155,509 research outputs found

    Gaming on the edge: using seams in ubicomp games

    Get PDF
    Outdoor multi-player games are an increasingly popular application area for ubiquitous computing, supporting experimentation both with new technologies and new user experiences. This paper presents an outdoor ubicomp game that exploits the gaps or seams that exist in complex computer systems. Treasure is designed so that players move in and out of areas of wireless network coverage, taking advantage not only of the connectivity within a wireless ā€˜hotspotā€™ but of the lack of connectivity outside it. More broadly, this paper discusses how the notion of seamful design can be a source of design ideas for ubicomp games

    Analyzing Energy-efficiency and Route-selection of Multi-level Hierarchal Routing Protocols in WSNs

    Full text link
    The advent and development in the field of Wireless Sensor Networks (WSNs) in recent years has seen the growth of extremely small and low-cost sensors that possess sensing, signal processing and wireless communication capabilities. These sensors can be expended at a much lower cost and are capable of detecting conditions such as temperature, sound, security or any other system. A good protocol design should be able to scale well both in energy heterogeneous and homogeneous environment, meet the demands of different application scenarios and guarantee reliability. On this basis, we have compared six different protocols of different scenarios which are presenting their own schemes of energy minimizing, clustering and route selection in order to have more effective communication. This research is motivated to have an insight that which of the under consideration protocols suit well in which application and can be a guide-line for the design of a more robust and efficient protocol. MATLAB simulations are performed to analyze and compare the performance of LEACH, multi-level hierarchal LEACH and multihop LEACH.Comment: NGWMN with 7th IEEE Inter- national Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA 2012), Victoria, Canada, 201

    A component-based model and language for wireless sensor network applications

    Get PDF
    Wireless sensor networks are often used by experts in many different fields to gather data pertinent to their work. Although their expertise may not include software engineering, these users are expected to produce low-level software for a concurrent, real-time and resource-constrained computing environment. In this paper, we introduce a component-based model for wireless sensor network applications and a language, Insense, for supporting the model. An application is modelled as a composition of interacting components and the application model is preserved in the Insense implementation where active components communicate via typed channels. The primary design criteria for Insense include: to abstract over low-level concerns for ease of programming; to permit worst-case space and time usage of programs to be determinable; to support the fractal composition of components whilst eliminating implicit dependencies between them; and, to facilitate the construction of low footprint programs suitable for resource-constrained devices. This paper presents an overview of the component model and Insense, and demonstrates how they meet the above criteria.Preprin

    Tiarrah Computing: The Next Generation of Computing

    Get PDF
    The evolution of Internet of Things (IoT) brought about several challenges for the existing Hardware, Network and Application development. Some of these are handling real-time streaming and batch bigdata, real- time event handling, dynamic cluster resource allocation for computation, Wired and Wireless Network of Things etc. In order to combat these technicalities, many new technologies and strategies are being developed. Tiarrah Computing comes up with integration the concept of Cloud Computing, Fog Computing and Edge Computing. The main objectives of Tiarrah Computing are to decouple application deployment and achieve High Performance, Flexible Application Development, High Availability, Ease of Development, Ease of Maintenances etc. Tiarrah Computing focus on using the existing opensource technologies to overcome the challenges that evolve along with IoT. This paper gives you overview of the technologies and design your application as well as elaborate how to overcome most of existing challenge

    Spatiotemporal Multicast and Partitionable Group Membership Service

    Get PDF
    The recent advent of wireless mobile ad hoc networks and sensor networks creates many opportunities and challenges. This thesis explores some of them. In light of new application requirements in such environments, it proposes a new multicast paradigm called spatiotemporal multicast for supporting ad hoc network applications which require both spatial and temporal coordination. With a focus on a special case of spatiotemporal multicast, called mobicast, this work proposes several novel protocols and analyzes their performances. This dissertation also investigates implications of mobility on the classical group membership problem in distributed computing, proposes a new speciļ¬cation for a partitionable group membership service catering to applications on wireless mobile ad hoc networks, and provides a mobility-aware algorithm and middleware for this service. The results of this work bring new insights into the design and analysis of spatiotemporal communication protocols and fault-tolerant computing in wireless mobile ad hoc networks

    Building efficient wireless infrastructures for pervasive computing environments

    Get PDF
    Pervasive computing is an emerging concept that thoroughly brings computing devices and the consequent technology into people\u27s daily life and activities. Most of these computing devices are very small, sometimes even invisible , and often embedded into the objects surrounding people. In addition, these devices usually are not isolated, but networked with each other through wireless channels so that people can easily control and access them. In the architecture of pervasive computing systems, these small and networked computing devices form a wireless infrastructure layer to support various functionalities in the upper application layer.;In practical applications, the wireless infrastructure often plays a role of data provider in a query/reply model, i.e., applications issue a query requesting certain data and the underlying wireless infrastructure is responsible for replying to the query. This dissertation has focused on the most critical issue of efficiency in designing such a wireless infrastructure. In particular, our problem resides in two domains depending on different definitions of efficiency. The first definition is time efficiency, i.e., how quickly a query can be replied. Many applications, especially real-time applications, require prompt response to a query as the consequent operations may be affected by the prior delay. The second definition is energy efficiency which is extremely important for the pervasive computing devices powered by batteries. Above all, our design goal is to reply to a query from applications quickly and with low energy cost.;This dissertation has investigated two representative wireless infrastructures, sensor networks and RFID systems, both of which can serve applications with useful information about the environments. We have comprehensively explored various important and representative problems from both algorithmic and experimental perspectives including efficient network architecture design and efficient protocols for basic queries and complicated data mining queries. The major design challenges of achieving efficiency are the massive amount of data involved in a query and the extremely limited resources and capability each small device possesses. We have proposed novel and efficient solutions with intensive evaluation. Compared to the prior work, this dissertation has identified a few important new problems and the proposed solutions significantly improve the performance in terms of time efficiency and energy efficiency. Our work also provides referrable insights and appropriate methodology to other similar problems in the research community

    Mobile Edge Computing via a UAV-Mounted Cloudlet: Optimization of Bit Allocation and Path Planning

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have been recently considered as means to provide enhanced coverage or relaying services to mobile users (MUs) in wireless systems with limited or no infrastructure. In this paper, a UAV-based mobile cloud computing system is studied in which a moving UAV is endowed with computing capabilities to offer computation offloading opportunities to MUs with limited local processing capabilities. The system aims at minimizing the total mobile energy consumption while satisfying quality of service requirements of the offloaded mobile application. Offloading is enabled by uplink and downlink communications between the mobile devices and the UAV that take place by means of frequency division duplex (FDD) via orthogonal or non-orthogonal multiple access (NOMA) schemes. The problem of jointly optimizing the bit allocation for uplink and downlink communication as well as for computing at the UAV, along with the cloudlet's trajectory under latency and UAV's energy budget constraints is formulated and addressed by leveraging successive convex approximation (SCA) strategies. Numerical results demonstrate the significant energy savings that can be accrued by means of the proposed joint optimization of bit allocation and cloudlet's trajectory as compared to local mobile execution as well as to partial optimization approaches that design only the bit allocation or the cloudlet's trajectory.Comment: 14 pages, 5 figures, 2 tables, IEEE Transactions on Vehicular Technolog
    • ā€¦
    corecore