
A Component-based Model and Language
for Wireless Sensor Network Applications

Alan Dearle, Dharini Balasubramaniam, Jonathan Lewis, Ron Morrison

School of Computer Science, University of St Andrews
{al, dharini, jonl, ron}@cs.st-andrews.ac.uk

Abstract
Wireless sensor networks are often used by experts

in many different fields to gather data pertinent to their
work. Although their expertise may not include
software engineering, these users are expected to
produce low-level software for a concurrent, real-time
and resource-constrained computing environment. In
this paper, we introduce a component-based model for
wireless sensor network applications and a language,
Insense, for supporting the model. An application is
modelled as a composition of interacting components
and the application model is preserved in the Insense
implementation where active components communicate
via typed channels. The primary design criteria for
Insense include: to abstract over low-level concerns
for ease of programming; to permit worst-case space
and time usage of programs to be determinable; to
support the fractal composition of components whilst
eliminating implicit dependencies between them; and,
to facilitate the construction of low footprint programs
suitable for resource-constrained devices. This paper
presents an overview of the component model and
Insense, and demonstrates how they meet the above
criteria.

1. Introduction

A wireless sensor network (WSN) [1] consists of a
number of devices or nodes, which communicate and
cooperate to achieve a common goal. These devices are
typically small and resource constrained. The goal of a
WSN application is customarily the generation,
transmission and processing of data pertinent to the
application domain.

The users (and programmers) of WSNs are often
not software engineers but domain experts in other
fields, such as ecology or geology, who use WSNs to
obtain data relevant to their work. Despite this
disparity in expertise, they are required to operate in a
concurrent, real-time, resource constrained computing
environment that is potentially complex and hard to
program correctly.

Figure 1 shows a UML deployment diagram
representing a simple application that periodically
captures temperature readings from a temperature
sensor, averages the captured readings and sends the
averages to a temperature logger. The application
comprises three component instances joined by two
channels.

Figure 1: Temperature Deployment Diagram

In most systems the process of creating an
implementation involves a loss of application model
integrity with many concepts and concerns impacting
the design. As concerns, such as memory management
and concurrency control, are addressed, the
implementation diverges from the original application
model.

In this position paper, we propose a simple yet
powerful component-based model and a new language,
Insense [2], which realises the model, in an attempt to
simplify the development of WSN applications. In our
model the basic building block is the component. A
component:
• has no implicit dependencies on other components;
• is stateful but there is no sharing of any state

between components;
• has a single thread of control and a behaviour that

specifies the component’s semantics; and
• may be composed with other components using

Fractal composition [3] – a component can
instantiate other components (which cannot be seen
from outside the instantiating component).
As we demonstrate in this paper, the model and

language contain appropriate abstractions which

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/9821423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

obviate the need for application programmers to deal
with low-level issues such as memory management and
concurrency control. Our model uses channels to
provide a single typed communication mechanism,
which abstracts over both communication and
synchronisation. By contrast, many examples of WSN
programming found in the literature involve writing
programs to poll devices, set time-outs and perform
low-level synchronisation between processes and
devices.

The remainder of the paper describes how the
component model is realised in Insense, and briefly
outlines the major implementation challenges.

2. The Insense language

The Insense language is a realisation of the
component-based model described above. As such,
Insense applications are constructed as compositions of
active components, which communicate via channels.
Our key aim is to reduce the complexity of WSN
applications by abstracting over programming
complexities such as synchronisation, memory
management and event-driven programming.

Insense integrates a number of novel features
including: permitting worst-case space and time usage
of programs to be determinable; supporting the fractal
composition of components using the dependency
injection pattern [4], whilst eliminating implicit
dependencies between components; and, facilitating
the construction of low footprint programs suitable for
execution on devices with constrained resources.

In Insense, a component is a stateful object and
contains updatable locations. These locations may only
be accessed by the locus of control that is implicitly
defined by the component’s behaviour, which is akin to
a thread that never leaves the component. Thus each
component is a unit of concurrent computation. The
elimination of sharing ensures that accidental race
conditions and other synchronisation errors cannot
occur.

A component can create instances of other
components, and thus components can be arranged in a
Fractal pattern. Due to the encapsulation rules,
components created inside a component can only be
referenced by their creator. To both preserve
architectural decisions in the implementation and
ensure that unintended sharing of variables cannot
occur, a component cannot reference any external data
objects or locations. To enforce this, the only sharable
data structure in the language is the channel through
which all inter-component communication takes place.

In Insense, channels are typed and directional. All
values in the language may be passed along a channel
including components and other channels.

Furthermore, arbitrary values may be encoded in an
infinite union type called any [5] and passed across
suitably typed channels. Channel communication is
synchronous. Send operations block until the message
is received and receive calls block when there is no
input to be read.

The type of a component is represented by an
interface that describes the names and types of the
channels presented by the component for
communication. The TempAverager component from
Figure 1 presents two channels: an in channel of type
integer and an out channel also of type integer. A
component receives values of the appropriate type
from an in channel, and sends values on an out
channel.

The type of the interface presented by
TempAverager in Figure 1 may be written as:

type averagerIF is interface(in integer input;
 out integer output)

Figure 2: A Component Interface Type

Note that an interface declaration merely describes

the type of a component; it does not define the
component or its behaviour. A component definition
has four parts: a specification of the interface it
presents, definitions of component variables, at least
one constructor, and exactly one behaviour.

component TempAverager presents
 averagerIF {
 size = 4
 store = new integer[size] of 0
 index = 0
 constructor() {
 }
 behaviour {
 receive next from input
 store[index] := next
 index := index + 1
 if(index >= size) {
 send average(store) on output
 index := 0
 } } }

Figure 3: The TempAverager Component

Figure 3 shows the definition of the TempAverager
component from Figure 1. A component definition is
introduced by the keyword component which is
followed by the component’s name. The name of the
component is always followed by the keyword
presents, which must be followed by a (comma-

separated) list of the interfaces it presents.
TempAverager presents a single interface of type
averagerIF as shown in Figure 2. The names of all
channels in the presented interfaces are implicitly
declared. In this example, the names input and output
are brought into scope and are of types “in integer” and
“out integer” respectively.

Component instances are created by calling one of
the component’s constructors. Like constructors in
Java, they may perform arbitrary computation but are
normally used to perform constructor dependency
injection by initialising component variables.

The keyword behaviour introduces the behaviour of
the component, which repeats until the component is
stopped either by itself or by another component using
the keyword stop. In Figure 3 the behaviour first reads
integers from the input channel using the receive from
construct. It stores the received values in an array, and
when four readings have been received it writes the
average on the output channel. Note that the
component contains the definitions of component-local
variables called size, store and index. In Insense the
types of declarations are inferred by the compiler and
the “=” symbol is used to initialise the variable with a
value. Variables are local to the component in which
they are declared and may not be accessed outwith this
component. The scope of component variables is from
the point they are declared until the end of the
component.

The behaviour of an instance begins execution as
soon as the instance is created. Communication
between components may be initiated by connecting
the output of one component instance to the input of
another. To illustrate instantiation and connection, we
define instances of components from Figure 1 and
connect them, as shown in Figure 4.

sensor = new TempSensor ()
averager = new TempAverager ()
logger = new TempLogger ()
connect sensor.output to averager.input
connect averager.output to logger.input

Figure 4: Creating and Connecting Components

This would complete the assembly of three
components shown in Figure 1.

Since there is no shared store in Insense programs,
channels are the only mechanism by which concurrent
loci of execution (component behaviours) may
synchronise and interact. While the semantics of
individual send and receive operations are
deterministic, non-determinism occurs in the language
since multiple output channels may be connected to a

single input and vice versa. Thus the order in which
messages are communicated is determined by
scheduling.

Figure 5: The Communication Topology

Figure 5 shows an example of a connection

topology where an output channel cout in component A
is connected to input channels cin in both components
D and E. Similarly the input channel cin in component
E is connected to output channels cout in components
A, B and C. The ability to connect multiple input and
output channels enables the specification of complex
communication topologies.

select {
 receive x from chan1 when p > 7 : p := x
 receive y from chan2 when p < 7 : p := y
 receive z from chan3: p := z
 default: p := 1}

Figure 6: Non-deterministic Select

Insense supports the select construct, a powerful
guarded non-deterministic selection over multiple
channels, an example of which is shown in Figure 6.
The semantics of the construct is perhaps best
explained with this example. The select clause non-
deterministically reads from one of the three channels
chan1, chan2 and chan3.

A select arm is eligible for execution only if an
input is available on the channel specified in the arm
and the (optional) when clause associated with the arm
evaluates to true. If none of the arms are eligible for
execution, the (optional) default is executed. If no
default is specified, and no arms are eligible for
execution, the construct blocks until an input is
available on at least one of the arms.

Insense supports the following additional control
constructs: if-then-else and switch statements for
choice, a bounded for loop for iteration and a try-
except clause for exception handling.

For WSN programming, Insense provides bindings
between the language and the hardware platform on
which it is executing. Predefined components are used

to model hardware with their interface representing
inputs to and outputs from devices. For example, a
TMote Sky might be modelled as a component with
channels representing the temperature, humidity and
light sensors.

Finally, in a resource-constrained environment that
typifies WSN applications, it is important to be able to
reason about the space and time usage of programs. In
Insense, the space requirements of components, and
consequently those of Insense programs, are statically
determinable. Thus it is possible to reason about there
being enough space resources to run a program prior to
its execution or prior to changes being made when
programs are evolved. Similarly, it is possible to
reason about the time bounds of components so that
(soft) real-time schedules may be adhered to.

3. Implementation

The first version of the Insense compiler is written
in Java and generates C source code suitable for
compilation by gcc. The code generated for an Insense
component defines a factory function for a C object
which follows the Microsoft COM component pattern
described by Box [6]. Each Insense component
logically extends an object called IComponent_data as
shown in Figure 7.

Each component contains a pointer to the functions
that operate upon it and a pointer to the process
implementing the behaviour of that component. The
functions defined in the function table include the
component’s behaviour.

typedef struct IComponent_data {
 struct IComponent_funcs *funcs;
 struct process *process_pntr;
 struct IComponent_data *blocked;
 // Type specific data below here
} *ICompPNTR, ICompStruct;

Figure 7: IComponent Implementation

For each programmer-defined component a C type

which logically extends IComponent_data is defined.
Whenever an Insense component is created during
execution, an instance of one of these structs is created
by the appropriate constructor. It contains fields for all
the variables defined in the component. Since Insense
functions may not allocate space, this struct statically
defines the total space budget for the component and
no additional stack or heap space needs to be allocated.
The runtime representation of an instance of the
TempAverager component shown in Figure 3 is shown

in Figure 8. As in COM, the function table (VTBL) is
shared by all instances of the component.

Note that space is statically allocated for (pointers
to) the channels used, the component’s global variables
and the behaviour’s local variables, obviating the need
for a stack. Note also that the creation of a component
is an inexpensive operation akin to object creation in a
language such as Java.

As can be observed in Figure 8, the worst case
space usage for each component may be statically
calculated by adding the space requirements of each of
the component’s local and global variables and adding
the space required for the process structure and each of
the component’s channels.

The worst-case time usage may be calculated by
inspection of the component’s behaviour. Since no
recursive functions or while loops are provided by the
language, this is again a simple calculation.

TempAverager

TempAveragerFuncs

behaviour()

getInput()

setInput()

getOutput()
setOutput()

input output index next sizestore

channel
channel

integer[]process

Figure 8: TempAverager Run-time Structure

We now turn our attention to the implementation of
channels before returning to components and
concurrency.

Each Insense channel is implemented by two half
channels with each half channel being owned by the
Insense component in which it was declared. The two-
part implementation of channels is required in order to
allow the possibility of a number of output channels
being connected to a single input channel and vice
versa, as shown in Figure 5.

Each half channel contains five fields:
• a buffer for storing one item of the channel type;
• ready and nd_received flags which indicate whether

their owner is ready to communicate and whether
data was received during a select respectively;

• a list of pointers, called connections, to the half
channels to which the half channel is connected;

• two binary semaphores: one called mutex which
serialises access to the half channel and;

• another called blocked upon which senders and
receivers may block.
When a channel is declared in the language, a

corresponding half channel is created in the
implementation. Whenever a connection is made, a
pointer is added to each of the lists pointing to the
corresponding half channel.

Insense supports four operations on channels:
connection, disconnection, send and receive (with non-
deterministic selection being a special case of receive).
When a connection is established, each half channel is
locked in turn using the mutex. Next a reference to the
corresponding half channel is added to the connections
list and the mutex released. Disconnection traverses the
connections list and dissolves the bi-directional link
between the half channels.

send(data : int, half_channel cout) {
 wait(cout.mutex)
 set(cout.ready) // signal sender is ready
 signal(cout.mutex)
 foreach(halfchan match in cout.connections)
 {
 wait(match.mutex) // start with receiver
 if(match.ready) { // a receiver is ready
 match.buffer = data // copy to receiver
 unset(match.ready) // rcvr matched
 set(match.nd_received) // used by selectors
 signal(match.blocked) // let rcvr run
 signal(match.mutex) // finished with rcvr
 wait(cout.mutex) // got match so
 unset(cout.ready) // clear ready
 signal(cout.mutex)
 return
 }
 signal(match.mutex) // finished with rcvr
 }
 cout.buffer = data // save in sender buffer
 wait(cout.blocked)} // block sender
}

Figure 9: The Send Algorithm

The most interesting operations are the send and the

receive, shown in Figures 9 and 10 respectively. They
are almost symmetric. Both operations attempt to find
a waiting component in the list of connections with the
receiver looking for a waiting sender and vice-versa. If
no such match is found the sender or receiver block on
the blocked semaphore. We informally demonstrate the
correctness of these operations. If the sender is forced
to wait (due to no receiver being ready), the datum
being sent is stored in the sender’s buffer. It is copied
into the receiver’s buffer when a receiver attempts to

find a match. Conversely if a receiver is forced to
block, the sender copies the datum into the receiver’s
buffer when it finds a match. In both cases the datum
ends up in the receiver’s buffer. Both operations set the
owner’s ready flag whose update is protected by a
mutex. This flag is either cleared during the operation,
if a match is found, or by the corresponding operation.

If an operation is forced to block, it does so on the
owner’s blocked semaphore. In this case it can be seen
by inspection that no semaphores are left set. When a
thread does wait on blocked it is always after the ready
flag has been set, after the half channels in the
connections list have been checked and, in the case of
the sender, when the data is in the send buffer. When a
match is made, the ready flag of the waiting process is
cleared and the data is copied to the appropriate buffer.

receive(half_channel cin) {
 wait(cin.mutex)
 set(cin.ready) // signal receiver ready
 signal(cin.mutex)
 foreach(halfchan match in cin.connections)
 {
 wait(match.mutex)) // start with sender
 if(match.ready) { // a sender is ready
 cin.buffer = match.buffer // copy from sndr
 unset(match.ready) // sndr matched

 signal(match.blocked) // let sender run
 signal(match.mutex) // finished with sndr
 wait(cin.mutex) // got match so
 unset(cin.ready) // clear ready
 signal(cin.mutex)
 return
 }
 signal(match.mutex) // finished with sender
 }

 wait(cin.blocked) } // block receiver
}

Figure 10: The Receive Algorithm

The non-deterministic select operation is

interoperable with the send operation shown in Figure
9, and has three stages of execution. The first stage
establishes select arms that are eligible for execution
and constructs a list of channels and integer pairs
representing these arms. If the list is not empty a
random list entry is chosen and used to execute the
corresponding receive operation and right hand side of
the arm. If no arms were eligible for execution in the
first stage, the second stage executes the default arm if
one has been specified. If there is no default arm the

last stage sets a ready flag that is temporarily shared by
each channel specified in the select arms for which the
guard conditions in the when clause are satisfied. The
operation then un-sets all nd_received flags and blocks
until data is sent on one of the channels by waiting on a
blocked semaphore that is also temporarily shared by
the channels. The nd_received flag is used by the select
code to determine from which channel a datum was
received and to execute the appropriate code. The last
stage completes by restoring the original blocked
semaphores and ready flags in each half channel.

4. Operating system interaction

We have implemented Insense using the Contiki
operating system [7] with each Insense behaviour
mapped onto a Contiki lightweight process.

Contiki protothreads [8] (and the lightweight
process mechanism built above them) do not support
automatic (stack) variables in C. However, this does
not impact the Insense implementation since space is
allocated for component variables when component
instances are constructed.

The unit of scheduling is an Insense component and
when a component is scheduled the component state
needs to be recovered. We have achieved this by
encoding this address in the process name which
obviates the need to modify the Contiki scheduler.
Whenever a process is scheduled the component state
is inexpensively extracted from the process name and
assigned to a variable called this. All component
variables are referenced using this pointer.

5. Conclusions

We have introduced a component-based model and
a language called Insense, for developing wireless
sensor network applications. WSN applications are
often concurrent, real-time, and resource constrained.
The primary aim of this work is to provide a simple
programming model for such systems, which abstracts
over the complexity of the execution environment and
associated low-level programming concerns.

This approach preserves architectural design
decisions throughout the implementation that are often
lost in the complexities required to deal with low-level
concerns. This yields applications that are independent
of specific operating systems and hardware platforms.

The language is also designed to allow the
calculation of worst-case space and time usage of
programs. The requirements of an Insense application
can be statically determined, reducing the possibility of
execution time errors.

Components, which are the main building blocks of
Insense applications, interact with one another by
communicating via typed channels. This
communication model abstracts over concurrency and
synchronisation concerns, simplifying application
development. Fractal composition of components is
facilitated by using the dependency injection pattern
whilst eliminating dependencies between components.

We have demonstrated an efficient implementation
of the channel concept by using half-channels to deal
with rich channel connection topologies.

At this stage we offer the Insense language and
implementation as a proof of concept. A working
implementation of the language exists, and is being
used as the basis for further development and
evaluation. The next stage in this work is to design
evaluation metrics in terms of ease of programming,
flexibility, applicability, portability and efficiency.

Acknowledgments

This work is supported by the EPSRC grant entitled
DIAS-MC (Design, Implementation and Adaptation of
Sensor Networks through Multi-dimensional Co-
design) EP/C014782/1.

References

[1] C.S Raghavendra, K.Sivalingam, T. Znati, (eds):

Wireless Sensor Networks. Kluwer Academic
Press (2004).

[2] A. Dearle, "Insense Manual," University of St
Andrews Report, 2007. URL: http://dias.dcs.st-
and.ac.uk/inSense/manual.pdf

[3] E. Bruneton, T. Coupaye, and J. B. Stefani, "The
Fractal Component Model," ObjectWeb, 2004.

[4] M. Fowler, "Inversion of Control Containers and
the Dependency Injection Pattern," 2004.

[5] R. Morrison, A. Brown, R. Carrick, R. Connor,
A. Dearle, and M. Atkinson, "Polymorphism,
Persistence and Software Reuse in a Strongly
Typed Object Oriented Environment," Software
Engineering Journal, pp. 199-204, 1987.

[6] D. Box, Essential COM. Addison-Wesley, 1997.
[7] A. Dunkels, B. Gronvall, and T. Voigt, "Contiki -

a lightweight and flexible operating system for
tiny networked sensors," presented at Proceedings
of The First IEEE Workshop on Embedded
Networked Sensors, Tampa, Florida, 2004.

[8] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali,
"Protothreads: Simplifying Event-Driven
Programming of Memory-Constrained Embedded
Systems," presented at Proceedings ACM SenSys
2006, Boulder, Colorado, 2006.

