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Abstract 
Wireless sensor networks are often used by experts 

in many different fields to gather data pertinent to their 
work. Although their expertise may not include 
software engineering, these users are expected to 
produce low-level software for a concurrent, real-time 
and resource-constrained computing environment. In 
this paper, we introduce a component-based model for 
wireless sensor network applications and a language, 
Insense, for supporting the model. An application is 
modelled as a composition of interacting components 
and the application model is preserved in the Insense 
implementation where active components communicate 
via typed channels. The primary design criteria for 
Insense include: to abstract over low-level concerns 
for ease of programming; to permit worst-case space 
and time usage of programs to be determinable; to 
support the fractal composition of components whilst 
eliminating implicit dependencies between them; and, 
to facilitate the construction of low footprint programs 
suitable for resource-constrained devices. This paper 
presents an overview of the component model and 
Insense, and demonstrates how they meet the above 
criteria. 
 
1. Introduction 
 

A wireless sensor network (WSN) [1] consists of a 
number of devices or nodes, which communicate and 
cooperate to achieve a common goal. These devices are 
typically small and resource constrained. The goal of a 
WSN application is customarily the generation, 
transmission and processing of data pertinent to the 
application domain. 

The users (and programmers) of WSNs are often 
not software engineers but domain experts in other 
fields, such as ecology or geology, who use WSNs to 
obtain data relevant to their work. Despite this 
disparity in expertise, they are required to operate in a 
concurrent, real-time, resource constrained computing 
environment that is potentially complex and hard to 
program correctly. 

Figure 1 shows a UML deployment diagram 
representing a simple application that periodically 
captures temperature readings from a temperature 
sensor, averages the captured readings and sends the 
averages to a temperature logger. The application 
comprises three component instances joined by two 
channels. 

 

 
 

Figure 1: Temperature Deployment Diagram 
 

In most systems the process of creating an 
implementation involves a loss of application model 
integrity with many concepts and concerns impacting 
the design. As concerns, such as memory management 
and concurrency control, are addressed, the 
implementation diverges from the original application 
model. 

In this position paper, we propose a simple yet 
powerful component-based model and a new language, 
Insense [2], which realises the model, in an attempt to 
simplify the development of WSN applications. In our 
model the basic building block is the component. A 
component:  
• has no implicit dependencies on other components; 
• is stateful but there is no sharing of any state 

between components; 
• has a single thread of control and a behaviour that 

specifies the component’s semantics; and 
• may be composed with other components using 

Fractal composition [3] – a component can 
instantiate other components (which cannot be seen 
from outside the instantiating component). 
As we demonstrate in this paper, the model and 

language contain appropriate abstractions which 
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obviate the need for application programmers to deal 
with low-level issues such as memory management and 
concurrency control. Our model uses channels to 
provide a single typed communication mechanism, 
which abstracts over both communication and 
synchronisation. By contrast, many examples of WSN 
programming found in the literature involve writing 
programs to poll devices, set time-outs and perform 
low-level synchronisation between processes and 
devices. 

The remainder of the paper describes how the 
component model is realised in Insense, and briefly 
outlines the major implementation challenges.  
 
2. The Insense language 

The Insense language is a realisation of the 
component-based model described above. As such, 
Insense applications are constructed as compositions of 
active components, which communicate via channels. 
Our key aim is to reduce the complexity of WSN 
applications by abstracting over programming 
complexities such as synchronisation, memory 
management and event-driven programming. 

Insense integrates a number of novel features 
including: permitting worst-case space and time usage 
of programs to be determinable; supporting the fractal 
composition of components using the dependency 
injection pattern [4], whilst eliminating implicit 
dependencies between components; and, facilitating 
the construction of low footprint programs suitable for 
execution on devices with constrained resources. 

In Insense, a component is a stateful object and 
contains updatable locations. These locations may only 
be accessed by the locus of control that is implicitly 
defined by the component’s behaviour, which is akin to 
a thread that never leaves the component. Thus each 
component is a unit of concurrent computation. The 
elimination of sharing ensures that accidental race 
conditions and other synchronisation errors cannot 
occur.  

A component can create instances of other 
components, and thus components can be arranged in a 
Fractal pattern. Due to the encapsulation rules, 
components created inside a component can only be 
referenced by their creator. To both preserve 
architectural decisions in the implementation and 
ensure that unintended sharing of variables cannot 
occur, a component cannot reference any external data 
objects or locations. To enforce this, the only sharable 
data structure in the language is the channel through 
which all inter-component communication takes place. 

In Insense, channels are typed and directional. All 
values in the language may be passed along a channel 
including components and other channels. 

Furthermore, arbitrary values may be encoded in an 
infinite union type called any [5] and passed across 
suitably typed channels. Channel communication is 
synchronous. Send operations block until the message 
is received and receive calls block when there is no 
input to be read. 

The type of a component is represented by an 
interface that describes the names and types of the 
channels presented by the component for 
communication. The TempAverager component from 
Figure 1 presents two channels: an in channel of type 
integer and an out channel also of type integer. A 
component receives values of the appropriate type 
from an in channel, and sends values on an out 
channel. 

The type of the interface presented by 
TempAverager in Figure 1 may be written as: 

type averagerIF is interface( in integer input; 
          out integer output )  

Figure 2: A Component Interface Type 
 
Note that an interface declaration merely describes 

the type of a component; it does not define the 
component or its behaviour. A component definition 
has four parts: a specification of the interface it 
presents, definitions of component variables, at least 
one constructor, and exactly one behaviour. 

component TempAverager presents  
     averagerIF { 
 size = 4 
 store = new integer[size] of 0 
 index = 0 
 constructor() { 
 } 
 behaviour { 
  receive next from input 
  store[index] := next 
  index := index + 1 
  if( index >= size ) { 
   send average(store) on output 
   index := 0 
  } } } 

Figure 3: The TempAverager Component 
 

Figure 3 shows the definition of the TempAverager 
component from Figure 1. A component definition is 
introduced by the keyword component which is 
followed by the component’s name. The name of the 
component is always followed by the keyword 
presents, which must be followed by a (comma-



 

separated) list of the interfaces it presents. 
TempAverager presents a single interface of type 
averagerIF as shown in Figure 2. The names of all 
channels in the presented interfaces are implicitly 
declared. In this example, the names input and output 
are brought into scope and are of types “in integer” and 
“out integer” respectively. 

Component instances are created by calling one of 
the component’s constructors. Like constructors in 
Java, they may perform arbitrary computation but are 
normally used to perform constructor dependency 
injection by initialising component variables. 

The keyword behaviour introduces the behaviour of 
the component, which repeats until the component is 
stopped either by itself or by another component using 
the keyword stop. In Figure 3 the behaviour first reads 
integers from the input channel using the receive from 
construct. It stores the received values in an array, and 
when four readings have been received it writes the 
average on the output channel. Note that the 
component contains the definitions of component-local 
variables called size, store and index. In Insense the 
types of declarations are inferred by the compiler and 
the “=” symbol is used to initialise the variable with a 
value. Variables are local to the component in which 
they are declared and may not be accessed outwith this 
component. The scope of component variables is from 
the point they are declared until the end of the 
component.  

The behaviour of an instance begins execution as 
soon as the instance is created. Communication 
between components may be initiated by connecting 
the output of one component instance to the input of 
another. To illustrate instantiation and connection, we 
define instances of components from Figure 1 and 
connect them, as shown in Figure 4. 

sensor = new TempSensor () 
averager = new TempAverager () 
logger = new TempLogger () 
connect sensor.output to averager.input 
connect averager.output to logger.input 

Figure 4: Creating and Connecting Components 
 

This would complete the assembly of three 
components shown in Figure 1. 

Since there is no shared store in Insense programs, 
channels are the only mechanism by which concurrent 
loci of execution (component behaviours) may 
synchronise and interact. While the semantics of 
individual send and receive operations are 
deterministic, non-determinism occurs in the language 
since multiple output channels may be connected to a 

single input and vice versa. Thus the order in which 
messages are communicated is determined by 
scheduling. 

 

 
 

Figure 5: The Communication Topology 
 
Figure 5 shows an example of a connection 

topology where an output channel cout in component A 
is connected to input channels cin in both components 
D and E. Similarly the input channel cin in component 
E is connected to output channels cout in components 
A, B and C. The ability to connect multiple input and 
output channels enables the specification of complex 
communication topologies. 

select { 
 receive x from chan1 when p > 7 : p := x 
 receive y from chan2 when p < 7 : p := y 
 receive z from chan3: p := z 
 default: p := 1} 

Figure 6: Non-deterministic Select 
 

Insense supports the select construct, a powerful 
guarded non-deterministic selection over multiple 
channels, an example of which is shown in Figure 6. 
The semantics of the construct is perhaps best 
explained with this example. The select clause non-
deterministically reads from one of the three channels 
chan1, chan2 and chan3. 

A select arm is eligible for execution only if an 
input is available on the channel specified in the arm 
and the (optional) when clause associated with the arm 
evaluates to true. If none of the arms are eligible for 
execution, the (optional) default is executed. If no 
default is specified, and no arms are eligible for 
execution, the construct blocks until an input is 
available on at least one of the arms. 

Insense supports the following additional control 
constructs: if-then-else and switch statements for 
choice, a bounded for loop for iteration and a try-
except clause for exception handling. 

For WSN programming, Insense provides bindings 
between the language and the hardware platform on 
which it is executing. Predefined components are used 



 

to model hardware with their interface representing 
inputs to and outputs from devices. For example, a 
TMote Sky might be modelled as a component with 
channels representing the temperature, humidity and 
light sensors. 

Finally, in a resource-constrained environment that 
typifies WSN applications, it is important to be able to 
reason about the space and time usage of programs. In 
Insense, the space requirements of components, and 
consequently those of Insense programs, are statically 
determinable. Thus it is possible to reason about there 
being enough space resources to run a program prior to 
its execution or prior to changes being made when 
programs are evolved. Similarly, it is possible to 
reason about the time bounds of components so that 
(soft) real-time schedules may be adhered to. 
 
3. Implementation 
 

The first version of the Insense compiler is written 
in Java and generates C source code suitable for 
compilation by gcc. The code generated for an Insense 
component defines a factory function for a C object 
which follows the Microsoft COM component pattern 
described by Box [6]. Each Insense component 
logically extends an object called IComponent_data as 
shown in Figure 7.  

Each component contains a pointer to the functions 
that operate upon it and a pointer to the process 
implementing the behaviour of that component. The 
functions defined in the function table include the 
component’s behaviour. 

typedef struct IComponent_data { 
 struct IComponent_funcs *funcs; 
 struct process *process_pntr; 
 struct IComponent_data *blocked; 
 // Type specific data below here 
} *ICompPNTR, ICompStruct; 

 
Figure 7: IComponent Implementation 

 
For each programmer-defined component a C type 

which logically extends IComponent_data is defined. 
Whenever an Insense component is created during 
execution, an instance of one of these structs is created 
by the appropriate constructor. It contains fields for all 
the variables defined in the component. Since Insense 
functions may not allocate space, this struct statically 
defines the total space budget for the component and 
no additional stack or heap space needs to be allocated. 
The runtime representation of an instance of the 
TempAverager component shown in Figure 3 is shown 

in Figure 8. As in COM, the function table (VTBL) is 
shared by all instances of the component. 

Note that space is statically allocated for (pointers 
to) the channels used, the component’s global variables 
and the behaviour’s local variables, obviating the need 
for a stack. Note also that the creation of a component 
is an inexpensive operation akin to object creation in a 
language such as Java. 

As can be observed in Figure 8, the worst case 
space usage for each component may be statically 
calculated by adding the space requirements of each of 
the component’s local and global variables and adding 
the space required for the process structure and each of 
the component’s channels. 

The worst-case time usage may be calculated by 
inspection of the component’s behaviour. Since no 
recursive functions or while loops are provided by the 
language, this is again a simple calculation. 
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Figure 8: TempAverager Run-time Structure 
 

We now turn our attention to the implementation of 
channels before returning to components and 
concurrency.  

Each Insense channel is implemented by two half 
channels with each half channel being owned by the 
Insense component in which it was declared. The two-
part implementation of channels is required in order to 
allow the possibility of a number of output channels 
being connected to a single input channel and vice 
versa, as shown in Figure 5. 

Each half channel contains five fields: 
• a buffer for storing one item of the channel type; 
• ready and nd_received flags which indicate whether 

their owner is ready to communicate and whether 
data was received during a select respectively; 

• a list of pointers, called connections, to the half 
channels to which the half channel is connected;  

• two binary semaphores: one called mutex which 
serialises access to the half channel and; 



 

• another called blocked upon which senders and 
receivers may block.  
When a channel is declared in the language, a 

corresponding half channel is created in the 
implementation. Whenever a connection is made, a 
pointer is added to each of the lists pointing to the 
corresponding half channel. 

Insense supports four operations on channels: 
connection, disconnection, send and receive (with non-
deterministic selection being a special case of receive). 
When a connection is established, each half channel is 
locked in turn using the mutex. Next a reference to the 
corresponding half channel is added to the connections 
list and the mutex released. Disconnection traverses the 
connections list and dissolves the bi-directional link 
between the half channels. 

 
send( data : int, half_channel cout ) { 
 wait( cout.mutex ) 
 set( cout.ready ) // signal sender is ready 
 signal( cout.mutex ) 
 foreach( halfchan match in cout.connections ) 
 { 
  wait( match.mutex ) // start with receiver 
  if( match.ready ) { // a receiver is ready 
   match.buffer = data // copy to receiver 
   unset( match.ready ) // rcvr matched 
   set(match.nd_received) // used by selectors 
   signal( match.blocked ) // let rcvr run 
   signal( match.mutex ) // finished with rcvr 
     wait( cout.mutex ) // got match so 
   unset( cout.ready )  // clear ready 
   signal( cout.mutex ) 
   return 
  } 
  signal( match.mutex ) // finished with rcvr 
  } 
 cout.buffer = data // save in sender buffer 
 wait( cout.blocked )} // block sender 
} 

Figure 9: The Send Algorithm 
 
The most interesting operations are the send and the 

receive, shown in Figures 9 and 10 respectively. They 
are almost symmetric. Both operations attempt to find 
a waiting component in the list of connections with the 
receiver looking for a waiting sender and vice-versa. If 
no such match is found the sender or receiver block on 
the blocked semaphore. We informally demonstrate the 
correctness of these operations. If the sender is forced 
to wait (due to no receiver being ready), the datum 
being sent is stored in the sender’s buffer. It is copied 
into the receiver’s buffer when a receiver attempts to 

find a match. Conversely if a receiver is forced to 
block, the sender copies the datum into the receiver’s 
buffer when it finds a match. In both cases the datum 
ends up in the receiver’s buffer. Both operations set the 
owner’s ready flag whose update is protected by a 
mutex. This flag is either cleared during the operation, 
if a match is found, or by the corresponding operation. 

If an operation is forced to block, it does so on the 
owner’s blocked semaphore. In this case it can be seen 
by inspection that no semaphores are left set. When a 
thread does wait on blocked it is always after the ready 
flag has been set, after the half channels in the 
connections list have been checked and, in the case of 
the sender, when the data is in the send buffer. When a 
match is made, the ready flag of the waiting process is 
cleared and the data is copied to the appropriate buffer. 

 
receive( half_channel cin ) { 
 wait( cin.mutex ) 
 set( cin.ready ) // signal receiver ready 
 signal( cin.mutex ) 
 foreach( halfchan match in cin.connections ) 
 { 
  wait( match.mutex ) ) // start with sender 
  if( match.ready ) { // a sender is ready 
   cin.buffer = match.buffer // copy from sndr 
   unset( match.ready ) // sndr matched 
 
   signal( match.blocked ) // let sender run 
   signal( match.mutex )  // finished with sndr 
   wait( cin.mutex ) // got match so 
   unset( cin.ready ) // clear ready 
   signal( cin.mutex ) 
   return 
  } 
  signal( match.mutex ) // finished with sender 
 } 
 
 wait( cin.blocked ) } // block receiver 
} 

Figure 10: The Receive Algorithm 
 
The non-deterministic select operation is 

interoperable with the send operation shown in Figure 
9, and has three stages of execution. The first stage 
establishes select arms that are eligible for execution 
and constructs a list of channels and integer pairs 
representing these arms. If the list is not empty a 
random list entry is chosen and used to execute the 
corresponding receive operation and right hand side of 
the arm. If no arms were eligible for execution in the 
first stage, the second stage executes the default arm if 
one has been specified. If there is no default arm the 



 

last stage sets a ready flag that is temporarily shared by 
each channel specified in the select arms for which the 
guard conditions in the when clause are satisfied. The 
operation then un-sets all nd_received flags and blocks 
until data is sent on one of the channels by waiting on a 
blocked semaphore that is also temporarily shared by 
the channels. The nd_received flag is used by the select 
code to determine from which channel a datum was 
received and to execute the appropriate code. The last 
stage completes by restoring the original blocked 
semaphores and ready flags in each half channel. 

 
4. Operating system interaction 
 

We have implemented Insense using the Contiki 
operating system [7] with each Insense behaviour 
mapped onto a Contiki lightweight process.  

Contiki protothreads [8] (and the lightweight 
process mechanism built above them) do not support 
automatic (stack) variables in C. However, this does 
not impact the Insense implementation since space is 
allocated for component variables when component 
instances are constructed. 

The unit of scheduling is an Insense component and 
when a component is scheduled the component state 
needs to be recovered. We have achieved this by 
encoding this address in the process name which 
obviates the need to modify the Contiki scheduler. 
Whenever a process is scheduled the component state 
is inexpensively extracted from the process name and 
assigned to a variable called this. All component 
variables are referenced using this pointer.  
 
5. Conclusions 
 

We have introduced a component-based model and 
a language called Insense, for developing wireless 
sensor network applications. WSN applications are 
often concurrent, real-time, and resource constrained. 
The primary aim of this work is to provide a simple 
programming model for such systems, which abstracts 
over the complexity of the execution environment and 
associated low-level programming concerns. 

This approach preserves architectural design 
decisions throughout the implementation that are often 
lost in the complexities required to deal with low-level 
concerns. This yields applications that are independent 
of specific operating systems and hardware platforms. 

The language is also designed to allow the 
calculation of worst-case space and time usage of 
programs. The requirements of an Insense application 
can be statically determined, reducing the possibility of 
execution time errors. 

Components, which are the main building blocks of 
Insense applications, interact with one another by 
communicating via typed channels. This 
communication model abstracts over concurrency and 
synchronisation concerns, simplifying application 
development. Fractal composition of components is 
facilitated by using the dependency injection pattern 
whilst eliminating dependencies between components. 

We have demonstrated an efficient implementation 
of the channel concept by using half-channels to deal 
with rich channel connection topologies. 

At this stage we offer the Insense language and 
implementation as a proof of concept. A working 
implementation of the language exists, and is being 
used as the basis for further development and 
evaluation. The next stage in this work is to design 
evaluation metrics in terms of ease of programming, 
flexibility, applicability, portability and efficiency. 
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