In Fig. 2.4, the leftmost column shows conventional devices made from fixed or mechani-

cally switched components such as resistors, capacitors, and conductors used with trans-

formers. The left column of FACTS devices shows those devices constructed using the

original thyristor valve technology. The right column of FACTS devices shows those

devices made using the newer more advanced IGBT and IGCT technologies. A brief

discussion of each of these technologies will now be given.

2.2.1 FACTS Devices

Shunt Devices

Static Var Compensators (SVC) and Static Compensators (STATCOM) operate as reac-

tive power compensators and so have become vital in modern power systems for maintain-
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ing high quality power. They have also become an integral component in dynamic reactive

power compensation, which can help minimise the impact of random voltage variations on

power systems. This is quite useful in industrial situations where a good quality voltage

supply is needed (Chen et al., 2001), and is proving incredibly useful in offshore wind

farms, where they are used to provide a balanced reactive power level to keep voltages

within limits across the wind farm and at the point of interconnection to the grid, despite

power production fluctuations (Wang and Hsiung, 2011).

SVCs consist of shunt connected variable capacitances and inductances called Thyristor

Switched Capacitors (TSC) and Thyristor Controlled Reactors (TCR), respectively. When

these devices are connected in parallel with each other they form a Static Var System

(SVS), which can be seen in Fig 2.5 (Kundur, 1994). The variation of the thyristor

angle allows the effective capacitance or inductance in each branch to be varied. The

coordinated control of branches of these components is what enables reactive power control.

An illustrative example of how this system operates to regulate voltage is given in Fig. 2.6.

The inductor voltage-current characteristic slope gets steeper as the inductance increases.

For the purposes of illustration, the capacitance is kept constant. Between the maximum

and minimum ranges of the inductance the combination of the inductance and capacitance

together produces a fixed voltage V independent of the shunt current Is. In a real system

capacitances can also be varied with a TSC and so using a number of parallel shunt

devices the desired system regulation can be achieved. An SVS is capable of providing

the reactive power required to control dynamic voltage oscillations under various system
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Figure 2.6: Illustration of voltage regulation using a shunt variable inductor and fixed

capacitor connected in parallel (Kundur, 1994).

conditions thus enabling an improvement in power system transmission and distribution

stability.

STATCOMs were first introduced in 1999 and are based on VSC technology, which allows

the voltages to be controlled at a greater frequency than is the case with an SVC and so

allow for faster reaction times. In STATCOMs a compensating voltage is connected in

shunt with the transmission line through a tie reactance, as in Fig. 2.7 (Mohan, 2006; Sen

and Sen, 2009). The shunt current Is flowing through the inductor can be controlled so

as to absorb or provide reactive power to the line. STATCOMs are treated as controllable

voltage sources. Another advantage of STATCOMs over VSCs is that the controllable

capacitive or inductive currents can be provided independently of the voltage V , and it

can provide independent active and reactive power control. Its V -Is characteristic can be

seen in Fig. 2.7 where the vertical lines represent the current rating of the device. These

vertical lines imply that the maximum allowable currents are independent of the voltage

V and so means that even during the most severe contingencies the STATCOM will keep

its full capacity (Zhang et al., 2006). While STATCOMs are currently more expensive to

install than SVCs, limiting their use to scenarios that demand very fast voltage regulation,
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Figure 2.7: Static Compensator setup and its voltage/current characteristic (Mohan,

2006).

it is predicted that in time as the price of the semiconductors used in STATCOM reduces

that STATCOMs will become the preferred device for voltage regulation (Noroozian et al.,

2003).

Series Devices

Series devices can help overcome series voltage decline in magnitude and phase, and reduce

voltage fluctuations. Series FACTS devices also have the capability to limit fault currents

on the lines to which they are connected.

Thyristor Controlled Series Capacitors (TCSC) have two main uses. First, they can be

used to increase the damping between large interconnected electrical systems by control-

ling the line reactance between two areas. Second, they can be used to overcome Sub-

Synchronous Resonance (SSR); a problem that can arise due to interactions between large

thermal generating units and series compensated transmission systems. TCSCs operate

by varying a capacitive or inductive reactance, using the thyristor to vary this reactance,

as can be seen in Fig. 2.8 for the case of a variable inductance (Mohan, 2006). The

variance of this reactance enables electromechanical damping between large electrical sys-

tems. They can also change their apparent impedance (as seen by the line current) for
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Figure 2.8: Thyristor Controlled Series Compensator (Mohan, 2006) and Static Syn-

chronous Series Compensator setup (Zhang et al., 2006).

sub-synchronous frequencies, in order to avoid sub-synchronous resonance. Both of these

goals can be achieved simultaneously with TCSCs using appropriate control algorithms

(Zhang et al., 2006).

While TCSCs are modelled as series impedances, Static Synchronous Series Compen-

sators (SSSC) are series voltage sources. SSSCs are configured in a similar fashion to

STATCOMs, as can be seen in Fig. 2.8. However they work in this case by injecting an

almost sinusoidal compensating voltage, of variable magnitude, in series with a transmis-

sion line. This has the effect of emulating a series inductance or capacitance in series with

the transmission line (Sen and Sen, 2009). While these devices are more expensive than

TCSCs and cannot be used at the transmission level, they are primarily a device for power

quality applications, with demonstrated potential in maintaining stability in deregulated

power systems (Menniti et al., 2004). In this scenario they are called Dynamic Voltage

Restorers (DVR). They can be used to keep voltages constant, for a factory infeed for

example and can be used to mitigate voltage dips and flicker. With a charging mechanism

or DC side battery they can work as uninterruptable power supplies (Zhang et al., 2006).

Shunt and Series Devices

As restrictions grow for new power lines, and power flows become more volatile due to

energy market activities, increasing control of power flow is becoming more important.
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Dynamic Flow Controllers (DFC) and Unified Power Flow Controllers (UPFC) enable

increased control over power flows via shunt and series devices.

Vl

Il

UPFC

Il

Is C L1 L2 L3

TSC
TCRs

DFC

Is

MSC

Figure 2.9: Dynamic Flow Controller and Unified Power Flow Controller setup (Zhang

et al., 2006).

A DFC is a hybrid device, which combines the capabilities of a Phase Shifting Transformer

(PST) and a switched series compensator, and can be seen in Fig. 2.9. It can provide

series and shunt compensation and can actively adjust its internal parameters in order to

control active and reactive power flow while regulating voltage, thus enabling better use of

existing generation capacities in power networks (Ahmadi et al., 2008). A number of series

connected TSCs and TCRs allow the control of the line reactance with the mechanically

switched shunt capacitor (MSC) utilised to provide support in the case of overloads and

other conditions. The Phase Shifting transformer (PST), which has a tap changer, allows

a voltage to be injected into the line in quadrature with the node voltage and acts as a

controllable reactance. The manipulation of each of the different elements of the DFC

allows for the control of the active and reactive power flowing in the line to which it is

attached in series (Zhang et al., 2006).

A UPFC, as seen in Fig. 2.9, is a combination of a static compensator and static series

compensator. It consists of a shunt and series transformer, connected back-to-back via

two VSCs with a common DC link capacitor. The DC capacitor in combination with

the back-to-back VSCs allows independent bidirectional active power and reactive power

exchange between the transformers allowing control of the phase shift of the series voltage.

This allows full controllability for the voltage and power flow in the line.
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High Voltage DC Transmission Devices

High Voltage Direct Current (HVDC) lines can be used to transfer large quantities of

power between subsystems in power networks. They operate by converting AC power

to DC power at one side of the line and reconverting the DC power back to AC power

on the other side. It is widely recognised as having an advantage over AC transmission

for long-distance bulk power delivery, asynchronous power connections, e.g., transporting

power between an area with a 50Hz frequency and an area with 60 Hz, and long submarine

cable crossings (Bahrman and Johnson, 2007). HVDC lines also have the ability to rapidly

control the transmitted power between areas, and so have a significant impact on their

associated AC power systems (Kundur, 1994).

AC1 AC2

AC filter AC filter

Figure 2.10: HVDC LCC system (Mohan, 2006).

The original Line Commutated Converter HVDC lines (HVDC LCC) use thyristor valves

for the conversion process. The AC voltage is stepped up to a higher voltage using a

transformer and the thyristors then convert the AC power to DC power at one side of

the link at what is called the rectifier end. The thyristor bridge at the other end of the

line, which is called the inverter, then converts the DC power back to AC power. The

thyristors can only operate with the AC current lagging the voltage and so the conversion

process requires the supply of reactive power (Zhang et al., 2006). As a result, the reactive

power is not controllable in these lines. The reactive power is supplied by AC filters and

any surplus reactive power must be reabsorbed by the grid. The weaker the AC system or

the further the converter is away from a generation source, the tighter the reactive power

exchange must be to stay within the desired voltage tolerances. This can be a limiting

factor on the installation of HVDC LCC in certain areas (Bahrman and Johnson, 2007).

HVDC transmission using VSCs with Pulse Width Modulation (HVDC VSC) was intro-
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Figure 2.11: HVDC VSC system (Mohan, 2006).

duced in the 1990s under the name HVDC Light (Zhang et al., 2006). These are based on

IGBT technology and as a result can be used to control both active and reactive power

independently. The conversion process for HVDC VSC works on the same AC-DC-AC

conversion as with the LCC system. It should be noted that while the active power enter-

ing the rectifier will roughly equal that leaving the inverter, this does not have to be the

case with the reactive power. This significantly increases the overall system controllability

and allows the HVDC lines to be used in order to increase the transmission capability of

surrounding transmission lines in addition to balancing power flows. Also HVDC VSC,

unlike HVDC LCC, does not require a source of reactive power and so overcomes many

of the shortfalls of HVDC LCC by being capable of operating in almost any part of the

grid, and can even start from a black start, i.e., the converter can be used to synthesize

a balanced set of three phase voltages like a virtual synchronous generator (Bahrman and

Johnson, 2007). This makes HVDC VSC particularly useful when connecting to weak

areas of the grid which may require extra reactive power support.

Having looked at the modern power electronics devices that will enable the control of

future power grids, a discussion on the advanced control techniques that will be used for

the control of the grid will now be undertaken.

2.3 Non-centralised Control of Smart Grids

Classical control techniques were typically developed for centralised or decentralised con-

trol situations. In modern computer science when centralised control is used it is referred

to as single-agent control. For clarity the definition of an agent, as understood in this

thesis, will now be provided. An agent is defined here as an entity responsible for the
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Figure 2.12: Centralised control of power system consisting of 12 subsystems with various

interconnections.

control of a system or subsystem, with access to the current state of the system or subsys-

tem it controls. The agent’s local states are accessed by direct measurement or estimation.

Agents have access to a model of the local system or subsystem and in the distributed case,

agents are able to communicate with other agents who share a common variable. Agents

compute values for their control inputs at discrete time steps based on the information

available to them.

In centralised control, as shown in Fig. 2.12, the control agent has access to all information

relevant to the control of each subsystem in the overall network, i.e., the states, goals,

constraints, etc. Information is exchanged between the central controller and local sensors

and actuators for each of the subsystems. Typically, centralised control systems give the

best performance attainable by a control system. However a number of issues arise with

the use of centralised control systems:

• They may exhibit poor robustness qualities and, in cases where the location of the

control agent is a large distance from the object being controlled, issues regarding

communication delays can arise.
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• Centralised control systems can scale badly, i.e., as the size of the system increases,

a centralised problem may become too large to solve in real time. This is often the

case in large scale power systems.

• It may not always be possible to control an area using only one agent. When power

networks are deregulated or when power networks cross country borders, there can

be more than one control agent responsible for different parts of the grid.

In order to overcome the disadvantages inherent in the use of a single control agent, several

control agents can be used to control different parts of the system. Where multiple control

agents are used, the control system is typically referred to as a multi-agent control system.

In principle these control systems can (Negenborn, 2007):

• Improve the robustness and reliability of systems. If one controller fails, the other

controllers continue to maintain responsibility for the control of the remaining parts

of the grid.

• Enable the scalability of control problems by dividing the original centralised prob-

lem into a number of smaller problems.

• Reduce communication delays. Agents can therefore operate near the area they are

controlling and hence have faster access to both sensors and actuators.

• Overcome the problems inherent in systems where more than one control agent is

needed in a system, as is the case in a deregulated power market.

• Allow individual agents autonomy over their control goals while ensuring overall

system stability. This capability is vitally important in the smart grid, where con-

sumers will be encouraged to take more active decisions as to how they consume and

produce power.

If interactions between control areas are weak, it is presumed that a decentralised ap-

proach, where agents do not take the effect of interactions with other subsystems into

account, is sufficient to control the overall system (Venkat, 2006). In these situations,

agents are designated to control individual subsystems in a system without communi-

cating with each other, under the assumption that the effect of feedback is sufficient to

overcome the effect of interactions between subnetworks.
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Figure 2.13: Distributed control architecture with coordination layers for hierarchical

control.

However, the necessity for coordination between controllers in power networks was high-

lighted most dramatically in the North American blackout on August 14, 2003 . A de-

centralised control structure prevented the interconnected control areas from taking emer-

gency actions such as selective load shedding. This had a knock-on effect across the

network with successive subnetworks overloading, ultimately leading to a blackout. The

U.S.-Canada Power System Outage Task Force reported that the extent of the system

failure was so dramatic that within 7 minutes the blackout had spread from the Cleveland

Akron area in northern Ohio to much of northeastern USA and Canada (U.S.-Canada

Power System Outage Task Force, 2004).

Alternatives to a completely decentralised control structure include hierarchical and dis-

tributed control systems. In hierarchical systems there are a number of layers of controller

agents which pass down setpoints to agents at lower layers, as can be seen in Fig. 2.13 (In

this example there are 3 layers; an upper, middle, and lower layer, are given but depending

on the hierarchical system there can be as many layers as needed). Typically lower layers

deal with real time control of the system and the higher layers are used to calculated longer

term goals, and will usually determine the setpoints for the lower level control layers to

follow. Distributed control systems use communication between agents, that are usually
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in the same hierarchical control layer, in order to coordinate their responses, as can be

seen in Fig. 2.13. Distributed control techniques have combined aspects of control theory,

optimisation, and game theory to enable stable multi-agent control. In recent years there

has been many developments in this area, with distributed Model Predictive Control in

particular showing much promise.

2.3.1 Model Predictive Control

Model Predictive Control (MPC) is an optimisation-based technique which uses a predic-

tion model in order to determine the control inputs for a system. An attractive feature

of MPC is the way in which system constraints can be catered for in the problem in a

straightforward manner. It is also an intuitively attractive technique from which stable

performance can be attained without extensive tuning (Rawlings and Mayne, 2009; Wang,

2009; Rossiter, 2003).

Given the attractive properties of MPC, it is no wonder that it is finding success in a wide

number of applications. MPC has been utilised successfully in manufacturing and industry

(Camacho and Bordons, 2003), transportation networks such as water (Negenborn et al.,

2009; Ocampo-Martinez et al., 2010), urban traffic networks (Tettamanti et al., 2008), air

traffic control (Chaloulos et al., 2010), and in medical applications (Wang et al., 2010).

MPC is already proving incredibly useful as a solution for a wide range of Smart Grid

control problems, such as balancing grid production and consumption (Trangbaek et al.,

2011), coordinating the different elements of the grid at different time scales (Ulbig et al.,

2011), coordination of small scale power sources (Camacho et al., 2011), minimizing power

losses in an electrical network subject to voltage and power constraints (Lavaei et al., 2011),

and predictive charging of large volumes of plug-in electric vehicles (Ma et al., 2011).

However, for large systems such as the electricity grid, it is often impractical to implement

MPC from a central controller, due to computational constraints. Likewise, it is often

necessary to use multi-agent techniques when using MPC with electricity grids, due to the

issues associated with deregulation and the degree to which power subsystems are inter-

connected, as was outlined previously. These multi-agent systems consist of agents that

communicate and cooperate with each other to approximate the behaviour of a centralised
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Figure 2.14: Hierarchical and distributed control architecture showing multi-rate syn-

chronous and asynchronous updating.

MPC system. Agents may be responsible for the control of subsystems and the agent ar-

chitecture can also be of a hierarchical nature with agents in higher layers coordinating

the actions of lower layer agents (Scattolini, 2009). In hierarchical MPC an upper layer

will usually determine setpoints or constraints that are sent to lower layer MPC agents

(Falcone et al., 2008; Bendtsen et al., 2010). In (Negenborn, 2007), for example, higher

layer objectives were used to consider the slow dynamics of the system and pass setpoints

to the lower layer controllers which would try and achieve these setpoints while dealing

with the faster system dynamics. These systems may also be multi-rate systems, with

agents performing control actions at different times. These multi-rate systems typically

fall into two categories; synchronous multi-rate systems, and asynchronous multi-rate sys-

tems, as can be seen in Fig. 2.14. In synchronous multi-rate systems some agents perform

optimisations at fast sample rates and others perform optimisations over multiples of these

fast sample intervals. In asynchronous systems, agents do not share a common sample

time or sample period, as can be seen on the asynchronous update timeline in Fig. 2.14.

This thesis concentrates primarily on single-layer distributed MPC systems. There has

been much research interest in recent years in this area (Scattolini, 2009; Sanchez et al.,

2011; Liu et al., 2010). Distributed MPC algorithms are typically iterative or non-iterative.
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Also their implementations are usually carried out in series or in parallel (although it may

be possible to parallelise the actions of agents not directly connected in serial imple-

mentations). Of the non-iterative techniques, many Lyapunov-based distributed MPC

techniques have been developed (Camponogara et al., 2002; Liu et al., 2010; Hermans

et al., 2010), which use a Lyapunov constraint function to ensure system stability. Also in

(Javalera et al., 2010) a non-iterative method is developed where a reinforcement learn-

ing based “negotiator” agent is used between distributed MPC agents to provide values

of interconnecting variables to the agents which they then use in their MPC problems.

There are many iterative distributed MPC methods that have been developed based on

game-theoretic approaches that search for optimal equilibria (Li et al., 2005; Sanchez

et al., 2011). Other decomposition-coordination methods decompose the original con-

trol problem into several smaller optimisation problems and use communication between

agents to coordinate their solutions. Examples of decomposition methods used include

Jacobian decomposition (Venkat, 2006), Gauss-Seidel decomposition (Negenborn et al.,

2008), and Bender’s decomposition (Moroş Andan et al., 2010). The above methods are

all synchronous methods where each agent optimises at each time step. However, asyn-

chronous methods have been developed in (Camponogara and Talukdar, 2007; Venkat,

2006) and multi-rate methods have been developed in (Heidarinejad et al., 2011; Venkat,

2006; Roshany-Yamchi et al., 2011). Robust forms of distributed MPC have also been de-

veloped in (Trodden and Richards, 2006; Al-Gherwi et al., 2011). In all of these techniques,

there is a general performance trade off between the level of control performance achievable

and the level of communication needed between agents at each control cycle. In general,

better control performance can be achieved with increasing levels of communication.

2.3.2 Game Theoretic Perspectives on Centralised and Non-centralised

MPC Control Goals

The goal of a centralised MPC scheme for a system of n subsystems can be stated as

follows:

ũ(k) = arg min
ũ

n∑

a=1

waJ
local
a (xa(k), ũa(k)), (2.1)

where ũa(k) are the control inputs to subsystem a over the prediction horizon at sample

k, xa(k) is the state of subsystem a at sample k, ũ(k)=[ũ1(k), . . . ũn(k)] is the vector of

all predicted inputs, and J local
a (xa(k), ũa(k)) is the local cost function of the ath subsys-

Optimisation of Smart Grid Performance using Centralised and Distributed Control
Techniques-Paul Mc Namara



Section 2.3: Non-centralised Control of Smart Grids 33

1

2

34

5

Agent i relates its local

control goals, and its

state and input

information to all other

agents.

i denotes subsystem i

denotes connection

between 2 subsystems

denotes communication

between 2 subsystems

Figure 2.15: Communications necessary in a system composed of 5 subsystem in order to

achieve a Pareto equilibrium performance.

tem. The performance of a centralised MPC scheme reaches what is known as a Pareto

equilibrium. It is possible to achieve this performance in a distributed manner by using

an iterative procedure (Venkat, 2006; Sanchez et al., 2011). Here, each agent optimises

the following cost function in parallel at each iteration:

ũa(k, l) = arg min
ũa

n∑

a=1

waJ
local
a (xa(k), ũ1(k, l − 1), . . . , ũa(k, l), . . . , ũn(k, l − 1)), (2.2)

where ũa(k, l) is the vector of inputs to subsystem a at sample time k and iteration l of

the iterative process. The algorithm can terminate either after a pre-determined number

of iterations or when the optimised inputs have converged. Each agent optimises for its

own input, based on the previous value of inputs which have been calculated by all the

other agents. In game theory, a Pareto equilibrium is the best control performance that

can be achieved by a system. This control can only be achieved, however, if all agents in

a system have all the information of a centralised MPC made available to them (assuming

convex cost functions), i.e., the goals of all agents in a system, knowledge of the full state-

space of the system, all system constraints, etc. as can be seen in Fig. 2.15 for a system

consisting of 5 subsystems. However, in vast complex systems, such as electricity grids, the

communication of this volume of information is impractical or may not even be possible,

e.g., in a deregulated power market control agents may not be willing to share this level

of information with other control agents.
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However, when communication of interconnecting variables is allowed between adjacent

agents, a Nash equilibrium can be achieved (Sanchez et al., 2011; Venkat, 2006). These

algorithms can be both iterative and non-iterative (Scattolini, 2009). Nash equilibria are

typically achieved using cost functions similar to the following:

ũa(k, l) = arg min
ũa(k,l)

J local
a (xa(k), ũa(k, l), ṽa(k, l)) + J inter

a (xa(k), ũa(k, l), ṽa(k, l)), (2.3)

where ṽa(k, l) is a vector of interconnecting inputs over the prediction horizon coming from

other subsystems affecting subsystem a at sample k and iteration l (in the case of iterative

algorithms), and J inter
a (xa(k), ũa(k, l), ṽa(k, l)) is an interconnection cost that arises due

to agent a’s interactions with other subnetworks. Usually J inter
a (xa(k), ũa(k, l), ṽa(k, l))

is used in order to form consensus with adjacent agents on values of the interconnecting

variables. As the achievement of a Nash equilibrium only requires the communication

of the interconnecting variables shared by connected subsystems (as can be seen in Fig.

2.16 for the 5 area system used previously in Fig. 2.15), it means that significantly less

inter-agent communication is needed to achieve systemwide control when compared to the

Pareto seeking system. While Nash equilibrium seeking control systems in general do not

achieve the performance of a Pareto equilibrium seeking control system, their performance

will usually be significantly better than that achieved by a decentralised control system

with no communications (Venkat, 2006). Indeed, promising results have already been

Optimisation of Smart Grid Performance using Centralised and Distributed Control
Techniques-Paul Mc Namara



Section 2.4: Summary 35

achieved controlling power networks, which include FACTS devices, with control agents

that only communicate with agents to which they are connected by a common variable

(Negenborn et al., 2010; Venkat, 2006; Talukdar et al., 2005).

2.4 Summary

This chapter examined how power grids have been evolving in recent years. Originally

power systems were centralised monolithic structures where a few large generation centres

provided energy to consumers. Power typically flowed in one direction which was from the

large scale production stations to the end consumers. This predictablility as regards the

direction of power flows allowed for simpler control systems to provide effective control of

power systems. However, the increasing penetration of distributed generation sources and

the decentralisation of both power generation and control has meant that more sophisti-

cated control techniques are needed to control future power grids. It has been seen that

local communications based distributed MPC techniques and FACTS devices provide a

means of enabling the transition to the new Smart Grid. However many issues still remain

to be addressed with these techniques and large-scale real-time deployment has yet to be

carried out using this combination of techniques.
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Chapter 3
Model Predictive Control:

Real-Time Optimisation Based

Control

3.1 Model Predictive Control

Model Predictive Control (MPC) (Maciejowski, 2002; Rawlings and Mayne, 2009; Cama-

cho and Bordons, 2003; Rossiter, 2003) is an optimal control technique, in which a control

agent uses an internal process model to predict the process output over a certain num-

ber of sample steps (called the prediction horizon) to calculate optimal control moves for

the system. One of the main advantages of this control technique is the systematic and

intuitive manner in which constraints are incorporated into the control system and the

fact that delays are naturally catered for. It enables the control of systems with multiple

inputs and outputs in a straightforward manner. It can adapt to slow changes in system

parameters and it is reasonably straightforward to tune MPC systems in order to achieve

stable closed loop performance. In order to implement MPC, the practitioner must specify

the control goals and supply a prediction model for the system. The measurement of the

system state is also needed at each control sample. Another issue is that the MPC op-

timisation problem must be solvable within the necessary time frame in order to provide



Section 3.1: Model Predictive Control 43

the system inputs at each control sample. It is at this stage a mature technology, with

feasibility, stability, and robustness proofs well established (Rawlings and Mayne, 2009).

3.1.1 The History of MPC

The foundations of modern MPC date back to the 1960s within the field of optimal con-

trol. Dynamic Programming provided sufficient conditions for optimality and a construc-

tive procedure for determining an optimal feedback controller. The maximum principle

provided the necessary conditions for optimality and encouraged researchers to develop

computational algorithms capable of determining open-loop control laws for a given ini-

tial state (Mayne et al., 2000). Other research, noted in (Mayne et al., 2000), conducted

during the 1970s and 80s, used finite control horizons for control (as opposed to infinite

horizons which would have been used in H∞ control but which were difficult to implement

for real-time on-line control), and ensured stability of the system with the use of Lya-

punov functions and a stability constraint x(T ) = 0, where x(T ) is the final state in the

prediction horizon. While these ideas lay the theoretical groundwork for MPC, the origi-

nal MPC implementations were carried out in industry, particularly in the petro-chemical

and process industries (Mayne et al., 2000; Camacho and Bordons, 2003). Existing control

techniques, such as linear quadratic control, were not used due to their inability to handle

constraints, nonlinearities, and uncertainty. The ability of MPC to deal with constraints

was one of its key strengths, as due to economic considerations, operating points in plants

are often situated on the boundary of the set of operating points satisfying all constraints

(Mayne et al., 2000).

Two of the earliest versions of MPC were Model Predictive Heuristic Control (MPHC)

(Richalet et al., 1978) and Dynamic Matrix Control (Cutler and Ramaker, 1980). MPHC,

whose software was called IDCOM (IDentification and COMmand), uses an impulse re-

sponse, while DMC uses a step response in order to form predictions. Because of the

use of these responses for control, applications are restricted in both cases to stable open

loop systems. Both systems use finite control horizons and quadratic cost functions, that

balance tracking performance against control effort, in the formulation of the predictive

control problem. Both systems account for unknown disturbances by assuming that the

disturbance remains constant over the full prediction horizon. This disturbance is taken as

the difference between what the output was predicted to have been in the previous sample
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step and what the actual output was at the current sample step. With the first generation

of these systems, input and output constraints are handled in an ad hoc manner (Mayne

et al., 2000). However, this was overcome in the second generation program, Quadratic

DMC (QDMC) (Garćıa and Morshedi, 1986). This uses quadratic programming to solve

the quadratic optimisation problem at each sample step, and can be used when the system

is linear and when the control and state constraints are defined by linear inequalities.

Generalised Predictive Control, was proposed in (Clarke et al., 1987) and is based on the

use of Controller Auto-Regressive Moving-Average (CARMA) and integrated CARMA

(CARIMA) models for predictions. These models allow for more sophisticated modelling

of noise and allow GPC to handle unstable and non-minimum phase plants. State-space

MPC techniques were also developed around this time (Navratil et al., 1988; Li et al.,

1989; Ricker, 1990) and allowed many of the results from state-space theory to be ap-

plied to MPC. Since all the states of the system are usually not measured, it is hence

necessary to utilise an observer to provide an estimate of the full state vector. In the pres-

ence of white noise disturbances, and when the noise covariance matrices of the output

are known, a Kalman filter can be used to determine the states that cannot be directly

measured (Camacho and Bordons, 2003). However, stability was still not guaranteed with

these early versions of MPC. Stable extensions of unconstrained MPC, such as Constrained

Receding-Horizon Predictive Control (Clarke and Scattolini, 1991), were later developed

which enforced a terminal equality constraint on the state in order to enforce stability.

Stable Generalized Predictive Control (Kouvaritakis et al., 1992) stabilises the loop before

applying the control, which guarantees closed loop stability. While these provided stabil-

ising proofs for MPC, they were limited to the unconstrained case. Despite the difficulty

of the problem at hand, a number of techniques were developed during the 1990s to deal

with the constrained case. The use of terminal penalties and/or constraints, Lyapunov

functions and the use of invariant sets were all used to ensure guaranteed system stability

(Mayne et al., 2000).

Robust techniques have also been developed for MPC. These typically use a number of

models to take into account system uncertainties and the control is applied so as to deal

with the worst case scenario. MPC techniques have also been developed for nonlinear

control, hybrid control and the control of very fast processes (Camacho and Bordons,

2003). Also, in recent years there has been much work on distributed MPC, where a

number of agents communicate together to try and approximate the control of a centralised
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Figure 3.1: Model Predictive Control, showing past inputs and outputs, and predicted

optimal inputs and outputs.

MPC agent (Scattolini, 2009). It is distributed MPC that forms the primary focus of the

work in this thesis and so it will be dealt with in greater depth in the following chapters.

3.1.2 State-space MPC

In MPC, a control agent uses a discrete-time system model that predicts the system’s

future trajectory over a prediction horizon in order to calculate optimal inputs for the

system over this horizon, as can be seen in Fig. 3.1. Only the input for the first time

step is applied. At the next time step a new action is determined. MPC is often called

Receding Horizon Control due to the prediction horizon moving forward at each time step.

By linearising the system about an operating point, the system can then be described in

continuous time using the following dynamic state-space equations:

ẋ(t) = Acx(t) +Bcu(t) +Dcd(t), (3.1)

y(t) = Ccx(t), (3.2)

where x(t) ∈ <nx is the state of the system at time t, u(t) ∈ <nu are the system’s inputs,

d(t) ∈ <nd are known disturbances, y(t) ∈ <ny are the outputs, and Ac, Bc, Dc, and Cc

are the continuous-time state-space matrices.

By converting (3.1) and (3.2) into the discrete domain, the system can be represented in

discrete-time as follows:

x(k + 1) = Ax(k) +Bu(k) +Dd(k), (3.3)

y(k) = Cx(k), (3.4)
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where x(k) ∈ <nx is the state of the system, u(k) ∈ <nu are the inputs, d(k) ∈ <nd are

known disturbances, and ya(k) ∈ <ny are the outputs at sample step k, and A, B, D,

and C are the discrete-time state-space matrices. In this thesis, systems are discretised

using the zero-order hold method. Using the zero-order hold with sample time τ gives:

A = eA
cτ (3.5)

B =

∫ τ

0
eA

cηBcdη (3.6)

D =

∫ τ

0
eA

cηDcdη, (3.7)

and C=Cc.

Using (3.3) it is possible to predict a value for x(k + 2) as follows:

x(k + 2) =Ax(k + 1) +Bu(k + 1) +Dd(k + 1)

=A(Ax(k) +Bu(k) +Dd(k)) +Bu(k + 1) +Dd(k + 1)

=A2x(k) +ABu(k) +Bu(k + 1) +ADd(k) +Dd(k + 1)

(3.8)

This can extended in a similar fashion in order to make state-space predictions up to N

steps into the future. To simplify notation, the prediction vector, over a horizon N is

first introduced. For a general vector z, its prediction vector is z̃(k) = [zT(k) . . . zT(k +

N − 1)]T. State-space and output predictions over an N step prediction horizon are then

determined as follows:

x̃(k + 1) = Afx(k) +Bf ũ(k) +Df d̃(k) (3.9)

ỹ(k + 1) = C f x̃(k + 1) (3.10)

where Af , Bf , Df , and C f are the state-space prediction matrices given as follows:

x̃(k + 1) =




x(k + 1)

x(k + 2)
...

x(k +N)




, Af =




A

A2

...

AN




, Bf =




B 0 . . . 0

AB B . . . 0
...

. . .

AN−1B AN−2B . . . B




,

Df =




D 0 . . . 0

AD D . . . 0
...

. . .

AN−1D AN−2D . . . D




, Cf =




C

C
. . .

C




.
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In order to attain integral action with MPC, an augmented state-space model, that de-

scribes the evolution of the state from sample to sample in terms of incremental inputs is

used for predictions. This augmented state-space model is given by (Wang, 2009):

xaug(k + 1) =


∆x(k + 1)

x(k + 1)


 = Âxaug(k) + B̂∆u(k) + D̂∆d(k) (3.11)

y(k) = Ĉxaug(k), (3.12)

where

Â =


A 0nx×nx

A Inx×nx


 , B̂ =


B
B


 , D̂ =


D
D


 , Ĉ =


0ny×ny

C




T

.

Here the ∆ operator is used to denote the change in a given variable from sample to

sample, i.e. ∆z(k) = z(k)− z(k−1). Predictions using these matrices can then be formed

in the same way as in (3.9) and (3.10). Matrices Â
f
, B̂

f
, D̂

f
, V̂

f
, and Ĉ

f
are used to

denote the prediction matrices in the incremental case.

3.1.3 MPC Implementation

In a system of n subsystems, MPC problems are constructed to fulfill control objectives for

subsystems a = 1, . . . , n based on knowledge of x(k), and d̃(k) if there are measurable dis-

turbances. When there are no system constraints, a cost function, J(xaug(k),∆ũ(k),∆d̃(k))

(which will henceforth be denoted by J(k)), embodies the control objectives of the system.

The control agent determines the best incremental control inputs ∆ũ(k) to be applied over

the horizon by minimising this cost function as follows:

∆ũ(k) = arg min
∆ũ

J(k)

which is the solution of
∂

∂∆ũ(k)
J(k) = 0.

(3.13)

The cost at sample time k is,

J(k) =
N−1∑

p=0

J stage(k, p), (3.14)

where J stage(k, p) is the cost at the pth step of the prediction horizon at sample step k,

typically defined as the following quadratic cost function:

J stage(k, p) =eT(k + p+ 1)Qe(k + p+ 1) + ∆uT(k + p)R∆u(k + p), (3.15)

Optimisation of Smart Grid Performance using Centralised and Distributed Control
Techniques-Paul Mc Namara



Section 3.1: Model Predictive Control 48

where e(k+p) is the vector of errors in the MPC problem at the pth stage of the prediction

horizon, at sample time k. The error, e(k + p) = y(k + p) − r(k + p), where r(k + p)

is a vector of the setpoints. Using the stage cost in (3.15), J(k) represents the desire

to minimise the square of the error over the prediction horizon, i.e., to follow as closely

as possible the setpoint over the prediction horizon. The weighting matrices Q and R

determine the relative importance of the minimisation of the error and the control effort

from sample to sample during optimisation, respectively. The tuning of these parameters

significantly influences the behaviour of the control system. For the unconstrained case,

and using an incremental model, an analytical solution for the inputs can then be found

by finding the value of ∆ũ(k) that minimises J(k):

J(k) = ((C f(Af(k)x(k) +Bf∆ũ(k) +Df∆d̃(k))− r̃(k + 1))TQ((C f(Af(k)x(k)

+Bf∆ũ(k) +Df∆d̃(k))− r̃(k + 1)) + ∆ũT(k)R∆ũ(k))

= ∆ũT(k)H∆ũ(k) + ∆ũT(k)f + µ

(3.16)

where the square symmetric matrix H=BTCTQCB + R, the vector f=2(C(Ax(k) +

D∆d̃(k)) − r̃(k + 1))TQCB, and the scalar µ=(C(Ax(k) + D∆d̃(k)) − r̃(k + 1))T ×
Q(C(Ax(k) +D∆d̃(k))− r̃(k + 1))T. µ does not depend on ∆ũ(k).

The optimal choice of controls ∆ũ(k) is obtained when,

∂

∂∆ũ(k)
=2H∆ũ(k) + f = 0 (3.17)

This yields the solution,

∆ũ(k) = −1

2
H−1f

= −(BTCTQCB +R)−1((C(Ax(k) +D∆d̃(k))− r̃(k + 1))TQCB)

(3.18)

Only the value for the optimal ∆u(k) is applied to the subsystem after optimisation, and

this process is repeated every time step, with the new prediction horizon moving forward

one time step. Because of the use of a quadratic error function based on linear state-space

models, this unconstrained controller is similar to a Linear Quadratic Regulator (LQR).

The use of this state-space based formulation means it is necessary to use an observer or

Kalman filter in real applications in order to determine unmeasured system states. In this

thesis, however, it is assumed that there is access to all system states for all applications.
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3.1.4 Constrained MPC

While the unconstrained version of MPC enables powerful system control, one of the

main advantages of modern MPC is its ability to incorporate system constraints into

its problem. Typically, there would be constraints on the upper and lower levels of the

systems outputs, y ≥ ymin, y ≤ ymax, where ymin and ymax are the lower and upper

bounds on the output, respectively. Similarly, there would be constraints on the inputs,

u ≥ umin, u ≤ umax, where umin and umax are the lower and upper bounds on the

output, respectively. Rate constraints are also common and determine the limits as to

how fast a system variable is allowed to change from sample to sample. These are given

by, ∆p ≥ ∆pmin, ∆p ≤ ∆pmax, where p is the variable in question, and ∆pmin and ∆pmax

are the maximum and minimum allowable changes in p from sample to sample. These

constraints can also be divided into hard constraints, which are constraints that absolutely

must be satisfied, and soft constraints, which are constraints that should be satisfied if

possible (Rossiter, 2003). An example of a hard constraint would be the limit on an

actuator or valve, which must lie between 0 and 100% open. There is no point therefore

in asking a controller to go beyond this point. An example of a soft constraint would be

a limit that ensures a piece of equipment is not overly stressed so that it does not get

worn out over time. It is desirable to satisfy soft constraints but they can be exceeded if

necessary. The general constrained MPC problem can be formulated in the following way:

ũ(k) = arg min
ũ
J(x(k), ũ(k), d̃(k))

subject to constraints





κi(x(k), ũ(k), d̃(k)) ≥ 0, i ∈ I
κj(x(k), ũ(k), d̃(k)) = 0, j ∈ E ,

(3.19)

where I and E are two finite sets of indices, and κi(x(k), ũ(k), d̃(k)), for i ∈ I, and

κj(x(k), ũ(k), d̃(k)), for j ∈ E , are the system’s inequality and equality constraints, re-

spectively. A non-incremental model based on x(k), ũ(k), and d̃(k) is used in (3.19) for

notational convenience. In order to solve this problem, constrained optimisation methods

must be used. Some background on deterministic constrained optimisation techniques can

be found in Appendix A. When a quadratic cost function is used, Quadratic Programming

techniques can be used to efficiently solve the linear quadratic forms of (3.19). Many com-

mercial packages, such as quadprog found in Matlab, are available for efficiently solving

this problem.

Many stable constrained MPC systems use infinite horizons and terminal constraints in
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∞

From N to ∞

u(k + i) = −Kx(k + i)

invariant set S

Figure 3.2: Stability constrained dual mode MPC.

order to ensure stable control. For example, dual mode type MPC algorithms use two

modes of operation in the prediction horizon to provide infinite horizon stable control.

The first mode uses constrained optimisation over the first N prediction steps. A second

mode of operation, which uses a fixed feedback law, u(k + i) = −Kx(k + i), is employed

for states between N and ∞, as can be seen in Fig. 3.2. The cost over this part of the

prediction horizon is evaluated using a terminal cost, x(k +N)Px(k +N). The concept

of an invariant set is used with the infinite horizon control to ensure asymptotic stability

of the system. An invariant set S is a set where it is guaranteed that if x(k) ∈ S, then

x(k+1) ∈ S, i.e. once a state has entered this set it does not leave it again. An invariant set

can be constructed such that the evolution of states under the second mode of operation,

u(k + i) = −Kx(k + i), satisfies this set, which in turn is designed to satisfy the system

constraints. The system will be then be stable provided that the system guides x(k +N)

into this invariant set in the first mode of operation (Rossiter, 2003). Many other stable

constrained versions of MPC take a similar approach to this (Mayne et al., 2000). However

in this thesis, only finite horizon MPC is used. An example of the use of centralised MPC

in a smart grid control scenario will now be given.

3.2 Model Predictive Control for Load Frequency Control

In both this chapter and the previous one, the argument has been made that modern

control techniques and power electronics devices will enable the transition to the Smart

Grid. A simple example will now be given demonstrating the application of MPC to a 3

area Load Frequency Control (LFC) System, and the difference in the achievable control

performance, both with and without a Series Synchronous Static Compensator, will be

Optimisation of Smart Grid Performance using Centralised and Distributed Control
Techniques-Paul Mc Namara



Section 3.2: Model Predictive Control for Load Frequency Control 51
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K12(∆δ1 −∆δ2) PSSSC K23(∆δ1 −∆δ2)

Figure 3.3: The 3 area LFC system with a Static Synchronous Series Compensator between

areas 1 and 2.

illustrated. The quick reaction times of the SSSC allows for the increased controllability

of the power network and significantly improves system damping for LFC (Bhatt et al.,

2010; Zareiegovar et al., 2010; Bhatt et al., 2009). In LFC, it is desired to maintain the

frequency of a power system as close to 50 Hz (or 1 per unit (pu) frequency, which is the

normalised frequency) as possible at all times. This is done by ensuring that the supplied

power closely tracks the demanded power at all times in the network. Agents must be

capable of returning the frequency in the area they control to the 1 pu setpoint after

disturbances such as load disturbances and line faults. The agents’ individual problems

are coupled due to power flowing between subsystems through AC or DC line connections.

3.2.1 System Description

The 3 area LFC system is given in Fig. 3.3. Areas 2 and 3 are connected by a normal AC

line and areas 1 and 3 are connected by an AC line with an SSSC. Non-reheat turbines

are used in the models of the generators. The continuous time linearised dynamics of the

system about a particular operating point are given as follows (Kundur, 1994):

δ̇a(t) = ωa(t), (3.20)

ω̇a(t) =
1

Ma
(PGa(t) + baPsssc(t)− Pda(t)−Daωa(t)−

∑

j∈Na
Kaj(δa(t)− δj(t))), (3.21)
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Ṗsssc(t) =
1

Tsssc
(usssc(t)− Psssc(t)), (3.22)

ṖGa(t) =
1

Tta
(−PGa(t) +XGa(t)), (3.23)

ẊGa(t) =
1

TGa
(−ω(t)

Ra
−XGa(t) + ua(t)), (3.24)

where δa(t) is the rotor position of generator a, ωa(t) is the pu rotor frequency at generator

a, PGa(t) is the pu active power generated by generator a, Psssc(t) is the pu active power

controlled by the SSSC, Pda(t) is the pu power load in area a, usssc(t) is the control input

to the SSSC, XGa(t) is the governor valve position and ua(t) is the load reference setpoint

control input at time t. The constant Ma=2Ha where Ha is the inertia of generator a

in seconds, Da is the load damping constant, Kaj is a synchronising coefficient between

areas a and j, Na is the set of area indices that are AC connected to area a, Tsssc is a

time constant for the SSSC in seconds, Tta is the turbine time constant in seconds, and

TGa is the governor time constant in seconds, and Ra gives the governors’ in-built speed

regulation due to governor action. All variables represent small deviations from their

respective operating points.

The coefficient ba ∈ {−1, 0, 1} determines the direction of the SSSC power flow. Here,

ba = 1 implies that an area receives power from the SSSC, ba = −1 implies that an area

loses power from the SSSC, and ba = 0 implies an area is not connected to the SSSC. In

the simulations where there is no SSSC between areas 1 and 2, the equations used are

the same, except Psssc(t)-related variables are removed from the equations, and equation

(3.22) is not considered.

SSSCs are modelled here as series power sources. Using a linearised model, the power

travelling along an AC line between 2 connected areas is Paj = Kaj(δa − δj). Where

an SSSC is present, the power travelling between the 2 areas can be given as Paj =

Kaj(δa − δj) + Psssc (Bhatt et al., 2010). In reality, the power Psssc is controlled by

manipulation of the SSSC voltage, but in this example Psssc itself is calculated and applied

directly to the system.
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3.2.2 State-space MPC Formulation

The following state-space model can be constructed from equations (3.20)-(3.24) as follows:

ẋ(t) = Ax(t) +Bu(t), (3.25)

y(t) = Cx(t), (3.26)

where x(t)=[δ1(t), ω1(t), PG1(t), Psssc(t), XG1(t), δ2(t), ω2(t), PG2(t), XG2(t), δ3(t), ω3(t),

PG3(t), XG3(t)]T, u(t) = [u1, usssc, u2, u3]T, and y(t) = [ω1(t), ω2(t), ω3(t)]T. Matrices

A, B, and C are constructed based on (3.20)-(3.24). As disturbances are not known,

they are not included in the state-space model for control. System parameters are given

in Table 3.1.

Area a 1 2 3

Ma (s) 0.15 0.2 0.167

ba 1 -1 0

Da 0.005 0.0083 0.006

Ra 2.4 2.4 2.4

Tta (s) 0.3 0.25 0.3

TGa (s) 0.1 0.1 0.1

K12=K21 1 K23=K32 1

Tsssc (s) 0.05

Table 3.1: Parameters in per unit form of the LFC SSSC system

The continuous-time state-space model was then discretised using a the zero-order-hold

method described in Section 3.1.2, with a sample time τ=25ms. An incremental state-

space model based on the augmented state xaug(k), and incremental input ∆u(k) was

constructed from the discretised state-space model, as in (3.11) and (3.12).

Using the augmented state-space model, state-space predictions were made as in (3.9) and

(3.10), with a prediction horizon of N = 10 to give:

x̃aug(k + 1) = Afxaug(k) +Bf∆ũ(k), (3.27)

ỹ(k + 1) = C f x̃aug(k + 1), (3.28)
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where Af , Bf and C f are the prediction matrices associated with xaug(k), ∆ũ(k), and

ỹ(k + 1), respectively.

Using the prediction matrices, the following cost function was used for the MPC optimi-

sations which balances the minimisation of the square of the error at each of the outputs

over the prediction horizon and against the effort cost expended:

J(k) = (ỹ(k + 1)− r̃(k + 1))Q(ỹ(k + 1)− r̃(k + 1)) + ∆ũ(k)R∆ũ(k)

= (C f(Afxaug(k) +Bf∆ũ(k))− r̃(k + 1))Q(C f(Afxaug(k) +Bf∆ũ(k))− r̃(k + 1))

+ ∆ũ(k)R∆ũ(k)

= (Pxaug(k) +G∆ũ(k)− r̃(k + 1))Q(Pxaug(k) +G∆ũ(k)− r̃(k + 1))

+ ∆ũ(k)R∆ũ(k),

(3.29)

where P = C fAf , G = C fBf , and Q and R are diagonal matrices that determine the

relative importance of minimising the square of the errors in each area and the control

effort at each step over the prediction horizon.

It is then possible to represent J(k) in a quadratic cost term as

J(k) = ∆ũT(k)H∆ũ(k) + ∆ũT(k)f + µ, (3.30)

where matrix H=GTQG+R, vector f = 2GTQPx̃aug(k+ 1)−2GTQF r̃(k+ 1) and µ is

a scalar which is not dependent on ∆ũ(k), and therefore does not affect the optimisation.

This then allows the MPC problem to be solved using a standard quadratic solver at each

sample as follows:

∆ũ(k) = arg min
∆ũ

J(k) subject to constraints, (3.31)

The system used here is a linearised representation of the real system about an operating

point. The operating point for the frequency is 1 pu. Therefore the goal of linearised

system is to keep the frequency deviations ωa, for a = 1, 2, 3, as close to 0 as possible at

all times. Thus, r̃(k + 1) here is a vector of zeros.

An equal weighting was given to the minimisation of the error in each of the outputs and

so Q=diag(10,. . .,10) is a diagonal matrix of size Nny × Nny. The control effort cost

weight R=diag(0.001,. . .,0.001) is a matrix of size Nnu×Nnu. This is kept small and it’s
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function here is more to ensure full rank of the optimisation problem than to minimise the

control effort from sample to sample.

Several constraints are placed on the real system and these are also applied to the MPC

optimisations. These are given in Table 3.2.

Variable Lower bound Upper bound

usssc pu -0.1 0.1

PG1 pu -0.02 0.02

PG2 pu -0.04 0.04

PG3 pu -0.02 0.02

∆PGa pu, for a = 1, 2, 3 -0.003 0.003

∆δa pu, for a = 1, 2, 3 -0.005 0.005

ωa pu, for a = 1, 2, 3 -0.016 0.016

Table 3.2: Constraints for the LFC SSSC system

3.2.3 Experimental Results

Two different simulations were conducted, one in which the SSSC was positioned between

areas 1 and 2 and another in which there was no SSSC between the areas. Load power

disturbances of magnitude -0.02, 0.025, and 0.02 pu were applied to areas 1,2 and 3,

respectively, at times t=0.01, 0.011, and 0.013 seconds, respectively. Simulations were

run on a computer with an Intel R© Core
TM

2 6400 operating at 2.13 GHz and with 3 GB

of RAM in Matlab 7.6.0 (2008a). All MPC calculations were performed using quadprog.

The results of the simulations can be seen in Fig. 3.4.

In both simulations, the MPC managed to control the system within the bounds on states

and variables. The addition of the SSSC significantly improved the system damping as

can be seen in Fig. 3.4(a). This is an illustration of how the FACTS devices and MPC

give significant controllability of the system.

The average and maximum cpu times taken to run MPC optimisations at each sample
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Figure 3.4: Plots from simulations both with the SSSC and without the SSSC between

areas 1 and 2.
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for the non-SSSC case was 0.0672s and 0.7188s, respectively. The average and maximum

cpu times taken to run MPC optimisations at each sample with the SSSC between areas

1 and 2 was 0.0439s and 0.6094s, respectively (the cpu time is the total time measured

in all processor cores on a computer. The actual time taken is usually equal to the cpu

time divided by the number of cores). Longer average and maximum cpu times would be

expected with the SSSC in place rather than in the the non-SSSC case, due to an increase

in the dimension of the optimisation problem resulting from the extra input variable.

However, these are both reduced when the SSSC is in place. This could be due to the fact

that when the SSSC is in place the ∆PG1 bounds are not active for much of the simulation,

unlike in the case without the SSSC in place.

It should be noted here, that the times taken to calculate the MPC optimisations exceed

the sample time of 25 ms. This highlights the fact that in power systems, it is neces-

sary that any optimisations are calculated as efficiently as possible so that inputs can be

calculated and applied within each sample step. For larger centralised MPC problems

it becomes even more difficult to perform the optimisations within the given time con-

straints and so this motivates the use of efficient non-centralised control techniques in

power systems.

3.3 Summary

In this section Model Predictive Control was looked at in depth. It was seen how MPC

can conveniently incorporate system constraints into its formulation while being capable

of controlling a wide variety of systems. The chapter was then concluded with an ex-

ample of the application of MPC to a 3 area LFC system. Two different scenarios were

examined, one in which an SSSC was connected between two areas and another where

the SSSC was not present. The MPC provided adequate performance in both cases but

was capable of significantly improved control when the SSSC was in place. This was an

illustrative example of how the combination of MPC and an SSSC allows for a high level

of controllability in highly interconnected power systems. It was also noted that as the

size of the MPC problem grows, that it is not possible to use centralised MPC in power

systems, due to the time constraints placed on the calculation of the control inputs, which

motivates the development of non-centralised MPC techniques which are more efficient
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than the centralised problem.
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Chapter 4
Distributed Model Predictive

Control

4.1 Introduction

In previous chapters the effectiveness of the use of Model Predictive Control (MPC) for

the control of power systems has been demonstrated. However, as has previously been

stated in Chapter 2, centralised MPC is not viable for the control of large scale power

networks. The size of the MPC problem for a full power network is in general not solvable

within the time scales involved. Also, because of deregulation, a number of control agents

may be responsible for the control of different sections of the grid. Because of the scale

of the problem involved and the impracticality of all agents sharing internal network

information, such as their respective state vectors and the weights used in the MPC

problem, Nash equilibrium seeking algorithms are more appropriate for use for power

network control. This involves the communication of interconnecting variables between

the agents in control of subsystems which share a variable in their respective control

problems (Camponogara et al., 2002; Liu et al., 2010; Hermans et al., 2010; Negenborn

et al., 2008). These algorithms have proven to provide adequate levels of control when

applied to power network situations.
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The distributed MPC algorithm used in this thesis was originally developed in (Negen-

born, 2007). It is based on the decomposition of the original MPC problem into a number

of smaller subproblems which are then coordinated in an iterative fashion using the Al-

ternating Direction Method of Multipliers (ADMOM) (Tosserams, 2008; Bertsekas and

Tsitsikilis, 1989). The distributed MPC technique will now be presented and then a new

stability proof for the linear unconstrained version of this algorithm will be given.

4.2 Distributed MPC

Before showing how the distributed MPC is derived, some important variables will first

be defined. The discrete-time, linear, time-invariant state-space model used to model the

system dynamics is given again here for convenience:

x(k + 1) = Ax(k) +Bu(k) +Dd(k), (4.1)

y(k) = Cx(k), (4.2)

This system is taken as consisting of n subsystems, where each subsystem consists of

a set of nodes (a node being an individual point in a network that can be described

using a combination of variables and equations) and the interconnections between these

nodes. A number of factors can affect the way in which the system is decomposed into

the different subsystems. Subsystems may be decomposed in a manner that minimises the

level of interaction between different areas in order to simplify the control of the system

(Ocampo-Martinez et al., 2011). There may be information or communication constraints

in a system which results in a natural division into different subsystems. Subsystems could

also arise through commercial reasons, e.g., different companies being responsible for the

control of different areas of the grid.

In this thesis subsystems are assumed to be non-overlapping, i.e., nodes do not appear in

2 different subsystems. The vectors and matrices in (4.1) and (4.2) are constructed from

the individual subsystem states and describe the ways in which these subsystem states and

inputs interact with each other. The state x(k) = [xT
1 (k),xT

2 (k), . . . ,xT
n (k)]T, where xa

denotes the state of subsystem a, inputs u(k) = [uT
1 (k),uT

2 (k), . . . ,uT
n (k)]T, where ua are

the inputs to subsystem a, disturbances d(k) = [dT
1 (k),dT

2 (k), . . . ,dT
n (k)]T, where da are

the disturbances that affect subsystem a, and outputs y(k) = [yT
1 (k),yT

2 (k), . . . ,yT
n (k)]T,
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where ya are the outputs from subsystem a. The state space matrices are constructed as

follows:

A =




A1 A12 . . . A1n

A21 A2 . . . A2n

...
. . .

An1 An2 . . . An




, B =




B1 B12 . . . B1n

B21 B2 . . . B2n

...
. . .

Bn1 Bn2 . . . Bn




,

D =




D1 D12 . . . D1n

D21 D2 . . . D2n

...
. . .

Dn1 Dn2 . . . Dn




, C =




C1

C2

. . .

Cn




where Ai is the matrix that describes how xi(k) affects xi(k + 1), and Aij is the matrix

that describes how xj(k) affects xi(k+1). The same terminology applies to the subsystem

matrices that form B, D, and C, where the subsystem matrices describe the dynamic

effects of different subsystems inputs, disturbances, and states on the different subsystems’

states and inputs. The diagonal elements of each of the above matrices describe the effect

of the local states and inputs on each of the subsystems. The off diagonal elements describe

the effect of non-local states on each of the subsystems. Typically in large multi-agent

networks the agent responsible for the control of each subsystem measures and controls

its local variables directly. In a completely decentralised control system where agents do

not communicate with each other, it is only the local dynamics and states that are used

to determine control inputs to the system. In distributed systems, where agents receive

information on non-local states, it is possible to use the off diagonal matrices and the

associated non-local states to improve each agent’s control. Each individual subsystem’s

state-space can then be modelled by the following equation:

xa(k + 1) =Aaxa(k)+Baua(k)+Dada(k)+V ava(k) (4.3)

ya(k) =Caxa(k). (4.4)

The vector va is used to group together non-local state variables affecting subsystem a

and matrix V a shows how va affects xa. Before proceeding further some more variables

that will be used in the formulation of the distributed MPC problem will be defined.

Let there be a set of agents, with indices j ∈ Na, that are connected to agent a. The

interconnecting input vector, win
ja, is defined as the vector of inputs to control problem a
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Figure 4.1: Interconnecting inputs and outputs for 3 connected subsystems.

from agent j and the interconnecting output vector wout
ja is defined as the vector of outputs

to control problem j from agent a, as in Fig. 4.1. The vector of all interconnecting inputs

win
a (k), and all interconnecting outputs wout

a (k) to agent a are typically defined as follows:

win
a (k) =

[
winT
N in
a {1}a(k) . . .winT

N in
a {ma}a(k)

]T
= va(k),

wout
a (k) =

[
woutT
N out
a {1}a(k) . . .woutT

N out
a {qa}a(k)

]T
= Kout

a xa(k),

(4.5)

where N in
a is the set of agents connected to agent a by an interconnecting input and

N in
a {i} denotes the ith element of this set of agents, e.g., if agent j is the first agent in N in

a

connected to agent a, then win
N in
a {1}a=w

in
ja. Similarly, N out

a is the set of agents connected

to agent a by an interconnecting output and N out
a {i} denotes the ith element of this set of

agents. There are ma agents connected to agent a by an interconnecting input, qa agents

are connected to agent a by an interconnecting output, and Kout
a is a matrix of zeros,

with entries of 1 used in the positions that pick out the states in xa(k) that connect agent

a to other subnetworks.

Using (4.3) and (4.4) incremental forms of each subsystem’s model can be constructed.

These incremental models can then be used to perform state-space based predictions using

the same methodology used in the previous chapter. For the calculation of each agent’s

local optimal control inputs, agents must formulate ways of reaching consensus on the

values of their interconnecting variables over the full predictions horizon, as the values of

these interconnecting variables are dependent on the dynamics of other connected subsys-

tems. The distributed MPC algorithm is implemented by reformulating the centralised

MPC problem as the sum of the minimisations of the local cost functions with equality

constraints placed on the interconnecting variables between subsystems over the full pre-

diction horizon. Incremental subsystem models are used for predictions. For a system of
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n subsystems, this centralised MPC problem can be stated as follows:

ϑ(k) = arg min
ϑ

n∑

a=1

J local
a (k), (4.6)

subject to the following equality constraints over the prediction horizon,

w̃in
ja(k) = w̃out

aj (k), for j ∈ Na, and a = 1, . . . , n. (4.7)

Here, ϑ(k)=[∆ũT(k),∆w̃inT(k)]T, where ∆w̃inT(k)= [∆w̃in
1

T(k),. . .,∆w̃in
n

T(k)]. The local

control goals for subsystem a are given by J local
a (k, l) =

N∑

p=1

J stage
a (k, l, p). The stage cost,

J stage
a (k, l, p), of agent a, is given by:

J stage
a (k, l, p) =eT

a (k + p+ 1, l)Qaea(k + p+ 1, l) + ∆uT
a (k + p, l)Ra∆ua(k + p, l),

(4.8)

where Qa and Ra are the agents a’s local MPC weights, and ea(k + p, l) is the vector of

errors in the MPC problem at the pth stage of the prediction horizon, at iteration l of the

distributed MPC cycle during sample time k. The error, ea(k+p, l) = ya(k+p, l)−ra(k+

p), where ya(k+ p, l) are subsystem a’s outputs and ra(k+ p) is a vector of subsystem a’s

setpoints for sample step k + p.

The equality constraint seeks to ensure that all interconnecting variables are made equal

to each other over the prediction horizon according to the dynamics of each subsystem, as

given in (4.3). This centralised MPC directly manipulates vectors ∆w̃in
1 (k),. . .,∆w̃in

n (k) in

order to satisfy the equality constraints. For convenience, in this thesis reference is made

to ∆w̃in
ja(k) being manipulated when optimising interconnecting variables. However, the

first element of ∆w̃in
ja(k), ∆win

ja(k), is the measurement of the interconnecting input that

agent a receives from agent j at sample time k. Therefore, when optimising for ∆w̃in
ja(k),

it is elements ∆win
ja(k+ 1|k). . .∆win

ja(k+N −1|k) that are optimised for, where x(k+ i|k)

denotes the predicted value of x at step i of the prediction horizon at sample step k.

Variables w̃out
aj (k) for j ∈ Na and for a = 1, . . . , n rely on the manipulation of both the

inputs and interconnecting inputs.

Augmented Lagrangians can be used to incorporate equality and inequality constraints

into a cost function. This results in an unconstrained cost function, which is then solved

over a number of iterations in order to solve the original constrained optimisation prob-

lem. At each iteration l of the augmented Lagrangian optimisation, Lagrange multipliers

λ are updated and these denote to what degree the constraints are being satisfied. The
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augmented Lagrangian iterations terminate when Lagrange multipliers between 2 itera-

tions agree to within a small tolerance ε. The algorithm is described in full in Appendix

A. An augmented Lagrangian formulation can be developed from (4.6) to incorporate

the equality constraints (4.7) into the cost function. At each sample time k, a number of

augmented Lagrangian iterations are run to convergence in order to solve the MPC opti-

misation problem. The problem solved at each augmented Lagrangian iteration l, during

sample time k, is given as follows:

ϑ(k, l) = arg min
ϑ

n∑

a=1

(
J local
a (k, l) +

∑

j∈Na

(
λ̃ja(k, l)(w̃

in
ja(k, l)− w̃out

aj (k, l))

+
c

2
||w̃in

ja(k, l)− w̃out
aj (k, l)||22

))
,

(4.9)

where λ̃ja(k, l) is the vector of Lagrange multipliers associated with the equality con-

straints placed on the variables connecting agents a and j, ϑ(k, l) is the vector of inputs

and interconnecting inputs to be optimised, w̃in
ja(k, l) are the interconnecting inputs to

agent a from agent j, w̃out
aj (k, l) are the interconnecting outputs from agent a to agent j,

and c is a positive constant.

The augmented Lagrangian combines a quadratic penalty on equality constraint violations

with successive estimates of the Lagrange multipliers. In other quadratic penalty meth-

ods, where these Lagrange multiplier estimates are not used, the value of c is increased

over a number of iterations to ensure the satisfaction of constraints. However, this can

cause ill-conditioning of the problem. It has been shown that, with the use of Augmented

Lagrangian formulation, c can be kept constant, and so avoids this ill-conditioning prob-

lem (Nocedal and Wright, 2006). The algorithm, and other penalty methods for solving

optimisation problems with equality and inequality constraints, are described in greater

detail in Appendix A.

The quadratic terms of the augmented Lagrangian formulation are distributed across the

agents using the Alternating Direction Method of Multipliers (Tosserams, 2008; Bertsekas

and Tsitsikilis, 1989). This method will now be introduced before showing how it is used

to distribute the centralised MPC problem in (4.9) amongst the agents.
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4.2.1 Alternating Direction Method of Multipliers (ADMOM)

The ADMOM is derived from the application of Block Coordinate Descent (BCD) (also

called the nonlinear Gauss-Seidel method) to the augmented Lagrangian formulation of a

problem. BCD is a serial decomposition method for optimisation problems. Using BCD

the problem:

x = [xT
1 , . . . ,x

T
n ]T = arg min

x
f(x) subject to





κi(x) ≥ 0, ∀ i ∈ I
κj(x) = 0, ∀ j ∈ E

(4.10)

can be decomposed into a number of smaller optimisation problems, based on sub-vectors

x1, . . . ,xn, which are solved sequentially in an iterative fashion. The optimisation for

sub-vector xi(p) at iteration p of the overall optimisation procedure becomes

xi(p) = arg min
xi

f([xT
1 (p− 1), . . . ,xT

i (p), . . . ,xT
n (p− 1)]T)

subject to





κi([x
T
1 (p− 1), . . . ,xT

i (p), . . . ,xT
n (p− 1)]T) ≥ 0, ∀ i ∈ I,

κj([x
T
1 (p− 1), . . . ,xT

i (p), . . . ,xT
n (p− 1)]T) = 0, ∀ j ∈ E .

(4.11)

It is shown in (Bertsekas and Tsitsikilis, 1989) that if f(x), κi(x) ∀ i ∈ I, and κj(x) ∀
j ∈ E are all convex functions, that over a finite number of iterations the answer given by

iteratively solving for each xi as in (4.11), for i = 1, . . . , n, converges to the solution given

by (4.10).

It is possible to apply BCD to augmented Lagrangian problems. This is done by having an

inner and outer loop of the augmented Lagrangian problem. The outer loop is the Lagrange

multiplier update loop. This Lagrange multiplier is kept constant for the inner loop. The

inner loop then applies BCD to the unconstrained Lagrangian function. This is achieved

by dividing the main optimisation vector x into sub-vectors x1, . . . ,xn and solving the

Lagrangian function as shown above in (4.11). However, these inner loop BCD iterations

can be computationally costly so inexact formulations of the problem can be used, where

inner iterations are terminated before convergence. The most extreme form of this is the

ADMOM which uses only one BCD iteration before updating the Lagrange multipliers

in the outer loop. This is shown to converge where the cost function being optimised is

convex, additively separable, and subject to linear coupling constraints between variables

(Tosserams et al., 2008; Bertsekas and Tsitsikilis, 1989). Given that this is the nature

of the problem described in (4.6) it is possible therefore to solve this problem using the

ADMOM. The following example provides a very simple illustration of how the ADMOM
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works. Take the optimisation problem:

x = [xT
1 ,x

T
2 ]T = arg min

x1,x2

(
f1(x1) + f2(x2)

)

such that x1 = x2.

(4.12)

The unconstrained augmented Lagrangian form of this equation at iteration l of the aug-

mented Lagrangian optimisation is given as:

x(l) = [xT
1 (l),xT

2 (l)]T = arg min
x1,x2

f1(x1(l)) + f2(x2(l))

+ λ(l)(x1(l)− x2(l)) +
c

2
||x1(l)− x2(l)||22,

(4.13)

where λ(l) are the Lagrange multipliers at iteration l of the augmented Lagrangian op-

timisation. Using the ADMOM (4.13) is solved in a serial fashion for iteration l of the

augmented Lagrangian optimisation as follows:

x1(l) = arg min
x1(l)

f1(x1(l)) + λ(l)x1(l) +
c

2
||x1(l)− x2(l − 1)||22

x2(l) = arg min
x2(l)

f2(x2(l))− λ(l)x2(l) +
c

2
||x1(l)− x2(l)||22.

(4.14)

At each iteration of the augmented Lagrangian optimisation problem (4.14) is solved for

subvectors x1(l) and x2(l). The optimisation for subvector x1(l) is carried out first using

the most recent update of subvector x2(l), which is x2(l − 1). Then the optimisation for

subvector x2(l) uses the most recent update of subvector x1(l), which is x1(l) (as x1(l)’s

optimisation has already been carried out in iteration l). Lagrange multiplier updates

followed by evaluations of (4.14) are then carried out in an iterative fashion until the

Lagrange multipliers converge.

4.2.2 The distributed MPC algorithm

The use of ADMOM on (4.6) leads to the iterative distributed MPC algorithm. Each

distributed MPC cycle consists of an outer loop where Lagrange multiplier updates are

carried out and an inner loop where agents perform one optimisation each. It may take

a number of outer loop Lagrange multiplier iterations in order for the distributed MPC

algorithm to terminate in a given sample step. A distributed MPC iteration consists of

an outer loop multiplier update and the internal loop optimisations carried out by each

agent. The number of the distributed MPC iterations that have occurred during a sample

step k will be denoted by l (which is also the number of Lagrangian multiplier updates
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that have occured). In this approach, one agent at a time optimises values for its inputs,

∆ũa(k, l), and its desired interconnecting input variables w̃in
ja(k, l), for each j ∈ Na, in

order to reach consensus on values for the interconnecting variables over the full prediction

horizon.

The optimisation problem of agent a, for iteration l of the distributed MPC cycle, at

sample step k is:

ϑa(k, l) = arg min
ϑa

(
J local
a (k) + J inter

a (k, l)

)
, (4.15)

where ϑa(k, l)=[∆ũT
a (k, l),∆w̃in

a
T(k, l)]T, and J inter

a (k, l) is the interconnection cost for

agent a, given by:

J inter
a (k, l) =

∑

j∈Na
J inter
ja (k, l), (4.16)

and J inter
ja (k, l) is the cost associated with the inter-agent coordination with agent j given

by:

J inter
ja (k, l) =


 λ̃

in
ja(k, l)

−λ̃in
aj(k, l)




T 
 w̃

in
ja(k, l)

w̃out
ja (k, l)




+
c

2

∥∥∥∥∥∥


w̃

in
aj,prev(k, l)− w̃out

ja (k, l)

w̃out
aj,prev(k, l)− w̃in

ja(k, l)



∥∥∥∥∥∥

2

2

,

(4.17)

where λ̃
in
ja(k, l) are the Lagrange multipliers associated with the interconnecting constraints

w̃in
ja(k, l) = w̃out

aj (k, l) at iteration l, and sample step k.

Each agent optimises this cost in a serial fashion, communicating the interconnecting

variables with its neighbours. The values w̃out
aj,prev(k, l) and w̃in

aj,prev(k, l) are taken as the

most recently updated values of w̃out
aj (k, l) and w̃in

aj(k, l), respectively. When each agent has

performed one optimisation in the inner loop of the distributed MPC cycle the Lagrange

multipliers are updated as follows in the outer loop:

λ̃
in
ja (k, l + 1) = λ̃

in
ja (k, l) + c

(
w̃in
ja(k, l)− w̃out

aj (k, l)
)
, (4.18)

The distributed MPC iterations terminate when:

||λ̃in
ja(k, l + 1)− λ̃in

ja(k, l)||∞ ≤ ε

for a = 1, . . . , n and for all j ∈ Na,
(4.19)

where ε is a specified tolerance and ‖.‖∞ denotes the infinity norm. A flow chart repre-

sentation of the distributed MPC algorithm at sample time k can be seen in Fig. 4.2.
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Figure 4.2: The distributed MPC algorithm, at the kth sample step.

The c and ε parameters determine the importance that each agent gives to achieving con-

sensus with other connected agents versus fulfilling their local cost function objectives. The

tuning of the c and ε parameters of the distributed MPC, and the Qa and Ra parameters

associated with each agent a’s local cost function, given by (4.8), significantly impacts on

the closed-loop performance of the system and on the amount of communication used by

the distributed MPC scheme to achieve this control. It is worth noting that this algorithm

only requires local communication between agents, which makes the algorithm scalable,

and hence suitable for use with large scale systems such as power networks. However,

as has been discussed previously, this results in the reaching of Nash rather than Pareto

equilibria. Particularly in cases where systems are highly interconnected, these Nash equi-
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librium seeking distributed MPCs can result in instability, whereas Pareto equilibrium

distributed MPC algorithms would remain stable (Venkat, 2006). It is therefore useful to

be able to determine a-priori whether the distributed MPC will give stable control. Here

a novel stability proof is developed for the unconstrained case of the distributed MPC

algorithm.

4.3 Convergence and stability of unconstrained linear dis-

tributed MPC

As was stated in the previous section the ADMOM converges to the centralised MPC

problem (4.9), as it is constructed from the addition of convex functions and is only subject

to linear equality constraints. Therefore, the stability of the solutions given by (4.9) implies

the stability of the distributed MPC. The unconstrained augmented Lagrangian centralised

MPC problem that the distributed MPC solves in an iterative fashion is:

ϑ(k, l)=arg min
ϑ

n∑

a=1

(
J local
a (k, l) +

∑

j∈Na

(
λ̃

T
ja(k, l)(w̃

in
ja(k, l)− w̃out

aj (k, l))

+
c

2
||w̃in

ja(k, l)− w̃out
aj (k, l)||22

))

= arg min
ϑ
J local(k, l) + λ̃

T
(k, l)(w̃in(k, l)− w̃out(k, l)) +

c

2
||w̃in(k, l)− w̃out(k, l)||22.

(4.20)

where ϑ(k, l)=[∆uT(k, l),∆w̃inT(k, l)]T. The interconnecting inputs and outputs and the

Lagrange multipliers are grouped into the terms w̃in(k, l), w̃out(k, l), and λ̃(k, l), respec-

tively and are given as follows:
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w̃in(k, l)=




w̃in
N in

1 {1}1
(k, l)

w̃in
N in

1 {2}1
(k, l)

...

w̃in
N in

1 {m1}1(k, l)

. . . . . .
...

. . . . . .

w̃in
N in
n {1}n(k, l)

w̃in
N in
n {2}n(k, l)

...

w̃in
N in
n {mn}n(k, l)




, w̃out(k, l)=




w̃out
N out

1 {1}1(k, l)

w̃out
N out

1 {2}1(k, l)
...

w̃out
N out

1 {q1}1(k, l)

. . . . . .
...

. . . . . .

w̃out
N out
n {1}n(k, l)

w̃out
N out
n {2}n(k, l)

...

w̃out
N out
n {qn}n(k, l)




, λ̃(k, l) =




λ̃
in
N in

1 {1}1(k, l)

λ̃
in
N in

1 {1}2(k, l)
...

λ̃
out
N in

1 {m1}1(k, l)

. . . . . .
...

. . . . . .

λ̃
in
N in
n {1}n(k, l)

λ̃
in
N in
n {2}n(k, l)

...

λ̃
in
N in
n {mn}n(k, l)




,

where agent a has ma interconnecting inputs and qa interconnecting outputs.

The term J local(k) =

n∑

a=1

J local
a (k, l). Using the incremental form of the model given in

(4.3) for predictions, J local(k, l) is formed as follows:

J local(k, l) = (ỹ(k + 1, l)− r̃(k + 1))TQ (ỹ(k + 1, l)− r̃(k + 1)) + ∆ũT(k, l)R∆ũ(k, l)

(4.21)

where r̃(k)=[r̃T
1 (k), . . . , r̃T

n (k)]T, Q=diag(Q1,. . . ,Qn), R=diag(R1, . . . , Rn), and ỹ(k +

1, l) = Kcx̃
aug(k + 1, l) = Kc(Â

f
xaug(k) + B̂

f
∆ũ(k, l) + V̂

f
[∆vT(k),∆w̃inT(k, l)]T) (the

disturbance model is omitted here but this can easily be included in exactly the same way

as the other matrices). Here, xaug(k) = [∆x(k)T,x(k)T]T is the augmented state space

matrix, and Â
f
, B̂

f
, and V̂

f
are the prediction matrices associated with xaug(k), ∆ũ(k, l),

and ∆w̃in(k, l), respectively. The state of the entire system xaug(k)=[xaug
1

T(k),. . ., xaug
n

T(k)]T,

the system’s predicted incremental inputs ∆ũ(k, l) = [∆ũT
1 (k, l), . . . ,∆ũT

n (k, l)]T, the sys-

tem’s incremental interconnecting inputs ∆v(k) = [∆vT
1 (k), . . . ,∆vT

n (k)]T, and the sys-

tem’s predicted incremental interconnecting inputs ∆w̃in(k, l) = [∆w̃inT
1 (k, l), . . . ,

∆w̃inT
n (k, l)]T, and their associated predictive matrices Â

f
=diag(Â

f
1,. . . ,Â

f
n), B̂

f
=

diag(B̂
f
1,. . . ,B̂

f
n), and V̂

f
=diag(V̂

f
1,. . . ,V̂

f
n). The way in which matrices Â

f
i, B̂

f
i, and V̂

f
i,

for i = 1, . . . , n, are derived for each subsystem is similar to the way in which the aug-

mented state-space prediction matrices were formed in in Section 3.1.2, previously. Here,

Kc is a matrix of zeroes, with entries of 1 in the positions that pick the outputs ỹ(k+1, l)

from the augmented state prediction vector x̃aug(k, l).
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Variables in (4.20) are grouped together to enable the problem to be posed in terms of

ϑ(k, l) as follows:

• Let ỹ(k + 1) = KcDs(k) + KcZϑ(k, l). The matrix V̂
f

= [V̂
f
v, V̂

f
win ]. Here,

V̂
f
v determines the effect of ∆v(k) on x̃aug(k + 1, l). The matrix V̂

f
win similarly

determines the effect of ∆w̃in(k, l) on x̃aug(k + 1, l). The matrix D = [Â
f
, V̂

f
v] and

vector s(k) = [xaugT(k),∆vT(k)]T. Note that KcDs(k) is fixed during the MPC

iterations at each sample step. The latter group of terms KcZϑ(k, l) varies, via the

manipulation of ϑ(k, l), where Z = [B̂
f
, V̂

f
win ].

• The interconnecting inputs are given by w̃in(k, l) = Kvs(k) +Kwϑ(k, l) where Kv

is used to pick out the relevant interconnecting variables from s(k). Kw is then used

to sum the incremental values of the interconnecting variables to the current value

of the interconnecting variable so as to give the value of the interconnecting variable

over the prediction horizon. Take for example, an interconnecting variable v. This

will be contained in the full state space vector xaug(k) which is contained in s(k). In

order to pick out this variable, the matrix Kv will have an entry of 1 in the relevant

row and column, and the rest of that row will have entries of 0. Then incremental

values ∆v are picked from ϑ(k, l) using the Kw matrix. For instance, to compare

the value of v(k + 2|k) with its corresponding interconnecting output the values v,

∆v(k+ 1|k), and ∆v(k+ 2|k) would be added together, using Kv to pick out v from

s(k) and Kw to pick out ∆v(k+1|k), and ∆v(k+2|k) from ϑ(k, l), where v(k+ i|k)

is the predicted value of v i steps into the prediction horizon at sample step k.

• The interconnecting outputs are given by w̃out(k, l) = KI(Ds(k) +Zϑ(k, l)). Here,

KI is a matrix of zeroes with entries of one in the positions that pick the intercon-

necting outputs which correspond to the interconnecting inputs given previously.

• The term w̃in(k, l)− w̃out(k, l) in the cost function can then be written as:

w̃in(k, l)− w̃out(k, l) = Kvs(k) +Kwϑ(k, l)−KI(Ds(k) +Zϑ(k, l))

= (Kv −KID)s(k) + (Kw −KIZ)ϑ(k, l)

= Kss(k) +Kϑϑ(k, l)

where Ks = Kv −KID and Kw = Kw −KIZ.
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Problem (4.20) can now be stated as:

ϑ(k, l) = arg min
ϑ

(Ps (k) +Gϑ (k, l)− r̃(k + 1))TQ (Ps (k) +Gϑ (k, l)− r̃(k + 1))

+ ϑT (k, l)R
ϑ
ϑ (k, l) + λ̃

T
(k, l) (Kss (k) +Kϑϑ (k, l))

+
c

2
(Kss (k) +Kϑϑ (k, l))T (Kss (k) +Kϑϑ (k, l))

(4.22)

where P = KcD, G = KcZ, and R
ϑ
=diag(R,0(N−1)nv×(N−1)nv) where nv is the size

of v. A worked example will be given in Section 4.4 which will show how all the above

matrices are constructed for an example system.

Taking (4.22) and rearranging the matrices, it is possible to represent (4.22) in the following

quadratic form:

ϑ(k, l) = arg min
ϑ
Jquad(k, l)

= arg min
ϑ
ϑT(k, l)Hϑ(k, l) + ϑT(k, l)f(k, l) + θ

(4.23)

where Jquad(k, l) is the quadratic cost function at sample step k and distributed MPC

iteration l. Here, H = GTQG + Rϑ + c
2K

T
ϑKϑ, f(k, l) = 2GTQPs(k) − 2GTQr̃(k +

1) +KT
ϑ λ̃(k, l) + cKT

ϑKss(k), and finally θ = sT(k)PTQPs(k) − 2r̃T(k + 1)QPs(k) +

λ̃
T
Kss(k) + c

2s
T(k)KT

sKss(k) + r̃T(k + 1)Qr̃(k + 1), which does not depend on ϑ.

The optimal value of ϑ(k, l) at sample step k and distributed MPC iteration l, ϑ∗(k, l), is

found by setting ∂
∂ϑ(k,l)J

quad(k, l) = 0, which yields,

2Hϑ∗(k, l) + f(k, l) = 0,

ϑ∗(k, l) = −1

2
H−1f(k, l).

(4.24)

After ϑ∗(k, l) is found, the Lagrange multipliers are calculated as follows:

λ̃(k, l + 1) = λ̃(k, l) + c(w̃in(k, l)− w̃out(k, l))

= λ̃(k, l) + c(Kss(k) +Kϑϑ
∗(k, l))

= λ̃(k, l) + cKss(k)− c

2
KϑH

−1(2GTQPs(k)

− 2GTQr̃(k + 1) +KT
ϑ λ̃(k, l) + cKT

ϑKss(k))

= (Inλ×nλ −
c

2
KϑH

−1KT
ϑ )λ̃(k, l) +Cλ(k)

(4.25)

where nλ is the length of vector λ̃(k, l), andCλ(k) = cKss(k)−1
2cKϑH

−1(2GTQ(Ps(k)−
r̃(k + 1)) + cKT

ϑKss(k)) is a constant over the course of the optimisation at sample step
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k. The distributed MPC algorithm will then converge if:

|eig(Inλ×nλ −
c

2
KϑH

−1KT
ϑ )|∞ < 1, (4.26)

i.e. the moduli of the eigenvalues of the coefficient of λ̃(k, l) in (4.25) are less than unity

(Li et al., 2005; Bertsekas and Tsitsikilis, 1989).

Upon convergence of the augmented Lagrangian iterations λ̃(k, l + 1) ≈ λ̃(k, l) = λ̃
∗
(k),

where λ̃
∗
(k) is the optimal values of the Lagrange multipliers at sample step k. Equation

(4.25) then gives:

λ̃
∗
(k) = (Inλ×nλ −

c

2
KϑH

−1KT
ϑ )λ̃

∗
(k) +Cλ(k)

λ̃
∗
(k) =

2

c
(KϑH

−1KT
ϑ )−1Cλ(k)

(4.27)

Substituting λ̃
∗
(k) back into the (4.24) and rearranging the matrices gives:

ϑ∗(k) = −1

2
H−1f(k, l)

= F r̃(k + 1)−Ws(k)

(4.28)

where F = −H−1(KT
ϑ (KϑH

−1KT
ϑ )−1KϑH

−1GTQ−GTQ) and W =

−H−1(KT
ϑ (KϑH

−1KT
ϑ )−1KϑH

−1GTQP−GTQP− c
2K

T
ϑKs−KT

ϑ (KϑH
−1KT

ϑ )−1Ks+

c
2K

T
ϑ (KϑH

−1KT
ϑ )−1KϑH

−1KT
ϑKs).

The inputs can now be applied to the discrete time system. The optimal input applied to

the system is:

∆u∗(k) = Sϑ∗(k) (4.29)

where S picks out the optimal system inputs at sample k from ϑ∗(k). It is also observed

that

s(k) =


x

aug(k)

∆v(k)


 =


Inx×nx

L


xaug(k) = Υxaug(k) (4.30)

where the matrix L picks out ∆v(k) from xaug(k).

The discrete time state-space equation for the whole system is then:

xaug(k + 1) = Ds(k) +B∆u∗(k)

= DΥxaug(k) +BS(F r̃(k + 1)−Ws(k))

= (DΥ−ZSWΥ)xaug(k) +BSF r̃(k + 1)

(4.31)
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Therefore the system will then be stable, as in the convergence proof, if:

|eig(DΥ−ZSWΥ)|∞ < 1. (4.32)

An example system will now be used to demonstrate the ability of this algorithm to

determine the point of instability of a system controlled using the distributed MPC system.

4.4 Example Control System-Two Area Discrete-Time Load

Frequency Control

The stability proof is now applied to a simplified discrete-time 2 area LFC problem shown

in Fig. 4.3. The controller utilizes an exact model of the system being controlled and the

disturbance is used to create a deviation for one sample and then removed again so that

there is no model mismatch. It is then possible to determine the accuracy of the stability

formula (4.32).

4.4.1 Dynamic system model and control

The continuous-time dynamics of subsystem 1 are described by the following second-order

system (Negenborn et al., 2008):

d

dt
δ1 (t) = 2πf1 (t) ,

d

dt
f1 (t) = − 1

Tp1

f1 (t) +
Kp1

Tp1

(
PG1 (t)− Pd1 (t) +

KS12

2π
(δ2(t)− δ1(t))

)
,

y1(t) =


δ1(t)

f1(t)


 .

(4.33)

The continuous-time dynamics of subsystem 2 are described similarly as follows:

d

dt
δ2 (t) = 2πf2 (t) ,

d

dt
f2 (t) = − 1

Tp2

f2 (t) +
Kp2

Tp2

(
PG2 (t)− Pd2 (t) +

KS12

2π
(δ1(t)− δ2(t))

)
,

y2(t) =


δ2(t)

f2(t)


 .

(4.34)
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Generator 1 Generator 2

∆P
gen
1 (k) ∆P

gen
2 (k)

∆P
dist
1 (k) ∆P

dist
2 (k)

KS12
(∆δ1(k)−∆δ2(k))

Figure 4.3: The 2 area discrete time LFC.

a 1 2

Tpa 20 25

Kpa 120 112.5

Qa 1 1

Ra 0.01 0.01

Table 4.1: 2 area LFC problem’s physical and control parameters.

where fa(t) is the frequency of generator a, and ya(t) represents the measured output

states at time t. The gain Kpa , and the time constant Tpa , are all constants for the

ath subsystem. For the purposes of these simulations output measurements, the output

measurements ya(t) are assumed to be noise free.

In discrete time, subsystem a’s local control input is ua(k)=PGa(k), the local disturbance

is da(k) = Pda(k), and the local state is xa(k) = [δa(k), fa(k)]T. The external input to

subnetwork 1 is v1(k) = δ2(k) and the external input to subnetwork 2 is v2(k) = δ1(k).

Discretizing the continuous-time model using an Euler approximation (with sample size

τ), the model can be written as in (4.3) with:

Aa =


 1 τ2π

τ
−KPaKS12

2πTPa
1− τ

TPa


 , Ba =


 0

τ
KPa
TPa


 ,

Da =


 0

−τ KPa
TPa


 , Va =


 0

τ
KPaKS12

2πTPa


 .

(4.35)

The above model is used to run the discrete time simulation with a sample time of τ=0.5s.

The two subnetworks’ parameters are given in Table 4.1. The states and inputs are also

unconstrained in the example.

Typically, problems with stability arise in distributed MPC due to strong interactions
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between areas (Venkat, 2006). In this example the interconnection term determines the

degree of interaction between the two areas. In this work KS12 was increased until the

simulated system under distributed MPC becomes unstable. This was compared with the

KS12 predicted by theory for the limit of stability.

An incremental state space model was used for control and a prediction horizon of N =

2 was used to adequately take into account each subnetwork’s dynamic response. The

following stage quadratic cost function is used for the distributed MPC:

J stage
a (k, p) = Qaf

2
a (k + p+ 1) +Ra∆u

2
a(k + p) (4.36)

where Qa and Ra are the scalar weights in the cost functions for the variables fa(k + p)

and ∆ua(k + p) respectively. Qa and Ra maintain the same value for all stages of the

prediction horizon. Using this stage cost, J local
a (k) is formed as in (4.21). Values for Qa

and Ra are given in Table 4.1.

The interconnecting inputs of the ath agent are δj(k), where agent j is the agent connected

to agent a, and the interconnecting output is δa(k). The following gives the interconnection

cost agent a experiences due to its connection to agent j:

J inter
ja (k, l) =


 λ̃

in,δj
ja (k, l)

−λ̃in,δa
aj (k, l)




T 
 w̃

in,δj
ja (k, l)

w̃out,δa
ja (k, l)




+
c

2

∥∥∥∥∥∥


w̃

in,δj
aj,prev(k, l)− w̃out,δa

ja (k, l)

w̃out,δa
aj,prev(k, l)− w̃in,δa

ja (k, l)



∥∥∥∥∥∥

2

2

,

(4.37)

where the extra superscript on the Lagrange multiplier and interconnecting input and

output variables denotes the specific state to which each of these variables is related, i.e.,

λ̃
in,δj
ja (k, l) is associated with the interconnecting input δj . Agent a directly optimises

for w̃
in,δj
ja (k, l) and sends these variables to the other agent to let it know what values

of δ̃j it would like to receive. Through optimisation of ũa(k, l) and w̃
in,δj
ja (k, l) agent a

manipulates w̃out,δa
ja (k, l), and sends this to the agent j so it knows what values of δ̃a agent

a plans to send to it over the prediction horizon. The overall cost function for each agent

is formed using (4.36) and (4.37), as in (4.15).
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4.4.2 Formation of matrices for stability proof

Here Â
f
=diag(Â

f
1,Â

f
2), B̂

f
=diag(B̂

f
1,B̂

f
2), V̂

f
=diag(V̂

f
1,V̂

f
2), Q=diag(Q1,Q2), R

=diag(R1,R2), and the augmented state xaug(k) = [xaug
1

T(k),xaug
2

T(k)]T. The inputs are

∆ũ(k, l) = [∆ũT
1 (k, l),∆ũT

2 (k, l)]T, interconnecting inputs ∆w̃in(k, l) = [∆w̃inT
1 (k, l),

∆w̃inT
2 (k, l)]T, and the setpoints r̃(k)=[r̃T

1 (k), r̃T
2 (k)]T are arranged as shown. From these,

s(k), D, Z, and R
ϑ

can be constructed as explained in the Section 4.3. The matrix Kc

is arranged as follows so as to extract [f̃
T
1 (k), f̃

T
2 (k)]T, from the state predictions:

Kc =




0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




The matrixKv is constructed as follows to extract the matrix [v1(k), v2(k)]T=[δ2(k), δ1(k)]T:

Kv =


 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0




Matrix Kw is constructed in order to extract the vector [w̃inT
1 (k, l), w̃inT

2 (k, l)]T from

Kvs(k) +Kwϑ(k, l) as follows:

Kv =


 0 0 0 0 1 0

0 0 0 0 0 1




KI is then constructed to pick out the interconnecting outputs that match the intercon-

necting inputs [w̃inT
1 (k, l), w̃inT

2 (k, l)]T as follows:

KI =


 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0




Given these matrices, it is possible to proceed to construct the other matrices necessary

to determine if the system is stable, as outlined in the previous section.

4.4.3 Results

Disturbances Pd1 = 0.3 pu and Pd2 = −0.3 pu were applied to the system at the first

sample and then removed in order to perturb the system. Simulations were run for 100
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c |eig(Inλ×nλ − c
2KϑH

−1KT
ϑ )|∞ |eig(DΥ−ZSWΥ)|∞

0.1 0.997 0.9985

1 0.971 0.9985

10 0.77 0.9985

100 0.251 0.9985

Table 4.2: The effect of varying c, with fixed values of Qa and Ra, for a = 1, 2, on the

maximum eigenvalues associated with the convergence of the Lagrange multipliers and the

system stability, when KS12 = 258, ε = 10−3.

samples. After the disturbances were removed there was no model mismatch so one would

expect an accurate prediction of when the system goes unstable, from (4.32). First, the

interconnection coefficient KS12 was increased in value to the point where it causes the

modulus of one of the eigenvalues in (4.32) to be just greater than 1, with c=1 and

ε = 10−3. The theoretically predicted value of KS12 at which instability occurred under

distributed MPC control was then compared to the value of KS12 at which the simulated

system went unstable. The predicted value of KS12 at which the system goes unstable is

259, which closely matches the simulated point at which the system goes unstable which

is KS12 = 260.

Using (4.26) and (4.32) it is possible to examine the effects of c upon both the rate

of convergence of the Lagrange multipliers (the second column) and the stability of the

system (the third column), as can be seen in Table 4.2 (Qa and Ra also affect the stability

but these are kept constant here). It can be seen that for this system the maximum

eigenvalue related to the stability of the system do not change with the value of c. When

the system is simulated, it is found that this observation is true as instability only occurs

when KS12 = 260 for a wide choice of c. However, as c increases the maximum moduli of

the eigenvalues related to convergence decrease, which indicates a reduction in the number

of iterations taken to achieve convergence. This can be observed in Figs. 4.4 and 4.5 for

increasing values of c. Intuitively, this would be expected to happen, as increasing c places

greater emphasis on the satisfaction of the equality constraints which should ensure that

the Lagrange multipliers converge sooner.

The effect of varying ε when c=1 was also examined. Instability is predicted to happen

at KS12 = 259, using (4.32). For ε = 10−3, 2× 10−3, 3× 10−3, the simulation stays stable

up to KS12 = 260, 261, 264, respectively. The smaller ε was, the closer the predicted and
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Figure 4.4: Distributed MPC iterations at each sample with small values of c when KS12 =

258, ε = 10−3.
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Figure 4.5: Distributed MPC iterations at each sample with large values of c when KS12 =

258, ε = 10−3.

simulated points of system instability were to each other. For small increments in ε it is

possible to increase the region in which stable control is possible in the simulated system.

As the values of ε become larger, large offsets begin to be introduced into the steady state

as can be seen in Fig. 4.6, where KS12 = 260, c=1, and ε = 10−2. As was stated above

when KS12 = 260 and ε = 2×10−3 stable system operation was given without these offsets.

These results indicate that when ε is small that the convergence and stability of the

control can accurately be predicted for a given system. A further comparison was also
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Figure 4.6: Response when KS12 = 260, c=1, and ε = 10−2.

made on the point at which instability occurs with a decentralised MPC approach, where

independent MPCs are carried out by each subsystem not taking into account the effect of

interconnecting inputs on the subsystems. Likewise, the stability limit for KS12 was also

determined for a centralised MPC that reaches a Pareto equilibrium. The decentralised

MPC approach was found to go unstable when KS12 = 0.77. This demonstrates the

potentially large disparities that may occur between the level of interconnection distributed

MPCs can handle versus decentralised MPCs. As a final comparison, the limit of stability

for the centralised MPC was KS12 = 605. This means that centralised MPC could handle

over twice the level of interconnection that distributed MPC could. While this may be the

case, the problems inherent in the implementation of centralised MPCs for large systems

have already been outlined.

4.5 Summary

In this chapter distributed MPC based on the Alternating Direction Method of Multipliers

(ADMOM) was introduced, and a novel proof for the convergence and stability conditions

of this algorithm were derived for the linear unconstrained case. An example was outlined

showing how the convergence and stability of the control algorithm were accurately de-

termined a priori for a 2 area LFC system. It was also noted that distributed MPC could

not stabilise the example system when there was a very large interconnection coefficient,

despite it being controllable using centralised MPC. However, distributed MPC was shown
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to be capable of handling large values of the interconnection coefficient in comparison to

a decentralised MPC approach. It could be seen that the trade off for this performance

is a large communication overhead. For highly interconnected systems with short sample

times, stabilisation with distributed MPC may not be guaranteed. However, typical power

systems do not have the extremely high interconnection costs noted in this chapter.

While stability conditions for the constrained distributed MPC algorithm have not yet

been given, (Negenborn, 2007) has shown how a number of power systems were adequately

controlled when constraints were added to the formulation of the control problem. The

derivation of stability for the constrained case would be quite useful and the author would

cite this as potential future work. Ways of limiting the amount of communication needed

for the convergence of the distributed MPC would also be quite useful, especially in a Smart

Grid scenario. In the next chapter, the application of distributed MPC to a challenging

power systems testbed with constraints is investigated.
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Chapter 5
Optimal Coordination of a

Multiple HVDC Link System

Using Centralised and Distributed

control

5.1 Introduction

In previous chapters, the systems that the MPC techniques have been applied to have

been linearised power systems. In this chapter distributed, centralised, and decentralised

MPC are applied to a non-linear power system testbed and the performance of the MPC

systems are compared with that of an optimised multi-loop PID control scheme. The

use of PID controllers for power systems control is widespread. Distributed MPC is a

scalable MPC architecture which could potentially replace PID controllers for the control

of power systems. Thus, it is interesting to compare the performance of the optimised

PID controller based scheme with a distributed MPC controller on a challenging non-

linear power systems testbed. As part of this analysis it is also necessary to take into

account the computational and communication overhead associated with the distributed

MPC to get a better idea of the trade-offs involved when using distributed MPC.
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One suitable challenging testbed for making such comparisons was presented in (Erikkson,

2008). It is a multiple HVDC link system based on part of the Nordic power grid. This is

a non-linear, MIMO dynamic system. The power generated in the system is kept constant

and the modulation of the HVDC links alone is then used to restabilise the system after

line faults. Thus, there is a high level of interconnectivity between subsystems in this

model. So far, centralised control techniques that were not based on optimisation, were

used to control this system (Erikkson, 2008).

Typically distributed MPC systems will try to reach consensus on variables that flow

between agents. However in the multiple link HVDC system all 4 agents share the same

2 control inputs. Thus, it is shown in this chapter how the distributed MPC scheme

discussed in the previous chapter can naturally be used to handle situations in which

agents share inputs. Then, three optimisation-based control techniques are proposed for

the control of the Nordic multiple HVDC link system. The controllers used are an off-line

PSO-optimised PID controller, a centralised MPC controller, and the distributed MPC

controller of the previous chapter. It is also shown that decentralised MPC, where there

is no inter-agent communication, is highly unsuitable for the control of this system.

First, the multiple HVDC link system will be introduced. Then an introduction to stochas-

tic optimisation, in particular Particle Swarm Optimisation (PSO) will be given and it

will be shown how this can be used in order to optimise PID controller performance. Then

a comparison of the 3 controllers will be given in the final section of this chapter.

5.2 The Multiple HVDC Link System

The continuous-time dynamics of the multiple HVDC link system under study here are

described in this section. The system, which is based on the multiple HVDC link system

between Denmark, Norway, and Sweden, is depicted in Fig. 5.1 (Erikkson, 2008). It con-

sists of 4 buses with their own generation and loads. Both Alternating Current (AC) and

HVDC links connect the buses. The HVDC links are of the Line Commutated Converter

type (Pai et al., 1981). Generation capacities and loads are kept constant in this chap-

ter. Large amounts of power are transferred from bus 2, which has the largest generation

capacity, to bus 4, which has the largest power load.
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SS SS

Generator 1

Generator 2 Generator 3

Generator 4

Bus 1 Bus 4
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Load 2

Load 1 Load 4

Load 3

AC Line 1

AC Line 2

AC Line 3
AC Line 4

HVDC Line 1 HVDC Line 2

SS SS SS SS

SS SS

Agent 1: Denmark 1

Agent 2: Norway Agent 3: Sweden

Agent 4: Denmark 2

Figure 5.1: The multiple HVDC link system with areas controlled by agents (Erikkson,

2008).

The objective of any control scheme here is to maintain the rotor frequencies as close as

possible to 1 pu at all times for the multiple link HVDC system. The total generated power

equals the total consumed power in the network, and so the modulation of the HVDC link

powers alone should be sufficient to restabilise the generator frequencies at each bus, and

return them to their desired setpoints after frequency deviations are incurred due to line

fault disturbances. It is desirable that the rotor frequencies return to this setpoint in the

minimum possible time after disturbances, and that the magnitude of any deviations from

the setpoint are also minimised. Also a multi-agent, distributed approach is preferred for

controlling this system since it spans a vast geographical area and crosses international

borders, which means that several separate agents are responsible for the control of the

different subsystems.

5.2.1 Generator Model

The classical swing equations for a generator a are (Kundur, 1994):

d

dt
δra(t) = ω0∆ωra(t) (5.1)

Optimisation of Smart Grid Performance using Centralised and Distributed Control
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E
′

qa(t) 6 δa(t) Ua(t) 6 θa(t)

jx
′

da

Figure 5.2: Generator a connected to a bus.

d

dt
ωra(t) =

1

2Ha
(Pma(t)− PGa(t)−Da∆ωra(t)), (5.2)

where δra(t) is the rotor angle (rad), Ha is the inertial constant (s), ωra(t) is the rotor

speed (per unit), ∆ωra(t)= ωra(t)−1 is the rotor speed deviation (per unit), ω0 is the base

rotor speed (rad/s), Pma(t) and PGa(t) are the mechanical and generated power (per unit),

respectively, and Da is the damping factor (per unit).

The current injected by generator a,
−→
Iga(t), is given by:

−→
Iga(t) =

−→
E
′
qa(t)−−→Ua(t)

jx
′
da

, (5.3)

where
−→
E
′
qa(t) = E

′
qa(t)∠δa(t) is the internal voltage (per unit) with magnitude E

′
qa(t)

and angle δa(t),
−→
Ua(t) = Ua(t)∠θa(t) is the voltage (per unit) at the bus to which the

generator is connected with magnitude Ua(t) and angle θa(t), and x
′
da

is the d-axis transient

reactance, as seen in Fig. 5.2. All variables are defined as in the standard reference work

(Kundur, 1994). The generated power is then given by:

PGa(t) = R[
−→
E
′
qa(t)

−→
I ∗ga(t)]. (5.4)

Equations (5.1) and (5.2) of the classical model of a synchronous generator assume that

E
′
qa(t) is constant (Kundur, 1994). These classical equations are suitable for analysis of

power oscillations and transient stability studies.

5.2.2 Power System Model

A π-model representation (Kundur, 1994) of the AC links is used, as in Fig. 5.3, where

XLi is the line reactance, XSi is the shunt reactance, XGi is a ground reactance used here
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Umi
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−jXSi

−jXSi

Figure 5.3: π-Model of lines.

to simulate 3-phase to ground faults in the middle of line i. The line voltages at either

side of line i are UL1 and UL2 , respectively, and Umi is the voltage at the middle of the line

connected to ground through XGi . The value of XGi decreases from ∞ in the non-fault

state to 0 in the case of the 3-phase fault. As the fault occurs in the middle of the line,

the line reactance is divided in half on either side of the ground fault “line”.

A number of simplifications are made to the power system model, subsequently reducing

the complexity of the MPC problem proposed in the next section, and making it faster,

without neglecting the system dynamics most relevant to system stability.

• Loads are modelled as constant impedances.

• HVDC power transmission is considered instantaneous.

• The HVDC reactive power is taken as proportional to HVDC active power.

The details of these simplifications are given in the following paragraphs.

Loads are modelled as constant impedances in the admittance matrix, i.e. with
−→
Sa =

PLL
a + jQLL

a , the complex load power in VA, the load impedance
−→
Z LL

a is given by

−→
Z LL
a =

−→
Ua
−→
U ∗a−→
S ∗a

. (5.5)

The HVDC link model in (Erikkson, 2008) is used to simplify the representation of the

system dynamics. This idealised version of the HVDC link assumes instantaneous, lossless
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power delivery and power factors that are equal on both the inverter and rectifier sides.

Thus, when active power injections from a HVDC link j are applied to a bus in this model,

the bus ‘sees’ +PDC
j , where PDC

j is the active power flow in the HVDC link. Equally, the

bus from which the HVDC active power is being sent sees a -PDC
j . This model is further

simplified by assuming that QDC
j = qrjP

DC
j , where qrj is a constant, and QDC

j is the

reactive HVDC power in HVDC link j (Pai et al., 1981). A simplification adopted in this

chapter is to directly calculate and apply the HVDC powers. However in a real system,

currents are injected that are calculated from these powers (Kundur, 1994).

5.2.3 Modelling of the Swing Equation Using the Internal Node Repre-

sentation

The internal node representation is used to model the generator swing equation from

(5.2) as it allows the power system to then be represented using a system of first-order

differential equations (Erikkson, 2008; Pai et al., 1981; Sauer and Pai, 1998). This is done

by rearranging the admittance matrix of the power network so as to find its generator

currents in terms of the network voltages and HVDC currents, and then substituting the

values for these currents into (5.2). This is demonstrated in the following paragraphs. To

do this it is assumed that Pma is constant and that the loads are modelled as constant

impedances.

An admittance matrix gives the relationship between the voltage nodes and currents in

a power system. Lines and loads are then represented by admittances in this matrix.

Consider the ath bus, with n voltage nodes and m HVDC links connected to it. Then

using Kirchhoff’s current law, which states that the sum of the currents entering a node

equals the sum of those leaving the node, the following is given:

n∑

l=1

~Ya,l ~Ul − ~Iga −
m∑

j=1

~IDCa, j = 0, (5.6)

where ~Ya,l = 1
~Za,l

, where ~Za,l is the impedance between bus a and voltage node l and ~IDCa, j

is the current injected into bus a from HVDC link j. This is repeated for all voltage nodes

in the network.

Using (5.6), an admittance matrix can be constructed, based on models for the AC lines,
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the generators, and the loads, as described above:




Ig

IDC

0


 =




Y A Y B 0

Y C Y D Y E

0 Y F Y G







E

U

Um


 , (5.7)

where Ig = [~Ig1
, . . . , ~Ign ]T, E = [ ~E

′
q1
, . . . , ~E

′
qn ]T, U = [~U1, . . . , ~Un]T and

Um = [~Um1 , . . . ,
~Umb

]T where b is the number of AC lines in the system and IDC =

[~IDC1, 1 , . . . ,
~IDCn,m ]T.

By finding an expression for the generator currents in terms of the system voltages and

HVDC currents it is possible to express PGa(t) in terms of these voltages and HVDC

currents using (5.4). From (5.7) the following can be found for Ig in terms of IDC and

E:

Ig = (Y A − Y B(Y D − Y EY
−1
G Y F))E + Y B(Y D − Y EY

−1
G Y F)−1IDC

= (G+ jB)E + Y DCIDC

(5.8)

whereG=R[Y A−Y B(Y D−Y EY
−1
G Y F)],B=I[Y A−Y B(Y D−Y EY

−1
G Y F)], and YDC=Y D−

Y EY
−1
G Y F.

The following swing equation for generator a can be derived using (5.2), (5.4), and (5.8):

d

dt
ωra(t) =

1

2Ha

(
Pma −Ga,aE

′2
qa −

n∑

l=1
l 6=a

E
′
qaE

′
ql

(Ga,l cos(δra(t)− δrl(t))

+Ba,l sin(δra(t)− δrl(t))) + ga,1P
DC
1 (t) + . . .+ ga,mP

DC
m (t)−Da∆ωra(t)

)
,

(5.9)

where ga,j is the coefficient of the contribution of the power injections from HVDC link j

at bus a. An illustrative example will now be given as to how these parameters are derived

for generator 1. The same process can be used in the derivation of these parameters for

each of the other generator equations.

Taking equation (5.9) for generator 1 gives:

ω̇r1(t) =
1

2H1

(
Pm1 −G1,1E

′2
q1
− E′q1

E
′
q4

(G1,4 cos(δr1(t)− δr4(t)) +B1,4 sin(δr1(t)− δr4(t)))

+ g1,1P
DC
1 (t) + g1,2P

DC
2 (t)−D1∆ωr1(t)

)

(5.10)
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The g1,1 and g1,2 parameters are derived as follows: Assume that power flows from bus 2

to 1 in HVDC link 1 and from bus 3 to 4 in HVDC link 2:

IDC =




~IDC
1,1

~IDC
2,1

~IDC
3,2

~IDC
4,2




=




(
PDC

1 −jQDC
1

~U1
)∗

(
−PDC

1 −jQDC
1

~U2
)∗

(
PDC

2 −jQDC
2

~U3
)∗

(
−PDC

2 −jQDC
2

~U4
)∗




(5.11)

The generator power

PG1 = R( ~E
′
q1
~I∗g1

) = R

(
~E
′
q1
T ~Iq1

(
(G+ jB)E + Y DCIDC

)∗
)

(5.12)

where T ~IG1
is a matrix of ones that picks out ~IG1 . It is the Y DCIDC part of this term

that gives the g1,1 and g1,2 parameters:

g1,1P
DC
1 + g1,2P

DC
2 = R

(
− ~E

′
q1
T ~IG1

(Y DCIDC)∗
)

= R
(
−
~E
′
q1

~U1

(dR
1,1 + jdI

1,1)∗(PDC
1 (1− jqr1))

−
~E
′
q1

~U4

(dR
1,4 + jdI

1,4)∗(PDC
2 (1− jqr2))

)

=
−1

U1U4

(
dR

1,1
~E
′
q1
U4 cos(δr1,0 − θ1,0)− dI

1,1
~E
′
q1
qr1U4 cos(δr1,0 − θ1,0)

+ dI
1,1
~E
′
q1
U4 sin(δr1,0 − θ1,0) + dR

1,1
~E
′
q1
qr1U4 sin(δr1,0 − θ1,0)

)
PDC

1

− 1

U1U4

(
dR

1,4
~E
′
q1
U1 cos(δr1,0 − θ4,0)− dI

1,4
~E
′
q1
qr2U1 cos(δr1,0 − θ4,0)

+ dI
1,4
~E
′
q1
U1 sin(δr1,0 − θ4,0) + dR

1,4
~E
′
q1
qr2U1 sin(δr1,0 − θ4,0)

)
PDC

2

(5.13)

where the elements of Y DC are given by ~di,j = dR
i,j + jdI

i,j , qr1 and qr2 are the ratios of

reactive to active power in HVDC links 1 and 2, respectively, and δra,0 and θj0 denote

the initial conditions of the rotor angle of generator a and the bus angle at bus j, respec-

tively. This gives g1,1 = − 1
U1U4

(dR
1,1
~E
′
q1
U4 cos(δr1,0− θ1,0)− dI

1,1
~E
′
q1
qr1U4 cos(δr1,0− θ1,0) +

dI
1,1
~E
′
q1
U4 sin(δr1,0−θ1,0)+dR

1,1
~E
′
q1
qr1U4 sin(δr1,0−θ1,0)) and g1,2 = − 1

U1U4
(dR

1,4
~E
′
q1
U1 cos(δr1,0−

θ4,0)−dI
1,4
~E
′
q1
qr2U1 cos(δr1,0−θ4,0)+dI

1,4
~E
′
q1
U1 sin(δr1,0−θ4,0)+dR

1,4
~E
′
q1
qr2U1 sin(δr1,0−θ4,0)).

It should also be noted that the complex
~E
~U

ratios are taken as constant in order to simplify

the equations. This process is then repeated for each generator. The parameters that are

used in the simulations of the multiple HVDC link system in this chapter are given in

Table 5.1 with base terms Sbase = 100 × 106 VA, Ubase = 100 × 103 V, fbase = 50 Hz,

w0 = 2πfbase rad/s.
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Line 1 2 3 4

XL pu 0.6 0.6 0.1 0.1

XS pu 0.1 0.1 0.1 0.1

Generator 1 2 3 4

x
′
d pu 0.09 0.06 0.12 0.12

H (s) 2 4 2 2

D pu 1 1 1 1

PG = Pm pu 0.1 0.6 0.1 0.1

δr0 rad 5.9874 0.2871 5.585 5.03

E
′
q pu 0.4454 0.513 0.6807 1.0622

Bus 1 2 3 4

Load pu 0.1+0.05i 0.1+0.05i 0.1+0.05i 0.6+0.2759i

U pu 0.1097 0.2426 0.256 0.2219

θ rad -0.4809 6.2768 5.5161 -1.3042

HVDC link a= 1 2

PDC
a,0 pu 0.3573 0.1427

qra 0.8952 0.9037

Table 5.1: Multiple HVDC link system parameters.

5.3 Off-line Stochastic Optimisation of a Centralised PID

Control Scheme Using PSO

An extension of the control strategy proposed in (Erikkson, 2008) for the control of the

multiple HVDC link system can be seen in Fig. 5.4. The generator speed deviation

between the AC connected generators is passed to a bandpass filter with the following

transfer function:

G(s) =
s/ω2

c

s2 +Bs+ ω2
c

(5.14)

where B is the -3dB bandwidth in rad/s and ωc is the center frequency of the filter in

rad/s. In the diagram PDC
1,0 and PDC

2,0 are the initial operating points for PDC
1 and PDC

2 ,

respectively. The bandpass filters are centered on the major oscillatory modes between

buses 1 and 4 (ω14 rad/s) and buses 2 and 3 (ω32 rad/s). PID controllers are then used

to modulate the HVDC links in order to dampen the oscillations in the AC line speed
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Figure 5.4: An extension of the control strategy used in (Erikkson, 2008) to control the

multiple link HVDC system, which uses PID rather than P controllers

deviations at the major oscillatory mode.

Proportional controllers were initially proposed in (Erikkson, 2008) for the control of the

multiple HVDC link system. The proportional gains and filter bandwidths were chosen

based on trial and error, observing which combinations of values gave a good damp-

ing response. However there is the potential for improved control performance by using

Proportional, Integral and Derivative (PID) controllers and then optimising both the con-

troller gains and the filter bandwidths, based on simulation runs of the power network,

using a suitable tuning criterion.

As simulations of the power network, which is represented by a non-linear model, are used

to provide the input to the tuning criterion, the derivation of the relationship between

the PID gains and the tuning criterion is non-trivial and so a derivative-free optimisation

technique is proposed here for optimisation of the gains. Due to the non-convex nature of

these tuning problems, it is desirable to use an optimisation technique that does not get

trapped in local minima.

5.3.1 Stochastic Optimisation for Off-line Controller Tuning

Stochastic optimisation techniques use randomness as part of their optimisation proce-

dures in order to search for optima. While they may not be as efficient as deterministic

techniques, they are generally quite flexible in terms of the type of surface on which they

can be used, they are robust to noise, and unlike most deterministic optimisation methods,

stochastic optimsation methods generally do not require access to functional derivatives
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(Weise, 2009). It is because they are not as efficient as deterministic techniques that these

algorithms would typically be used for a-priori, or off-line tuning, of a set of system pa-

rameters, as opposed to the on-line tuning of parameters with deterministic techniques,

as is performed on the system inputs when using MPC.

Many popular stochastic optimisation methods are derived from stochastic hill climbing

(Weise, 2009). This very simple algorithm uses its current solution to produce a new

solution randomly and chooses to update its position to the new position if it results in

an improvement in the solution. Tabu search methods improve on this by keeping a list

of previously visited areas and rejecting a move to this area if it has already been visited

(Glover and Laguna, 1997). An issue with Hill Climbing and Tabu search methods is that

they can get caught in local minima. One way of overcoming this is to allow random

position restarts after a number of iterations in order to search the function space.

In many cases, such stochastic optimisation algorithms have drawn inspiration from na-

ture. Simulated Annealing (SA) (van Laarhoven, 1987) emulates how crystalline structures

found in nature cool to form solids. It is based on a process where at an initial high ’tem-

perature’ position updates are quite unrestricted in terms of searching the function being

optimised. This is analogous to atoms in the annealing process being at a very high initial

energy state. Then as the procedure progresses this temperature reduces, constricting the

distance travelled between position update iterations. This is analagous to the decrease

in the energy of the atoms as the crystal structure solidifies. Eventually at very low tem-

peratures the optimisation process searches for a local minumum. Many other stochastic

optimisation algorithms are similar to SA in that there is an initial exploration phase of

the search, where updates can occur over a large area of the search space, followed by an

exploitation phase where updated positions converge on a local minimum. These algo-

rithms are often used to find global minima and so are often called Global Optimisation

(GO) algorithms. Two other broad categories of GO algorithms derived from natural

optimisation processes are Evolutionary Algorithms and Swarm Algorithms.

Most Evolutionary Algorithms (EAs) are based on biological phenomena found in genes.

Crossover and mutations are used to update the genes and those genes with the best

solutions to the problem survive to the next iteration. It is this general process that

is used to evolve solutions in Genetic Algorithms (GAs) (Haupt and Haupt, 2004). A

number of positions, called genes here, are evaluated to determine their fitness, which
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is usually an evaluation of the function being optimised. Then the genes with the best

fitnesses are allowed to continue to the next iteration and are encoded in a certain way

to allow a crossover or mutation operation to be applied to them. For example, in binary

encoding, positions are converted to binary bits and it is on these bits that the crossover

and mutation operations are carried out. In crossover operations, two different candidate

solutions exchange some of these bit positions. Mutation introduces random changes into

bit positions and is the source of the stochastic element in this procedure. This process is

then carried out in an iterative fashion and over a number of iterations an optimal solution

evolves. This is the underlying processes of most EAs (Weise, 2009).

Swarm based algorithms are abstractions of processes that groups of animals use in nature

for foraging or flocking. The two most common algorithms are Ant Colony Optimisation

(ACO) and Particle Swarm Optimisation (PSO). ACO is based on the way in which ants

forage for food. In ACO, candidate solutions, called ants, set out from a starting position

walking in random positions. They leave behind them a trace, called a pheromone, which

decays over time. Ants then choose to either follow paths with higher pheromone levels

or pick a random direction based on a probability distribution. Therefore, over time the

optimal solution is found based on the trail with the highest level of pheromone. Typically

ACO is used for finding the shortest path over a graph (Dorigo and Blum, 2005). PSO is

based on the flocking behaviour of swarm of birds foraging for food in nature. Candidate

solutions, called particles, keep a record of their own previous best fitness and the best

fitness found in the entire group. Their updated positions are then biased towards these

positions. It is quite useful for general optimisation problems (Clerc and Kennedy, 2002)

and will be examined in greater detail in the next section.

Stochastic search techniques such as SA, PSO, and GAs, have previously been quite suc-

cessful in finding optimal controller gains (Kwok and Sheng, 1994; Gaing, 2004; Jones and

De Moura Oliveira, 1995). While the use of GAs for the optimisation of controller gains is

widespread, it has been noted that GAs’ efficiency degrade when they are is used for the

optimisation of highly epistatic functions, i.e., functions in which there is a high level of

correlation between the parameters being optimised. PSO has been shown to outperform

GAs when used for the optimisation of controller gains, in terms of both the quality of

the solutions found and the time needed to find them (Gaing, 2004). Hence, PSO is used

in this thesis for the optimisation of controller gains.
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5.3.2 Particle Swarm Optimisation

As was stated previously PSO is a stochastic optimisation technique based on the social

behaviour of swarms of flocking animals (Kennedy and Eberhart, 1995). It is suitable for

the optimisation of convex, non-convex, continuous and discontinuous surfaces.

In PSO a population of P particles, each of dimension d, are initially distributed across

the parameter space. The qth particle at the ith iteration of the PSO algorithm, has a

position xq(i), and associated cost xc
q(i). Each of these particles has a memory of its own

previous best position pb
q (i) and an associated cost pc,b

q (i). Here pg(i), the global best

position, is the particle position associated with the best cost pc,g(i) that has been found

previously across the population of particles. The qth particle position is then updated,

biased towards both the global best position and its previous best position. The PSO

algorithm (in the case of the minimisation of a cost function) is as follows:

1. Initialise a population of P particles in d dimensions, within upper and lower bounds

in each dimension, in the cost function space.

2. Evaluate the cost function values at each of the P particles’ positions.

3. If for particle q, xc
q(i)<p

c,b
q (i−1), then let pb

q (i)=xq(i).

If xc
q(i)<p

c,g(i−1), let pg(i)=xq(i).

If xc
q(i)≥pc,b

q (i− 1)≥pc,g(i−1), then pb
q (i) and pg(i) remain at the same positions as

in iteration i−1.

4. The velocity, vq(i), and position xq(i), of particle q at the ith iteration of the PSO

algorithm are updated for the next iteration as follows:

vq(i+ 1) = ωvq(i) + c1r1(i) ◦
(
pb
q (i)− xq(i)

)

+ c2r2(i) ◦ (pg(i)− xq(i))
(5.15)

xq(i+ 1) = xq(i) + vqapp(i+ 1) (5.16)

where ◦ denotes the Schur product, r1(i) and r2(i) are random vectors with entries

uniformly distributed in the interval [0,1], the positive scalar ω is the inertial weight

which controls the exploration and exploitation in the search space, c1 and c2 are
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acceleration constants called the cognition and social components, respectively, and

vqapp is the applied particle velocity.

Applied particle velocities are bounded by vqapp ≥ vqmin , vqapp ≤vqmax where vqmin

and vqmax are the lower and upper bounds on particle velocities, respectively. If

updated velocities exceed the bounds, the applied velocity, vqapp , is taken at the

upper or lower bound, i.e., if vq<vqmin , let vqapp=vqmin ; if vq>vqmax , let vqapp=vqmax ;

else let vqapp=vq.

5. Repeat steps (2)-(4) until certain termination criteria are performed, e.g., a max-

imum amount of iterations are met, pg(i) has not changed for a given number of

iterations, etc.

In (Trelea, 2003) it was shown that good convergence properties could be obtained for

the PSO, using the following parameter selection; ω = 0.6, c1=c2=1.7. These parameter

values were selected in this thesis so as to give a good convergence performance on the

final set of values chosen by the PSO.

5.3.3 PSO Optimisation of Multiple Link HVDC Control System Pa-

rameters

PSO is used to optimise the PID gains and filter bandwidths. A PSO particle is made

to correspond to the 8 dimensional vector of the controller parameters. These parameters

are the 2 sets of PID gains and the 2 bandpass filter bandwidths. Each particle runs a

simulation of the multiple link HVDC system with the PID controller, using its current

position to determine the controller gains and bandwidths. The particle cost is obtained

by recording the generator frequencies over the course of the simulation and passing these

to an evaluation criterion. The PSO is then allowed to run as described previously.

The criterion used here to evaluate the cost for a simulation run is the integral of the

square of the error (ISE) (Gaing, 2004) given by:

ISE =
n∑

a=1

kf∑

k=1

(ωra(k)− 1)2, (5.17)

where there are n agents, and kf is the number of samples in one system simulation run.

Optimisation of Smart Grid Performance using Centralised and Distributed Control
Techniques-Paul Mc Namara



Section 5.3: Off-line Stochastic Optimisation of a Centralised PID Control Scheme Using
PSO 100

The ISE is used to reward behaviours that minimise errors over the simulation, with

penalties increasing quadratically as the errors increase in magnitude. This criterion is

used as it is desirable to minimise the maximum size of frequency deviations in power

systems.

The PID parameters and bandwidths used in the controller in Fig. 5.4 were optimised

using the PSO Toolbox (Birge, 2003). The parameters used in the toolbox are given in

Table 5.2. Before optimisation of the controller parameters, the major oscillatory modes

were found at ω14=6.2118 rad/s and ω32=4.0285 rad/s using eigenvalue analysis. These

were then used as the centre frequencies for the bandpass filters.

Parameter Description

p number of particles 50

mvden max. velocity divisor 2

errgrad error gradient tolerance 1e-5

epoch maximum number of iterations 2000

errgraditer
number of epochs without errgrad

9
change before termination

Table 5.2: Parameters used in PSO toolbox for controller gain optimisations.

50 particles were initially placed randomly across the 8-dimensional plane being optimised.

Particle fitness was based on the sum of the ISE for two different faults scenarios: a 100

ms fault is applied followed by a 100 ms line break applied to lines 1 and 3 separately

(the lines return to the non-fault state after the line break is finished). This ensured that

the optimisation considers equally faults that happen on both sides of the HVDC links.

Simulation runs lasted for 20 seconds in each case.

The optimal PID and bandwidth values found using PSO, with initial position [ B14,

B23, K14, K23, I14, I23, D14, D23 ]=[20 20 20 20 0 0 0 0], were B14=2.7 rad/s, B23=17.4

rad/s, K14=18.9, K23=460, I14=3702, I23=1190, D14=56.2, D23=0, where Ba is the filter

bandwidth, Ka is the proportional gain, Ia is the integral gain, and Da is the derivative

gain used in the controller for area a.
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5.4 Design of the Centralised and Distributed MPC

The state-space model based used with the centralised and distributed MPC is based on

a linearisation of (5.1) and (5.9). At each sample the state equations for each generator

are linearised about the current operating point as follows:

d

dt


δra(t)

ωra(t)


 =


 0 ω0

∂fra
∂δra
|op

∂fra
∂ωra
|op




δra(t)

ωra(t)




+


 0 0

∂fra

∂PDC
1
|op

∂fra

∂PDC
2
|op




P

DC
1 (t)

PDC
2 (t)


+


 0
∂fra
∂δrl
|op


 δrl(t)

(5.18)

where in the above equation fra(δra(t), ωra(t), PDC
1 (t), PDC

2 (t), δrl(t)) = d
dtωra(t), as defined

in (5.9), and op indicates the linearisation of the relevant variable, vector, or function about

the current operating point.

For centralised MPC the states are taken as x=[δr1
, ωr1

, . . . , δr4
, ωr4

, ]T, and the inputs

as u=[PDC
1 PDC

2 ]T. For distributed MPC the states of agent a are taken as xa=[δra

ωra ]T, the inputs ua=[PDC
1 PDC

2 ]T, and the interconnecting input va=δrl . The full system

model for the centralised case is discretised using a zero-order hold with a sample time

τ = 0.01s, providing the discrete-time state space equations for the centralised and dis-

tributed MPC systems. Predictions in both centralised and distributed cases are formed

using incremental state space models so as to ensure integral action, i.e., the augmented

state xaug = [∆xT,xT]T, incremental inputs ∆u and ∆ua, and incremental intercon-

necting inputs ∆va and their associated state space models are used for predictions and

optimisations. A prediction horizon of N=50 is used so as to accurately represent the

system dynamics in the optimisation.

Each subsystem a’s stage cost function (in the multi-agent case there is one agent for each

generator, so for convenience the subscript a is used to index both), J stage
a (k, p), for the

pth prediction step at sample step k, is given as follows:

J stage
a (k, p) = Qa(ωra(k + p)− 1)2, (5.19)

where Qa is the weight corresponding to ωra in the cost function. This cost function

penalises deviations of the frequency from the base frequency. The centralised MPC
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optimisation problem is then given by:

J(k) =
N∑

p=1

n∑

a=1

J stage
a (k, p). (5.20)

The weights [Q1, . . . , Q4]=[10,30,10,10] are used for both MPC cases.

5.4.1 Application of Distributed MPC with Shared Inputs Between Agents

In typical control applications, agents have their own local control inputs which are not

shared between agents. However, in the application in this chapter, all 4 agents must

determine actions for the 2 control inputs, PDC
1 (k) and PDC

2 (k). In other circumstances

different agents’ local inputs may be coupled, for example, via the objective function or

through the system dynamics.

The distributed MPC algorithm, described in the previous chapter, naturally extends to

such cases in the following way. Agents create a duplicate variable vector, w̃u
a(k), for

agent a, of the control inputs, ũ(k), and then try to form consensus on these duplicate

variables. These duplicate variables are then treated as local control inputs by each of

the agents. Equality constraints are then placed on the duplicate variables as follows

w̃u
1(k)=w̃u

2(k), w̃u
2(k)=w̃u

3(k),. . . , w̃u
n−1(k)=w̃u

n(k), such that w̃u
1(k)=. . .=w̃u

n(k) for a

system of n subsystems. When the problem is distributed amongst agents, then each

agent will optimise to find the local duplicate inputs. Agents then compare their local

duplicate inputs to the values calculated previously by connected agents in order to achieve

consensus, in the same way that agents compare other interconnecting variables. Each

agent’s final w̃u
a(k) value will differ slightly from that of the other agents, depending on

the values of c and ε, as these determine to what extent agents will form a consensus on

variables. The control engineer must decide at the design stage which agent will ultimately

decide on the value of the input to be applied to the real system being controlled, from

the inputs calculated separately by each agent.

The interconnection cost for the distributed MPC case at sample step k and iteration

l of the control cycle, J inter
a (k, l), is formed from a hypothetical centralised augmented
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Lagrangian MPC formulation which is given as follows:

min
∆ũ1,...,∆ũ4

4∑

a=1

(
J local
a (k, l)

)
+




λ̃
in,x4

41 (k, l)

λ̃
in,x3

32 (k, l)

λ̃
in,x2

23 (k, l)

λ̃
in,x1

14 (k, l)

λ̃
u
41(k, l)

λ̃
u
12(k, l)

λ̃
u
23(k, l)

λ̃
u
34(k, l)




T


w̃in,x4
41 (k, l)− w̃out,x4

14 (k, l)

w̃in,x3
32 (k, l)− w̃out,x3

23 (k, l)

w̃in,x2
23 (k, l)− w̃out,x2

32 (k, l)

w̃in,x1
14 (k, l)− w̃out,x1

41 (k, l)

w̃u
1(k, l)− w̃u

4(k, l)

w̃u
2(k, l)− w̃u

1(k, l)

w̃u
3(k, l)− w̃u

2(k, l)

w̃u
4(k, l)− w̃u

3(k, l)




+
c

2

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

w̃in,x4
41 (k, l)− w̃out,x4

14 (k, l)

w̃in,x3
32 (k, l)− w̃out,x3

23 (k, l)

w̃in,x2
23 (k, l)− w̃out,x2

32 (k, l)

w̃in,x1
14 (k, l)− w̃out,x1

41 (k, l)

w̃u
1(k, l)− w̃u

4(k, l)

w̃u
2(k, l)− w̃u

1(k, l)

w̃u
3(k, l)− w̃u

2(k, l)

w̃u
4(k, l)− w̃u

3(k, l)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

,

(5.21)

where the local cost for subsystem a, J local
a (k), is given by:

J local
a (k) =

N∑

p=1

J stage
a (k, p). (5.22)

This formulation enables the distribution of the problem so that agents can reach agree-

ment on the control inputs, i.e., the HVDC powers. Each agent a has a duplicate vector

of the control inputs w̃u
a(k) where wu

a(k) = [PDC
1 (k) PDC

2 (k)]T. The order in which agents

optimise for the distributed MPC cycles starts with agent 1 and ends with 4, as can be

seen in Fig. 5.5. Therefore in the hypothetical centralised augmented Lagrangian case,

the equality constraint w̃u
a(k) = w̃u

a,last(k) is applied for each agent (wu
a,last denotes the

last agent to optimise) in order to reach consensus on the duplicate input values. Inter-

connecting constraints between interconnecting state variables are also applied.

When (5.21) is distributed amongst the agents, J inter
a (k, l) takes the following distributed
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Figure 5.5: Order of serial distributed MPC optimizations and variables communicated

between agents

form for agent a, where bus j is AC-connected to bus a:

J inter
a (k, l) =




λ̃
in,xj
ja (k, l)

−λ̃in,xa
aj (k, l)

λ̃
u
a(k, l)

−λ̃u
a,next(k, l)




T 


w̃
in,xj
ja (k, l)

w̃out,xa
ja (k, l)

w̃u
a(k, l)

w̃u
a(k, l)




+
c

2

∥∥∥∥∥∥∥∥∥∥∥∥

w̃
out,δrj
aj,prev(k, l)− w̃in,xj

ja (k, l)

w̃in,xa
aj,prev(k, l)− w̃out,xa

ja (k, l)

w̃u
last,prev(k, l)− w̃u

a(k, l)

w̃u
next,prev(k, l)− w̃u

a(k, l)

∥∥∥∥∥∥∥∥∥∥∥∥

2

2

,(5.23)

where wu
a,next denotes the next agent to optimise. The distributed MPC parameters related

to communication are given as follows: c = 0.1, ε = 10−2.

After agent a has completed its optimisation, it sends the relevant updated values of

the variables to the agents that are connected to it, for use in their distributed MPC

optimisations. The final optimisation problem for agent a is given by:

ϑa(k, l) = arg min
ϑa

(
J local
a (k) + J inter

a (k, l)

)
, (5.24)

This can be put into quadratic form using simple matrix manipulation, where the optimi-

sation vector is ϑa(k, l) = [∆ũT(k),∆w̃T
in(k)]T.

In the centralised MPC case, the optimal values calculated for PDC
1 (k) and PDC

2 (k) are

applied to the system. However, unlike the centralised case the 4 agents in the distributed

MPC system calculate slightly different values for the HVDC powers to each other, as these

powers only have to match to a degree, determined by the distributed MPC parameters c

and ε. Therefore, one agent per HVDC link a is assigned to apply its calculated PDC
a (k)

value to the system at sample k. Here the values for PDC
1 (k) and PDC

2 (k), calculated by
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agents 2 and 3 respectively, are the control inputs that are applied (these were chosen

as the vast majority of power transfer is from agents 2 and 3 to agents 1 and 4, and so

it is assumed these agents insist on having the final say on what power is allowed to be

transferred to agents 1 and 4).

5.5 Results

The PSO-optimised PID-based control scheme of Section 5.3, and the centralised and

distributed MPC controllers of Section 5.4, were used to control the multiple HVDC

link system. Simulink was used to simulate the non-linear, continuous-time power system,

using the Dormand-Prince (ode45 in Matlab) continuous-time algorithm, with a maximum

step size of 2ms and a relative tolerance of 0.001. The non-linear equations used to simulate

the system were based on equations (5.1) and (5.9) derived in Section 5.2. The inputs

were calculated and applied at fixed time steps of 10ms using Matlab and the calculated

inputs were passed to the continuous-time Simulink simulation. All MPC optimisations

were performed using the Matlab function quadprog.

For the simulations involving centralised controllers (the centralised MPC and PSO-

optimized PID), a single control agent was used to control the whole system. However,

as was stated in Section 5.2, it may not be possible here to use a centralised controller

as each country may have its own controller and within countries with deregulated power

markets, sections of the grid may have different control agents that are responsible for the

control of different sections of the grid.

For the decentralised and distributed control systems it is assumed here that both agents 1

and 4 in Denmark are run by two separate controllers due to deregulation of that market,

with one controller each for Norway and Sweden (or indeed those particular sections of

the grid in those countries). Therefore, 4 different agents are responsible for these 4

different areas. In the decentralised approach the agents take a greedy approach and do

not try to obtain consensus on the shared inputs between the different areas, whereas in

the distributed approach the adjacent agents communicate with each other as in Fig. 5.5.

In the multi-agent case one agent was assigned per generator to control its frequency.
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Each agent had access to its relevant state space model, the constraints on its variables,

and could communicate with agents to which it was connected by an AC or HVDC link.

The HVDC link ranges are −2 ≤ PDC(k) ≤ 2 pu and the frequency range at all buses is

0.984 ≤ ω(k) ≤ 1.016 pu. These constraints were applied over the full prediction horizon

in the centralised and distributed MPC simulations.

Two simulations were run in which an AC line was subjected to a 100ms line fault, fol-

lowed by 100ms line break, and then returned to its original non-fault state. In the first

simulation this fault scenario was applied to line 1, and it was applied to line 3 in the

second simulation. The results of the simulations can be seen in Figs. 5.6 and 5.7, which

show the frequencies of each generator, the applied HVDC powers, and the number of dis-

tributed MPC iterations needed at each sample step, plotted against time for each control

system, for the first and second simulations, respectively.

First of all it can be seen that the decentralised control gives by far the worst performance

(simulations are terminated due to excessive constraint violations) and that at least some

level of communication is necessary between agents to control this system. This becomes

apparent from Fig. 5.7(h). Agents 2 and 3 are responsible for applying the final control

inputs to the system and so are not affected by the line fault on line 3 and hence these

agents remain at 1 pu. Therefore they do not change the control inputs to help stabilise

the frequencies of generators 1 and 4. However, even in Fig. 5.6(h) when they are affected

by the line fault in line 1 they are not able to satisfactorily restabilise the system.

It can be seen in Table 5.3 that the distributed MPC yields the best performance in an ISE

sense, followed by the centralised MPC, and finally the PSO-optimised PID performance

scheme. The MPC strategies do not experience the large unacceptable deviations from

the setpoint experienced by the PID controller in Fig. 5.7, which violate the constraints

on the maximum allowable frequency deviations. The MPC strategies can also be seen to

have improved the system damping. Of note, in the presented scenario, is the fact that

due to limited horizons and discrepancies between the real world and MPC models, the

distributed MPC performs outperforms the centralised one.

The trade-off experienced by the centralised and distributed MPC controllers for better

disturbance rejection over the PID control scheme is a significant computational overhead

in both cases, and a communications overhead in the case of the distributed MPC. The

Optimisation of Smart Grid Performance using Centralised and Distributed Control
Techniques-Paul Mc Namara



Section 5.5: Results 107

t (s)

ω
1 (

pu
)

 

 

0 2 4 6 8 10 12 14 16 18 20

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

1.002

Setpoint
PSO−PID
Centralised MPC
Distributed MPC

(a) Plot of the frequency at generator 1 vs time.
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(b) Plot of the frequency at generator 2 vs time.
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(c) Plot of the frequency at generator 3 vs time.
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(d) Plot of the frequency at generator 4 vs time.
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(e) Plot of the power in HVDC link 1 vs time.
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(f) Plot of the power in HVDC link 2 vs time.
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(g) Plot of the first 0.5 seconds of distributed

MPC iterations vs time (iterations stay at 1 for

remainder of simulation).
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decentralised MPC (simulation stopped at t=1

s due to constraints violations).

Figure 5.6: Plots of pu frequency and HVDC powers vs. time for a 100ms fault followed

by a 100ms line break applied to line 1.

average and longest times taken to compute the control inputs for a centralised MPC

cycle were 0.47 s and 1.125 s, respectively, and the average and longest times taken to

converge on final solution for a distributed MPC cycle were 0.82 s and 1.8 s, respectively,

on a computer with an Intel R© Core
TM

2 6400 operating at 2.13 GHz and with 3 GB of

RAM (These times were taken as the time from the linearisation of the state space to
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(a) Plot of the frequency at generator 1 vs time.
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(b) Plot of the frequency at generator 2 vs time.
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(c) Plot of the frequency at generator 3 vs time.
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(d) Plot of the frequency at generator 4 vs time.
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(e) Plot of the power in HVDC link 1 vs time.
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(f) Plot of the power in HVDC link 2 vs time.
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(g) Plot of the first 0.3 seconds of distributed

MPC iterations vs time (iterations stay at 1 for

remainder of simulation).
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(h) Plot of the generator frequencies vs time for

decentralised MPC (simulation stopped at t=3

s due to constraints violations).

Figure 5.7: Plots of pu frequency and HVDC powers vs. time for a 100ms fault followed

by a 100ms line break applied to line 3.

the application of the control inputs, measured using the cputime command in Matlab.

The actual time for a multi-core processor is roughly equal to the cputime divided by

the number of cores). It should be noted that the distributed MPC simulation was also

performed on an single PC, rather than several different PCs as would be the case for a

real implementation.

Optimisation of Smart Grid Performance using Centralised and Distributed Control
Techniques-Paul Mc Namara



Section 5.5: Results 109

Fault on Line PSO-PID
MPC

Centralised Distributed

1 0.1161 0.0022 0.0015

3 0.0582 0.0042 0.0037

Total 0.1743 0.0066 0.0052

Table 5.3: Comparison of ISE for PSO-PID and MPC schemes

It can be seen from these results that the computational effort needed for the distributed

MPC problem is larger than that of the centralised MPC, as well as having an added com-

munications overhead. The number of distributed MPC iterations necessary to complete

each optimisation cycle at each sample in each simulation, which represents the level of

communication necessary, are given in Figs. 5.6(g) and 5.7(g). However, this centralised

MPC problem is still relatively small. For larger power systems the centralised MPC prob-

lem would become increasingly intractable from a computational point of view, whereas

the distributed MPC problems seen by each agent would stay the same size. However,

for distributed MPC problems the amount of communication necessary between agents

would increase with the size of the problem. Also, it should again be noted that there are

situations such as those depicted in this chapter, where a multi-agent approach is desirable

due to a number of separate controllers controlling different subsystems, where it may not

be possible to adopt a centralised control approach.

In general, the techniques developed in (Erikkson, 2008) give acceptable performance

for fault scenarios of less than 100ms in duration, and while PID control results in the

exceeding of the desired upper and lower frequency bounds in Figs. 5.6 and 5.7 it still

provides stabilising control. However, in Fig. 5.8 a 200ms line break follows the 100ms

fault and the PID controller gains are optimised using this fault in the same way they were

previously optimised for the 100ms line break fault. Here it can be seen that even when

optimised for this fault that the PID controller cannot maintain stability for the system.

From these plots it could be concluded that for serious faults the PID controller does not

provide adequate closed loop performance, unlike the distributed MPC.

With regards to disturbance rejection and stability performance in a larger power network,

one could expect that for disturbances of a similar size, that the distributed MPC would

Optimisation of Smart Grid Performance using Centralised and Distributed Control
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(a) Plot of the frequency at generator 1 vs time

for fault scenario applied to line 1.
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(b) Plot of the frequency at generator 2 vs time

for fault scenario applied to line 1.
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(c) Plot of the frequency at generator 3 vs time

for fault scenario applied to line 1.
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(d) Plot of the frequency at generator 4 vs time

for fault scenario applied to line 1.
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(e) Plot of the frequency at generator 1 vs time

for fault scenario applied to line 3.
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(f) Plot of the frequency at generator 2 vs time

for fault scenario applied to line 3.
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(g) Plot of the frequency at generator 3 vs time

for fault scenario applied to line 3.
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(h) Plot of the frequency at generator 4 vs time

for fault scenario applied to line 3.

Figure 5.8: Plots of pu frequency and HVDC powers vs. time for a 100ms fault followed

by a 200ms line break applied to lines 1 and 3 separately.

continue to provide satisfactory control. However, it is possible that with larger distur-

bances and a larger number of agents, that there would be some performance degradation.

The same would be expected of centralised MPC, though.

In the example in this chapter, generation capacities are kept constant and the modulation
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of the HVDC links alone is used to restabilise the system. This system is therefore a

useful testbed for demonstrating the capabilities of HVDC links alone to stabilise systems.

System performance could potentially be further improved by taking into account varying

generator capacities.

5.6 Conclusions

Here, the application of a Particle Swarm Optimisation (PSO) optimised PID controller,

and a centralised and distributed Model Predictive Control (MPC) controller to a multiple

High Voltage Direct Current (HVDC) link system has been discussed. The distributed

MPC gives the best result, followed by the centralised MPC, and then the PSO optimised

PID controller. It has been seen that decentralised control is not capable of stabilising the

system. As centralised MPC problems can get quite large for power systems, and given

the improvement in performance associated with distributed MPC over the PSO PID

controller, it can be seen that in large power systems distributed MPC is an attractive

option for advanced control.

One issue that may arise in power systems is the level of communication that may be

needed before the distributed MPC converges to its final solution. In the examples given

in this chapter it can be seen that up to 4 iterations were needed before convergence was

achieved. Given the small time scales involved in power systems it is desirable to minimise

the number of iterations needed for convergence. In the following chapter a simple method

is used via optimisation of the distributed MPC weights in order to minimise the number

of iterations needed for convergence.

Optimisation of Smart Grid Performance using Centralised and Distributed Control
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Chapter 6
Weight Optimisation for

Distributed MPC using PSO

6.1 Introduction

Weights are used in MPC to determine the relative importance of the various goals con-

tained in the MPC cost function during optimization. By tuning the weights appropri-

ately, MPC system performance can be improved, given a specific performance criterion.

Typically, there is not an intuitive relationship between weights and the desired system

performance criteria. Thus, a number of techniques in the literature have been proposed

for automatically tuning centralised MPC weights (Di Cairano and Bemporad, 2010; Lee

and Yu, 1994; Rowe and Maciejowski, 2000). PSO has been used in (Suzuki et al., 2007)

for this purpose, with promising results. As was the case in the optimisation of PID gains,

PSO is attractive for tuning, for a number of reasons, including its capability to optimise

on a wide range of surfaces which may be convex, non-convex, discontinuous or multi-

modal (Trelea, 2003; Liang et al., 2006). This means that it is flexible in terms of what

criterion can be used to determine the fitness of given weights. Also, no special knowledge

is needed about the MPC algorithm being used and so it is user friendly for industrial

practitioners. PSO is preferrable in comparison with GA for weight optimisation due to

the level of correlation between weights when optimising in an MPC setting, as was the
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case with the PID gains in the previous chapter.

While typically in centralised MPC one is concerned with tuning weights so as to fulfill

a setpoint tracking criterion, in iterative distributed MPC algorithms, such as those in

(Negenborn et al., 2008; Venkat, 2006; Sanchez et al., 2011), it is typically desirable to

choose weights so as to achieve a good trade off between setpoint tracking and the com-

munication overhead. In these algorithms, agents must communicate each iteration with

adjacent agents. The level of communication needed depends on the number of iterations

required for agents to form a consensus on inputs and interconnecting variables. In situa-

tions where plants have slow dynamics, and therefore longer sample times (e.g., chemical

plants), high levels of communication may not be important, as agents have sufficient time

to communicate with each other before applying control inputs to the plant. However,

in large networks with fast dynamics, such as power networks, it is necessary that the

number of such iterations is small, as the short sample times constrain the time allowed

for communication.

In this chapter, a novel PSO based weight optimisation algorithm is proposed for the

serial iterative distributed MPC technique given in Section 4.2.2. First, the effects on

both disturbance rejection and the communication overhead are illustrated when the PSO

weight optimisation fitness is based only on disturbance rejection. Then, an iteration

deterrent, that assigns a penalty proportional to the maximum number of iterations used

in a simulation is added to the PSO fitness function. The results obtained when using the

deterrent are compared to those achieved in the original optimisation that is based solely

on the disturbance rejection performance (while the criteria in this chapter are based

on disturbance rejection, the same technique could be applied to optimise for setpoint

tracking in other scenarios).

This weight tuning technique is evaluated on two different multi-agent Load Frequency

Control (LFC) situations. The first system is a discrete-time 20 area LFC problem, which

has a large number of tunable parameters, thus making it difficult to tune. The second

system is the smaller scale, continuous-time multiple High Voltage Direct Current (HVDC)

link problem that was used in the previous chapter. While there are less tunable param-

eters in this problem, a large number of iterations may be needed to achieve convergence

of the distributed MPC problem at each sample step. It is difficult in this problem to

find a set of weights to yield a desirable trade off between disturbance rejection and the
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communication overhead for the large disturbance that is considered.

The way in which PSO is used to tune the distributed MPC weights will first be discussed

and then the weight optimisation will be carried out on the two systems. The effect of

weight optimisation on the closed loop performance and the communication overhead will

then be seen when weights are optimised based solely on disturbance rejection, and then

again when the iteration deterrent is used.

6.2 PSO Weight Optimisation for Distributed MPC

PSO has previously been used to optimise the centralised MPC weights in (Suzuki et al.,

2007), resulting in improved performance according to the desired criterion. Typically,

when tuning controllers, practitioners are concerned with improving aspects of the set-

point tracking or disturbance rejection performance of a system. However, in iterative dis-

tributed MPC algorithms practitioners are concerned with both closed-loop performance

and the level of communication used to achieve this control. This would be particularly

of concern in power system networks where short control sample times are needed for the

control of the system, thus limiting the amount of communication allowed between agents.

Therefore, a tuning algorithm for iterative distributed MPC that considers both the dis-

turbance rejection performance of the system and the number of iterations needed for the

system to converge is desirable for power systems and other systems with fast dynamics. A

novel PSO based weight optimisation algorithm for agents in a distributed MPC system is

developed in this section. In addition a criterion for suppressing the number of iterations

needed for distributed MPC is proposed.

The vector Γ=[γ1 . . . γnγ ]T contains nγ tunable weights, consisting of the distributed MPC

disturbance rejection related weights associated with each agent’s local problem and the

c and ε weights that are associated with achieving consensus between agents. For each of

the P particles in the PSO, of dimension d=nγ , a distributed MPC simulation is carried

out. In this work, this simulation is chosen as a worst case scenario that excites each

of the subsystems controlled by the distributed MPC agents sufficiently, to prepare the

system for the worst contingencies that might arise. The jth agent’s local fitness function,

f local
j (q, i) is evaluated after a simulation has been run by particle q at iteration i of the

Optimisation of Smart Grid Performance using Centralised and Distributed Control
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PSO

Power
System

Simulation

Γ fq(i)Γ

Figure 6.1: The PSO optimisation of the distributed MPC weights at iteration i of the

PSO optimisation.

PSO optimisation. The sum of the local fitnesses of all n agents,
∑n

j=1 f
local
j (q, i), then

forms the overall disturbance rejection fitness for the qth particle’s simulation run at PSO

iteration i. When a system is optimised for disturbance rejection only (henceforth referred

to as the DR only case), the fitness of particle q in the swarm is given by

fq(i) =
n∑

j=0

f local
j (q, i), (6.1)

where fq(i) is the fitness of particle q at iteration i of the PSO algorithm.

When it is desired to reduce the communication overhead, by suppressing the number of

iterations used in a given simulation, an iteration suppressing cost ρ(q, i) is used, where

ρ(q, i) = max(µ(q, i)). (6.2)

Here, µ(q, i) is a vector of the number of distributed MPC iterations used at each sample

step during the qth particle’s simulation run at PSO iteration i. In cases where it is

desired to use an iteration deterrent (henceforth, referred to as the DRID case) the fitness

of particle q at iteration i becomes:

fq(i) = υρρ(q, i) +
n∑

j=0

f local
j (q, i), (6.3)

where υρ is a positive constant used to determine the relative importance of the iteration

deterrent cost to the disturbance rejection cost during optimisation.

The PSO weight optimization algorithm is as follows:

1. A random population of P particles is initialised in d dimensions, with xmin≤xq and

xq≤xmax, where xmin ≥ 0 and xmax ≥ 0 are the upper and lower bounds on particle
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q’s position xq. If good initial estimates are known in advance, some particles can

be initialized with these values instead.

2. For each particle q, f local
j (q, i) for j = 1, . . . , n and then fq(i) are evaluated.

3. Based on these fitnesses the PSO algorithm updates each particle’s personal best

position xb
q (i) and fitnesses corresponding to these positions, fb

q (i), for q=1 . . . P ,

and xg(i), the global best position, and its associated fitness f g(i) and then calculates

the next positions in the fitness function based on the velocity and position update

equations,
vq(i+ 1) = ωvq(i) + c1r1(i) ◦

(
pb
q (i)− xq(i)

)

+ c2r2(i) ◦ (pg(i)− xq(i))
(6.4)

xq(i+ 1) = xq(i) + vqapp(i+ 1). (6.5)

Then with these P particles, the algorithm repeats from step (2).

4. The algorithm terminates when a termination criterion is satisfied; in this work this

happens when fg(i) has not changed by more than a small specified tolerance for a

given number of PSO iterations.

6.3 Simulation Experiments

In this section, PSO weight optimisation is applied to the distributed MPC control of

two complex, highly interconnected power systems performing Load Frequency Control

(LFC). First a discrete-time power network consisting of 20 subsystems is considered,

and in the second experiment the continuous-time multiple link HVDC system, that was

described in the previous chapter, consisting of 4 highly interconnected subsystems, is

considered. In both cases the weights are first optimised based only on the disturbance

rejection performance, and then optimised again incorporating the iteration deterrent, as

in (6.3). The disturbance rejection criterion used here for the jth agent in the simulation,

run by particle q in the swarm, at PSO iteration i, is the Integral of the Square of Time by

the Squared Error (ISTSE) (Gambier, 2007). This cost places greater emphasis on long

term errors over short term errors that occur immediately after disturbances and is given

by,

f local
j (q, i) =

∞∑

k=0

k2e2
j (k), (6.6)
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Here, ej(k) is the frequency error (as compared to 1pu) in subsystem j at sample time k,

and q and i are the PSO particle and iteration, respectively. As the tuning is based on

simulation runs, it is not practical to run simulations for an infinite number of samples

and so simulations are run for a finite time tf that is long enough to adequately capture

the systems dynamics.

The PSO routines are carried out using the PSO Toolbox for Matlab (Birge, 2003) using

the parameters from (Trelea, 2003) due to their desirable convergence properties. These

are ω = 0.6, c1=c2=1.7. Other parameters used in the PSO toolbox are given in Table

6.1.

Parameter Description

p number of particles 35

mvden max. velocity divisor 2

epoch maximum number of iterations 300

Table 6.1: Parameters used in the PSO toolbox for distributed MPC weight optimisation.

6.3.1 System 1: 20 Area Discrete-Time LFC Problem

The 20 area discrete-time LFC problem is shown in Fig. 6.2. The local control in-

put is ua(k) = P gen
a (k), the local disturbance is da(k) = P dist

a (k), and the local state

is xa(k) = [δa(k), fa(k)]T. The external inputs from other subnetworks are va(k) =

[δN in
a {1}(k), . . . ,∆δN in

a {ma}(k)]T, where ma is the number of subnetworks connected to

subnetwork a, and N in
a {i} is the ith agent connected to agent a. The discrete-time state

space model for each subnetwork, with a step size τ=0.2s, are given by:

Aa =




1 τ2π
∑

j∈Na
τ
−KPaKSaj

2πTPa

1− τ
TPa


 ,Ba =


 0

τ
KPa
TPa


 ,

Da =


 0

−τ KPa
TPa


 ,V a =


 0 . . . 0

τ
KPaKS

aN in
a {1}

2πTPa
. . . τ

KPaKS
aN in

a {ma}
2πTPa


 .

(6.7)

This model is used to run the discrete-time simulation and the control is based on the

incremental form of this model. The disturbances are not known by the control agents

and so cannot be used when forming the predictive control. All subnetworks’ parameters
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Figure 6.2: The 20 area discrete-time LFC problem.

are identical and are given as follows: Kpa = 120, TPa = 20, KSaj = 0.5. The controller

developed in Section 4.4 was used again here. A prediction horizon of N = 10 was used

to adequately take into account each subnetwork’s dynamic response. Constraints on the

inputs and states are as follows:

ua(k + l) ≥ umin
a

ua(k + l) ≤ umax
a

xa(k + l + 1) ≥ xmina

xa(k + l + 1) ≤ xmaxa

for l = 0, ..., N − 1, and umin
a =-0.3, umax

a =0.3, xmin
a = [−10,−10]T, xmax

a = [10, 10]T.

PSO Optimisation of the Distributed MPC Weights

PSO is now used to optimise the weights and parameters of the distributed MPC system for

the 20 area LFC system. Given the large number of agents in the system, it is non-trivial

to find a combination of weights that give both good disturbance rejection performance

and a low communications overhead. The weights determine the relative importance of

the goals of the distributed MPC system; c is set equal to 1 and the other weights are

then optimised using PSO. The vector of optimised weights here is Γ=[ Q1... Q20 ε]
T.
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The Ra weights were not optimised and were given a value of 10−3. However, these could

be optimised if the practitioner so desired. The constraints for the variables in the PSO

optimisation are as follows: 0.1≤Qa≤100, for agents a=1 . . . 20, and 10−4≤ε≤1. For the

PSO optimisations involving the iteration deterrent, υ=2.5.

To save on the overall PSO simulation time, an upper limit of 50 distributed MPC iter-

ations is allowed in each simulation run of the power system. If this is exceeded at any

stage, a fitness of 1000 is allocated to the particle at that position and the simulation

of the next particle begins. While this upper limit on distributed MPC iterations could

be reduced, it allows the information from a wider range of particles to be used in the

PSO optimisation. The PSO particle fitness is based on a network simulation run lasting

kf=25 discrete time steps, with sample time τ = 0.2s, i.e., a total simulation time of 5s.

This simulation involves disturbances of equal magnitude of 0.2 pu being applied at t=0s

to all subsystems except subsystem 17, where a larger disturbance of 0.23 pu is applied.

These disturbances are the largest that can be expected to occur in each area, and as such

represents a worst case disturbance scenario for this system. Simulations were run on a

computer with an Intel R© Core
TM

2 6400 operating at 2.13 GHz and with 3 GB of RAM in

Matlab 7.6.0 (2008a). All distributed MPC optimisations are carried out using quadprog.

The PSO terminates when f g does not improve by more than 2.5× 10−4 for 7 consecutive

iterations.

Finding a set a weights to control this system for this scenario is non-trivial. The best

performance that the author could achieve before optimisation, by manually tuning pa-

rameters, was with [ Q1...Q20 c ε ]T=[ 10...10 1 10−2 ]T. Fig. 6.3 shows the results of

the experiment. Unacceptable disturbance rejection is achieved, with area 14 becoming

unstable towards the end of the simulation as a result of the disturbance, as can be seen

in Fig. 6.3(b). The ISTSE for this performance is 131, and a large number of distributed

MPC iterations were also required, incurring a significant associated communication cost.

The frequencies in areas 7, 14, and 17 (used as sample illustrations of the effect of the

weight optimisations) can be seen in Figs. 6.3(a), 6.3(b), and 6.3(c), respectively. These

results include the initial manual tuning, the PSO tuning based only on disturbance re-

jection (DR only), and the PSO tuning based on disturbance rejection with an iteration

deterrent (DRID). The number of distributed MPC iterations needed over time, for each

of the aforementioned tunings, is given in Fig. 6.3(d), and f g is plotted for each of the
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(a) Plot of the frequency at generator 7.
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(b) Plot of the frequency at generator 14.
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(c) Plot of the frequency at generator 17.
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(d) Plot of the distributed MPC iterations.
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Figure 6.3: Plots of pu frequency and distributed MPC iterations over time, and PSO

iterations for the disturbance rejection scenario applied to the 20 area discrete-time LFC

network.

PSO iterations in the DR only and DRID cases in Figs. 6.3(e) and 6.3(f).

The final optimised weights for the DR only case are as follows: [ Q1...Q20 ]T = [ 1.78 3.11

94.22 19.98 63.92 71.42 0.10 0.10 83.33 20.93 97.38 87.52 0.10 0.10 42.16 40.24 95.16 0.10

19.86 99.55 ]T, ε=0.25, and the final ISTE cost of f g=2.3975. The maximum number of

distributed MPC iterations needed to achieve this is 3 as can be seen in Fig. 6.3(e). The

final optimised weights for the DRID case are as follows: [ Q1...Q20 ] = [ 2.29 24.56 42.56

48.75 20.51 100.00 54.45 84.09 65.66 100.00 72.01 0.10 17.07 39.89 74.20 58.13 5.85 73.54

0.10 15.19 ]T, ε=0.37, and the final f g=5.3975, consisting of an iteration cost of 2.5 and

an ISTSE of 2.8975. Note, however that the maximum number of iterations needed to
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achieve this control is only 1.

Looking at both PSO optimisations it can be seen that weight optimisation significantly

improves not only the disturbance rejection cost of the system, but also the number of

iterations needed to converge to the final solution, in both tuning cases. Comparing the

ISTSEs of each of the optimisations it can be seen that the DR only case trades off an

increased number of iterations for a better disturbance rejection performance, whereas the

DRID case trades off a slightly worse disturbance rejection performance for a decrease

in the number of iterations needed for the distributed MPC to converge. However, the

disturbance rejection performance in the DRID case is still satisfactory, and a significant

improvement on the disturbance rejection performance was achieved in comparison to the

original tuning.

The overall PSO optimisation time for the DR only case was 5 hours and the DRID case

was 5.58 hours (measured using cputime in Matlab which measures the total time in each

cpu core spent over the whole simulation. The actual time taken is usually roughly equal to

the cputime divided by the number of cores on the computer, i.e., on a dual core computer

the real time would be roughly half the cputime). It can be seen in Figs. 6.3(e) and 6.3(f)

that in both cases after 8 iterations, PSO does not significantly improve, and is quite near

the final optimal value for the weights.

6.3.2 System 2: Continuous-Time Multiple HVDC Link System

The system used in this section was the multiple link HVDC system that was described in

the previous chapter. Due to the high level of interconnectivity between individual agents

problems this is quite a challenging distributed MPC problem, when tuning for severe fault

scenarios. Finding a good combination of weights that balance both desirable closed-loop

performance and a low communication overhead is non-trivial and so this problem is also

a suitable testbed on which to evaluate weight tuning algorithms. The continuous-time

nonlinear model of this system consisted of four nonlinear differential equations of the

form given here for the ath generator:

d

dt
δra(t) = ω0∆ωra(t) (6.8)
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d

dt
ωra =

1

2Ha

(
Pma −Ga,aE

′2
qa −

n∑

l=1
l 6=a

E
′
qaE

′
ql

(Ga,l cos(δra − δrl) +Ba,l sin(δra − δrl))

+ ga,1P
DC
1 + . . .+ ga,mP

DC
m −Da∆ωra

)
,

(6.9)

where δra(t) is the rotor angle (rad), Ha is the inertial constant (s), ωra(t) is the rotor

speed (pu), ∆ωra(t)= ωra(t)−1 is the rotor speed deviation (pu), ω0 is the base rotor speed

(rad/s), Pma(t) is the mechanical power (pu), and Da is the damping factor (pu), Eqa is

the magnitude of the internal voltage of generator a, Ga,l and Ba,l are the coefficients of

the contribution of an internal voltage Eqa to generator current l in the system, and ga,j

is the coefficient of the contribution of the power injections from HVDC link j at bus a.

The power system parameters, that were given previously in Table 5.1, were used in this

simulation again. The states of agent a are taken as xa=[δra ωra ]T, the inputs ua=[PDC
1

PDC
2 ]T, and the interconnecting input va=δrl . The full system model is discretised and

the distributed MPC controller described in Section 5.4 was used to control the system.

The HVDC link ranges are −2 ≤ PDC
i (k) ≤ 2 pu, for i ∈ {1, 2} and the frequency range

at all buses is 0.97 ≤ ωra(k) ≤ 1.03 pu, for a = 1 . . . 4. These constraints are applied over

the full prediction horizon.

PSO Optimisation of the Distributed MPC Weights

PSO was used to optimise the weights and parameters of the distributed MPC system for

the multiple HVDC link system. Due to the high level of coupling between the subsystems

it can be difficult to tune the system weights to achieve good disturbance rejection in

a small number of iterations. As previously stated, the weights determine the relative

importance of the goals of the distributed MPC system. Therefore one weight is set equal

to 1 and the rest of the weights are then optimised relative to this weight using PSO. The

weight of agent 1, Q1 is set equal to 1 and the vector of PSO weights is then Γ=[Q2 Q3 Q4

c ε]T. The Ra weights are not optimised and are simply set to a small positive constant,

where Ra=diag(10−3,10−3). This helps ensure that the optimisation problem is of full

rank. However, as in the previous example, these weights could be optimised, if desired

by the practitioner. The constraints for the variables in the PSO optimisation were as

follows: 0.1≤Qa≤100, for a = 2 . . . 4, 0.01≤c≤5, and 10−4≤ε≤1. The PSO terminates

when fg does not improve by more than 0.1 for 7 consecutive iterations.
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An upper limit of 120 distributed MPC iterations is allowed for each control cycle to save

on simulation time in each simulation of the multiple HVDC link system that is run by the

PSO particles. If this is exceeded at any stage a fitness of 1000 is allocated to the particle

at that position and the simulation of the next particle is initiated. Again this could be

set lower but it allows the information from a wider range of particles to be useful in the

PSO optimisation.

The tuning scenario used involves three-phase to ground faults being simultaneously ap-

plied to lines 1 and 3 in the system for a duration of 200ms and then returning the system

to its non-fault state. Tuning for this scenario is quite difficult and in fact a number of ini-

tial tuning attempts did not stabilise the system. When manually tuning the distributed

MPC, the best performance the authors could attain was using [Q1 Q2 Q3 Q4 c ε]
T=[10

30 10 10 1 10−3 ]T. While this guess is stabilising, there is still an offset towards the end of

the simulation and up to 40 distributed MPC iterations are needed for one of the control

cycles to converge. It was decided not to initialise the PSO with this guess to see how

long it would take to converge on the final solution with random initial guesses. For the

simulations involving the iteration deterrent, υ=100.

Results

Simulations were run on a 2211.412 MHz Quad-Core AMD OpteronTM Processor 2354

with a 512 KB cache size in Matlab version 7.11.0.584 (R2010b). Simulink is used to

simulate the nonlinear, continuous-time power system simulations, using the Dormand-

Prince (ode45 in Matlab) continuous-time algorithm, with a maximum step size of 2ms and

a relative tolerance of 0.001. Linearisations of the nonlinear equations (6.8) and (6.9), are

used to derive the discrete-time state space models that are used in the distributed MPC

controllers. These inputs were calculated and applied at fixed time steps of 10ms using

Matlab and the calculated inputs were passed to the continuous-time Simulink simulations.

All MPC optimisations were performed using TOMLAB v7.4.

The final output of the disturbance rejection only PSO weight optimisation (DR only) set

[Q1 Q2 Q3 Q4 c ε]
T=[ 1 22.8 100 100 2.9 0.3 ]T, with the final fg(i)=23.13. The final

result in the PSO optimisation based on disturbance rejection with the iteration deterrent
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(a) Plot of the frequency at generator 1.
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(b) Plot of the frequency at generator 2.
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(c) Plot of the frequency at generator 3.
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(d) Plot of the frequency at generator 4.
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Figure 6.4: Plots of pu frequency and iterations over time for the 200ms line fault applied

to lines 1 and 3 simulataneously.

(DRID) gave [Q1 Q2 Q3 Q4 c ε]=[ 1 59.6 100 90.1 1.06 0.13 ]T, with the final fg=693.

The fg for the DRID case consisted of a disturbance rejection cost of 93 and an iteration

deterrent cost of 600. The fitness at each iteration of the PSO algorithm can be seen in
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Figs. 6.4(g) and 6.4(h) for the DR only and DRID cases, respectively. The other plots

in Fig. 6.4 show the frequencies in each area plotted against time for the initial set of

weights, the DR only weights, and the DRID weights. The plots of the distributed MPC

iterations needed over the course of the simulation to achieve the control for each of the

aforementioned weight scenarios are also shown.

It can be seen that in both cases the maximum number of distributed MPC iterations

needed for convergence during the simulation run is significantly reduced in comparison

with the original case, and that the disturbance rejection significantly improves. This

illustrates that weight optimisation can simultaneously improve both the disturbance re-

jection and communication overhead, at least in certain situations. While the DR only

case results in a smaller overall number of iterations than the DRID case, both the DR

only and DRID cases converge on the same maximum number of iterations for the simu-

lation run, but the DR only case ends up with a smaller overall communication overhead.

In fact the DR only case also has the smaller disturbance rejection cost of the two. This

could be simply because the PSO simply did not come across this solution while searching

in the DRID case. However, it must also be considered that the discontinuities in the

cost function caused by the iteration deterrent prevented this better result being found

in the DRID case. From a practical point of view, though, both results are considerably

better in terms of both disturbance rejection and communication performance than with

the original case.

It is noted that there is a significant amount of computational overhead associated with

finding these weights. DRID took approximately 4 weeks and the duration for the DR only

simulation took approximately 8.5 weeks. The length of time needed for the optimisation

was due to the long run-time of the multiple HVDC link simulation. On average, simulation

runs of these simulations took between 10 and 20 minutes each due to the fact that the

sample time needed for simulation was quite small and the fact that a very long simulation

time was needed due to the long settling times in the multiple HVDC link system. Also,

a prediction horizon of 50 steps is needed in this system, and so each of the distributed

MPC problems are quite large. Much time was also spent in the exploitation stage, of the

PSO algorithm, finding the final solution. It can be seen that even after 20 iterations, in

both cases, the PSO has almost converged to the final result.
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6.3.3 Discussion of Overall Results

In both of the PSO weight optimisation experiments in this section it can be seen that

the optimised weight values give simultaneously both improved disturbance rejection per-

formance and a reduced number of distributed MPC iterations. Also it can be seen that

the iteration deterrent has the potential to further minimise the maximum number of

distributed MPC iterations needed in a simulation. Therefore, the use of the iteration de-

terrent can be useful in scenarios where it is desirable to minimise the number of iterations

needed for convergence of the distributed MPC algorithm, while seeking to simultaneously

improve disturbance rejection performance.

The PSO, in both power system experiments, manages to reach a near optimal result in

the early stage of optimisation. However the exploitation stage of the algorithm takes a

significant number of iterations and so can be wasteful in terms of the overall computa-

tional overhead. Another criterion, based on the performance being within satisfactory

bounds, could be used in cases where the system simulations take quite a long time to

run, in order to terminate the PSO optimisation at an earlier stage.

The duration of the PSO weight optimisations is significantly influenced by the time taken

to run the individual power system simulations used to evaluate PSO particle fitnesses.

While the PSO updates are calculated quite efficiently, the vast majority of the time taken

to run the optimisations is based on the length of time taken for the simulation scenarios.

It is for this reason that the multiple HVDC link weight optimisation experiment took

significantly longer than the 20 area LFC weight case. It is worth carefully considering the

length of time the system simulations run for during each fitness evaluation, how efficient

simulation runs are, and what termination criteria should be used to terminate the PSO, in

order to reduce the overall PSO weight optimisation time. For computationally intensive

simulations, such as the multiple HVDC link system, overall times for PSO optimisation

could also potentially be reduced by running simulations for each of the particles in parallel

on separate computers.
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6.4 Conclusions

A PSO-based weight optimisation algorithm is proposed here for distributed Model Pre-

dictive Control (MPC). Two criteria are used to evaluate PSO particle fitness. The first is

based only on the disturbance rejection performance of the system. The second is based on

the disturbance rejection performance of the system and the communication overhead of

the system. The communication overhead is measured as the number of iterations needed

for the distributed MPC to reach convergence.

As a general strategy for tuning distributed MPC systems, PSO is advantageous as it works

effectively on a wide range of surfaces and so is quite flexible in terms of what fitness criteria

can be used to tune the system. Also, practitioners do not need any in depth knowledge

of the distributed MPC algorithm they are tuning in order to tune the weights using PSO,

as described in this chapter. Using an iteration deterrent for the weight optimisation, it

is possible to tune the control system to achieve a desirable trade off between the closed

loop performance and the communication overhead needed to achieve this control.

Two power systems examples are used to evaluate this weight optimisation technique. In

both cases the weight optimisation results in an improvement in both the disturbance

rejection overhead and the communication overhead. However, it was possible to further

reduce the communications overhead using the disturbance rejection with an iteration

deterrent criterion.
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Chapter 7
Conclusions and Future Work

This thesis has looked at the optimal control of Smart Grids, focusing in particular on

iterative distributed Model Predictive Control (MPC). A novel convergence and stability

proof was derived for distributed MPC. The performance of distributed MPC was then

compared to that of an optimised PID and a centralised MPC controller. The application

in this case was a highly interconnected, non-linear, MIMO system based on part of the

Nordic power grid. The final contribution was to develop a tuning algorithm for distributed

MPC that considered both the closed-loop performance and communications overhead

involved in attaining a desired system control performance. A summary of the contents

of each chapter will now be given, outlining the contributions made in each chapter.

7.1 Thesis summary

In chapter 1, a brief history of control theory was given, showing how decentralised control

structures were originally developed for the control of large scale systems, but that there

were disadvantages inherent in decentralised control systems. Among these disadvantages

was the fact that decentralised control was often not suitable for the control of highly

interconnected systems and that a certain control system structure was often necessary in

order for decentralised control techniques to be viable. It was then shown how networked
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and distributed control systems grew in prominence and how they are the preferred control

method for use in the Smart Grid.

Chapter 2 described how and why power networks are evolving from their traditional

centralised form into the new distributed Smart Grid form. An overview of the power

electronics devices which will enable a high level of controllability in future power net-

works was then given. Following this, issues surrounding the design of distributed control

systems for large scale systems were discussed. In particular it was noted that the level of

communication between control agents affects the level of control performance that can be

achieved in a system. It was seen that while the control performance of a centralised MPC

can be achieved with a Pareto equilibrium seeking algorithm, these algorithms required an

excessive amount of inter-agent communication and so are not feasible for the control of

large-scale systems such as power networks. Nash seeking control algorithms, on the other

hand, only exchange information with directly connected agents. It was seen that while

these did not always achieve the performance of Pareto-equilibrium seeking algorithms,

they generally achieve significantly better performance than decentralised algorithms and

that they provide adequate control performance when applied to power networks.

In chapter 3, a detailed description of Model Predictive Control was given which included

a history of MPC, and demonstrated how the control problem is formulated in both the

unconstrained and constrained cases. MPC was then applied to a 3 area Load Frequency

Control (LFC) problem. Two scenarios were given; one in which a Static Synchronous

Series Compensator (SSSC) was present in the power system and another where the SSSC

was not present. It could be seen that in both cases MPC provided adequate control

performance to stabilise the system within the allocated constraints; however when the

SSSC was present there was a significant improvement in the control performance. This

example demonstrated how power electronic devices used with advanced control techniques

can provide a high level of control performance in power systems.

In chapter 4, the distributed MPC algorithm was introduced. A novel convergence and

stability proof was then developed for the algorithm. The effectiveness of this stability

proof was then tested on a 2 area discrete-time LFC which was controlled using the

distributed MPC algorithm. The point at which the system was theoretically found to

go unstable was compared to the point at which this system went unstable in simulation.

The system was driven to instability by increasing the interconnection coefficient between
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the two areas. It was found that the stability proof could be used to accurately determine

the point at which the system went unstable. Also, suggestions were given as to how the

c and ε parameters should be chosen in order to improve the accuracy with which the

stability could be predicted.

The performance of a number of optimal controllers, when used for the control of a highly

interconnected, nonlinear, MIMO system, were evaluated and compared in Chapter 5.

The system was based on part of the Nordic power grid. The system consisted of 4 areas

which were connected by 2 AC and 2 HVDC lines. The level of interconnection in this

system is exacerbated due to the fact that the generation capacities in each generator in

the system were kept constant. Therefore, when the system was subjected to temporary

3-phase to ground faults, it was the action in the HVDC lines alone that was used to

restabilise the system generator frequencies. A centralised and distributed MPC, and a

multi-loop PID control scheme, whose gains had been optimised using Particle Swarm

Optimisation (PSO), were used to control the system. This work also demonstrated how

the distributed MPC technique could naturally be used to deal with cases where agents

have shared input variables. Of interest (in this example in particular) was the compari-

son of performance between the optimised PID control scheme and the distributed MPC

controller. PID controllers are the most prominent controllers in power systems at the

moment. Distributed MPC provides a scalable form of optimal control that can be used

on large-scale systems and so it has the potential to replace PID controllers. Therefore,

it was interesting to see if there were any major advantages in using distributed MPC

over PID controllers. It was seen that distributed MPC did in fact provide sufficiently

better control than the PID controllers for serious line faults. However, there was a large

computational and communication overhead associated with the distributed MPC.

In chapter 6, a novel PSO based tuning algorithm was proposed for use with distributed

MPC. This algorithm enabled the simultaneous minimisation of the communication over-

head and optimisation of the closed-loop performance of the system. Each PSO particle

ran a simulation, in every PSO iteration, that evaluated the achievable performance using

a combination of distributed MPC weights. The reduction in communication was achieved

by using an iteration deterrent that allocated a penalty based on the maximum number

of iterations needed to achieve convergence during distributed MPC cycles over the course

of a simulation run. The Integral of Time Squared by the the Square of Error (ISTSE)

criterion was used to determine the closed-loop performance for each simulation run. The
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weights were optimised for two different systems which were controlled using distributed

MPC. One was a 20 area discrete time LFC simulation; the other was the multiple HVDC

link system described in Chapter 5. Two PSO optimisations were performed for each

system. In one, the optimisation was based solely on the closed loop performance only,

and in the other optimisation the iteration deterrent was also used. With both systems

it was found that optimising solely based on the closed loop performance resulted in a

significant reduction in the number of distributed MPC iterations that were needed to

achieve convergence. When the iteration deterrent was included, it was then possible to

further reduce the communications overhead associated with these iterations.

7.2 Thesis Contributions

The primary contributions of this thesis are as follows:

• The application of optimal control systems to a variety of power systems was given.

These examples reaffirmed the fact that optimal control techniques allow a high level

of control performance to be achieved in Smart Grids. Furthermore, it was seen how

power electronics devices could be used to further enhance the controllability of

power systems. This was illustrated by adding an SSSC to a 3 area LFC problem

and comparing the performance of this system to the system where the SSSC was

not in place.

• A novel convergence and stability proof was derived for the distributed MPC al-

gorithm which was originally developed in (Negenborn et al., 2008). This stability

proof was then tested by increasing the interconnection coefficients in a 2 area LFC

system and observing at what point the stability proof determined instability, which

was then compared to the point at which the system was observed to go unstable in

simulation. It was found that when small values of the ε variable were used that the

point of instability was accurately found.

• A number of optimal control techniques were applied to a nonlinear multiple HVDC

link system. The application of a PSO optimised multi-loop PID controller, and a

centralised and distributed MPC controller to this system had not been conducted

previously. Also, it was demonstrated using this system how distributed MPC could
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naturally be used in cases where control agents shared inputs. It was found that the

distributed MPC gave the best performance, centralised MPC gave the second best

performance, and that the optimised multi-loop PID controller gave the third best

performance. However, it was seen that the optimised PID controller violated the

desired frequency bounds for the system for the given fault scenario, whereas these

were satisfied with the MPC controllers. Decentralised MPC was also applied to

the system but this was not capable of stabilising the system under the multi-agent

deregulated control structure that was desired for system control. This system high-

lighted the improvement in performance that can be achieved by using distributed

MPC rather than PID controllers in power networks.

• A PSO based tuning algorithm was developed for iterative distributed MPC which

allows the closed-loop performance and communication overhead of the system to be

tuned simultaneously. The PSO tuning was applied to two systems; a discrete time

20 area LFC system, and the multiple HVDC link system. The results found when

optimising for the closed-loop performance alone, and the results found when opti-

mising for both the closed-loop performance and the communication overhead were

then compared. It was found that in both cases that optimising the weights accord-

ing to the ISTSE criterion significantly improved both the closed loop performance

and reduced the communications overhead. However, when the communication over-

head was optimised along with the closed-loop performance it was possible to cause

a further reduction in the level of communication used.

7.3 Future Work

There is still the potential for much research in the areas covered in this thesis. It would

be useful to develop a proof of stability and convergence for the constrained version of the

distributed MPC algorithm presented in this thesis. The PSO based tuning algorithm in

this thesis could also be used to further reduce the communication overhead by minimising

the prediction horizon used in the distributed MPC. The stability proof developed in

Chapter 4 could also be used to determine if a set of weights will provide stabilising

control when distributed MPC weights are being tuned. If weights were not stabilising it

would mean that a simulation would not have to be run for this combination of weights

during the PSO weight tuning procedure. This would aid the efficiency of the tuning

Optimisation of Smart Grid Performance using Centralised and Distributed Control
Techniques-Paul Mc Namara



Section 7.3: Future Work 137

algorithm. Also, it would be useful to see how well other optimisation methods such as

the Nelder-Mead Simplex perform when used for the optimisation of the distributed MPC

weights.

The multiple link HVDC system was a challenging testbed for the distributed MPC al-

gorithm in this thesis due to the high level of interconnection between agents. It would

be interesting to compare the performance of several distributed MPC algorithms on this

testbed and also to see how these algorithms perform when model uncertainties and de-

lays are introduced into the system. It would also be useful to see how a hierarchical

distributed MPC system which utilised feedback linearisation performed when applied to

a nonlinear system, such as the multiple HVDC link system. The feedback linearisation

could be carried out in an upper layer that had access to full network information and

could then pass the linearised model down to lower layer controllers.

Before distributed MPC could be implemented in real power networks, the effects of the

communication network on the control will need to be considered. Typically control algo-

rithms assume a perfect communications system which may have some delays. However,

in certain communication systems information may not be sent at a constant rate, and

the communication medium is usually subject to packet losses. These can have serious

impacts on closed loop behaviour and should be considered when developing distributed

MPC for real systems. Also, a vital part of Smart Grids will be their ability to adapt to

changes in the network. The author is not aware at this time of any significant body of

work on model adaptive distributed MPC and so would suggest this as an important area

for future research. Also, automated methods for partitioning the system into suitable

subsystems for control would be necessary for the implementation of distributed MPC in

Smart Grids.

There is huge potential for the application of distributed MPC in new areas. As discussed

previously, distributed MPC has been applied to power networks, water networks, supply

chains, and chemical plants to name a few. Given the recent economic turmoil that

has engulfed the world, it would be interesting to see how distributed MPC techniques

could be applied to economic systems, particularly macroeconomic systems. Inevitably

the distributed MPC would need to be a robust or stochastic formulation given the large

amount of uncertainty involved in economic systems. However, similar issues arise in

economic systems as are found in deregulated power markets, in terms of the scalability of

Optimisation of Smart Grid Performance using Centralised and Distributed Control
Techniques-Paul Mc Namara



Section 7.3: Future Work 138

the control algorithm and constraints on how much information can be used, and so Nash

equilibrium seeking distributed MPC algorithms could be suitable for use in this context.
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Appendix A
Deterministic constrained

optimisation techniques

A.1 Constrained Optimisation and Optimality Conditions

Deterministic optimisation techniques allow for the efficient solution of a given optimi-

sation problem based on rigorous mathematical foundations. Constrained optimisation

problems can typically be stated as follows:

x = arg min
x
f(x) subject to





κi(x) ≥ 0, i ∈ I
κj(x) = 0, j ∈ E .

(A.1)

where x ∈ <n is a vector of variables that are used to minimise an objective function f(x),

I and E are two finite sets of indices, and κi(x), for i ∈ I, and κj(x), for j ∈ E , are the

inequality and equality constraints of the problem, respectively. Typically deterministic

optimisation is most suited to problems where f(x), and κk for k ∈ E ∪ I are all smooth,

real valued functions on a subset of <n. The Karush-Kuhn-Tucker (KKT) optimality

conditions are used to establish optimality in constrained optimisation theory. Before

stating these theorems a few relevant definitions will be made (material from this section

is taken from (Nocedal and Wright, 2006), where detailed proofs of the stated theorems

and algorithms can be found).
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The active set A(x) at any feasible point x, where a feasible point is a point in the interior

of the solution space, consists of the equality constraint indices from E together with the

indices of the inequality constraints i ∈ I for which κi(x) = 0; that is,

A(x) = E ∪ {i ∈ I|κi(x) = 0}. (A.2)

At any feasible point x, the inequality constraint κi(x) ≥ 0 for i ∈ I is said to be active

if κi(x) = 0 and inactive if the strict inequality κi(x) > 0 is satisfied.

Given a point x in the active set A(x), the linear independence constraint qualification

(LICQ) holds if the set of active constraint gradients {∇xκi(x), i ∈ A(x)} is linearly

independent. In general if the LICQ holds, none of the active constraint gradients can be

zero.

Theorem A.1.1. First-Order Necessary Conditions.

Suppose that x∗ is a local solution of (A.1), such that the functions f , κi, and κj in

(A.1) are continuously differentiable, and that the LICQ holds at x∗. Then there is vector

λ∗, called a Lagrange multiplier, with components λ∗k, for each k ∈ E ∪ I, such that the

following conditions are satisfied at (x∗,λ∗)

∇xL(x∗,λ∗) = 0,

κi(x
∗) ≥ 0, for all i ∈ I,

κj(x
∗) = 0, for all j ∈ E ,

λ∗i ≥ 0, for all i ∈ I,

λ∗iκi(x
∗) = 0, for all i ∈ I,

λ∗jκj(x
∗) = 0, for all j ∈ E .

(A.3)

where L(x,λ) = f(x)−
∑

k∈I∪E
λkκk(x), is called the Lagrangian function.

Theorem A.1.1 establishes the relationship between the first derivatives of f and the

active constraints at the solution x∗. Second order derivatives contain further important

information that can be used during optimisation to determine if travelling along a given

direction will increase or decrease f . A number of definitions are made, again, before

stating the second order optimality conditions.

The set of linearised feasible directions F(x), given a feasible point x and the active
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constraint set A(x), is defined as:

F(x) =



d|

dT∇κj(x) = 0, j ∈ E
dT∇κk(x) ≥ 0, k ∈ A(x) ∩ I.



 . (A.4)

Given F(x∗) and the associated Lagrange multiplier vector λ∗ satisfying the KKT condi-

tions of Theorem A.1.1, the critical cone is then defined as follows:

C(x∗,λ∗) = {w ∈ F(x)|∇κk(x∗)Tw = 0, all k ∈ A(x∗) ∩ I with λ∗k > 0}. (A.5)

The critical cone defines the set of feasible directions from x∗ that still fulfil the active

constraints κi(x).

The second order necessary optimality condition states that the Hessian of the Lagrangian

function has non-negative curvature when moving along directions in C(x∗,λ∗).

Theorem A.1.2. Second-Order Necessary Condition.

Suppose that x∗ is a local solution of (A.1), with corresponding Lagrange multipliers λ∗,

and that the LICQ condition is satisfied. Then

wT∇2
xxL(x∗,λ∗)w ≥ 0, for all w ∈ C(x∗,λ∗). (A.6)

These theorems provide the necessary conditions for the optimality of the solution of

constrained optimisation problems. The development of duality theory provides further

insite into the nature of constrained optimisation problems and has been central to the

development of methods for solving constrained optimisation problems.

A.2 Duality Theory

Duality theory shows how for a constrained optimisation problem, a corresponding “dual”

problem can be constructed from the original problem. The following problem is given:

min
x∈<n

f(x), subject to κ(x) ≥ 0, (A.7)

where κ(x) = [κ1(x), . . . , κm(x)]T is a vector of m inequality constraints. The Lagrangian

function L(x,λ) with Lagrange multiplier λ ∈ <m is given as:

L(x,λ) = f(x)− λTκ(x). (A.8)
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The dual objective function q(λ) : <n → < is given as follows:

q(λ) = inf
x
L(x,λ). (A.9)

Often this infinum is −∞ for some values of λ and so the domain of q(λ), D, is defined as

the set of values for which q(λ) is finite, that is,

D = {λ|q(λ) > −∞} (A.10)

If f(x) and -κi(x) are convex functions and λ > 0, then the function L(x,λ) is also convex

and so all local minimizers are global minimisers, which makes the computation of q(λ)

practical.

The dual problem to A.7 is then defined as follows:

max
λ∈<n

q(λ), subject to λ ≥ 0. (A.11)

Provided f and -κi are convex the dual problem can be used to help solve the original

primal problem and also provides a lower bound on the solution of the primal problem.

Duality theory is central to the development of optimisation methods for constrained

problems.

A.3 Constrained Optimisation Methods

There are a number of methods that have been developed for solving constrained opti-

misation problems. Most of these utilise results from duality theory in their formulation.

Methods such as the simplex method, interior point methods, and quadratic programming

all directly solve constrained optimisation problems within the constrained optimisation

space using duality theory and the results of Theorems A.1.1 and A.1.2. Other meth-

ods, however, instead of searching within the constrained feasible region, convert the

constrained optimisation problem into an unconstrained optimisation problem and use a

number of iterations in order to converge on the final solution. These methods work by

adding a penalty cost proportional to the constraints to f(x) and solving the problem over

a number of iterations to converge on x∗.

Quadratic penalty methods convert (A.1) into a series of unconstrained minimisation
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problems:

x(k) = arg min
x
Q(x(k), c(k))

= arg min
x(k)

f(x(k)) +
c(k)

2

∑

i∈I

(
[κ2
i (x(k))]−

)2
+
c(k)

2

∑

j∈E
κ2
j (x(k)),

(A.12)

where y− denotes max(−y, 0), and x(k) is the initial guess for x(k + 1) at iteration k

of the algorithm. When there are no inequality constraints the unconstrained problem

is smooth and so can be easily solved. The addition of inequality constraints results in

discontinuities and so Q(x(k), c(k)) is no longer twice continuously differentiable in this

case. The algorithm works by starting with a small value of c and finding x∗. This

solution informs the starting point for the next iteration of the algorithm, where c is

increased in value to put further emphasis on the constraints. As iterations continue

c → ∞ until it converges on a final solution of x∗. One of the major issues with this

algorithm is that as c gets larger the problem becomes increasingly ill-conditioned, which

can cause unconstrained optimisation algorithms such as quasi-Newton and conjugate

gradient methods to perform poorly.

Non-smooth penalty functions yield the exact solution of the non-linear programming

programming after a single minimisation with respect to x. An example of such a penalty

function is the l1 penalty function, defined by

φ(x; c) = f(x) + c
∑

i∈I
[κi(x)]− + c

∑

j∈E
|κj(x)|. (A.13)

This penalty function penalises moves into the infeasible region sharply enough to produce

an increase in the penalty function that is greater than f(x∗), thereby forcing the minimiser

to lie at x∗. While the advantage of these methods is that only one iteration of the

minimisation is used, the minimisation of the functions is made difficult by the non-

smoothness of the function.

The method of multipliers or the augmented Lagrangian method overcomes the difficul-

ties associated with the previous two penalty methods. The method is related to the

quadratic penalty algorithm, but it reduces the possibility of ill-conditioning by introduc-

ing explicit Lagrange multiplier estimates into the functions being minimised, known as

the augmented Lagrangian function. Unlike the non-smooth penalty methods, the aug-

mented Lagrangian generally preserves smoothness and so can easily be used with software

designed to minimise unconstrained or bound constrained problems.

Optimisation of Smart Grid Performance using Centralised and Distributed Control
Techniques-Paul Mc Namara



Section A.3: Constrained Optimisation Methods 145

The augmented Lagrangian function, LA(x,λ; c), is given incorporating equality con-

straints, κi(x), i ∈ E into the cost function:

LA(x,λ; c) = f(x) +
∑

j∈E
(λjκj(x) +

c

2
κ2
j (x)) (A.14)

If inequality constraints, κi(x), i ∈ I are present it is possible to incorporate these into

the cost function by adding slack variables, such that inequality constraint i ∈ I becomes

κi(x)− si = 0, with si ≥ 0. The slack variables si are added to the optimisation vector x

to be optimised.

The augmented Lagrangian optimisation algorithm is an iterative process, performing

alternating updates of the Lagrange multiplier estimates and optimisations with respect to

x. Also convergence of the method to (x∗, λ∗) is assured without increasing c indefinitely.

The augmented Lagrangian algorithm used in this thesis is given as follows:

1. Pick a suitable c, and a starting point (x(1),λ(1)).

2. Keeping λ(k) constant, at iteration k of the algorithm, minimise LA(x(k),λ(k); c)

with respect to x.

3. After optimisation, update the Lagrange multipliers as follows:

λ(k + 1) = λ(k) + cκ(x(k)) (A.15)

4. The algorithm terminates when

‖λ(k + 1)− λ(k)‖∞ ≤ ε (A.16)

where ε is a small positive constant and ‖.‖∞ tolerance term.

Due to its intuitive formulation and it’s advantages over the previous penalty methods,

as mentioned previously, the use of the augmented Lagrangian is quite popular. Also, as

will be seen in the following chapter, due to its construction the augmented Lagrangian

formulation allows certain large-scale optimisation problems to be decomposed into a

number of smaller scale problems which can then be solved in a sequential fashion.

The methods outlined in this section allow optimisation problems to be solved in an effi-

cient manner and in short time spans, thus enabling methods like MPC to be implemented

quickly to allow real time control of systems.
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