41,191 research outputs found

    Innate immunity and neuroinflammation

    Get PDF
    Copyright © 2013 Abhishek Shastri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Inflammation of central nervous system (CNS) is usually associated with trauma and infection. Neuroinflammation occurs in close relation to trauma, infection, and neurodegenerative diseases. Low-level neuroinflammation is considered to have beneficial effects whereas chronic neuroinflammation can be harmful. Innate immune system consisting of pattern-recognition receptors, macrophages, and complement system plays a key role in CNS homeostasis following injury and infection. Here, we discuss how innate immune components can also contribute to neuroinflammation and neurodegeneration

    Visual and Contextual Modeling for the Detection of Repeated Mild Traumatic Brain Injury.

    Get PDF
    Currently, there is a lack of computational methods for the evaluation of mild traumatic brain injury (mTBI) from magnetic resonance imaging (MRI). Further, the development of automated analyses has been hindered by the subtle nature of mTBI abnormalities, which appear as low contrast MR regions. This paper proposes an approach that is able to detect mTBI lesions by combining both the high-level context and low-level visual information. The contextual model estimates the progression of the disease using subject information, such as the time since injury and the knowledge about the location of mTBI. The visual model utilizes texture features in MRI along with a probabilistic support vector machine to maximize the discrimination in unimodal MR images. These two models are fused to obtain a final estimate of the locations of the mTBI lesion. The models are tested using a novel rodent model of repeated mTBI dataset. The experimental results demonstrate that the fusion of both contextual and visual textural features outperforms other state-of-the-art approaches. Clinically, our approach has the potential to benefit both clinicians by speeding diagnosis and patients by improving clinical care

    Porphyromonas gingivalis periodontal infection and its putative links with Alzheimer’s disease

    Get PDF
    Periodontal disease (PD) and Alzheimer’s disease (AD) are inflammatory conditions affecting the global adult population. In the pathogenesis of PD, subgingival complex bacterial biofilm induces inflammation that leads to connective tissue degradation and alveolar bone resorption around the teeth. In health, junctional epithelium seals the gingiva to the tooth enamel, thus preventing bacteria from entering the gingivae. Chronic PD involves major pathogens (Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia) which have an immune armoury that can circumvent host’s immune surveillance to create, and maintain an inflammatory mediator rich, and toxic environment to grow and survive. The neurodegenerative condition, AD is characterised by poor memory and specific hallmark proteins; periodontal pathogens are increasingly being linked with this dementing condition. It is therefore becoming important to understand associations of periodontitis with relevance to late-onset AD. The aim of this review is to discuss the relevance of finding the keystone periodontal pathogen P. gingivalis in AD brains and its plausible contribution to the aetiological hypothesis of this dementing condition

    Exclusive neuronal expression of SUCLA2 in the human brain

    Get PDF
    SUCLA2 encodes the ATP-forming subunit (A-SUCL-) of succinyl-CoA ligase, an enzyme of the citric acid cycle. Mutations in SUCLA2 lead to a mitochondrial disorder manifesting as encephalomyopathy with dystonia, deafness and lesions in the basal ganglia. Despite the distinct brain pathology associated with SUCLA2 mutations, the precise localization of SUCLA2 protein has never been investigated. Here we show that immunoreactivity of A-SUCL- in surgical human cortical tissue samples was present exclusively in neurons, identified by their morphology and visualized by double labeling with a fluorescent Nissl dye. A-SUCL- immunoreactivity co-localized >99% with that of the d subunit of the mitochondrial F0-F1 ATP synthase. Specificity of the anti-A-SUCL- antiserum was verified by the absence of labeling in fibroblasts from a patient with a complete deletion of SUCLA2. A-SUCL- immunoreactivity was absent in glial cells, identified by antibodies directed against the glial markers GFAP and S100. Furthermore, in situ hybridization histochemistry demonstrated that SUCLA2 mRNA was present in Nissl-labeled neurons but not glial cells labeled with S100. Immunoreactivity of the GTP-forming subunit (G-SUCL-) encoded by SUCLG2, or in situ hybridization histochemistry for SUCLG2 mRNA could not be demonstrated in either neurons or astrocytes. Western blotting of post mortem brain samples revealed minor G-SUCL- immunoreactivity that was however, not upregulated in samples obtained from diabetic versus non-diabetic patients, as has been described for murine brain. Our work establishes that SUCLA2 is expressed exclusively in neurons in the human cerebral cortex

    The Progression of β-amyloid Deposition in the Frontal Cortex of the Aged Canine

    Get PDF
    Brains from 41 aged canines (≥10 years of age) were examined immunohistochemically to characterize the laminar distribution and age-related progression of β-amyloid (Aβ) in frontal cortex. We classified the Aβ patterns into four distinct types. Type I was characterized by small, faint deposits of Aβ in deep cortical layers. Type II consisted of diffuse deposits of Aβ mainly in layers V and VI. Type III had both dense plaques in superficial layers, and diffuse deposits in deep layers. Finally, Type IV had solely dense plaques throughout all layers of cortex. We compared the Aβ distribution pattern between the Old canines (10–15 years, n=22) and the Very Old canines (\u3e15 years, n=19). The Old group primarily had negative staining, or Type I and Type II patterns of amyloid deposition (73%). Conversely, the Very Old group had predominantly Types II, III and IV deposits (89.5%), a difference that was significant (Pβ deposition in canine frontal cortex is a progressive age-related process beginning with diffuse deposits in the deep cortical layers followed by the development of deposits in outer layers. In support of this hypothesis, the deeper layer diffuse plaques in the Very Old group of dogs also contain the largest proportion of β-amyloid with an isomerized aspartic acid residue at position 7, indicating that these deposits had been present for some time. We also observed fiber-like Aβ immunoreactivity within regions of diffuse Aβ deposits. These fibers appeared to be degenerating neurites, which were negative for hyperphosphorylated tau. Therefore, these fibers may represent a very early form of neuritic change that precede tau hyperphosphorylation or develop by an alternative pathway

    An Unsupervised Learning Model for Deformable Medical Image Registration

    Full text link
    We present a fast learning-based algorithm for deformable, pairwise 3D medical image registration. Current registration methods optimize an objective function independently for each pair of images, which can be time-consuming for large data. We define registration as a parametric function, and optimize its parameters given a set of images from a collection of interest. Given a new pair of scans, we can quickly compute a registration field by directly evaluating the function using the learned parameters. We model this function using a convolutional neural network (CNN), and use a spatial transform layer to reconstruct one image from another while imposing smoothness constraints on the registration field. The proposed method does not require supervised information such as ground truth registration fields or anatomical landmarks. We demonstrate registration accuracy comparable to state-of-the-art 3D image registration, while operating orders of magnitude faster in practice. Our method promises to significantly speed up medical image analysis and processing pipelines, while facilitating novel directions in learning-based registration and its applications. Our code is available at https://github.com/balakg/voxelmorph .Comment: 9 pages, in CVPR 201

    International Veterinary Epilepsy Task Force recommendations for systematic sampling and processing of brains from epileptic dogs and cats

    Get PDF
    Traditionally, histological investigations of the epileptic brain are required to identify epileptogenic brain lesions, to evaluate the impact of seizure activity, to search for mechanisms of drug-resistance and to look for comorbidities. For many instances, however, neuropathological studies fail to add substantial data on patients with complete clinical work-up. This may be due to sparse training in epilepsy pathology and or due to lack of neuropathological guidelines for companion animals. The protocols introduced herein shall facilitate systematic sampling and processing of epileptic brains and therefore increase the efficacy, reliability and reproducibility of morphological studies in animals suffering from seizures. Brain dissection protocols of two neuropathological centres with research focus in epilepsy have been optimised with regards to their diagnostic yield and accuracy, their practicability and their feasibility concerning clinical research requirements. The recommended guidelines allow for easy, standardised and ubiquitous collection of brain regions, relevant for seizure generation. Tissues harvested the prescribed way will increase the diagnostic efficacy and provide reliable material for scientific investigations

    From single neurons to social brains

    Get PDF
    The manufacture of stone tools is an integral part of the human evolutionary trajectory. However, very little research is directed towards the social and cognitive context of the process of manufacture. This article aims to redress this balance by using insights from contemporary neuroscience. Addressing successively more inclusive levels of analysis, we will argue that the relevant unit of analysis when examining the interface between archaeology and neuroscience is not the individual neuron, nor even necessarily the individual brain, but instead the socio-cognitive context in which brains develop and tools are manufactured and used. This context is inextricably linked to the development of unique ontogenetic scheduling, as evidenced by the fossil record of evolving hominin lineages
    corecore