8 research outputs found

    Safe Haptics-enabled Patient-Robot Interaction for Robotic and Telerobotic Rehabilitation of Neuromuscular Disorders: Control Design and Analysis

    Get PDF
    Motivation: Current statistics show that the population of seniors and the incidence rate of age-related neuromuscular disorders are rapidly increasing worldwide. Improving medical care is likely to increase the survival rate but will result in even more patients in need of Assistive, Rehabilitation and Assessment (ARA) services for extended periods which will place a significant burden on the world\u27s healthcare systems. In many cases, the only alternative is limited and often delayed outpatient therapy. The situation will be worse for patients in remote areas. One potential solution is to develop technologies that provide efficient and safe means of in-hospital and in-home kinesthetic rehabilitation. In this regard, Haptics-enabled Interactive Robotic Neurorehabilitation (HIRN) systems have been developed. Existing Challenges: Although there are specific advantages with the use of HIRN technologies, there still exist several technical and control challenges, e.g., (a) absence of direct interactive physical interaction between therapists and patients; (b) questionable adaptability and flexibility considering the sensorimotor needs of patients; (c) limited accessibility in remote areas; and (d) guaranteeing patient-robot interaction safety while maximizing system transparency, especially when high control effort is needed for severely disabled patients, when the robot is to be used in a patient\u27s home or when the patient experiences involuntary movements. These challenges have provided the motivation for this research. Research Statement: In this project, a novel haptics-enabled telerobotic rehabilitation framework is designed, analyzed and implemented that can be used as a new paradigm for delivering motor therapy which gives therapists direct kinesthetic supervision over the robotic rehabilitation procedure. The system also allows for kinesthetic remote and ultimately in-home rehabilitation. To guarantee interaction safety while maximizing the performance of the system, a new framework for designing stabilizing controllers is developed initially based on small-gain theory and then completed using strong passivity theory. The proposed control framework takes into account knowledge about the variable biomechanical capabilities of the patient\u27s limb(s) in absorbing interaction forces and mechanical energy. The technique is generalized for use for classical rehabilitation robotic systems to realize patient-robot interaction safety while enhancing performance. In the next step, the proposed telerobotic system is studied as a modality of training for classical HIRN systems. The goal is to first model and then regenerate the prescribed kinesthetic supervision of an expert therapist. To broaden the population of patients who can use the technology and HIRN systems, a new control strategy is designed for patients experiencing involuntary movements. As the last step, the outcomes of the proposed theoretical and technological developments are translated to designing assistive mechatronic tools for patients with force and motion control deficits. This study shows that proper augmentation of haptic inputs can not only enhance the transparency and safety of robotic and telerobotic rehabilitation systems, but it can also assist patients with force and motion control deficiencies

    Model-based Control of Upper Extremity Human-Robot Rehabilitation Systems

    Get PDF
    Stroke rehabilitation technologies have focused on reducing treatment cost while improving effectiveness. Rehabilitation robots are generally developed for home and clinical usage to: 1) deliver repetitive and stimulating practice to post-stroke patients, 2) minimize therapist interventions, and 3) increase the number of patients per therapist, thereby decreasing the associated cost. The control of rehabilitation robots is often limited to black- or gray-box approaches; thus, safety issues regarding the human-robot interaction are not easily considered. Furthermore, despite numerous studies of control strategies for rehabilitation, there are very few rehabilitation robots in which the tasks are implemented using optimal control theory. Optimal controllers using physics-based models have the potential to overcome these issues. This thesis presents advanced impedance- and model-based controllers for an end-effector-based upper extremity stroke rehabilitation robot. The final goal is to implement a biomechanically-plausible real-time nonlinear model predictive control for the studied rehabilitation system. The real-time term indicates that the controller computations finish within the sampling frequency time. This control structure, along with advanced impedance-based controllers, can be applied to any human-environment interactions. This makes them promising tools for different types of assistive devices, exoskeletons, active prostheses and orthoses, and exercise equipment. In this thesis, a high-fidelity biomechatronic model of the human-robot interaction is developed. The rehabilitation robot is a 2 degree-of-freedom parallelogram linkage with joint friction and backlash, and nonlinear dynamics. The mechatronic model of the robot with relatively accurate identified dynamic parameters is used in the human-robot interaction plant. Different musculoskeletal upper extremity, biomechanic, models are used to model human body motions while interacting with the rehabilitation robot model. Human-robot interaction models are recruited for model-in-loop simulations, thereby tuning the developed controllers in a structured resolution. The interaction models are optimized for real-time simulations. Thus, they are also used within the model-based control structures to provide biofeedback during a rehabilitation therapy. In robotic rehabilitation, because of physical interaction of the patient with a mechanical device, safety is a fundamental element in the design of a controller. Thus, impedance-based assistance is commonly used for robotic rehabilitation. One of our objectives is to achieve a reliable and real-time implementable controller. In our definition, a reliable controller is capable of handling variable exercises and admittance interactions. The controller should reduce therapist intervention and improve the quality of the rehabilitation. Hence, we develop advanced impedance-based assistance controllers for the rehabilitation robot. Overall, two types of impedance-based (i.e., hybrid force-impedance and optimal impedance) controllers are developed and tuned using model-in-loop simulations. Their performances are assessed using simulations and/or experiments. Furthermore, their drawbacks are discussed and possible methods for their improvements are proposed. In contrast to black/gray-box controllers, a physics-based model can leverage the inherent dynamics of the system and facilitate implementation of special control techniques, which can optimize a specific performance criterion while meeting stringent system constraints. Thus, we present model-based controllers for the upper extremity rehabilitation robot using our developed musculoskeletal models. Two types of model-based controllers (i.e., nonlinear model predictive control using external 3-dimensional musculoskeletal model or internal 2-dimensional musculoskeletal model) are proposed. Their performances are evaluated in simulations and/or experiments. The biomechanically-plausible nonlinear model predictive control using internal 2-dimensional musculoskeletal model predicts muscular activities of the human subject and provides optimal assistance in real-time experiments, thereby conforming to our final goal for this project

    Controle de um sistema assistivo para membro superior ativado com movimento decodificado através de sinais EEG

    Get PDF
    In this research project a BCI (Brain Computer Interface) system to serve as control platform for human elbow flexion/extension movement was studied and developed. EEG signals related with real and imaginary actions of arm flexion/extension movements were used. A comprehensive bibliographic revision in EEG signal processing and associated techniques for decoding, classification and control has been developed. In order to decode from EEG signals elbow related kinematics: position, velocity and acceleration; a Kalman Filter was used. While for signal classification was implemented an integration of SVM (Support Vector Machine) and LDA (Linear Discriminant Analysis). A dynamic model of the human arm was integrated with the Kalman Filter through Differential Flatness in order to determine the necessary amount of energy to produce the desired movement. Both systems was embedded into a close loop BCI through a PID controller, a reference loop that allows to the proposed assistive system to drive the arm movement was added. The results obtained confirms that it is feasible to control the elbow movement using EEG signals related with real and imaginary actions with a higher precision.Neste projeto de pesquisa foi estudado e desenvolvido um sistema BCI (Brain Computer Interface) para servir como plataforma de controle do movimento do cotovelo humano, usando sinais EEG (eletroencefalograma) relacionados com ações reais e imaginárias de flexão-extensão. Foi realizada uma ampla revisão bibliográfica nas áreas de processamento de sinais EEG e as respectivas estratégias para a decodificação, classificação e controle. Para decodificar a posição, velocidade e aceleração do movimento do cotovelo desde sinais EEG foi utilizado o Filtro de Kalman. Enquanto que, para a classificação foi usada uma Integração de SVM (Support Vector Machine) com LDA (Linear Discriminant Analysis). A dinâmica modelada para o braço foi integrada ao Filtro de Kelman a partir da técnica de Differential Flatness para determinar a energia necessária para produzir o movimento desejado. Essa integração em um BCI de cadeia fechada através de um controlador PID, foi associada a um laço de referência para permitir que o sistema assistivo proposto pudesse dirigir o movimento do braço. Os resultados obtidos confirmaram a hipótese de que é possível controlar com maior precisão o movimento da articulação do cotovelo a partir de sinais EEG relacionadas com ações reais e imaginárias
    corecore