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Inflammation of central nervous system (CNS) is usually associated with trauma and infection. Neuroinflammation occurs in
close relation to trauma, infection, and neurodegenerative diseases. Low-level neuroinflammation is considered to have beneficial
effects whereas chronic neuroinflammation can be harmful. Innate immune system consisting of pattern-recognition receptors,
macrophages, and complement system plays a key role in CNS homeostasis following injury and infection. Here, we discuss how
innate immune components can also contribute to neuroinflammation and neurodegeneration.

1. Introduction

Neuroinflammation is the mechanism of CNS inflamma-
tion that occurs in response to trauma, infections, and/
or neurodegenerative diseases. In neuroinflammation, cel-
lular and molecular immune components such as spe-
cialised macrophages (microglia), cytokines, complement,
and pattern-recognition receptors are the contributing play-
ers. These proinflammatory mediators are either produced
locally within the CNS or recruited from the peripheral
system following disruption of the blood-brain barrier. This
in turn leads to the activation of the glial cells, such as
microglia and astrocytes. The effect of neuroinflammation is
considered neuroprotective when the inflammatory activity
is for a shorter period of time whereas chronic neuroinflam-
mation is associated with harmful consequences for the CNS.

Innate immunity is the first line of defence against the
invading pathogens. Some of the components of first line of
defence include epithelium (skin, gut, and lungs) that acts as
a physical barrier and also produces several kinds of antimi-
crobial enzymes and peptides, namely, lysozyme, defensins,
mucin, lectin [1]. Other components of innate immunity
include the pattern-recognition receptors (PRRs) such as toll-
like receptors (TLRs), nucleotide-binding, and oligomeri-
sation domain, leucine-rich repeats containing (NOD)-like
receptors (NLRs); and Scavenger receptors (SRs). Present
on phagocytic and antigen-presenting cells, these receptors

recognise not only exogenous pathogen-associatedmolecular
pattern1 (PAMP) but also endogenous modified molecules
called damage-associated molecular pattern2 (DAMP). The
innate immune system launches inflammatory and regula-
tory responses via PRRs, phagocytes (macrophages), comple-
ment system, cytokines, and chemokines in order to counter-
act infection, injury, and maintenance of tissue homeostasis.
Here, we discuss the role of innate immune players involved
in neuroinflammation.

2. Microglia

Microglial cells are the specialised resident macrophages of
the CNS.The origin of these innate immune cells is debatable
but it is now widely believed that they are of myeloid lineage
[2]. Inmice studies, it has been found thatmicroglia originate
from primitive (yolk sac) myeloid progenitors that migrate
to CNS independent of definitive progenitors and circulation
(i.e., bone marrow) [3]. These cells are found in brain,
spinal cord, retina, and optic nerve.Their morphology differs
from “conventional” macrophages by the presence of branch-
like processes (ramified appearance). This is the shape they
have when in “resting” state. In this state, these cells con-
stantly monitor and survey their area [4]. The microglial
cells in resting form have been shown to be involved in
other functions such as neurogenesis [5], neuroprotection
[6] and synaptic pruning [7], which has been found to be
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complement dependent [8]. Upon environmental stimula-
tion/challenges, the microglia become “activated” and the
morphology changes to an amoeboid appearance where they
retract the ramifications [9]. Activation of microglia by TLRs
and NLRs is considered to be “classical” form of microglial
activation where innate immune responses include pro-
duction of proinflammatory cytokines like tumour necrosis
factor (TNF)-𝛼, interleukin (IL)-1 and IL-6, and chemokines.
Classical activation also leads to adaptive immune response
by expressingmajor histocompatibility class II molecules and
interaction with T cells [10]. TNF-𝛼 stimulation increases
phagocytic activity of microglia [11], and deficiency of TNF
receptors has been found to reduce microglial activation
[12]. TNF-𝛼 is associated with activation of microglial cells
involved in pathogenesis of neurodegenerative diseases like
Alzheimer’s disease (AD) [13] and Parkinson’s disease (PD)
[14]. IL-1 induces expression of TNF-𝛼 and IL-6 [15] and
is implicated in neuroinflammatory processes in traumatic
brain injury (TBI), AD, and PD [16]. Activatedmicroglia have
also been implicated in neurotransmission [17]. In order to
regulate the immune responses, anti-inflammatory cytokines
IL-10 and transforming growth factor beta are produced
by microglia [18–20]. Microglia also produce inhibitor of
nuclear factor 𝜅𝛽(NF-𝜅𝛽), mitogen-activated protein kinase
(MAPK) phosphatases, and suppressor of cytokine signalling
proteins [21], which help in immune activation regulation.
Glucocorticoids have also been considered to play a reg-
ulatory role for innate immunity in CNS by regulation of
microglial TNF-𝛼 [22, 23] although there are debatable views
to the same [24].

There are a variety of receptors expressed on microglia
related to the different functions of these cells. Some of
the receptors associated with innate immunity are listed in
Table 1.

TLR 1–9 receptors are known to be expressed by
microglial cells (discussed in detail later). NLR form com-
plexes called inflammasomes (for a detailed review see [25])
that have been shown to activate and recruit microglia in
response to amyloid-𝛽 (A𝛽) [26] and prion peptide [27].
Some of the other innate immune receptors expressed on
microglia surface are CD14, CD18, CD36, CD68, mannose,
and lectin (Dendritic Cell-Specific Intercellular adhesion
molecule-3-Grabbing nonintegrin or DC-SIGN) receptors.
Complement receptors found on microglia are C3a, C5a, and
C1q receptors [28].

3. Astrocytes

Astrocytes are specialised glial cells and the most abundant
cells of the CNS.Morphologically, astrocytes are of two types:
protoplasmic (found in grey matter) and fibrous (found in
whitematter).The basic astrocytemorphology resembles that
of a star (with multiple processes). Protoplasmic astrocytes
have undistinguishable dense processes while fibrous astro-
cytes have clearly distinguishable processes [29]. Astrocytes
have conventionally been considered to be supporting cells to
the neurons. However, recently they have been shown to play
an active part in themodulation of neural activity [30], poten-
tiation of synaptic transmission [31], sleep homeostasis [32],
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Figure 1: Schematic diagram showing structure of TLR and
NLR family. TLR: toll-like receptor; NLRP: NOD-like receptor
containing pyrin domain; NLRC: NOD-like receptor containing
NLR-containing caspase activation and recruitment domain; NLRB:
NOD-like receptor containing baculovirus inhibitor of apoptosis
protein repeat domain; LRR: leucine-rich repeat; TIR: toll/il-1 recep-
tor; PYD: pyrin domain; CARD: caspase activation and recruitment
domain; BIR: baculovirus inhibitor of apoptosis protein repeat. The
figure shows the structure of a TLR containing a TIR domain present
inside nucleus which is involved in signalling pathway and an LRR
domain present in the cytoplasm which is involved in pathogen
recognition.NLR are intracellular receptors containing aC-terminal
LRR domain, a central NACHT domain, and a variable N-terminal
domain which can be a PYD, a CARD, or a BIR domain.

and even long-termmemory formation [33]. Any insult to the
CNS is associated with changes in the structure, morphology,
and hypertrophy of astrocytes, followed by cytokine and C1q
secretion, leading to scar formation, collectively termed as
reactive astrogliosis [34].

Like microglia, astrocytes have been shown to express
innate immune PRR like TLR, NLR, scavenger, complement,
and mannose receptors [35]. They have also been shown
to release cytokines like TNF, IL-6, IL-1, Interferon-𝛾, and
chemokines when stimulated with lipopolysaccharide (LPS)
[36, 37]. Reactive astrogliosis is associated with a number of
CNS diseases such as AD [38, 39], PD, autism, and prion
diseases [40, 41].

4. Toll-Like Receptors (TLR)

4.1. Structure and Signalling Pathway. TLRs are expressed
on microglia, neurons, and astrocytes similar to dendritic
cells, B cells, neutrophils, epithelia, and fibroblast [42]. TLR
is a type 1 membrane protein containing an extracellular
leucine-rich repeat (LRR) domain and a Toll/IL-1 receptor
(TIR) domain in the cytoplasmic region (Figure 1). LRR
domain is involved in specific pathogen recognition [43] and
TIR domain is involved in the signalling pathway. TLRs are
considered to exist as dimers and bind to various ligands
[44, 45]. For example, TLR2 heterodimerises with TLR1 [46]
and also with TLR6 [44] and recognises bacterial lipopro-
teins. Upon sensing ligands, recruitment of adaptor proteins
takes place which is necessary for signal transduction [47].
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Table 1: Innate immune receptors on microglia.

Receptor Functions/comments References

TLR

Pattern-recognition receptors that respond to self (DAMPs) and nonself (PAMPs) activators.
Microglia are known to express TLR1-9. TLRs are implicated in neuroinflammation in response to
bacterial and viral infections, Alzheimer’s disease, prion diseases, and amyotrophic lateral
sclerosis.

[59, 69]

NLR Cytoplasmic pattern-recognition receptors. Microglia are known to express NOD2 in response to
CNS infection and NALP3 inflammasome in Alzheimer’s disease. [109, 110]

Scavenger Another group of pattern-recognition receptors. The receptors expressed on microglia are Class
A, CD36, and RAGE. [111, 112]

RLR RIG-I is a pattern-recognition receptor that is expressed by microglia in response to viral
infections. [110, 113]

Complement
Complement receptors expressed include CR1, CR3 and CR4. These receptors bind complement
proteins and activate complement pathway which is considered to be both beneficial and
detrimental depending on the level of activation.

[114]

Cytokines

Some of the cytokine receptors expressed in microglia are IL-1R, TNFR (responsible for
proinflammatory actions of cytokines IL-1 and TNF-𝛼 resp.), IL-10R, TGFR (responsible for the
anti-inflammatory cytokines IL-10 and TGF-𝛽), and CCR1-5 responsible for actions of
chemokines. These are expressed and produced in neuroinflammation.

[115, 116]

TLR: toll-like receptor; DAMP: damage-associated molecular pattern; PAMP: pattern-associated molecular pattern; NLR: NOD-like receptors; NOD:
nucleotide-binding and oligomerisation domain; RLR: RIG-like receptors; RIG: retinoic acid-inducible gene; CR: complement receptor; IL: interleukin; TNF:
tumour necrosis factor; TGF: transforming growth factor.

The adaptor proteins are (i) myeloid differentiating factor 88
(MyD88); (ii) MyD88 adaptor-like protein (Mal); (iii) TIR
domain-containing adaptor inducing interferon-𝛽 (TRIF);
(iv) TRIF-related adaptor molecule; and (v) sterile-𝛼 and
armadillo-motif-containing protein. These adaptor proteins
are recruited by TIR domain leading to activation of NF-
𝜅𝛽. NF-𝜅𝛽 then induces production of proinflammatory
cytokines such as TNF-𝛼, IL-1𝛽, and IL-6, and chemokines.
All TLRs are activated by MyD88 except TLR3; instead
MyD88 may be restricting TLR3 signalling [48]. Some of the
other adaptors investigated in detail include major histocom-
patibility complex class II molecules [49], small heterodimer
partner [50], and Dedicator of Cytokinesis 8 (DOCK8) [51].

It has recently been shown that oligomerisation of TLR4
with myeloid differentiation protein-2 by morphine causes
neuroinflammation [52]. Necrotic neurons have been shown
to activatemicroglia viaMyD88 pathway leading to increased
neuroinflammation [53]. In mouse models, both MyD88 and
TRIF pathways have been implicated in regulation of IL-6
and IL-10 after cerebral ischaemia [54] as well as regulation of
IL6, TNF-𝛼, and IL-1𝛽 following intracerebral haemorrhage
[55]. MyD88 pathway also plays an important role in CNS
infection and consequent astrocyte activation [56]. MyD88
pathway may also be involved in PD [57] and optic nerve
injury [58].

4.2. Ligands. Some of the exogenous and endogenous ligands
of TLR are listed in Table 2 [59–62].

4.3. Response in CNS to Ligands of TLR. In vivo stud-
ies have shown that the administration of LPS (periph-
eral/intraperitoneal) leads to expression of genes coding
for proinflammatory cytokines in the microglial cells [63,
64]. CD14 has been found to be required for LPS-induced

endocytosis of TLR4 [65]. Injection of LPS directly into
brain has been shown to produce an increased expression
of genes of proinflammatory cytokines, chemokines, and
complement proteins and receptors such as CD14 [66, 67].
Production of TNF by microglial cells upon LPS stimulation
has been found to cause death of dopaminergic neurons [68].
TLR2 ligands stimulation of microglial and astrocytic cells
leads to an increase in production of IL-6, chemokines, and
IFN-𝛽 [69]. In mice studies, TLR9 ligand CpG has been
found to be neuroprotective in cerebral ischaemia [70] while
similar findings have been reported in TLR4 knockout mice
[71]. TLR2 activation has been shown to be involved in
neurogenesis [72] while TLR8 induces apoptosis of neurons
[73]. TLR3 impairs plasticity andworkingmemory [74] while
TLR7 and TLR9 have been found to be associated with the
development of mouse brain [75]. Interestingly, increased
peripheral responses of TLR2, TLR4, TLR8, and TLR9 have
been detected in psychosis [76] while TLR9 is associated with
posttraumatic anxiety [77].

4.4. TLR Response to Pathogens. Pneumococcal infection
leads to innate immune response in brain and this depends on
TLR2 and TLR4 [78]. Deficiency of TLR2 causes an increased
TNF gene expression in the brain [79]. TLRs have been
found to be involved in pneumococcal infection in HIV-
associated neurocognitive disorders [80]. TLR signalling is
also associated with virulence of intracellular pathogens [81].
TLR2 and TLR9 initiate immune response against herpes
simplex virus (HSV) [82] and also control HSV infection
in the brain [83]. TLR3 is protective for the CNS in HSV1
infection [84]. In mice models, TLR3 in astrocytes may be
protective in HSV2 infection [85] and has been reported
to mediate entry of West Nile virus (WNV) into the CNS,
causing encephalitis [86]. TLRs have also been implicated
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Table 2: Exogenous and endogenous ligands of toll-like receptors.

Ligand TLR Implications/comments References
Lipopolysaccharide TLR4 Recognition of Gram (−) bacteria [117]
Triacylated lipopeptides TLR1 and TLR2 Recognition of Gram (−) bacteria and mycobacteria [118]
Diacylated lipopeptides TLR2 and TLR6 Recognition of Gram (+) bacteria and mycoplasma [119, 120]
Lipoteichoic acid TLR2 Recognition of Gram (+) bacteria [121]
Zymosan TLR2 Recognition of fungi [122]
Double-stranded RNA TLR3 Recognition of virus [123]
Single-stranded RNA TLR7 and TLR8 Recognition of virus [124, 125]
Flagellin TLR5 Recognition of Gram (−) bacteria [126]
Unmethylated CpG DNA TLR9 Recognition of bacteria and virus [127, 128]

𝛽-amyloid
TLR2;
TLR4;

TLR4 and TLR6
Neuroinflammation in Alzheimer’s disease [95, 96, 129,

130]

Mitochondrial DNA TLR9 Pathogenesis of myocarditis and heart failure [128]

Lung surfactant protein-A
and -D

TLR4
TLR2

Innate immune component of lung. Act as opsonin and macrophage
activator. Physiological implications of excessive activation by TLR is not
known

[131–133]

Tenascin-C TLR4 Maintenance and pathogenesis of inflammation in rheumatoid arthritis [134, 135]

Fibrinogen TLR4 Present normally in serum and activation has been implicated in
rheumatoid arthritis and atherosclerosis [136, 137]

Oxidised low-density
lipoprotein TLR4 Pathogenesis of atherosclerosis [95]

MicroRNA let-7 TLR7 Pathogenesis of neurodegeneration [138]

in CNS parasitic infections like toxoplasmosis,3 sleeping
sickness,4 cerebral malaria,5 and neurocysticercosis6 [87].
TLR2 is associated with protection from cerebralmalaria [88]
and therapeutic targeting of TLRs has been shown to prevent
experimental cerebral malaria [89, 90].

4.5. Neurodegenerative Diseases. In mouse model of AD,
MyD88 has been found to preventmemory [91] and cognitive
deficits [92] while another study found MyD88 deficiency
to improve AD-related pathology [93]. TLR2 clears A𝛽 and
delays cognitive decline, again in mouse model of disease
[94]. TLR4 causes A𝛽-induced microglial activation [95]
and A𝛽-induced neuronal apoptosis [96]. A loss-of-function
mutation of TLR4 has been found to reduce microglial
activation and increase A𝛽 deposits with increased cog-
nitive deficits [97]. Intracranial injection of LPS (a TLR4
ligand) reduces A𝛽 levels in brain [98]. TLR9 may have
a protective role in AD by improving cognitive functions
[99], reducing A𝛽-toxicity [100], and clearing A𝛽 [101].
In amyotrophic lateral sclerosis7 (ALS), MyD88 has been
shown to activate microglia due to mutant SOD1 [102] and
in vitro studies show enhanced microglial activation and
neurotoxicity when stimulated with TLR2 and TLR4 ligands
[103, 104]. MyD88 pathway may also be involved in PD
[57] where 𝛼-synuclein directly activates microglia and alters
expression of TLRs [105]. TLR signalling has been found to
interfere with prion disease pathogenesis. Studies involving
mice possessingmutant gene which prevents TLR4 signalling
was found to have a shorter time for scrapie pathogenesis
[106] while administration of TLR9 agonist in prion-infected

mice leads to delayed onset of the disease [107]. However,
MyD88 knockout mice (lacking TLR signalling) were found
to develop prion disease similar to wild-type mice both in
terms of time and severity [108].

5. NOD-Like Receptors

5.1. Structure. Like TLRs, NOD-like receptors (NLRs) also
detect PAMPs and DAMPs. NLRs are intracellular recep-
tors thereby monitoring intracellular environment. They
consist of a central nucleotide-binding and oligomerisation
(NACHT) domain and a C-terminal LRRs.Their N-terminal
componentmay be variable based on which NLRs are further
subdivided. It can be caspase activation and recruitment
domain (CARD); a pyrin domain (PYD), or baculovirus
inhibitor of apoptosis protein repeat (BIR) termed, respec-
tively, as NLRC, NLRP, and NLRB [139]. Upon binding
to agonists, NLR can lead to the activation of NF-𝜅𝛽 or
MAPK signalling pathways and production of cytokines
and chemokines. NLR binding to agonist also causes the
activation of procaspase-1 leading to inflammasome forma-
tion; pyroptosis; autophagy; and IFN-1 signalling [140–145]
(Figure 1) [141–145].

5.2. Inflammasomes. Inflammasomes are multiprotein com-
plexes that activate caspase-1, which in turn leads to pro-
cessing and secretion of proinflammatory cytokines such
as IL-1𝛽 and IL-18. The members of NLR family that are
capable of forming inflammasomes are PYD-containing
NLRP1, NLRP3, NLRP6, and CARD-containing NLRC4
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[146]. Inflammasome complex formation occurs when a
ligand binds to NLR and thereby induces a conformational
change, leading to ATP binding at NACHT domain which
causes receptor oligomerisation and recruitment of other
complex members [141]. Inflammasomes have been impli-
cated in various diseases such as gout, pseudogout, contact
dermatitis, allergic dermatitis, vitiligo, hydatidiform mole8
[147], Muckle-Wells syndrome9 [148], atherosclerosis, type 2
diabetes mellitus, obesity [149], metabolic syndrome10 [150],
acute myocardial infarction [151], coeliac disease, inflamma-
tory bowel disease [152], asthma, pulmonary fibrosis [153],
and viral [154] and bacterial infections [155].

5.3. Role in Neuroinflammation. NLRP3 inflammasome is
involved in the innate immune response to A𝛽 [156] leading
toADpathology. Inmultiple sclerosis (MS),NLRP3 knockout
mice model of disease shows reduced demyelination [157],
while another study shows NLRP3 involvement in migration
of T-helper cells into CNS [158]. IFN-𝛽 therapy is effective in
treating inflammasome-dependent disease in mouse models
of MS [159]. NLRP1 has been found to be involved in TBI
and neutralising its effect or formation was found to have
beneficial effects [160]. Inflammasome complex inhibition
has also been found to reduce inflammation and improve
pathology in mouse models of stroke [161]. NLRP3 inflam-
masome contributes to brain injury in pneumococcal menin-
gitis [162] and is associated with inflammation in Japanese
encephalitis [163]. Both NLRP1 and NLRP3 are increased
in postmortem alcoholic human brains and inhibition of
these inflammasomes was found to be beneficial in reversing
ethanol-mediated neuroinflammation [164].

6. Scavenger Receptors

6.1. Types. Scavenger receptors (SRs) are members of PRRs
and are transmembrane glycoprotein PRRs [165]. SRs are
expressed on macrophages, dendritic cells, microglia, and
endothelial cells [111, 112]. Recently, SR expression on astro-
cytes has been reported [166]. The family of SRs include class
A (macrophage receptors, MARCO), class B (CD36, SR-BI),
CD68 and endothelial or LOX-1, CD163, and receptor for
advanced glycation end products (RAGE) [167, 168]. Some of
the ligands that SRs bind to are pathogen-specific: LPS, lipote-
ichoic acid, Streptococcus pneumoniae, Staphylococcus aureus,
Mycoplasma pneumoniae,Neisseriiameningitides, Escherichia
coli [169], apoptotic cells [170], and erythrocytes infected
with Plasmodium [171–173]. SRs have been implicated in
atherosclerosis [174], lung inflammation [175], cystic fibrosis
[176], SLE [170], and AD [112].

6.2. Role in Neuroinflammation. Microglia express SR and
thus bind to A𝛽 fibrils [177] which is associated with AD
plaques [178]. Class A SR (SR-A) has also been shown to
play an important role in cerebral injury due to ischemia.
Mice deficient in SR-A showed reduced expression levels of
TNF-𝛼 and IL-1𝛽 as well as decreased infarct size [179]. In
experimental model of MS, SR-A knockout mice showed
significantly reduced demyelination as well as reduced proin-
flammatory cytokines production [180]. However, deficiency

of SR-A in AD mouse models was not found to impact
amyloid plaque deposition or clearance [181]. In vitro studies
have shown that astrocytes express SR-A and thus play a
role in neuroinflammation [166]. Class B SR Type I (SR-
BI) has been shown to be produced in vivo in AD brains
[182] with increased expression being observed in cerebellum
and cortex [183]. In mice studies, SR-BI has also been
shown to impair perivascular macrophages leading to AD
pathology such as increased amyloid deposition, cerebral
amyloid angiopathy (deposition of A𝛽 in cerebral arteries),
and memory deficits [184]. CD36 appears to be involved in
neurovascular dysfunction due to A𝛽 [185] and promotes
cerebral amyloid angiopathy leading to cognitive deficits
[186]. RAGE is a receptor for A𝛽 and expressed on neurons,
microglia, astrocytes, and endothelial cells [187]. RAGE
signalling in microglia due to p38 MAPK signalling pathway
leads to neuroinflammation and cognitive disturbances in
AD [188] as well as synaptic [189] and neuronal [190] dys-
function.

7. Complement

7.1.Three Activation Pathways of the Complement System. The
complement system comprises of more than 30 proteins in
the serum as well as membrane-bound receptors and regula-
tors. The complement system consists of 3 different initiating
or activation pathways culminating into a final common
lytic pathway, leading to the formation of membrane attack
complex (MAC) (Figure 2). MAC are pores that penetrate
cellmembrane (lipid bilayers) of pathogens or abnormal cells,
thereby causing their lysis. The three initiating pathways are
called (i) classical pathway which is mostly antibody medi-
ated (C1q being the first subcomponent) and is activated byC1
complex (C1q-C1r-C1s); (ii) alternative pathway (AP) which
is activated spontaneously involving low-level hydrolysis of
C3 to C3 (H

2
0); and (iii) lectin pathway where activation

occurs through binding of a carbohydrate pattern present on
microorganisms calledmannan, withmannan-binding lectin
(MBL) and Ficolins (ficolin-1, -2 and -3).They circulate in the
serum in combination with zymogen serine proteases called
MBL-associated serine proteases (MASPs) [191–196]. All the
3 pathways ultimately converge to lead to formation of C3
convertase. C3 convertases then cleaves C3 into C3a and C3b.
This C3b binds to C3 convertase and leads to the formation
of C5 convertase. This C5 convertase cleaves C5 into C5a
and C5b. C3a and C5a are called anaphylatoxins and are
chemoattractants.TheC5b formed associateswithC6,C7,C8,
and C9 to formMAC [197].The functions of the complement
system include opsonisation of pathogens, direct lysis of
foreign cells, chemotaxis and activation of leukocytes, and
clearance of apoptotic cells. The complement system also
interacts with TLRs [198] and plays a role in the regulation of
humoral immunity [199]. The complement system is kept in
check by regulators in order to prevent overactivation leading
to damage to tissues and autoimmunediseases.The regulators
can be grouped into fluid-phase: factor H (fH) and properdin
for alternative pathway, C1 inhibitor andC4b-binding protein
(C4BP) for classical and MBL pathway; host cell membrane-
bound: CR1, CR2, CD55, CD46, CD59; cell surface-attached
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Figure 2:The complement system. Complement regulators are indicated in red.MBL:mannan-binding lectin;MASP:MBL-associated serine
protease; C4BP:C4b-binding protein; CR1: complement receptor 1.The complement systemconsists of 3 initiating pathways: classical pathway,
lectin pathway, and alternative pathway. The classical pathway is usually activated by antigen-antibody complexes, the lectin pathway is
activated by microbes with MBL-MASP complex, and the alternative pathway is activated spontaneously by hydrolysis of C3 to C3(H

2
O). All

3 pathways lead to formation of C3 convertase, followed by C5 convertase, ultimately leading to formation of membrane attack complex. In
this process, anaphylatoxins C3a and C5a are also released. The complement system is kept in check by a number of regulators.

complement regulators: fH, factor H-like protein 1 (FHL-1),
C4BP and clusterin [200, 201]. For certain ligands, factor H
can also regulate C1q-mediated classical pathway [202–205].

7.2. Role in CNS Physiology. Complement is producedmainly
in the liver and, over the years, it was thought that the
brain was an immune-privileged organ due to the presence
of blood-brain barrier. Now, it is well known that com-
ponents of innate immunity like complement are present
and even produced within the CNS. Neuronal cells [206–
209], astrocytes [210, 211], and microglia [212–214] have been
shown to produce complement and also express complement
receptors. Role of complement in CNS is considered to be
dual-neurotoxic and/or neuroprotective, depending on the
level of its activation.

Complement has been shown to play a role in adult
neurogenesis. Complement receptors C3aR and C5aR are
expressed on neural stem cells and reduced neurogenesis is
observed in the absence of C3aR signalling [215]. Another
complement receptor CR2 has been found to be expressed

in neural progenitor cells and also negatively regulates hip-
pocampal neurogenesis [216]. An emerging area for comple-
ment involvement in CNS is in relation to synapse (reviewed
in [217]). C1q, initiating component of classical pathway
and widely expressed by postnatal neurons and immature
astrocytes [218], mediates the elimination of synapse [219,
220]. C1q knockout mice show increased synaptic connec-
tivity and spontaneous epilepsy [221]. Synapse remodelling
by microglia involves CR3 [8]. In vitro studies show that C1q
also promotes neuronal viability and survival [222]. In vitro
and in vivo studies implicate a role for C3aR and C5aR in the
development of cerebellum [223]. Many other in vitro and in
vivo studies show neuroprotective functions for C3a and C5a
that include protection against NMDA-induced apoptosis
[224] and protection against glutamate-induced apoptosis
[225] via MAPK-dependent inhibition of caspase 3 [226] as
well as regulation of glutamate receptor subunit 2 [227].

7.3. Role in CNS Pathology. CNS can be infected by bacteria,
virus, fungus, or protozoa. Deficiency of C3 is associated with
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increased susceptibility tomeningococcal and pneumococcal
infections [228]. Meningococcus binds to Factor H (fH), a
negative regulator of alternative pathway, and evades host
innate immune system [229, 230]. Neisseria meningitidis
recruits host fH using protein mimicry [231]. Individuals
with deficiency of properdin (positive regulator of alternative
pathway) are susceptible to meningitis and individuals with
combined properdin andMBLdeficiency are at increased risk
of infection with Neisseria meningitidis [232]. Streptococcus
pneumonia infection of CNS is kept in check by complement
system (mainly C1q and C3) [233]. C1q and C3 genetically
deficient mice each showed considerably high bacterial titres
in CNS as compared to wild-type mice. Escherichia coli, a
cause for neonatalmeningitis, crosses the blood-brain barrier
by surviving in the serum where it binds to C4BP [234].

Viruses have also evolved mechanisms to evade comple-
ment system [235]. Gamma-herpesvirus encode for proteins
that regulate and inhibit host C3-mediated resistance [236].
Complement controls antibody response in WNV infection
[237] with lectin pathway activation being found to be protec-
tive inWNV infection [238]. C3 has been found to participate
in seizure induction during viral encephalitis [239]. Increased
MBL is seen in postmortem HIV encephalitis brains [240].

Fungal infection like cerebral aspergillosis leads to
increased complement production seen in astrocytes, neu-
rons, and oligodendrocytes, especially C1q production by
infiltrating macrophages [241]. Some of the defence mech-
anisms developed by Aspergillus fumigatus to avoid com-
plement include secreting fungal proteases [242] as well as
production and recruitment of complement inhibitors [243].
In cerebral malaria, C1q and C5 levels have been found to be
increased in mice studies [244] while another murine study
also points to the requirement of MAC in the pathogenesis of
cerebralmalaria [245]. Infectious particles called prions cause
CNS disorders like Creutzfeldt-Jakob disease and Bovine
Spongiform Encephalopathy. These prion particles which
activate classical complement pathway [246] are thought
to bind to C1q and subsequently transported to the CNS
[247]. C1q, C3b have been detected in postmortem brains of
individuals with prion diseases [248], and MAC deposition
was found to co-relate with prion disease severity [249].

Complement activation occurs in TBI and act as medi-
ators of secondary brain injury [250, 251]. Following injury,
levels of MAC corelate with blood-brain barrier (BBB) dis-
ruption [252]. In mice studies, absence of CD59 (a regulator
of MAC formation) leads to increased neuropathology [253].
Postmortem studies on TBI brains show upregulation of
C1q, C3b, and MAC [251]. Studies involving mice overex-
pressing complement inhibitor CR-related protein y (Crry)
show reduced neurological impairment following TBI [254].
Hence, targeting complement activity in TBI may have
therapeutic implications [255].

Cerebral ischemia can lead to the activation of the
complement cascade leading to inflammation [256]. Sys-
temic complement activity is also found to be enhanced in
ischaemic stroke [257]. Complement system is implicated
in ischemia reperfusion injury [258]. Ischaemic neurons
have been found to produce C5a which causes apoptosis of
neurons [259]. Better outcome is seen in individuals with

low levels of MBL activity and mice lacking MBL [260].
Immunohistochemistry on brains of stroke patients shows
C1q deposition while complement regulator CD59 was found
to be absent [261]. Studies involving C5- [262] and C3-
deficient mice [263] as well as C1 inhibition [264] have been
successful in having beneficial effects in stroke therapy by
targeting complement [256, 265].

A major role for complement is also seen in neurode-
generative diseases like AD. The neuropathology in AD
includes loss of neurons, extracellular amyloid plaques, and
intracellular neurofibrillary tangles consisting of abnormally
phosphorylated tau protein [266]. A𝛽 activates complement
[267], most notably via the classical pathway. Activated com-
plement components C1q, C3d, and C4d have been detected
in amyloid plaques [268, 269] by immunohistochemistry. C1q
binds to A𝛽 [270, 271] and modulates phagocytosis of A𝛽
by microglia [272]. Upon exposure to A𝛽, C1q is expressed
in neurons (hippocampus) [273], and it has been found that
inhibiting the binding of C1q to A𝛽 leads to protection of
hippocampal cells [274]. In mouse models of AD, absence of
C1q shows less neuropathology [275]. Complement regula-
tors factor H, FHL-1, and C4BP have also been localised in
amyloid plaques and fH and C4BP have been shown to bind
A𝛽 in vitro [276–278]. These regulators could be involved
in regulation of excessive complement activation. Another
interesting feature is the presence of microglia expressing
complement receptors found in close proximity to plaques.
Microglia are found in and around plaques ofADbrains [279]
and are found to express C1q [280] and complement receptors
C1qR, CR3, CR4, and C5aR, which help in the phagocytosis
of A𝛽 [281, 282]. Complement activation is therefore also
considered to be neuroprotective [266]. C3 deficiency in
mouse model shows accelerated amyloid plaque deposition
[283]. Furthermore, inhibition of complement was found
to be associated with an increased formation of plaque
and neurodegeneration [284]. Amyloid precursor protein
transgenic mouse models of AD that lack the ability to acti-
vate classical pathway (APPQ−/−) (i.e., C1q−/− phenotype)
show less neuropathology as compared to APPQ+/+ mice.
However, APPQ−/− mice also show increased C3 levels,
providing evidence for alternative pathway activation in AD
[285]. In mice models, deficiency of sCrry increases tau
pathology [286]. Genetic association of AD and complement
involves complement genes CR1 and CLU [287]. Micro-
RNAs11 (miRNAs) −9, −125b, −146a, and −155 are found to be
upregulated in AD and these miRNAs target gene encoding
fH [288].

An emerging role for complement in MS has become
evident recently [289]. C3d is localized along with microglia
in MS tissues [290]. Priming of microglia in MS has been
found to be C3-dependent and, in the same study, it was
found that in animal model of MS, Crry-deficient mice
show exacerbated and accelerated disease progression [291].
Serum factor H has been found to be a useful biomarker
for MS [292]. Pathological studies of MS lesions have found
presence of complement components C3d, C4b, C1q, and
MAC on myelin sheath, surrounding vessel walls, microglia,
and astrocytes [293–296].
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There is evidence for neuroinflammation in PD as well
[297] with the presence of reactive microglia and activated
components of complement. Elevated mRNA levels of acti-
vated complement and markers of reactive microglia are also
seen in PD [298]. Pathological studies show the presence
of MAC components intracellularly on the characteristic
Lewy Bodies [299, 300]. The cerebrospinal fluid levels of C3
and factor H have been observed to correlate with severity
of PD [301]. An interesting study found a role for C1q in
PD. Neuromelanin (NM) is a pigment that accumulates in
dopaminergic neurons in normal aging process. In PD, these
dopaminergic neurons are susceptible to degeneration [302]
which is thought to be caused by activation of microglia
by NM [303]. Furthermore, this NM pigment is found to
be opsonised by C1q and phagocytosed by C1q-positive
microglia [304].

Huntington’s disease (HD) is another neurodegenerative
disorder and a genetic cause of dementia. It is inherited as
an autosomal-dominant trait characterised by abnormal (at
least 36) CAG repeats on the coding sequence of huntingtin
gene [305]. Neuropathological studies in HD brains show
presence of complement components C1q, C4, and C3 along
with upregulation of complement regulators C1 inhibitor,
clusterin, CD59, and CD55. In this study, microglial expres-
sion of higher levels of C3 and C9 was also observed [306].

There has been increasing evidence for involvement of
complement in schizophrenia. Schizophrenia is a psychiatric
illness characterised by thought insertion, thought with-
drawal, hallucinations, delusions, and negative symptoms
such as apathy, speech problems, and slow cognition.There is
an increase in serum levels of classical pathway complement
proteins such as C1q, C1, C3, and C4; increased total comple-
ment activity (CH

50
), CR1 levels; and decreased C4BP levels

[307–309]. The alternative pathway is also involved with
increased factor B levels and increased activity in serum [310].
MBL pathway shows increased activity as well (increased
MBL and MASP-2 levels) [311, 312]. Genetic studies have
shownC1QB gene polymorphism,CSMD1 andCSMD2 (code
for complement regulatory proteins), C3, MBL2, andMASP2
gene association [313–316].

8. Conclusion

A role for innate immunity in inflammation of CNS is being
increasingly evidenced. Cells of the CNS such as neurons,
astrocytes, and microglia along with pattern recognition
receptors, cytokines, chemokines, complement, peripheral
immune cells, and signal pathways form the basis for
neuroinflammation. Local synthesis of a number of innate
immune humoral factors within CNS offers an opportunity
for therapeutic intervention. Furthermore, excessive acti-
vation of immune system is thought to be destructive to
tissues whereas, simultaneously, it opens up possibilities to
harness this activation in a controlled manner to obtain
desired therapeutic or preventive strategies in CNS diseases.
A detailed understanding of the processes and mechanisms
involved in the etiopathogenesis of CNS diseases as well as
normal functioning of CNS immunity is essential and can
pave the way for reducing excessive neuroinflammation and

its effects. Modulation of cellular processes, phenotypes, and
functions looks increasingly likely to be a way forward in
combating CNS disorders.

Abbreviations

A𝛽: Amyloid-𝛽
AD: Alzheimer’s disease
BIR: Baculovirus inhibitor of apoptosis protein repeat
C4BP: C4b-binding protein
CARD: Caspase activation and recruitment domain
CNS: Central nervous system
Crry: Complement receptor 1-related protein-y
DAMP: Damage-associated molecular pattern
DOCK8: Dedicator of cytokinesis 8
HSV: Herpes simplex virus
HD: Huntington’s disease
IL: Interleukin
LPS: Lipopolysaccharide
MAPK: Mitogen-activated protein kinase
MBL: Mannan-binding lectin
MASP: MBL-associated serine protease
MyD88: Myeloid differentiating factor 88
NF-𝜅𝛽: Nuclear factor-𝜅𝛽
NOD: Nucleotide-binding and oligomerisation domain
NLR: NOD-like receptors
NM: Neuromelanin
PAMP: Pathogen-associated molecular pattern
PD: Parkinson’s disease
PRR: Pattern-recognition receptor
PYD: Pyrin domain
RAGE: Receptor for advanced glycation endproducts
SR: Scavenger receptor
SR-BI: Class B SR type I
TBI: Traumatic brain injury
TLRs : Toll-like receptors
TNF: Tumour necrosis factor
WNV: West Nile virus.

Endnotes

1. PAMPs are conserved sequences or structural fragments
on pathogens (nonself) that are recognised by PRRs.
Examples of PAMP include bacterial, viral, fungal,
and parasitic-derived lipids (lipopolysaccharide, lipotei-
choic acid), proteins (flagellin), carbohydrates (mannan,
zymosan), and nucleic acids (dsRNA, CpG).

2. DAMPs are endogenous molecules released from dam-
aged cells (altered self). Examples of DAMP include heat
shock proteins, ATP, and uric acid.

3. Toxoplasmosis is caused by Toxoplasma gondii. Cats
are the definitive hosts and humans being intermediate
hosts of T. gondii. Infection to humans spreads with
contamination of food and water by cat faeces as well as
eating undercookedmeat infectedwith the parasitic cyst.
Clinically, swelling of lymph nodesmay occur but, inter-
estingly, toxoplasmosis is associated with psychiatric
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disorders like schizophrenia, bipolar disorder, anxiety,
and personality disorders.

4. Sleeping sickness is also known as Human African
trypanosomiasis. It is caused by Trypanosoma brucei
and is transmitted by tsetse fly. Prevalence is mainly
in West, Central, and East Africa. It is characterised
by intermittent fever and CNS manifestations in late
stages including tremors, encephalopathy, and sleep
disturbances which is mainly daytime somnolence.

5. Cerebral malaria is encephalopathy caused by sequelae
of Plasmodium falciparum infection. Neurological fea-
tures include coma, seizures, and upper-motor neuron
lesion features (muscle spasticity and rigidity).

6. Neurocysticercosis is an infection of the CNS caused by
the tapewormTaenia solium. Pig is the intermediate host
while humans are the definitive hosts of T. solium.Most
common clinical presentation is seizures (an important
and leading cause for acquired epilepsy) and focal
neurological signs depending on the site and localisation
of the cysts.

7. ALS is also known as motor neurone disease and Lou
Gehrig’s disease. Majority of the cases are idiopathic
with however a small percentage (5–10%) being familial.
Mutations in genes SOD1 (codes for Superoxide dismu-
tase 1, an antioxidant); TARDBP (codes for Transactive
response DNA-binding protein 43, a nuclear protein);
and FUS (codes for Fused in Sarcoma, another cellular
protein) are involved in familial ALS. It is a fatal, progres-
sive neurodegenerative disease characterised by muscle
spasticity, wasting and fasciculations aswell as dysphagia
and dysarthria. Interestingly, ALS is associated with
frontotemporal dementia and this lead to discovery
of mutation in C9ORF72 gene (abnormal nucleotide
repeats) in familial and sporadic forms of ALS [317–319].

8. Hydatidiformmole is a gestational trophoblastic disease.
Trophoblasts are precursors to placental cells. The prod-
ucts of conception will completely or partially comprise
of grape-like vesicles or sacs (villous trophoblast). Most
pregnancies are not viable with presenting symptom
being vaginal bleeding. Early diagnosis can be estab-
lished by ultrasonography (“snowstorm” appearance).

9. Muckle-Wells syndrome is an autosomal dominant dis-
ease characterised by the presence of intermittent fevers,
rashes, sensorineural hearing loss, and amyloidosis.
Mutation occurs in gene CIAS1.

10. Metabolic syndrome refers to a combination of hyper-
glycemia, obesity, dyslipidaemia, and hypertension.

11. MicroRNAs are 22 nucleotide RNAs that are noncoding
and repress expression of mRNAs.
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