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Abstract

Stroke rehabilitation technologies have focused on reducing treatment cost while im-
proving effectiveness. Rehabilitation robots are generally developed for home and clinical
usage to: 1) deliver repetitive and stimulating practice to post-stroke patients, 2) minimize
therapist interventions, and 3) increase the number of patients per therapist, thereby de-
creasing the associated cost. The control of rehabilitation robots is often limited to black-
or gray-box approaches; thus, safety issues regarding the human-robot interaction are not
easily considered. Furthermore, despite numerous studies of control strategies for rehabil-
itation, there are very few rehabilitation robots in which the tasks are implemented using
optimal control theory. Optimal controllers using physics-based models have the potential
to overcome these issues.

This thesis presents advanced impedance- and model-based controllers for an end-
effector-based upper extremity stroke rehabilitation robot. The final goal is to imple-
ment a biomechanically-plausible real-time nonlinear model predictive control for the stud-
ied rehabilitation system. The real-time term indicates that the controller computations
finish within the sampling frequency time. This control structure, along with advanced
impedance-based controllers, can be applied to any human-environment interactions. This
makes them promising tools for different types of assistive devices, exoskeletons, active
prostheses and orthoses, and exercise equipment.

In this thesis, a high-fidelity biomechatronic model of the human-robot interaction is
developed. The rehabilitation robot is a 2 Degree-of-Freedom (DOF) parallelogram linkage
with joint friction and backlash, and nonlinear dynamics. The mechatronic model of the
robot with relatively accurate identified dynamic parameters is used in the human-robot in-
teraction plant. Different musculoskeletal upper extremity, biomechanic, models are used to
model human body motions while interacting with the rehabilitation robot model. Human-
robot interaction models are recruited for model-in-loop simulations, thereby tuning the
developed controllers in a structured resolution. The interaction models are optimized for
real-time simulations. Thus, they are also used within the model-based control structures
to provide biofeedback during a rehabilitation therapy.

In robotic rehabilitation, because of physical interaction of the patient with a mechan-
ical device, safety is a fundamental element in the design of a controller. Thus, impedance-
based assistance is commonly used for robotic rehabilitation. One of our objectives is
to achieve a reliable and real-time implementable controller. In our definition, a reliable
controller is capable of handling variable exercises and admittance interactions. The con-
troller should reduce therapist intervention and improve the quality of the rehabilitation.
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Hence, we develop advanced impedance-based assistance controllers for the rehabilitation
robot. Overall, two types of impedance-based (i.e., hybrid force-impedance and optimal
impedance) controllers are developed and tuned using model-in-loop simulations. Their
performances are assessed using simulations and/or experiments. Furthermore, their draw-
backs are discussed and possible methods for their improvements are proposed.

In contrast to black/gray-box controllers, a physics-based model can leverage the in-
herent dynamics of the system and facilitate implementation of special control techniques,
which can optimize a specific performance criterion while meeting stringent system con-
straints. Thus, we present model-based controllers for the upper extremity rehabilitation
robot using our developed musculoskeletal models. Two types of model-based controllers
(i.e., nonlinear model predictive control using external 3-Dimensional (3D) musculoskeletal
model or internal 2-Dimensional (2D) musculoskeletal model) are proposed. Their perform-
ances are evaluated in simulations and/or experiments. The biomechanically-plausible non-
linear model predictive control using internal 2D musculoskeletal model predicts muscular
activities of the human subject and provides optimal assistance in real-time experiments,
thereby conforming to our final goal for this project.
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Chapter 1

Introduction

There are a large number of people with movement disabilities who have difficulties doing
their daily tasks independently. These movement defects are caused by many issues such
as injuries and surgeries, stroke, Traumatic Brain Injury (TBI), Spinal Cord Injury (SCI),
and various neurological disorders [170]. To give the hope of independent life to these
people, many researchers are working on rehabilitation procedures for the therapy. In
Canada, 40,000 people are suffering from SCI, with an annual rate of 1500 new cases
[131], and 50,000 people suffer from TBI [310]. Along with various statistical reports
on brain injuries, there is a significant motivation to seek rehabilitation of these patients
(specifically stroke survivors) because of the following reasons. Each year in Canada, 62,000
people experience a stroke; among these patients, over 6,500 cases access the in-patient care
which costs the Canadian health care system about $3.6 billion per year [108]. Although it
has been found that therapy is effective in the treatment of movement disorders, because of
economic burdens therapy hours per patient have decreased [232]. Studies have shown that
comprehensive and optimal stroke care can decrease the associated costs significantly, and
this will save Canadian health care $700 million per year [21, 153]. This optimal care can
be achieved by implementing new technologies. That is why the design and development
of automated rehabilitation devices have gained more importance.

1.1 Motivations and objective

Rehabilitation robots are currently being used in clinical settings under different case
studies. However, their effectiveness is arguably indeterminate [29, 164]. Even the latest
rehabilitation robots are generally limited by:
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1. out-of-date motor learning methods used in rehabilitation robotics [179],

2. few identified motor learning approaches [178],

3. incomplete clinical assessments for evaluating effectiveness of rehabilitation robots in
patient’s motor function recovery [178], and

4. dependency of positive results of physical therapy on various factors related to the
patient and source of impairment [170].

Despite these shortcomings, it is not possible to ignore the potential of rehabilitation
robots since physical therapy, which can easily be delivered by these robots, is the key
element for motor recovery [149, 230]. Thus, the advancement of the design and control of
a rehabilitation robot is very valuable because of the following reasons:

1. insufficiency of traditional physical therapies [128, 137],

2. reduction of financial burden of costly therapy sessions [71, 150],

3. innovative motor learning scenarios [29, 38] supported by the optimization of robot’s
mechatronic design and control algorithms.

4. in-home rehabilitation and patient care [71, 217],

5. variations in delivering therapy, which can facilitate new achievements in motor learn-
ing studies [29, 230],

6. meaningful restoration of functional activities by introducing a new class of interact-
ive and user-friendly robots [151].

Best design practices demand proper modeling of the whole system, which for this case
consists of a human body interacting with a rehabilitation robot. However, there is a lack
of studies considering human body interaction with the rehabilitation robot. Hence, since
this interaction will affect rehabilitation procedures, the goal of this research is to fill this
gap. For modeling human body motion and interaction, musculoskeletal models are used.
Upper extremity motor defects are common among stroke patients [184], so this project
will be focused on the modeling and control of an upper extremity rehabilitation robot
interacting with musculoskeletal upper extremity models.
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1.2 Challenges

The goal of this research is to develop model-based controllers for an upper extremity
rehabilitation robot. Fulfillment of this goal involves two steps of modeling and control of
a human-robot rehabilitation system, which leads to the following challenges:

1. Develop suitable 2D and 3D musculoskeletal models to interact with the robot. Mus-
culoskeletal models consist of muscles, bony segments, and joints. There are various
musculoskeletal arm models; a proper selection among them requires the careful study
of each part. For muscles, their mechanics, path models, and muscle redundancy solu-
tion method must be considered. For bony segments and joints, their definitions such
as Range of Motion (ROM) and DOF should be clarified.

2. Model the studied upper extremity rehabilitation robot. The robot has friction and
backlash. There are different friction and backlash models; selecting appropriate
models for among them are challenging parts of this model development.

3. Model the human-robot system as a whole, which involves an efficient integration of
the musculoskeletal and robot models based on the human’s and robot’s workspace
envelopes for the planned rehabilitation activities.

4. Identify the dynamic parameters of the developed musculoskeletal and robot models.
Because of the highly nonlinear structure of both models, their Dynamic Parameter
Identification (DPI) is one of the cumbersome parts of this project. Developing a
method to identify unknown dynamic parameters of the robot which has backlash
discontinuity is a particularly challenging part.

5. Design optimal and hybrid impedance-based control structures for the robot and
tune them using model-in-loop simulations. Impedance and admittance control are
widely used in rehabilitation robotics. Development of optimal and hybrid controllers
of these types and using a musculoskeletal model to simulate and evaluate the robot’s
performance will help us to not only tune the proposed controllers but also assess
the physiological properties of the system.

6. Design Nonlinear Model Predictive Control (NMPC) framework for the robot using
human-robot interaction dynamics. Development of this framework is highly depend-
ent on the accurate and efficient modeling of human-robot interaction system. This
also involves selection and tailoring of suitable NMPC methods.
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7. Implement the proposed controllers on the robot with real-time processing. Tailoring
the proposed controllers for real-time applications is the last and most important
challenge of this project.

1.3 Contributions and applications of the research

This research involves modeling and DPI of mechatronic and bio-mechanical systems (i.e.,
biomechatronics). The contributions of this work are listed below (underlined), followed
by a variety of applications of the research:

• DPI of a rehabilitation manipulandum with a nonlinear and discontinuous dynamic
model: the robot’s friction model and DPI can be used in other robotic applications.
The proposed methodology for DPI of the robot with backlash can be extended to
include other mechanical discontinuities, such as dead-zone and hysteresis.

• Development of a 3D musculoskeletal upper extremity model with muscle wrapping
according to International Society of Biomechanics (ISB) recommendation: the 3D
musculoskeletal model can be used in upper extremity studies as a reference model.
This model is derived from the Texas upper extremity model [96, 98, 99], which is
modified by defining it in ISB recommended coordinates [322] and including shoulder
rhythm movements [326]. The model’s optimized C-Code is generated using the
MapleSimTMsoftware package, which is advantageous for many real-time applications.

• Building low-fidelity (2D) musculoskeletal models based on the 3D musculoskeletal
model: mapping techniques to construct a 2D musculoskeletal arm model from the
3D model for interaction with a planar rehabilitation robot can be used in a variety of
human-interfaced robotic applications with 2 DOF. Our developed 2D model behaves
similarly to the actual 3D musculoskeletal arm model in the horizontal plane reaching
movements. The implemented shoulder rhythm in the 2D musculoskeletal arm model
can enhance any 2D upper extremity musculoskeletal model.

• Dynamic parameter identification of the musculoskeletal upper extremity model: the
DPI method for the musculoskeletal upper extremity model can be extended to other
musculoskeletal models and applications.

• Building a human-robot interaction model: the integration of two systems can be
used to model human-machine interactions, and this has a variety of applications
ranging from work- to home-space human-environment interaction.

4



Several optimal controllers are developed for the human-robot interaction system, which
can result in the following advantages:

• Design and model-based tuning of hybrid force-impedance and optimal impedance
controllers for rehabilitation: the proposed optimal/hybrid impedance-based control-
lers can be used in controlling robot manipulators in contact with objects in their
workspace. The robotic contact problem is very important in many applications in-
volving motion that is constrained by the environment. This gains more importance,
once the interaction environment is human (i.e., rehabilitation robotics). In rehab-
ilitation robotics, impedance-based controllers are widely used. However, design of
optimal impedance-based controller and tuning with the aid of model-in-loop simula-
tions are pretty novel and has not been done previously. These novel methodologies
will enhance the rehabilitation quality.

• Development of real-time human-robot interaction controllers in NMPC framework:
End-effector based rehabilitation robots as well as exoskeleton robots can benefit from
the developed NMPC framework to optimize rehabilitation. This framework can be
implemented not only in other rehabilitation robot applications but also in prosthesis
design. Prosthetic limbs are in contact with different environments while interacting
with the human body. These robotic limbs are controlled using myoelectric signals.
Implementing the proposed control scenarios may optimize the performance of these
robots to consume less energy while performing the desired task.

1.4 Thesis outline

In the next chapter (Background), a literature review on the musculoskeletal upper ex-
tremity modeling, upper extremity movement disorders, upper extremity rehabilitation
devices and DPI are provided. In Chapter 3 (System Models: Rehabilitation Robot), the
model of the studied robot is developed, and two DPI methods are proposed, and their
significance is discussed. In Chapter 4 (System Models: Human and Human-Robot Inter-
action), different musculoskeletal upper extremity models are developed. Then, the robot
and human models are integrated, and their integration is discussed. Some preliminary
cross-validation studies are done on the musculoskeletal models. Finally, a method for the
DPI of the 2D musculoskeletal model is presented. In Chapter 5 (Rehabilitation Robot
Control: Robot Control), two low-level controllers based on the impedance-based assist-
ance are developed and tuned. The proposed optimal impedance control is validated by
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experimental results and compared to a conventional optimal control. Finally, advance-
ments of these controllers are discussed. In Chapter 6 (Rehabilitation Robot Control:
Human-Robot Interaction Control), model-based control structures based on the NMPC
idea are presented and validated by model-in-loop simulations. In Chapter 7 (Conclusion),
concluding remarks are provided. Followed by the list of references, the appendices are
provided at the end of this thesis.
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Chapter 2

Background

This thesis combines mechatronic (i.e., the rehabilitation robot) and bio-mechanical (i.e.,
the musculoskeletal upper extremity model) systems (i.e., biomechatronics). In this chapter,
first, actuator models of the musculoskeletal model (i.e., muscle models), which provide
information about fundamental muscle mechanics, muscle paths, and solving the muscle re-
dundancy problem, are reviewed. Next, musculoskeletal upper extremity models and their
components are studied. Then, a brief introduction to upper extremity movement dis-
orders is given. Finally, a comprehensive review of upper extremity rehabilitation devices
is provided.

2.1 Muscle models

When a motor task is executed by the body, the Central Nervous System (CNS) stimulates
muscles to generate forces. These forces are applied to the skeletal structure using tendons.
In other words, muscles–or more precisely musculotendons–are connecting the CNS to
the moving body segments. Thus, the study of musculotendon models for rehabilitation
engineers, who are working on the design of rehabilitation devices to restore impaired
motor unit functionality, is of great importance. There are three different aspects of muscle
modeling:

• Muscle mechanics,

• Muscle paths, and

7



• Solving the muscle redundancy problem.

In upcoming subsections, each of these aspects is reviewed.

2.1.1 Muscle mechanics

Muscle mechanic models can be defined implicitly or explicitly. Implicit models use Elec-
tromyography (EMG) activities of the muscles [78] or Functional Electrical Stimulation
(FES) response of the muscles [248] to assess their force contributions. This estimation is
qualitative and sometimes is combined with muscle force-length and force-velocity proper-
ties. Explicit models have mathematical representations. These models can be based on a
physics-based or a “reductionist” approach [336].

The physics-based approach is defined based on macroscopic properties of the muscle,
and it is an Input-Output (IO) model regarding muscle dynamic characteristics [336]. One
of the first models of this type is the simple second-order system model, in which the muscle
is modeled as a mass-spring-damper system with a simple Ordinary Differential Equation
(ODE), and there is no tendon in the model [315]. The advantage of these models is their
mathematical simplicity [251]. However, the parameters of the model are task-specific, so
they should be adjusted for each task [315]. The second physics-based approach is the Hill-
type model, which resulted from Hill’s studies on isolated muscles [115]. There are various
types of Hill-type models; the most common is the model with three elements consisting of
Contractile Element (CE), Parallel-elastic Element (PE), and Series-elastic Element (SE)
[251, 259]. There are other models of the physics-based approach available in the literature
such as [37, 112, 174, 311, 312].

The reductionist approach considers the microstructure of the muscles [336]. Hence,
the equations are based on microscopic properties of the muscles. One of the models
of this type is the Huxley-based model, in which the internal structure of the muscle is
considered in the muscle dynamics model [315]. Other models of this type are available in
the literature such as [17, 303].

Implicit models cannot be used in math-based modeling since they are not mathemat-
ical and they are qualitative. Among explicit models, the selection of a suitable approach
depends on the objective of the project. In this study–math-based modeling–we are not
dealing with the microscopic physical and chemical musculotendon properties; besides, the
description of the system is in terms of inputs and outputs with known muscle structure
and function. Therefore, we utilize the physics-based approach considering muscle charac-
teristic curves. Concurrent with previous research, this study utilizes Hill-based lumped
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parameter models, unlike other physics-based approaches such as second-order systems
[50, 313]. Through various types of Hill-based models, Thelen [283] has adjusted paramet-
ers of these models to simulate muscle mechanics of older adults. Rehabilitation is common
among older adults, and Thelen’s modifications have been used in various studies such as
[53, 134, 223, 250, 252, 299]. Hence, in this study, Thelen’s modified Hill-based muscle
model is used.

2.1.2 Muscle path models

Beside muscle mechanics models, which are used to estimate forces, muscle moment arms
about joints and muscle lengths may affect the results of the musculoskeletal simulations
[9, 19, 26, 78, 111, 123, 207]. In other words, the results of the simulations depend on the
muscle paths [78, 316], which have been modeled in different ways.

Straight-line model

In this model, the muscle path is defined by a straight line connecting muscle attachment
sites to each other [25, 56, 73, 107, 244]. Although these models are easy to implement,
they may not give accurate results [78, 97, 339].

Centroid-line model

In this model, the points on the cross-sectional areas of a muscle are connected by a curve to
generate the muscle path [8, 9, 16, 35, 132, 289, 319]. One of the methods for approximating
the muscle centroid-line path is the via-points approach. In this method, muscle path sites
are defined by points attached to the skeletal segments. These via-points can be fixed to
the skeletal segments [25, 63, 257, 273, 314, 331], or they can be muscle points moving
relative to the attached bony segments [273]. Although the via-points approach seems to
be accurate for one-dimensional joints such as elbow flexion/extension joint, they may not
be significant in multi-dimensional joint movements or for large joint angles [97].

Geodesic models

Muscle paths are often modeled such that the muscle wraps around some surfaces which
are representative of anatomical constraints [46, 97, 175, 200, 294]. These methods consider
that the acting muscle force is along the centroid line of the muscle, and the muscle is a
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frictionless elastic strap which wraps over the anatomical constraints [97, 241, 338]. Natural
geodesic variation methods are more applicable for complex wrapping geometries [241, 338].
However, if the wrapping surfaces are modeled with simple shapes, the obstacle-set method
is more efficient than other geodesic methods [241].

Finite element model

This model is based on the finite element method, which is used for the detailed represent-
ation of the complicated muscles [23, 86, 94, 161]. Thus, the method needs a large amount
of data and mathematical calculations for an accurate three-dimensional model generation.

Non-geometric path model

Detailed musculoskeletal models increase dynamic simulation times. The reason can be
found in the muscle geometrical path definitions for these models. To overcome this issue,
instead of using the geometric muscle path model, fitted functions are used to relate mus-
culotendon length and moment arm to joint angles. In [225] regression-based polynomial
equations are fitted for muscle moment arm and musculotendon length in terms of joint
angles. In [43, 293] a polynomial equation is fitted for musculotendon length in terms of
joint angles; then considering the virtual work principle, the muscle moment arm about a
joint is calculated by differentiating the musculotendon length function with respect to the
joint angle.

Discussion

A point to note about muscle path models: if the number of muscle origin or insertion
points is more than one, these muscles are modeled as two or more muscle elements [121].
Although a non-geometric path model is mathematically efficient, fitting a function for
musculotendon length for a large number of joint angle variations needs an appropriate
geometric muscle path model. Among the mentioned geometric path models, the obstacle-
set method is selected for this study because of relatively realistic and simple representation
of the muscle for a relatively small amount of mathematical load.

2.1.3 Solving the muscle redundancy problem

Having a good picture of muscle and joint forces is of importance in many biomechanical
fields. Direct measurements of these loads are almost impossible; hence, this motivates
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us to use indirect methods such as musculoskeletal modeling to approximate these forces.
Nonetheless, since the number of muscles acting on a joint is more than one, the dynamic
problem of the musculoskeletal models becomes redundant. In other words, there can
be numerous results for a single equilibrium condition. To overcome this issue, it seems a
logical interpretation to assume that the CNS adjusts muscle forces in an optimized manner
[3, 55]. Different methods for solving the muscle force sharing problem are summarized
below:

Static Optimization (SO)

In this method, muscle forces are determined by instantaneous optimization of an objective
function. Although this method is mathematically efficient, it may lead to results with
abrupt changes because of ignoring muscles contraction and activation dynamics. Other
than that, since each time step is optimized independently, it is not possible to have
time history dependent objective functions such as metabolic energy. Different types of
instantaneous objective functions have been defined in the literature such as [288].

Dynamic Optimization (DO)

This method is the optimal control of the musculoskeletal model [61]. The neural excita-
tions are the control inputs for the forward or inverse dynamics problem to produce desired
motion trajectories or joint torques [185], respectively. To solve the two point boundary
value problem in the optimal control, there are some studies that have changed the op-
timal control method to a parameterized optimization problem, and they have reported
satisfactory results [10, 60, 89, 208, 245]. DO is suitable for the motions affected by dom-
inant muscle activation dynamics and co-contraction [191]. Since DO uses the time history
of the simulation along with muscle contraction and activation dynamics, unphysiological
results are not obtained, and it is possible to define time-integral cost functions. However,
considering the whole time history increases the computation cost enormously, especially
for complicated musculoskeletal models.

Extended Inverse Dynamics (EID)

This approach, proposed by Ackermann [2], is a variation of dynamic optimization whereby:

1. The problem is solved by inverse dynamic equations.
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2. The inputs to the optimizer are the muscle forces along the corresponding tendons.
The activations and neural excitations are evaluated by inverting contraction and
activation dynamics, respectively, once the optimization problem is being solved.

The computational load of this method is less than DO, and in contrast to SO, it considers
contraction and activation dynamics together with a time-integral cost function [3].

Inverse-forward Dynamic Optimization (IFDO)

It is a type of DO which includes both the forward and inverse contraction/activation
dynamics [198]. This method can also be combined with the forward dynamic model of the
musculoskeletal model to generate a correction control input to the optimization problem;
the resulted approach is Inverse-forward Dynamic Optimization Control (IFDOC).

Inverse-inverse Dynamic Optimization (IIDO)

If in a DO problem, some design parameters should be identified in addition to the unknown
muscle force prediction, single inverse dynamic optimization cannot solve the problem.
Rasmussen et al. [227] has proposed a method called IIDO which solves this issue by
introducing outer inverse dynamic parameter identification [60].

Modified Static Optimization (MSO)

Because of high computational costs of DO and EID, for real-time simulations, it is often
necessary to use SO with instantaneous cost functions. However, SO does not account for
contraction and activation dynamics, which may cause unphysiological results. Therefore,
MSO was proposed to solve this issue [2]. MSO is similar to SO, with the difference in
having nonlinear constraints, which are related to the contraction and activation dynamics.
This approach is also analogous to EID, but the optimal problem is solved instantaneously
and the results of a time step are only dependent on the results of the previous time step.

Forward Static Optimization (FSO)

This approach, which has been utilized by Sharif Shourijeh [251], is like a DO in which
the objective function is optimized at each time step while satisfying kinematic constraint
equations of forward dynamics integration. In another point of view, FSO is similar to
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MSO, where instead of inverse dynamics, the forward dynamics problem is solved with
activations or excitations as inputs. Looking closely, FSO is a special case of NMPC,
which optimizes the current time step while considering the future time step [180, 254].
Another variation of this method has been utilized in [43, 293]; these studies use different
numerical approaches for implicit solution of the dynamic equation.

Computed Muscle Control (CMC)

CMC, which is presented by Thelen et al. [285], is a kind of SO with implemented control
algorithms to track the kinematics from a forward dynamics integration [284]. This method
cannot use time-integral cost functions, similar to SO.

Muscle synergy

Muscle synergy theory has a biologically-plausible approach to deal with muscle force
sharing problem [286]. Based on this method, during a task muscles are activated in a
group called synergies. Although this method is computationally efficient [20], mostly it
has been used in inverse dynamics analysis in these studies [253, 262, 269, 337]. Yoshikawa
et al. [332] use equilibrium-point-based synergies to translate human movement to a robot.
Parallel to our current study, a project in Motion Research Group (MoRG) at the University
of Waterloo has been done by Sharif Razavian [248], which considers muscle synergies based
on the task space in forward dynamic simulations [250].

Other approaches

Analytical optimization technique has been used by Challis and Kerwin [44] to estimate
muscle forces. However, the evaluated forces are not bounded. Hence, this method may
result in negative values for muscle forces, which is unphysiological. In another approach,
the pseudo-inverse is used to evaluate the inverse of the muscle moment arm matrix,
then the muscle forces constraints are imposed with the aid of the null space definition
in quadratic programming [281]. This approach has required some simplifications such as
considering muscles as string elements. There are also other studies which use specific tools
such as stochastic modeling and muscle fatigue criterion to deal with muscle force sharing
problem [176, 249].
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Table 2.1: Components of the shoulder

No Joint Location Mechanical function

1 Sternoclavicular Joint (SCJ) Base of clavicle Connecting clavicle to thorax

2 Acromioclavicular Joint (ACJ) Base of scapula Connecting scapula to clavicle

3 Glenohumeral Joint (GHJ) Humeral head Connecting humerus to scapula

4 Subacromial Space (SAS)
The space between the acromion
and rotator cuff at humeral head

Allows sliding between acromion
and rotator cuff

5 Scapulathoracic Joint (STJ)
Floating movement base of
scapula

Allows sliding of scapula on
thorax

Discussion

In this study, it is desired to have a musculoskeletal model to interact with a rehabilitation
robot model. Consequently, fairly quick and instantaneous evaluation of the muscle forces
for design and tuning of a controller for the robot is demanded. Therefore, among various
solutions for the muscle force sharing problem, the methods based on a static optimization
approach (i.e. FSO, MSO, and CMC) seem to be most applicable to our research.

2.2 Musculoskeletal models of the upper extremity

In this section, an anatomical review of the upper extremity is presented, which is adopted
from [242]. This review presents the issues that should be considered in an upper extremity
model excluding the hand. Then, we will briefly review available musculoskeletal upper
extremity models for the shoulder, elbow, and wrist.

2.2.1 Anatomical review and issues

The upper extremity is composed of the shoulder girdle, upper arm, forearm, and hand
(Fig. 2.1, it is the modified version of SolidWorksr model adopted from [143]).

The shoulder girdle (clavicle and scapula) is an interface between the upper extremity
and thorax. Among different components of the upper extremity, the shoulder is more
complicated because:

1. It is composed of 5 joints (see Table 2.1 which is adopted from [65, 242]).
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Figure 2.1: Upper extremity anatomy.

2. In addition to muscles and joints, there are two ligaments which affect the shoulder
motion.

3. The joint capsules and ligaments of the shoulder joint are weak. Most shoulder
defects are related to soft tissue, and 45% of dislocations correspond to the shoulder
joint.

4. During shoulder abduction, the upper arm and scapula angles vary with the ra-
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tio of 2:1. This is called Humeroscapular Rhythm (HSR). In general, the shoulder
joint movement constrains and imposes motion to the SCJ and ACJ, which is called
shoulder rhythm or Humerothorax Rhythm (HTR). These movements can be re-
corded by motion capturing techniques. There are some other methods such as
regression-based equations which evaluate the dependent motions [326].

The shoulder girdle is located in the upper extremity, and the hip girdle is in the lower
extremity. The hip girdle is mainly for supporting gait and total trunk weight. Hence,
the functionality of the shoulder girdle is more than the hip girdle, and this boosts the
importance of the shoulder study and modeling in biomechanics.

The elbow is the second important component of the upper extremity. It consists of
three joints: Humeroulnar Joint (HUJ), Humeroradial Joint (HRJ), and Proximal Radi-
oulnar Joint (PRUJ). The HUJ connects the ulna to the humerus and provides elbow
flexion/extension. The HRJ attaches radius to the humerus and allows elbow prona-
tion/supination. The PRUJ joins proximal parts of radius to the ulna, and while allowing
relative pronation/supination of the radius with respect to the ulna, it transfers elbow
flexion/extension to the radius. The PRUJ can be modeled as a revolute joint with a fixed
base on the ulna.

Finally, the wrist is the last important component. It consists of two joints: Radiocarpal
Joint (RCJ) and Distal Radioulnar Joint (DRUJ). The RCJ connects hand to the radius;
it can be modeled as an ellipsoid joint1. The DRUJ attaches distal parts of the ulna to
radius and couples pronation/supination in proximal parts. The DRUJ can be modeled as
a revolute joint with a fixed base on the radius.

Other than skeletal complexity, there are 52 muscles (consisting of 9 shoulder girdle
muscles, 9 shoulder joint muscles, 4 upper arm muscles, 19 forearm muscles, and 11 hand
muscles) in the upper extremity, which increase the complication of the musculoskeletal
models.

2.2.2 Musculoskeletal shoulder models

There are several musculoskeletal upper extremity models, which are summarized in Table A.1.
The common feature of these models is the inclusion of the shoulder. However, as in
Table A.1, the shoulder has been modeled with a different number of joints discussed

1This joint is composed of an ellipsoid and ellipsoidal cavity.
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previously [77]. These models use different numbers of muscles considering muscle mech-
anics and muscle paths to solve the muscle redundancy problem by one of the mentioned
methods. Most of these models are 3D, but some of them are 2D.

2.2.3 Musculoskeletal elbow models

Some elbow models are integrated into the upper extremity models in Table A.1. In these
models, the elbow has been modeled as a single revolute joint (flexion/extension joint) or
two revolute joints (flexion/extension and pronation/supination joints). In the literature,
there are some detailed models of the forearm pronation/supination [142]. However, for
simplicity, in current models, the pronation/supination joint is modeled only by a radioul-
nar joint which connects proximal parts of radius and ulna. In other words, there are no
humeroradial and distal radioulnar joints in current musculoskeletal models.

2.2.4 Musculoskeletal wrist models

Among musculoskeletal upper extremity models, only the Texas and Stanford models
[96, 122] have a wrist model. In these models, the wrist is modeled as two independent
revolute joints even though the wrist consists of a radiocarpal joint that is best modeled
by an ellipsoid joint. Furthermore, the ROM for two independent revolute joints is more
than the ROM of an ellipsoid joint. Thus, two independent revolute joints may result in
unphysiological configurations for the wrist.

2.2.5 Sensitivity analysis of the musculoskeletal upper extremity
model

Muscle parameters based on collective data of experiments are being used in muscle sim-
ulation models. However, these parameters cannot be representative of everyone’s muscle
parameters since muscle properties are changing from one subject to another [324]. These
parameters may be different for various ages, genders, and neuromuscular conditions
[134, 158, 194], and this difference may lead to unreliable evaluations. Thus, subject-
specific muscle properties are required to include in musculoskeletal models. It is not easy
to measure muscle properties for each subject, and some generic values are usually used
for these parameters [63]. To determine the effect of each muscle, a sensitivity analysis of
muscle parameters should be conducted. For example, it has been shown that a musculo-
skeletal system with a muscle-tendon model is more sensitive to the tendon slack length
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Figure 2.2: Average muscle force change when perturbing each corresponding parameter
with 1% perturbation in the musculoskeletal upper extremity model with different strength
levels.

parameter than other muscle parameters [40, 85, 91]. There are two types of sensitivity
analysis of Hill-type muscle models:

1. A muscle parameter is perturbed, and the muscle force is recalculated [62, 243].

2. A muscle parameter is perturbed, and the musculoskeletal system behavior is evalu-
ated [109, 228].

In [41], the Stanford musculoskeletal upper extremity model with different strength
levels (which models healthy to impaired subjects) is used to analyze its muscle force
sensitivity to the perturbed muscle parameters including: tendon slack length (LT

s ), muscle
optimal fiber length (LM

0 ), maximum isometric muscle force (F iso) and muscle pennation
angle at optimal length (αM

0 ). This evaluation is done in a static pose and results are
summarized in Fig. 2.2. Muscle force estimation is more sensitive to the tendon slack
length than other parameters. Once the patient is weaker in strength, the muscle force
sensitivity increases significantly.

Other than muscle parameter sensitivity study, simulation results may be sensitive to
the kinematic parameters of the skeletal body. In a sensitivity analysis which was done
on an EMG-driven musculoskeletal elbow model [325], this feature is studied. The muscle
force sensitivity was high for the length of the humerus segment.

2.2.6 Discussion

There are some other models which have been developed for specific applications:
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• Kinematic musculoskeletal upper extremity model for real-time interaction [209]:
which is developed for SANTOSTMsoftware as a part of the Virtual Soldier Research
program. In this model, the shoulder is modeled with 3 spherical joints, including:
SCJ, ACJ, and GHJ. The elbow is modeled using two revolute joints for RCJ and
DRUJ. The model has 21 major muscles and uses the obstacle-set method for muscle
wrapping.

• Flexible body musculoskeletal upper extremity model [145]: this is a finite-element
musculoskeletal model which is developed from MADYMO human models2. It is
composed of spherical joints at the shoulder, elbow, and wrist. The model has 31
muscles, and they are modeled with the CE/PE/SE Hill-type definition. A type
of FSO is used to solve the muscle force sharing problem. However, since it is a
finite-element model, it is computationally expensive.

• 3D musculoskeletal driver model: it is developed in MoRG at the University of Wa-
terloo [181]. Because of the task-specific definition of this model, it has fewer degrees
of freedom than the presented models. In this model, the universal shoulder joint,
revolute elbow joint and spherical wrist joint are the defined joints. The driver model
has 10 muscles defined by straight-line and via-point methods. The muscle mechanics
model is based on the CE/PE Hill-type muscle definition, and its redundancy has
been solved by the FSO approach.

• Dynamic upper extremity model [240]: this model is the modified dynamic Stan-
ford model, in which masses and inertias for the shoulder girdle elements have been
defined. The model is developed in the OpenSim open-source software package, which
is a musculoskeletal simulation toolkit from Simbios [64, 246].

• Musculoskeletal arm model with real-time simulation [43]: this model has been de-
veloped for the design and assessment of a controller for a Brain-computer Interface
(BCI). The goal is to enable user-in-the-loop experiments; thus, real-time simulations
are demanded. The model uses 29 muscles (138 elements) with the CE/PE/SE Hill-
type definition and non-geometric muscle path method. The shoulder is modeled by
three spherical joints, and the STJ and shoulder stability are imposed as constraints.
Other than muscles, one ligament and joint passive moments are considered. Shoulder
rhythm is controlled by muscle forces, and the muscle force sharing problem is solved
by FSO. For simulations OpenSim is used, where the upper extremity model defini-
tion is based on the Delft model [198].

2MADYMO (from Tass International) is a software package to analyze passenger safety
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• Closed-chain human arm dynamics [60]: in which the musculoskeletal upper ex-
tremity model of The AnyBody Modeling SystemTMis used. The model has 104
muscles with the CE/PE/SE Hill-type definition. Since the model rotates a crank
on the horizontal plane, the number of active joints reduces to the shoulder flex-
ion/extension at GHJ and the elbow flexion/extension at HUJ. Since there are some
unknown design parameters in this closed-chain problem, the IIDO is used to solve
the muscle force-sharing problem with unknown design parameters.

Although there are many musculoskeletal upper extremity models, comparison of them
and selection of a suitable model is difficult, because they are not using the same anthropo-
metric data and joint coordinate systems. For this reason, the ISB has proposed a standard
approach for the upper extremity joint coordinate systems [322] to unify the research in
this area. Some of the mentioned musculoskeletal upper extremity models are using this
recommendation. The Stanford, Delft3, and Lisbon models [122, 221] have more common
features with the ISB definition. These models are using a protocol [297] for the defin-
ition of the scapula coordinate, which is different from the ISB recommendation. There
are also commercially available musculoskeletal models like SIMM (from Musculographics
Inc.), The AnyBody Modeling SystemTM[58], VIMS [45], OpenSim [64, 246], MADYMO,
SANTOSTM, and LifeMODTM(from LifeModelerr). Nonetheless, since the goal of this
project is to develop model-based controllers for an upper extremity rehabilitation robot,
using the above software packages is not advantageous for symbolic modeling, and real-time
simulation and feedback control.

In the current study, primarily we will utilize 2D musculoskeletal arm models [197, 276]
because for real-time simulations it is often necessary to use low-fidelity models. Then,
we will use 3D musculoskeletal arm model (i.e., the high-fidelity model) to justify the
significance of the 2D model (i.e., the low-fidelity model). Since the Stanford model is a
complete model of the upper extremity and also is available in OpenSim, we will utilize
and modify this model for our primary 3D musculoskeletal model. The Stanford model is
limited by:

1. ROM for some joints: for example, maximum positive shoulder rotation angle in this
model is 20 degrees [122], while this value in most references has been reported to be
about 90 degrees [229].

2. Imperfect shoulder rhythm definition: in the Stanford model, the shoulder rhythm
is defined by simplified regression-based equations which are only dependent on

3Since “dynamic upper extremity model” and “musculoskeletal arm model with real-time simulation”
are using Stanford and Delft models as their base models, respectively, we have not mentioned them here.
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the shoulder elevation angle [122]. However, the most accurate shoulder-rhythm
regression-based equations are in terms of three shoulder joint angles [326].

3. Incorrect muscle path generation for some orientations: this is due to the imperfect
muscle path definition based on the via-point method.

These shortcomings led us to develop an advanced 3D musculoskeletal arm model based
on the ISB recommendation. Defining muscle-wrapping geometries requires a proper data-
base. The Texas upper extremity model has a complete muscle path definition based
on the obstacle-set method. This model is defined in different coordinates than the ISB
recommendation and it does not account for the motion of the shoulder joint (shoulder
rhythm HTR). To develop the advanced musculoskeletal arm, the primary goal is to define
the Texas model using the ISB recommended coordinates with the shoulder rhythm de-
termined by the regression-based approach of [326]. The Lisbon model is the Texas model
defined in ISB recommended coordinates except for the scapula coordinate. This redefin-
ition has some deficiencies, and we will overcome those imperfections by redefining the
ISB recommended coordinates, proper positioning of the clavicle and scapula, and defin-
ing non-geometric muscle path which is required for real-time simulations. Finally, to get
real-time responses from the model-based controllers, we will develop 2D musculoskeletal
arm models for interaction with a planar rehabilitation robot.

2.3 Upper extremity movement disorders

Upper extremity movement defects are caused by different sources such as upper extremity
component injuries and surgeries, overuse syndromes [260], stroke, TBI, SCI, motoneuron
defects, and neurological diseases such as Cerebral Palsy (CP) and Parkinson’s disease
[170]. Most of these defects need sessions of physical therapy to improve joint ROM,
strengthen muscles [260], restore functional capabilities and resolve impairments [170].

Stroke causes longstanding impairments, and it is common for older adults. Thus,
procedures are being used to rehabilitate this long-term disability [31, 206, 290]. Among
various movement disorders followed by stroke [14], upper extremity motor defects are very
common [184]. Therefore, rehabilitation approaches for upper extremity motor control and
function recovery are of importance. Consequently, we focus on upper extremity movement
disorders in post-stroke patients. Neurological complications of stroke are various [93], such
as:
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1. Hemispheric behavioral differences: stroke patients may show different behaviors in
doing a task. Those with right hemiplegia have hardship accomplishing consecutive
tasks so that these patients may need some assistance in their therapy. On the
other hand, patients with left hemiplegia have task perception problem, and they
overestimate their abilities. Fluctuations in doing a task are common among them.
Besides, because of the wrong perception, safety issues should be considered carefully.

2. Perceptual dysfunction: it is common among left hemiplegia patients, and can be
revealed as one of these symptoms: body scheme, spatial relation, and agnosia.
Body scheme is the difficulty in realizing the relationship between body parts. The
spatial relation is having trouble in perceiving the relationship between body and
other objects. Agnosia is the problem in distinguishing incoming information which
can be visual, auditory or tactile.

3. Osteoporosis and fracture risk: because of the lack of physical activity, these patients
may get osteoporosis. Osteoporosis is a bone disease for which the mass of bone will
decrease and cause fractures.

2.4 Upper extremity rehabilitation devices

There are two main types of training for stroke rehabilitation: unilateral and bilateral
[321]. Unilateral training is therapy for the single impaired limb. Constraint induced
therapy, which is an intensive use of the impaired limb while constraining the unaffected
limb, is a kind of unilateral training therapy. Taking into account bimanual daily activities
like hand washing, the idea of getting more help from undamaged neural pathways, and
case-dependent use of unilateral training, has led to bilateral training theory. Bilateral
training is used for symmetric/asymmetric movements of both impaired and unimpaired
limbs [272]. Although these two training approaches are different, they are pursuing the
same goal. Recent studies [292, 321] have stated that there are no significant outcomes
that can make one method of training superior to the other. The procedures of these
training methods are developed by motor learning theories. These theories are sometimes
in contrast and are not completely determined; some of the available ones are [29]:

• Implicit or explicit learning: implicit learning is unconscious during indirect task
execution, while explicit learning is directed.

• Massed or variable practice: massed practice is repetitive single task accomplishment,
while variable practice is multiple task training.
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• Feedback distortion or assistance: feedback distortion is magnifying movement errors
instead of assisting the patient to reduce the errors.

• Real world practice: real world practice can be done by virtual reality methods.

To show the need for rehabilitation robots, we should survey the goals of therapy [230]:

• Increase activity: it is done by the use of Thera-bands, pegboards, and blocks in
conventional therapy.

• Provide assistance: conventionally is accomplished by the help of splints, and arm-
supports.

• Improve assessment: traditionally is achieved by force gauges, goniometers, and
timers.

Considering these goals and their effectiveness, the features of robotic devices like auto-
mation and versatility in procedures and assessments [230], increasing physically impaired
patient population [170], and the limited number of therapists and decreased therapy hours
because of economic issues, justify the employment of rehabilitation robots in therapy ses-
sions [232]. Complete reviews of upper extremity rehabilitation robots has been done in
[29, 30, 113, 170, 219]. Based on [29], these robotic systems can be categorized by training
approaches. Accordingly, these robots are:

1. Unilateral trainers, which can provide:

• Gross motor movements: in which massed practice with explicit learning is
accomplished. It is an old method of therapy used in various rehabilitation
robots, or

• Fine motor movements: it is mostly related to hand and wrist rehabilitation.
This method can be used for increasing ROM or regulation of motor tasks like
independent movements of fingers.

2. Bilateral trainers, which perform bimanual therapy.

Together with the above tasks, some robots have additional features such as real world
practice, FES, EMG, Electroencephalogram (EEG), gravity compensation, feedback dis-
tortion, telerehabilitation, and progress assessment [29].

In this section, following topics in upper extremity rehabilitation robots are studied:
application, mechanical design, control scenarios and Human-Robot Interaction (HRI).
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2.4.1 Application

Upper extremity rehabilitation robots can support daily activities and are designed for
home or clinical use [170]. The target population for most of these robotic systems is
post-stroke patients, for whom these robots can:

1. provide active/passive assistance therapy (active devices). In passive mode, the robot
moves the patient’s limb without any muscular activity of the passive patient, while
in active mode the patient is active during training.

2. perform passive resistance therapy (passive devices).

3. be used as haptic devices for real world practice, to transfer tactile sensing to the
patient. They do not assist or resist movement.

4. coach the individual by providing real world practice via visual or auditory feedback
(coaching devices).

2.4.2 Mechanical design

Upper extremity rehabilitation robotic systems can be classified as [170]:

1. Manipulanda: these are end-effector based robots that have a simple structure, and
less complex control algorithms. However, it is hard to perform special movements
of a distinct joint using these robots. Another design issue in these robots is that the
end-effector at most can provide 6 DOF. Thus, the number of anatomical movements
should not exceed 6 otherwise it will cause redundancy, which is unsafe. “InMotion
Arm” and “ReoGo” are commercially available robots of this type.

2. Exoskeletons : these robots can provide movements to particular joints, and the num-
ber of anatomical movements can exceed 6. Nonetheless, increasing the number
of movement parts increases the number of device modules, so the system setup
becomes difficult. Moreover, since the shoulder has a variable joint center, the mech-
anical design and control algorithms become more complicated. “ArmeoPower” and
“ArmeoSpring” are commercial exoskeletons [219].
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2.4.3 Control scenarios

For exerting different therapy approaches by upper extremity rehabilitation robots, differ-
ent control algorithms are utilized. The control inputs are dynamic such as force and torque
measurement signals, kinematic displacement and velocity measurement signals, and trig-
gers such as switches and EMG signals. Their feedback to the user are tactile, visual,
auditory, and FES. The control strategies for these robots are categorized as [170, 219]:

1. High-level control scenarios, which help to stimulate motor plasticity.

2. Low-level control scenarios, which are used to implement high-level scenarios.

High-level control scenarios

There are three high-level control scenarios [170, 173, 219]:

1. Assistive control:

(a) Passive control: the device tries to constrain the patient’s hand to the desired
track. This track can be defined in different ways.

i. Passive trajectory tracking: it is a reference tracking control.

A. Kinematic-based position control: the tracking can be done on a smooth
trajectory [7, 28, 84, 136, 152, 168, 188, 237, 318] which is determined
by “minimum-jerk” hypothesis [87].

B. “record-and-replay” control: the trajectory can be obtained from un-
impaired volunteers [148, 268].

C. “teach-and-replay” control: the reference path can be generated by the
therapist guidance [216].

ii. Passive mirroring: which is based on bilateral training. Thus, the desired
trajectory is a path followed by the unimpaired limb [105, 216].

iii. Passive stretching: in which the limbs are coordinated by measuring the
angle-resistance torque relation [234].

(b) Triggered passive control: the device uses biosignals as control inputs, but this
triggering may cause slacking in which the patient does not show any effort and
waits for the robot assistance. These controllers are:

i. gaze-based tracking [165, 201]
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ii. EMG-based [42, 49, 54, 70, 74, 81, 157, 166, 222, 270],

iii. FES-based [124, 140], and

iv. BCI-based (which also includes EEG-based controllers) [15, 27, 88, 92, 238].

(c) Partially assistive control:

i. Impedance-based assistance: different variations of impedance and admit-
tance controls are used to control the rehabilitation robot [39, 51, 57, 106,
139, 187, 231, 287, 334].

ii. Attractive force field control: which uses some type of manipulability el-
lipsoid to apply force in specific directions [144, 327].

iii. Model-based assistance: in which a musculoskeletal upper extremity model
is used to implement a model-based assistive control in an exoskeleton[68,
69].

iv. Learning-based control: in which the adaption to the performance index is
done from trial to trial. Offline adaptive [13, 215, 218, 317] and Artificial
Intelligence (AI) [110] controls are types of this control structure.

v. Counterbalance-based control: the device applies active/passive counter-
balance to the patient limb for gravity compensation [129, 186, 188, 239,
271, 274].

vi. Performance-based adaptive control: the robotic system gets the perform-
ance of the patient using error-based strategy and adapts some features for
assistance [138, 152, 236].

2. Resistive (challenge-based) control:

(a) Resistance induced: resists patient’s movements [190, 210].

(b) Error amplification (feedback distortion): which is done by amplifying errors
kinematically [213, 214], visually [28, 214, 309] or tactilely [162].

(c) Constraint induced: this is same as constraint induced therapy [135, 256].

3. Corrective control: it is a kind of time-independent assistive control, in which the
assistance is done when there are large tracking, coordination, or skill errors.

(a) Tunneling: it is a kind of impedance-based control which is applied on bound-
aries of a wider trajectory [104, 146, 172].

(b) Coordination (synergy-based) control: which prevents large coordination errors
between joints during a rehabilitation task [33, 52, 103].
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Figure 2.3: Qualitative performance of impedance and admittance controllers in different
environments.

(c) Haptic provoke: which is used for providing real world experience based on
gaming control schemes [32, 36, 212, 330].

Low-level control scenarios

In robotic rehabilitation, since the human body is interacting with the mechatronic device,
safety issues in the design of appropriate control strategies are very important. Conven-
tional position or force control approaches (because of poor dynamic interaction modeling)
are not safe enough to be implemented in these devices [117]. Therefore, modified control
approaches like impedance and admittance control are used. In impedance control, the
position of the impaired limb is measured, and appropriate force is applied (i.e., it is a
force control with a position feedback), while in admittance control the applied force by
the impaired limb is measured and the corresponding movement is imposed (i.e., it is a
position control with a force feedback). Use of these methods is design and task specific.
Impedance control has a poor accuracy; however, it becomes more stable by increasing
the environment stiffness (see Fig. 2.3 which is adopted from [205]). On the other hand,
as in Fig. 2.3, admittance control in stiff environments is not stable, while it has a good
accuracy in less stiff environments. Implementing admittance control needs high transmis-
sion ratios to be considered in the mechanical design, while impedance control works with
direct drives (i.e., it is efficient for a light-weighted back-drivable robot) [205, 219].

2.4.4 Human-robot interaction

The goal of the HRI field is the design, development, and assessment of the “human-
centered” products [102, 167]. HRI research in the upper extremity robotic rehabilitation
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dates back to 1990s [300]. The interaction term in HRI for rehabilitation robots can be
categorized into two levels: physical and social. Since this project does not focus on non-
contacting robotic devices, the HRI will be studied at the physical interaction level.

To study HRI in rehabilitation robotics, we should consider these six HRI principles4

[167]:

1. Ability level: indicates the amount of robot’s ability to perform a task, and this factor
can have 10 levels varying from the no-assistance to independent control modes. This
will be adjusted by the designed low-level controllers.

2. User interface: this can be auditory, tactile, or visual. The user interface is considered
tactile.

3. Interaction arrangement: which includes single-robot and single-user, single-robot
and multiple-user, and multiple-robot and single-user. Our rehabilitation configuration
has a single-robot and single-user arrangement.

4. Learning and adaption: both robot and user should learn and adapt to each other’s
performances. The NMPC will help to provide the required learning and adaption.

5. Exterior design: the robot should be catchy and appealing for the user. Aesthetics
are out of the scope of this study.

6. Therapy time: which is each rehabilitation session’s duration. This will be decided
later in consultation with a therapist.

along with the following HRI metrics:

1. User acceptance: which indicates how much the user is satisfied with the robot. It is
evaluated using a questionnaire, which is available in our ethics application.

2. User participation: this shows how long the user is engaged in the robotic rehabilit-
ation task, and it is measured through robot-based assessments.

3. User accompaniment: this evaluates how often the user is accompanying the robotic
task (learning and adaption), and it is measured with robot-based assessments.

4. User safety: which is applied by limiting robot’s ROM, kinetic variables, and motor
torques. Our proposed low-level controllers deal with this issue.

4Underlined terms are the actions taken in this project.

28



2.5 Dynamic parameter identification

DPI of a mathematical model of the system is of great importance for the model-based con-
trol of robots. For example, in robotic rehabilitation, different types of low-level controllers
are implemented to deliver desired partial assistance during a therapy session [170, 219].
To implement these controllers, a complete and accurate dynamic model of the robotic sys-
tem is often required. This requirement may be reduced by integrating robust or adaptive
control approaches with the above controllers. For robust control, if the robot’s dynamics
are too uncertain, the quality of the optimized assistance or resistance may drop during the
therapy [255]. In adaptive control, it is required to have a persistently exciting input for the
convergence of the adaptive law [255], which will adversely affect the patient’s motivation
for using the device. Also, both adaptive and robust controllers may need high gains when
mechanical discontinuities (such as gear backlash) are introduced to the system dynam-
ics. Moreover, combining these methods with advanced model-based control algorithms,
which are used for accurate path planning and validation of the computer simulations,
may deteriorate the optimal performance in the presence of the system uncertainties and
discontinuities. NMPC of the human-robot system seems to be a promising approach to
optimizing robotic rehabilitation performance while considering safety [69, 101].

Similar to other model-based controllers (e.g., impedance controller, which is also used
for human-environment interactions), NMPC requires a mathematical representation of
the system. However, unlike the impedance controller, which requires an inverse dynamics
model, the NMPC model has to be forward dynamic. A simpler model (fewer states)
will decrease the computation cost of the NMPC controller. Such a simplified model
requires dynamic system parameters tailored to the specific modeling needs. These model
parameters can be obtained through a dynamic parameter identification (DPI) process.

A DPI process can be on-line (such as adaptive control and neural network methods)
or off-line (physical measurements, computer software techniques and system input-output
matching) [323]. System input-output matching, which is more accurate than the other
off-line methods [323], can be considered as an optimization problem, in which the vector
of unknown system parameters minimizes an objective function. If the parameters of the
system are defined linearly in the dynamic system model, the DPI can be done by con-
ventional least square or gradient methods [163]. In robotics, dynamic model parameters
appear nonlinearly and cannot be found through conventional DPI methods. Thus, non-
linear DPI methods such as neural network [133, 263], homotopy optimization [305, 306]
and nonlinear optimization approaches are being used [202, 267, 282, 329].

The neural network method considers the system as a black box; if the measurements are
too noisy, the identified system dynamics will represent the actual dynamics convoluted
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with the noise and will not produce repeatable results. Moreover, in this method, the
relation between the outputs and inputs of the system should be continuous [12, 48].
Hence, if the system dynamics is altered by backlash, the resulting discontinuity cannot
be estimated by the neural network approach.

Nonlinear optimization approaches are suitable for finding the best parameter estimates
if the initial guesses are properly selected; otherwise, they may get stuck in local minima.
This issue is more prominent in discontinuous and noisy systems. Homotopy optimization,
however, usually converges to the global minimum in the DPI [305]. This method is used
for identifying the parameters of a model represented by ODEs [305]. Thus, for a system
dynamics with discontinuity, which will generate Differential-Algebraic Equation (DAE)s
with conditional statements, conventional homotopy optimization cannot be used. Since
in this method a forward dynamics problem is solved, filtering the measurement data is
not required. However, for this kind of DPI, conventional optimization methods such
as Sequential Quadratic Programming (SQP) may fail because of numerical issues and
improper choice of initial guesses. With some modifications, which will be discussed in
Chapter 3 (System Models: Rehabilitation Robot), homotopy optimization can handle
these issues and provide better results than the SQP.

2.6 Concluding remarks

Upper extremity rehabilitation robots are improved by new hardware and control scenarios.
New mechanical design and control strategies are currently evaluated after device develop-
ment and clinical tests. Design and control are iterative approaches and thus, for better
outcomes with multiple iterations, the possibility of verification without the construction of
these robots becomes important. Since musculoskeletal models have been used successfully
for the study of human movement, they are promising tools to interact with rehabilitation
devices in simulations. In this study, we propose the use of musculoskeletal models with
modified activation dynamics5 interacting with rehabilitation robots to contribute to the
controller design and development of a rehabilitation robot. Some other studies have used
models for the evaluation of stroke patient therapy [90, 116, 233, 247]. However, in the
current research, the goal is to utilize musculoskeletal models in real-time simulations for
model-based design and control of rehabilitation robots.

In contrast to exoskeleton robots, it is hard to perform specific movements of distinct
body joints during therapy with an end-effector based robot. However, exoskeleton robots

5Since the experiments are done on healthy subjects, activation dynamics has not been altered during
this project.
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are more complicated to set up than end-effector based robots. In the current study, we
will try to overcome this deficiency of end-effector based robots by developing a subject-
specific rehabilitation system. This system will move specific joints through desired joint
angles since the musculoskeletal model of the subject is available, and subject movements
can be predicted and planned.

To check the feasibility of this study, we will use an upper extremity rehabilitation
manipulandum interacting with a musculoskeletal arm model. The robot was designed
and developed by Quanser Consulting Inc. and the Toronto Rehabilitation Institute (TRI)
[169] and modified in our lab to provide force sensing. Since two systems (robot and
human) are studied, their models will be developed. Then, dynamic parameters of the
musculoskeletal model for the specific subject and robot model will be identified using
a proper DPI. During HRI, two types of proposed low-level control algorithms will be
created, tuned, and evaluated. Next, these models will be used in new model-based control
structures to conclude this study.
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Chapter 3

System Models: Rehabilitation
Robot

Our upper extremity rehabilitation robot was designed and developed by Quanser Con-
sulting Inc. and the TRI and modified in our lab to provide force sensing. The system is
expected to elicit motor recovery of the shoulder and elbow joints of post-stroke patients
by repetitive programmed exercises such as reaching movements. This will improve mo-
toneuron control, muscle strength, and range of motion in a systematic approach. The
robot can also provide insight into the measurement of the aforementioned parameters.

In this chapter, first, an overview of the robot system will be given, focusing on its
mechanical design and computer software. Then, based on the discussed mechanical issues
of the robot, dynamic models of the robot using our two proposed DPI methods will be
presented. Finally, concluding remarks will be provided.

3.1 Robot overview

3.1.1 Mechanical design

The robot is a 2 DOF parallelogram mechanism that operates in the horizontal plane (see
Fig. 3.1.a). Two DC motors with optical encoders are connected to the parallelogram arm
through two disc-and-timing-belt mechanisms (see Fig. 3.1.a). The motors’ torque constant
is KT = 0.115 Nm/Amp, and the mechanical transformers’ gear ratio is r = 16 : 307. The
motors are rated at 115 mN-m of continuous torque. The continuous force at the hand
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Figure 3.1: a) 2DOF upper extremity rehabilitation robot, b) Kinematics (ith link length:
li) and inertial properties (ith link mass, inertia, and center of mass location: mi, Ii, and
ri) of the parallelogram arm, c) COM location (ri) and joint angle (qi) definitions for the
ith link in its local coordinate system {Zi,Xi} with respect to the global coordinate system
{Z,X}.

(or end-effector) is limited to 13 N per plane of motion. The motor encoder resolution is
4000 count/revolution, which results in a sensitivity of 0.8 mm/count in detecting changes
in the global coordinates. The motors connect to two aluminum links that are connected
to a passive aluminum arm, and an aluminum outer arm. Link lengths are provided in
Table 3.1. The outer arm is attached to an end-effector where the hand holds can be
mounted. The geometry of the links determines the shape of the workspace. The robotic
arm will be used in the horizontal plane with the robot firmly clamped to a table.

We have done some modifications to this stroke rehabilitation robot. In our modified
version of the robot, the end-effector is equipped with a 6-axis Force/Torque (F/T) sensor
(ATI Industrial Automation F/T Sensor: Nano25) that measures the interaction force
between the robot and human (see Fig. 3.1.a). The F/T sensor has been calibrated to
tolerate maximum 250 N on the horizontal plane and 1000 N normal to the plane. Sensor
resolution is 1/24 N in the horizontal plane and 1/48 N normal to the plane. The robot’s
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Table 3.1: Link lengths of the robot linkage measured in mm.

l1 l2 l3 l4

100 310 310 375

Large deflection
Small deflection

Figure 3.2: Robot out-of-plane arm deflection.

end-effector slides on four ball rollers (with Polyacetal balls), screwed into the end-effector
and protruding from the bottom, over the table surface. The end-effector of the robot
in the operational condition touches the table surface through the ball rollers, and this
will generate friction between the robot and the table surface (see Fig. 3.1.a). The robot
mechanism has some issues such as arm deflection in high-range motions (see Fig. 3.2),
and this causes variable end-effector friction because of variable normal force caused by
deflection. Actuator gear-belt backlash is the other problem in the robot mechanism; the
backlash gap is measured by a motion tracking system (“Optotrak Certus”) to be about
β = 0.005 rad = 0.286 deg. It is worth noting that we are not allowed to modify the robot
destructively. Thus, mounting an encoder to the load-side cannot be a solution for the
backlash issue.

3.1.2 Computer software

The robot’s computer software interface includes Simulink/MATLABr which incorporates
Quanser’s real-time control software driver (QUARC). To control the robot, the driver
software uses Quanser’s Data Acquisition (DAQ) card (Q8). The driver and application
software communicate through TCP/IP and shared memory protocol. To read the F/T
sensor data, a National Instruments DAQ card (PCI-6229) is used. This card is compatible
and operable by the QUARC software. The sampling-time frequency of the experiments
is set to 500 Hz, and a fixed-step Euler solver is selected to solve the ordinary differential
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equations.

3.2 Dynamic parameter identification using a modi-

fied homotopy method

Current DPI methods are more suitable for systems with continuous dynamics. If any dis-
continuity (e.g., backlash) is present in the system, the DPI may have numerical problems
for convergence. In this section, we propose a modified homotopy optimization to identify
parameters of a system with mechanical discontinuity (i.e., backlash). The performance
of the proposed method was first evaluated through a computer simulation on a system
with sandwiched backlash. Results of the DPI showed that the proposed homotopy op-
timization could identify the discontinuous system parameters with a good accuracy. It
was found that ignoring the backlash in the system dynamics imposes large errors in the
system DPI. After verifying the proposed method using computer simulations, the DPI
was implemented to identify the parameters of a highly noisy and nonlinear rehabilitation
robot with actuator backlash. The proposed method provided a better estimate of the sys-
tem parameters compared to the no-backlash DPI of the experimental robot. Despite the
angle measurement noise and its propagation in the velocity and acceleration calculations,
the forward dynamics results are quite accurate for all of the tested configurations with
the discontinuous backlash model.

3.2.1 Introduction

The objective of this section is to develop a method for the DPI of dynamic systems, which
are geared by a sandwiched backlash (with no load-side state measurement) [199]. In this
section, we will modify the homotopy optimization approach to identify discontinuous
dynamic systems. To validate the proposed method, first, the method will be used to
identify a virtual apparatus: the simulation of a 1 DOF mechanism with a sandwiched
backlash (see Fig. 3.3). Second, we will identify a discontinuous dynamic system of an
experimental apparatus: our 2 DOF upper extremity rehabilitation robot with a closed-
chain mechanism (see Fig. 3.1.a,b). There are few publications on closed-chain robot’s DPI,
since: (1) their workspace is constrained and does not allow a wide range of experimental
inputs for identification, and (2) it is hard to perform independent DPI of a single joint
[323]. However, since the robot dynamics satisfies the property in which any of its driving
joint dynamics can be identified by locking the other driving joint, the DPI is performed
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Figure 3.3: Virtual apparatus (1DOF mechanism with a sandwiched backlash), in which
TM and θM are the system input and output, respectively.

on a decoupled mechanism of the robot to identify parameters of a single DOF. Full DPI of
the robot will be presented in Section 3.3 (Dynamic parameter identification using direct
collocation method).

3.2.2 Method

In this subsection, first, our proposed modified homotopy optimization is presented. Then,
the procedure to implement the homotopy optimization for the simulation and experimental
setups are presented.

Conventional homotopy optimization

For a given ODE system: {
ẋ1 = x2

ẋ2 = h(x1,x2,p, t)
(3.1)

the homotopy optimization method is implemented by coupling the experimental data with
the mathematical model as follows:{

ẋ1 = x2 + (x1e − x1)λK1

ẋ2 = h(x1,x2,p, t) + (x1e − x1)λK2
(3.2)

where subscript e denotes the experimental data, and x1(t) = [y1(t), y2(t), ..., yn(t)] and p
are the independent coordinates (displacements) and unknown parameter vector, respect-
ively. λ is the observer gain adjuster, and K1 and K2 are the constant coupling gains. In
(3.2), the coupling term act as a high-gain observer if λ = 1, and by decreasing λ, this
observer gain will be decreased. For the homotopy optimization, the objective function is:

V(p) =
1

2

n∑
j=1

∫ tf

0

(yje(t)− yj(t,p))2dt (3.3)
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where tf is the final simulation time, and the states (y1..n) are functions of time and
parameters. While decreasing λ from 1 (dynamic system with a high-gain observer) to 0
(dynamic system with no-observer), the objective function (3.3) is minimized iteratively
by updating p in a search direction (s):

pi+1 = pi + %s (3.4)

where % is the updating step size, superscripts i denotes the value at ith iteration, and s is
evaluated by solving the following equation:

H(p) s = −GT (p) (3.5)

In (3.5), G and H are the gradient and the approximate Hessian of the objective function
and defined as:

G(p) =
∂V

∂p
=

n∑
j=1

∫ tf

0

(yj(t,p)− yje(t))
∂yj
∂p

dt (3.6)

H(p) =
∂2V

∂p2
≈

n∑
j=1

∫ tf

0

∂yj
∂p

T ∂yj
∂p

dt (3.7)

Modified homotopy optimization

Consider a mechanically discontinuous 1 DOF dynamic system:

TM = JM θ̈M + ΥM(θ̇M , θM ,pM) + TL
TL = JLθ̈L + ΥL(θ̇L, θL,pL)

(3.8)

where subscripts M and L denote motor- and load-side values, respectively. J is the inertia,
T is the torque, and Υ is the summation of the dynamic terms excluding the inertial terms.
Backlash in this dynamic system can be modeled using the discontinuous model presented
in [280] (see Fig. 3.4) with the following equation:

θ̇L =


θ̇M θ̇M > 0 and θM ≤ θL − cl
θ̇M θ̇M < 0 and θM ≥ θL + cr
0 otherwise

(3.9)

where cr > 0 is the right “crossing” (positive angle) and cl > 0 is the left “crossing”
(negative angle). Since the backlash gap size (β) is assumed to be known, cr can be written
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as β − cl. Thus, cl is the only unknown backlash parameter that should be identified. The
state variables of (3.8) are redefined as θM = y1, θL = y2, θ̇M = y3, θ̇L = y4, and θ̈L = y5.
Considering the system dynamics (3.8), the DAE system will be:

ẏ1 = y3

ẏ2 = y4

ẏ3 = h(y,p, t)
ẏ4 = y5

y4 =


y3 y3 > 0 and y1 ≤ y2 − p1

y3 y3 < 0 and y1 ≥ y2 + β − p1

0 otherwise

(3.10)

where

h(y,p, t) =
1

p2

(
TM(t)− p3y5 −ΥM(y3, y1,pM)−ΥL(y4, y2,pL)

)
(3.11)

and p = [cl, JM , JL,p
T
M ,p

T
L]T is the parameter vector. In the conventional homotopy op-

timization, system dynamics is represented only by DAEs; however, discontinuous system
dynamics has an algebraic equation alongside the DAEs. In our proposed modified homo-
topy approach, the algebraic equation will not have a coupling term; instead, an estimated
experimental measurement will be introduced to the system to force the observer to con-
sider discontinuous system response. This estimated experimental measurement, which is
an estimate of the load-side rotation angle in terms of the motor-side angle, is defined as:

y2e(t,p) =


y1e + p1 y3 > 0 and y1 ≤ y2 − p1

y1e − β + p1 y3 < 0 and y1 ≥ y2 + β − p1

y2 otherwise
(3.12)

The modified homotopy optimization is solved by coupling the actual and estimated
experimental data with the DAE system:

ẏ1 = y3 + (y1e − y1)λK1

ẏ2 = y4 + (y2e − y2)λK2

ẏ3 = h(y,p, t) + (y1e − y1)λK3

ẏ4 = y5 + (y2e − y2)λK4

y4 =


y3 y3 > 0 and y1 ≤ y2 − p1

y3 y3 < 0 and y1 ≥ y2 + β − p1

0 otherwise

(3.13)

In (3.13), different coupling gains K1..4 have been assigned for the differential equations;
this flexibility will increase the control on observer performance, optimization sensitivity
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Figure 3.4: Backlash model for simulation and experimental setups. θM is the input and
θL is the output.

and convergence. The objective function for the modified homotopy will be:

V(p) =
1

2

∫ tf

0

[
(y1e(t)− y1(t,p))2 + Λ(λ)(y2e(t,p)− y2(t,p))2] dt (3.14)

where Λ(λ) ≥ 0, which is set to 1 throughout this study (Λ(λ) = 1), is the weighting
factor for the estimated tracking. This function controls morphing the actual-estimated
tracking onto the actual tracking (e.g., if Λ(λ) = λ, then by decreasing λ from 1 to 0, the
objective function (3.13) will morph onto (3.2)). In contrast to the actual measurements,
the estimated experimental measurement is a function of the time and system parameters.
Thus, its derivatives will appear in the gradient and approximate Hessian evaluations as
follows:

G(p) =

∫ tf

0

[
(y1(t,p)− y1e(t))

∂y1

∂p
+ (y2(t,p)− y2e(t,p))

(
∂y2

∂p
− ∂y2e

∂p

)]
dt (3.15)

H(p) ≈
∫ tf

0

[
∂y1

∂p

T ∂y1

∂p
+

(
∂y2

∂p
− ∂y2e

∂p

)T (
∂y2

∂p
− ∂y2e

∂p

)]
dt (3.16)

To reduce the system noise propagation, the search direction equation (3.5) is solved
using the following equation:

s = −U+(p)GT (p) (3.17)

where U+(p) is the pseudo-inverse of U(p), which is the upper triangular matrix of H(p):

Uij(p) =

{
Hij(p) i ≤ j
0 i > j

(3.18)
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Note that the largest row of U(p) with non-zero elements (i.e., i = 1) should correspond to
the backlash crossing. In other words, p1 = cl. To avoid system instability, the parameter
update equation (3.4) is redefined as:

pi+1 =

{
pi + %s pmin ≤ pi + %s ≤ pmax
pi otherwise

(3.19)

where pmin and pmax are the lower and upper bounds for the unknown parameters of the
system, respectively.

Simulation setup

The simulation setup is a 1 DOF mechanism with a sandwiched backlash; this backlash is
similar to the robot’s backlash and modeled in (3.9) (see Fig. 3.4). The dynamic model of
this setup is defined as:

TM = JM θ̈M +BM θ̇M + TL
TL = JLθ̈L +BLθ̇L

(3.20)

where B is the damping coefficient.

By redefining the state variables of (3.20) as θM = y1, θL = y2, θ̇M = y3, θ̇L = y4, and
θ̈L = y5, the DAE system will be the same as (3.10) with h defined as:

h(y,p, t) =
1

p2

(TM(t)− p3y5 − p4y3 − p5y4) (3.21)

and the parameter vector will be p = [cl, JM , JL, BM , BL]T . To implement the modified
homotopy optimization, an estimated experimental measurement is considered as in (3.12).
Then, the DAE system will be coupled with the actual and estimated experimental data in
(3.13), and the homotopy optimization will be solved by minimizing the objective function
(3.14), which is solved by updating the parameter vector iteratively using (3.17) and (3.19).

Experimental setup

Neglecting end-effector contact with the table surface and robot driving joint stiffness, the
robot dynamics is governed by:

T = MR(q)q̈ + CR(q, q̇)q̇ + fT + d (3.22)
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where:

MR(q) =

[
MR1 MR12(q)

MR12(q) MR2

]
(3.23)

and

CR(q, q̇) =

[
0 ∂MR12(q)

∂q2
q̇2

∂MR12(q)
∂q1

q̇1 0

]
(3.24)

T is the transformed motors’ torque vector, and q = [q1, q2]T is the vector of robot joint
angles when there is a zero-backlash in the system (see Fig. 3.1.c). fT = [f1, f2]T is the
friction toque, which is caused by the timing belt pre-tensioning mechanism and the DC
motor’s friction. We have used a continuous velocity-based friction model to estimate the
robot friction torque [34]. d is the unstructured (non-parametric) uncertainty which is
originated from noise in measurements and robot end-effector deflection due to gravity.

Although locking the driving joints is not always possible for the closed-chain mechan-
ism DPI, the structure of the dynamic equation (3.22) with the definitions in (3.23) and
(3.24) guarantees that locking a driving joint will not affect the dynamics of the other joint.
Thus, for simplicity in the DPI, one of the robot’s driving joints is locked at different angles
in the operational space. Once the robot inertia and friction parameters are identified for
a single joint dynamics, the remaining inertia and centripetal terms will be identified when
both joints are unlocked. This section only focuses on the first joint DPI; thus, subscript 1
is dropped from the forgoing equations. The complete dynamic equation of the robot with
the locked second joint (q̇2 = 0) is:

TM = JM θ̈M + fM + rTL + dM
TL = JLθ̈L + fL + dL
fM = NM f̂M

f̂M = µ̂dM tanh
(

4θ̇M
ωtM

)
+ (µ̂sM−µ̂dM )θ̇M(

1
4

(
θ̇M
ωtM

)2+ 3
4

)2

ωtM

+ µ̂vM θ̇M

fL = NLf̂L

f̂L = µ̂dL tanh
(

4θ̇L
ωtL

)
+ (µ̂sL−µ̂dL)θ̇L(

1
4

(
θ̇L
ωtL

)2+ 3
4

)2

ωtL

+ µ̂vLθ̇L

θ̇L =


rθ̇M θ̇M > 0 and rθM ≤ θL − cl
rθ̇M θ̇M < 0 and rθM ≥ θL + cr
0 otherwise

(3.25)

where the subscripts M and L denote the motor- and load-side values, respectively. f
is the joint friction and is modeled as a summation of the static, dynamic and viscous
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frictions (caused by pre-tensioning mechanism, joint bearings and the DC motors). The
constant weighting factor parameter (N), which resembles the normal contact force, varies
at different angles of the second joint. The motor-side unit friction (f̂M) is a summation
of the static, dynamic and viscous frictions (caused by pre-tensioning mechanism and the
DC motor). The load-side unit friction (f̂L) is modeled as a dynamic friction. µ̂v, µ̂s and
µ̂d are the viscous, static and dynamic friction terms, respectively, and ωt is the transition
velocity for stiction. d, which is the unstructured (non-parametric) uncertainty in the
dynamic equation, is assumed to have less significance in the DPI; hence, we are neglecting
it in the following equations.

If the state variables of (3.25) are redefined as rθM = y1, θL = y2, rθ̇M = y3, θ̇L = y4,
and θ̈L = y5, the DAE system will be the same as (3.10) with h defined as:

h(y,p, t) =
1

p2

(
TM(t)

r
− p3y5 − p12p4 tanh

(
4y3

p7

)
− (p6 − p5)p12y3(

1
4
(y3
p7

)2 + 3
4

)2

p7

− p12p7y3

− p13p8 tanh

(
4y4

p11

)
− (p9 − p8)p13y4(

1
4
( y4
p11

)2 + 3
4

)2

p11

− p13p10y4

)
(3.26)

and the parameter vector will be p = [cl,
JM
r2
, JL,

µ̂dM
r2
, µ̂sM
r2
, µ̂vM
r2
, ωtM , µ̂dL, µ̂sL, µ̂vL, ωtL, NM ,

NL]T . To implement the modified homotopy optimization, the same procedure as before
is used. However, since the robot will be fixed at different angles of the second joint, the
number of experimental measurements will increase. Consequently, the number of DAE
systems coupled with the actual and estimated experimental data in (3.13) will increase
based on the number of experiments (N). For the robot, backlash crossing, and motor and
load-side weighting factors (N) vary at different angles of the second joint; thus, ckl and
pk = [Nk

M , N
k
L]T will be the crossing parameter and friction-deflection parameter vector for

the kth experiment, respectively. Subsequently, by renaming y as yk, V as Vk and defining
the new parameter vector as p̄ = [c1..N

l , JM
r2
, JL,

µ̂dM
r2
, µ̂sM
r2
, µ̂vM
r2
, ωtM , µ̂dL, ωtL , (p

1..N)T ]T in
(3.12), (3.13) and (3.14), the global homotopy objective function for the combination of
N experiments will be defined as:

V(p̄) =
N∑
k=1

wkV
k(p̄) (3.27)

where wk is the kth objective function weight. Finally, the gradient and approximate
Hessian will be updated accordingly.
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3.2.3 Simulation and experiment

Simulation setup

The MapleSimTMsoftware package was used to make the simulation setup model with the
parameters defined in Table 3.3 in two cases. The motor-side mass was driven by a DC
motor with a persistently exciting input current defined as:

Ic(t) = I0e
−Ω0t

16∑
j=1

sin(Ωjt) (3.28)

to generate periodic excitations (Ω1..16 = [0.5, 1, 1.6, 2.5, 3, 4, 5, 6, 8, 10, 12, 16, 20, 25,
30] rad/s) with decaying amplitude (I0 = 0.04 Amp, Ω0 = 0.01 Hz). The output motor
torque is evaluated from:

TM(t) = KT I
c(t) (3.29)

where KT is the motor torque constant (in Case A, KT = 1 Nm/A, and in Case B,
KT = 0.115 Nm/A). While running the setup with the persistently exciting torque for
tf = 4π s, the motor-side joint angle was measured with a position sensor to record the
simulated measurements (y1e).

For the homotopy optimization, the DAE system of the simulation setup (3.10) with the
definition of h in (3.21) is coupled with the simulated (y1e) and estimated (y2e from (3.12)
with β = 0.005 rad = 0.286 deg) measurements. Using MapleSimTMan optimized C-code
of (3.10), which evaluates the objective function (3.14), gradient (3.15), and approximate
Hessian (3.16) values for the entire simulation, with a fixed-step (2 ms) Euler solver is
exported. Next, the objective function is minimized by iteratively updating system para-
meters (3.19) in the search direction (3.17). Lower and upper bounds of parameters are
defined in Table 3.3, in which ε is the floating-point relative accuracy in MATLABr. See
Table 3.2 for the assigned homotopy optimization values in two cases of simulation setup.

To investigate the effect of backlash on the DPI performance, the modified homotopy
results (β > 0 in Table 3.3) are compared against a conventional homotopy optimization
that does not consider the backlash dynamics (β = 0 in Table 3.3) in identifying this
discontinuous system. Moreover, the performance of the modified homotopy optimization
is compared to a general optimization problem solver (i.e., SQP) using MATLABr Global
Search algorithm. The SQP solver considers the DAE system (3.8) and the dynamics of
(3.21) in two conditions: 1. the objective function only considers actual measurements
with the cost in (3.3) (SQP I in Table 3.3), and 2. the objective function accounts for the
estimated measurements (3.12) using the cost in (3.14) (SQP II in Table 3.3).
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Table 3.2: Simulation setup’s assigned parameters

Motor and Backlash Homotopy Optimization

Parameter KT (Nm/A) β (rad) K1 K2 K3 K4 %

Case A 1 0.005 10 10 100 10 0.1

Case B 0.115 0.005 10 10 10 10 0.1

Experimental setup

For the DPI of the rehabilitation robot, a special fixture is designed to lock the second
joint (q2) at different angles (see Fig. 3.5). Then the robot’s first joint (q1) is driven by the
persistently exciting current defined in (3.28). The output motor torque is evaluated from
(3.29) with KT = 0.115 Nm/A. The encoder values of the robot joints are recorded with
a sampling rate of 500 Hz. Dashed lines in Fig. 3.5 show the end-effector position while
running the experiments at 23 different angles of the second joint (from −10◦ to 210◦ with
10◦ increment).

For the homotopy optimization, the dynamic model of the system (3.26) coupled with
the actual and estimated measurements (3.12) of the kth experiment is developed as DAEs
(3.13) in MapleSimTM. Next, all the experiments (m = 23) are combined, and the objective
function is updated as (3.27). Then, the same procedure as in the simulation setup is
followed. Among different experiments, the trajectories at q2 = {0◦, 70◦, 140◦, 210◦} (black
dashed lines in Fig. 3.5) are selected for reporting the homotopy optimization results.

To assess the improvement of the discontinuous model over the no-backlash model, the
DPI of the robot is done by both homotopy methods (β = 0 and β > 0). Finally, the
results of the forward dynamics simulation of the two models are compared and discussed.

3.2.4 Results and discussion

Simulation

The simulation setup is evaluated with different model parameters in two cases which are
shown in Table 3.3. Results of the DPI for these two cases are presented in Table 3.3. With
the no-backlash DPI (homotopy with β = 0), the identified apparent inertia is between the
summation and minimum value of the motor- and load-side inertial values; i.e., in Case A:
min(0.01, 0.02) ≤ 0.0278 ≤ (0.02 + 0.01), and in Case B: min(0.01, 0.03) ≤ 0.0298 ≤
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Figure 3.5: Robot experiment setup and paths (dashed lines), where q2 is fixed at different
angles from −10◦ to 210◦ with 10◦ increment and q1 is driven to produce paths.

(0.03 + 0.01). Moreover, the identified apparent damping is close to the summation of
the load- and motor-side damping coefficients. Considering these rules of thumb, we can
expect to get similar behavior in the DPI of the experimental setup. Since of accounts
for the estimated measurement in the SQP II objective function, the DPI using SQP II is
more reliable than SQP I. The identified inertial values for both SQP methods are quite
consistent with the model inertial values. In Case A, SQP II could identify the backlash
crossing and damping values within an acceptable degree of accuracy, while this accuracy
is not attained in Case B. Thus, SQP II is less successful than the modified homotopy
method when a mechanical discontinuity is present in the system. In Section A.2, the
performance of the modified homotopy optimization is also compared to other optimization
solver results.

System response, i.e., forward dynamic simulations of the system with the identified
parameters, are compared against the measurements for the two cases, and the Root-Mean
Square Error (RMSE) of the motor-side joint angles and velocities are reported in Fig. 3.6.
The homotopy with no backlash results in large angular position and velocity errors, which
proves the importance of backlash modeling in the discontinuous system DPI. The angular
position and velocity errors for the modified homotopy with backlash are the smallest, and
SQP II is more accurate than SQP I. Comparing results of Case B with Case A, one can
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Table 3.3: Simulation setup model parameters and the identified values in two cases. Four
DPI methods are compared: SQP I, II, and homotopy β = 0, β > 0

Case A Values Case B Values

Bounds Model SQP Homotopy Model SQP Homotopy

p Unit p0 pmin pmax A I II β = 0 β > 0 B I II β = 0 β > 0

cl rad 0.0 0 β 0.0035 0.0000 0.0033 — 0.0035 0.0025 5.8e−4 0.0015 — 0.0025

JM kg m2 0.5 ε 1.000 0.0100 0.0084 0.0095 — 0.0100 0.0300 0.0302 0.0330 — 0.0301

JL kg m2 0.5 ε 1.000 0.0200 0.0184 0.0196 0.0278 0.0199 0.0100 0.0107 0.0117 0.0298 0.0102

BM Nms/rad 0.5 ε 1.000 0.1000 0.2803 0.1221 — 0.0915 0.2500 0.1864 0.1792 — 0.2468

BL Nms/rad 0.5 ε 1.000 0.2000 0.0212 0.1785 0.2924 0.2086 0.1500 0.2185 0.2236 0.4367 0.1535
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Figure 3.6: RMSE of the motor-side joint angle (chart on left) and velocity (chart on right)
from the forward dynamics simulation of the identified models.

conclude that presence of the backlash in a dynamical system may cause large errors once
the system input torque increases.

Experiment

The identified robot parameters for four configurations (q2 is locked at 0◦, 70◦, 140◦ and
210◦) using continuous (homotopy with β = 0) and discontinuous (homotopy with β > 0)
models are reported in Table 3.4. Similar to the simulation setup, the identified apparent
inertia for β = 0 is between the summation and minimum value of the motor- and load-
side values (i.e., min(0.0208, 0.0994) ≤ 0.1171 ≤ (0.0208 + 0.0994). The identified friction
parameters for the discontinuous model show that there is no dynamic friction (9.6e−4
and 2.9e−6 are negligible) in the system. On the motor-side, the friction is caused by
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Table 3.4: Identified homotopy parameters of the robot at different configurations.
fM = [ µ̂dM

r2
, µ̂sM
r2
, µ̂vM
r2
, ωtM ] and fL = [µ̂dL, µ̂sL, µ̂vL, ωtL] are the motor- and load-side fric-

tion parameters, respectively. These friction parameters has following vector of units
Uf = [Nm, Nm, Nms/rad, rad/s].

Homotopy β = 0 Homotopy β > 0

p Unit q2 = 0◦ q2 = 70◦ q2 = 140◦ q2 = 210◦ q2 = 0◦ q2 = 70◦ q2 = 140◦ q2 = 210◦

cl rad — 0.0000 0.0049 0.0042 0.0000

JM
r2

kg m2 — 0.0208

JL kg m2 0.1171 0.0994

fM Uf — [9.6e−4, 0.5779, 0.1123, 0.0339]

fL Uf [0.2341, 0.4065, 0.1591, 0.0164] [2.9e−6, 0.5551, 6.9e−5, 0.4093]

NM — — 0.8941 0.6115 0.6915 0.9100

NL — 1.5125 1.0812 0.9367 0.9927 1.0154 0.6406 0.5938 0.6039

static and viscous friction, while on the load-side, the friction is caused by static friction
(the viscous friction with 6.9e−5 coefficient is negligible) with a relatively high transition
velocity (≈ 23.5 deg/s). Unmodeled dynamics of the timing belt and backlash have led to
this high transition velocity. The identified friction parameters for the continuous model
have dynamic, static and viscous terms that are physically meaningful. However, for
the continuous model, if the friction parameters are chosen to be different for different
configurations, then the dynamic friction will become higher than the static friction. This
phenomenon is because of the robot’s backlash.

Forward dynamics simulation results of the robot model using the identified parameters
for the continuous (no-backlash) and discontinuous models is presented in Fig. 3.7. In this
figure, angular positions of the motor-side rotor are plotted along with the experimental
values. RMSE of the system identification for the continuous and discontinuous models
are reported in Fig. 3.8. For the no-backlash model, the average angular position RMSE
(4.87 deg) is about thrice the value (1.49 deg) with the discontinuous model. Although
modeling the backlash has decreased the position error, the average angular position er-
ror is five times bigger than the backlash gap size (0.005 rad). For the continuous and
discontinuous models, the average angular speed RMSEs are 3.87 deg/s and 2.92 deg/s,
respectively. Despite the great difference between angular position errors, these velocity
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Figure 3.7: Forward dynamics results in the experimental setup. (a) the continuous model
DPI (homotopy with β = 0), and (b) the discontinuous model DPI (homotopy with β > 0).
The plots show the four configurations of q2.

(a) (b)

0

2

4

6

8

1
.9
3

0
.4
2

6
.0
8

2
.1
7

6
.0
7

1
.2
5

6
.1
4

2
.1
4

R
M

S
E
r
θ
M

(d
eg

)

(a) (b)

0

2

4

6

8

3
.0
5

2
.1
8

4
.1
3

2
.4
74
.3
1

3
.2
3

3
.9
9

3
.7
9

R
M

S
E
r
θ̇
M

(d
eg

/
s)

q2 = 0◦

q2 = 70◦

q2 = 140◦

q2 = 210◦

Figure 3.8: RMSE of the transformed motor-side joint angle (chart on left) and velocity
(chart on right) from the forward dynamics simulation of the identified models.

errors are close to each other. Thus, despite the decrease in the system response error by
including backlash dynamics, unknown dynamics affect the system behavior, and it is not
negligible. For example, if we used variable friction parameters for different configurations,
the average errors for the continuous and discontinuous models decrease to 1.56 deg and
0.68 deg, respectively. Then the average angular position error (0.68 deg) would be about
twice the backlash gap size.

For the discontinuous model, since the angular position errors are small, the perform-
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Figure 3.9: Forward dynamics simulation (transformed motor-side angular speed) of the
discontinuous (β > 0) model in four configurations.

ance of the modified homotopy is assessed through the angular speed plots in Fig. 3.9.
This figure shows that for different configurations, the simulated model velocity is close
to the noise-free parts of the experimental velocity values. In other words, the simulated
results are the low-pass filtered values of the experimental measurements for most of the
simulation. Noisy IO in the robot DPI affects the SQP methods’ global search algorithm
such that they move around in a local minimum. Thus, because of the poor performance
of the SQP methods, their results are not presented.

Since the objective of this work was to develop a forward dynamic model of the robot
to use with model-based controllers, the convergence of the forward dynamic optimization
results proves the applicability of the proposed DPI method. Despite the convergence
of the forward dynamics results, the driving current resulting from the inverse dynamics
simulation does not match the original current input in some instances. The reasons can
be listed as: (1) the presence of the stiction friction: in inverse dynamics simulation, the
stiction friction generates maximum allowable current that holds the system stationary,
while in the experiments this current can be any value less than the maximum allowable
current that does not generate motion; (2) the homotopy method uses the forward dynamics
model for convergence; therefore, inaccuracy in the inverse dynamics results because of
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numerical issues affecting forward dynamics results are more probable.

Other possible reasons for errors in system identification are as follows:

• Neglecting unknown dynamics caused by gravitational deflection (neglecting dM and
dL in (3.25)).

• Encoder measurement noise.

• Ignoring the unknown motor dynamics and using a simple DC motor model to get
the output torque by the motor torque constant gain.

• Because of the timing belt elasticity, the backlash gap is different for different con-
figurations. The belt’s dynamics are neglected.

3.2.5 Conclusions

In this section, we proposed a modified homotopy optimization to identify parameters
of the system dynamics with mechanical discontinuity (i.e., backlash). To evaluate the
performance of the method in the DPI of discontinuous systems, a computer simulation
setup was developed, and the proposed method along with other optimization methods was
used to identify the parameters of the setup in two cases. Results of the DPI showed that
the proposed homotopy optimization could identify the discontinuous system parameters
with a good accuracy. The results of the DPI with the modified homotopy was also
compared to the conventional homotopy results, in which the system was considered as a
continuous model. It was concluded that ignoring backlash in the system dynamics could
impose large errors in the system DPI.

After verifying the proposed method using computer simulations, the method was used
to identify the parameters of the 2 DOF noisy and nonlinear rehabilitation robot with
actuator backlash, when the robot’s second joint was locked in different configurations.
The proposed method provided better estimates for the system parameters compared to
the no-backlash DPI of the robot. Despite the angle measurement noise and its propaga-
tion to the velocity and acceleration evaluations of the model, forward dynamics results
were quite accurate for all of the configurations with the discontinuous backlash model.
We believe that the modified homotopy optimization can be extended to consider other
common mechanical discontinuities such as dead-zone and hysteresis. In the next section
a complete DPI of the robot, in which the unknown dynamics of the system will also be
included, will be presented.
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3.3 Dynamic parameter identification using direct col-

location method

In the previous section, a modified homotopy approach for the DPI of mechanically discon-
tinuous systems was provided. The proposed dynamic model for the rehabilitation robot
was discontinuous (with no load-side state measurement), and the user input (i.e., end-
effector movement by the patient) could change the dynamics of the robot while having no
information from the load-side angle. Implementing this dynamic model on the robot will
cause critical uncertainties and instabilities, since the load-side state can be altered by the
user input. Thus, we should develop a continuous model to overcome this uncertainty.

In this section, we present a direct collocation method, which was implemented using
the GPOPS-II optimal control software package, for the DPI of the noisy upper extremity
rehabilitation robot with sandwiched backlash. Different identification tests were per-
formed, and the results of the proposed method were verified. The robot dynamics was
modeled using two different friction models, LuGre and continuous-velocity models, and
their results were compared. Finally, the robot experimentally was controlled to follow a
desired trajectory using the identified model in a sliding-mode controller structure, and
the results verified the accuracy of the robot model.

3.3.1 Introduction

The studied rehabilitation robot is a closed chain mechanism with noisy IO. Consequently,
conventional DPI methods may not be able to solve the robot’s noisy optimization prob-
lem. The objective of this work is to develop a method for the DPI of closed chain robots
with noisy inputs and outputs. The significance of this work is introducing a direct col-
location method in a reliable and structured framework for the DPI of highly noisy, large
scale, mechanically discontinuous and nonlinear systems with friction. In this section, IO
matching is stated as an optimal control problem, which minimizes the error between the
estimated noise-free torque and the experimental input torque while satisfying the robot
dynamics and trajectory tracking constraints. To this end, we present a procedure to per-
form IO matching on the robot’s closed chain mechanism. It starts with the development
of a forward dynamics model of the robot with a suitable friction model. Then, a direct
collocation method from optimal control theory is used to solve the robot’s DPI problem.
Finally, the method is verified by performing extra experiments on the robot with the
identified parameters. The proposed method is capable of solving the DPI problem of the
highly nonlinear noisy systems with an acceptable accuracy.
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3.3.2 Method

In this section, the robot dynamics will be presented, followed by the procedure for the IO
matching. Then, the proposed DPI method will be discussed.

Robot dynamics

The updated robot dynamic equation considering end-effector friction and robot driving
joint stiffness (when the DC motors’ dynamics are transformed to the parallelogram arm)
is:

T = MR(q)q̈ + CR(q, q̇)q̇ + KR(q− q0) + fT + JTRfF + d (3.30)

T is evaluated as KT Ic/r in terms of the motors’ current vector (Ic). KR is a 2 × 2
symmetric stiffness matrix (number of stiffness parameters is nS = 3) that models joint
stiffness caused by timing belt dynamics, q0 is the equilibrium position vector (number
of equilibrium angle parameters is nE = 2), fF is the end-effector friction force, and JR
is the geometric Jacobian. The robot’s inertia, MR(q), and Coriolis-centripetal matrix,
CR(q, q̇), are redefined as:

MR(q) =

[
p1 p2c12 + p3s12

p2c12 + p3s12 p4

]
(3.31)

and

CR(q, q̇) =

[
0 (p2s12 − p3c12)q̇2

(p3c12 − p2s12)q̇1 0

]
(3.32)

in which, c12 and s12 stand for cos(q1 − q2) and sin(q1 − q2), respectively. p1..4 are the
minimal set of observable inertial parameters (number of inertial parameters is nI = 4);
considering Fig. 3.1.b, they are defined as:

p1 = (x2
1 + z2

1)m1 +m3l
2
1 + (x2

4 + z2
4)m4 + J1 + J4

p2 = m3l1z3 +m4l2z4

p3 = m3l1x3 −m4l2x4

p4 = (x2
2 + z2

2)m2 +m4l
2
2 + (x2

3 + z2
3)m3 + J2 + J3

(3.33)

Although the normal contact forces change with the robot configuration, the friction
forces are modeled as weighted normalized frictions, in which the weighting factors are
constant parameters. These frictions are defined as:{

fT = NT ◦ f̂T
fF = N3̂fF

(3.34)
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where ◦ is the Hadamard (entry-wise) product. Values of the joints’ weighting factors
(NT = [N1, N2]T ) are always equal to 1. End-effector’s weighting factor (N3) is dependent
on the applied normal force to the end-effector; it is equal to 1 when the robot operates
with no load on the end-effector.

Normalized friction forces (̂fT = [f̂1, f̂2]T and f̂F ) are modeled by following two ap-
proaches. In the first approach (A1), a LuGre friction model is implemented. LuGre
friction is a general-purpose dynamic friction model for robotic applications that combines
the stiction and Stribeck effects with viscous friction [204]. This model introduces addi-
tional states (average bristle deflections) and parameters to the problem. Here are the
corresponding friction equations from this approach:

1. Normalized friction in the joints (i = 1, 2)
f̂i = σ̂0iξi + σ̂1iξ̇ie

−(
ωi
ωdi

)2
+ µ̂viωi

ξ̇i = qi − σ̂0i
|ωi|
gi(ωi)

ξi

gi(ωi) = µ̂ci + µ̂sie
−(

ωi
ω0i

)2

(3.35)

2. Normalized friction in the end-effector (i = 3)
f̂F = σ̂0iz + σ̂1iże

−( v
vd

)2

ż = v − σ̂0i
gi(v)
|v| ◦ z

gi(v) = µ̂ci + µ̂sie
−( v

v0
)2

(3.36)

where ξ and z denote the average rotational and vectorized translational bristle deflections,
σ̂0 and σ̂1 are the bristle stiffness and damping coefficients, and ωd and vd are the dissipative
angular and linear velocities, respectively. Function g(.) models the Stribeck effect, where
the lower and upper bounds of g(.) are µ̂c, which is Coulomb friction, and µ̂c + µ̂s, which
corresponds to stiction. ω0 and v0 are the angular and linear velocities that shape the
function g within its bounds. µ̂v is the viscous friction coefficient, and ωi = q̇i is the
angular speed of joint i. v = ρ̇ = [Ż, Ẋ]T is the end-effector velocity in the global coordinate
system (see Fig. 3.1.b), and v = ‖v‖ is the Euclidean norm of this velocity. Since there is
no lubrication underneath the end-effector, no viscous friction has been considered for the
end-effector normalized friction (̂fF ).

In A1, the additional states (ξ1,2 and z) and the large number of normalized friction
parameters (nF(A1) = 2×7+6 = 20 parameters in total) will increase the computation cost
both for the DPI and NMPC implementation. Thus, as an alternative approach (A2), a
continuous velocity-based friction [34] is used to model the normalized frictions. Following
this approach, the corresponding friction equations are as follows:
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1. Normalized friction in the joints (i = 1, 2)

f̂i = µ̂di tanh

(
4ωi
ωti

)
+

(µ̂si − µ̂di)ωi(
1
4

(
ωi
ωti

)2

+ 3
4

)2

ωti

+ µ̂viωi (3.37)

2. Normalized friction in the end-effector (i = 3)

f̂F = µ̂di tanh

(
4v

vt

)
v

v
+

(µ̂si − µ̂di)v(
1
4

(
v
vt

)2

+ 3
4

)2

vt

(3.38)

where µ̂d, µ̂s and µ̂v are the dynamic, static and viscous frictions, respectively. ωt and
vt are the angular and linear transition velocities for the stiction. The total number of
normalized friction parameters for this approach is 2× 4 + 3 (nF(A2) = 11).

The total number of unknown dynamic parameters for A1 and A2 are np = 29 (=
nI + nS + nE + nF(A1)) and np = 20 (= nI + nS + nE + nF(A2)), respectively. If we
introduce p as the vector of unknown parameters, the final format of the robot ODE
system is: {

A1 : ẋ8×1 = F1(x8×1,u2×1,p29×1)
A2 : ẋ4×1 = F2(x4×1,u2×1,p20×1)

(3.39)

where x8×1 = [q1, q2, ω1, ω2, ξ1, ξ2, z
T ]T and x4×1 = [q1, q2, ω1, ω2]T are the corresponding

state vectors, and u2×1 is the driving torque vector.

Input-output matching

Since the robot has a closed-chain, conventional IO matching methods cannot be per-
formed, unless one of the joints is locked. However, by locking a joint, it is not possible to
identify the coupled dynamics. In this section, first, we introduce the robot’s workspace
characteristics. Next, using a transformation, the IO matching problem will be solved.

The robot is driven by two joints at its base (q1 and q2). Hence, its workspace (see
Fig. 3.10) is bounded by some manufacturing limits and the following constraints:

q1min ≤ q1 ≤ q1max

q2min ≤ q2 ≤ q2max

q21min ≤ q2 − q1 ≤ q21max

(3.40)
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Figure 3.10: Workspaces of the robot and patient. Solid-line shows an example of DPI
test on the robot inside the DPI workspace. The DPI workspace overlaps the patient’s
workspace. To reach the non-overlapping areas of the DPI workspace, the patient’s lateral
and vertical position can change by moving the chair and adjusting its height.

Moreover, since the robot interacts with a stroke patient, its DPI workspace is more con-
fined than its actual workspace. Fig. 3.10 shows this workspace. To avoid possible collision
of the patient’s hand with the robot, the hatched area of the patient’s workspace is excluded
from the robot’s DPI workspace, which is bounded by these constraints:{

q21min ≤ q2 − q1 ≤ q21max

Aqq ≤ bq
(3.41)

Considering these constraints, to run the DPI experiments using sufficiently rich input,
we changed the variables with the following transformation1:{

ζ = q2 + q1

η = q2 − q1
(3.42)

Then, a sufficiently rich trajectory is generated:{
ζ =

∑16
j=1 ζ̄j sin(Zjt) + ζ0

ηι = η̄ιL sin(Hι
Lt) + η̄ιH sin(Hι

Ht) + η0

(3.43)

1If the robot’s DPI workspace is approximated by an annular sector ( ) in the Cartesian space, then
a polar coordinate transformation can be introduced to isolate the corresponding coordinates and run
experiments with a sufficiently rich input.
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Figure 3.11: PID controller scheme for the DPI experiments. Subscripts d and e denote the
desired and experimental values, superscript ι indicates the index of the selected frequency
content for the desired trajectory. q̃ = qιd − qe is the tracking error in the joint space.

where [Zj] = [0.01, 0.05, 0.1, 0.3, 0.5, 0.8, 1, 1.6, 2, 2.5, 3, 4, 5, 6, 8, 10] rad/s, [Hι
L] = [0.15,

0.25, 1.5, 2.5, 3.5] rad/s, [Hι
H] = [0.25, 0.85, 5.5, 6.5, 7.5] rad/s are the corresponding fre-

quencies. DPI experiments at different frequencies (5 in total) can be done by varying
ι from 1 to 5; consequently, Hι

L,H will change from low to high frequency contents. At
low frequencies of Hι

L,H, q1 and q2 will have less similarity than in their high frequencies

(see Fig. 3.14); in contrast, at high frequencies this behavior will be reversed. ζ̄j and η̄ιL,H
are the corresponding amplitudes that satisfy the following constraint (zero initial velocity
constraint): { ∑16

j=1 ζ̄jZj = 0

η̄ιLH
ι
L + η̄ιHH

ι
H = 0

(3.44)

The control schematic in Fig. 3.11 is used to perform the experiments. The Proportional-
Integral-Derivative (PID) controller receives the tracking error (desired trajectory minus
end-effector position) in the Cartesian space and provides the input to the motors to follow
the end-effector’s desired path.

Direct collocation method

The upper extremity rehabilitation robot has noisy inputs and outputs as shown in Fig. 3.12.
The currents are fed to the DC motors and they generate driving toques T = KT Ic(t)/r; by
subtracting noises (d) caused by unknown dynamics d1 and sandwiched backlash d2, the
model torque input u = T−d is obtained. The robot’s outputs are the motor joint angles
(qe), while the model output is the parallelogram joint angles (q), which are different from
the motor joint angles due to the backlash. The DPI goal is to find a mathematical model
for the parallelogram (with the transformed dynamics of the DC motors) of the rehabil-
itation robot (see Fig. 3.12). This model has an input u, an output q and an unknown
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parameter vector p, which is calculated from the following optimization problem:

arg min
p

(
1

2

∫ tf

0

(q(t)− qe(t))
T (q(t)− qe(t))dt

)
(3.45)

subject to:

A1:

{
p ∈ R29×1

Dynamic Equation (3.39.A1)
(3.46)

or

A2:

{
p ∈ R20×1

Dynamic Equation (3.39.A2)
(3.47)

Neglecting d and assuming u = KT Ic(t)
r

, this optimization problem can be solved by any

nonlinear optimization algorithm; however, the noisy input (u = KT Ic(t)
r
− d) impedes the

convergence of most algorithms. To address this issue, assuming a normal distribution for
dTd with zero mean and variance ς2, we propose an alternative optimal control problem
with the following objective functional:

J =
1

2

∫ tf

0

(
u(t)− KT Ic(t)

r

)T (
u(t)− KT Ic(t)

r

)
dt (3.48)

instead of (3.45). It is subject to (3.46) or (3.47) with the path constraint:

c(t) =
1

2
(q(t)− qe(t))

T (q(t)− qe(t)) ≤ β2 (3.49)

Here, β = 0.005 rad = 0.286 deg is the backlash gap size. This method does input matching
with bounded output error. In the proposed problem, the noisy inputs and outputs do not
affect the convergence of the DPI process. By treating each DPI experiment (with different
frequency content) as an optimal control phase, a multi-phase optimal control problem
will result. Since there are experimental values in the problem structure, this multi-phase
optimal control problem should be solved using a numerical approach (i.e. indirect and
direct approaches). For the proposed problem, a direct approach with state and control
parameterization using global orthogonal collocation method (see Fig. 3.13) is appropriate,
because [226]:

1. the system dynamics is simulated implicitly,

2. it is not required to use predictor-corrector,

3. ODEs are solved simultaneously,
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Figure 3.12: Input (Ic) and output (qe) of the upper extremity rehabilitation robot in
the presence of noises caused by unknown dynamics (d1) and sandwiched backlash (d2).
Desired mathematical model for the parallelogram arm with specified input (u) and output
(q).

4. a static parameter estimator can be integrated into this approach,

5. it is more accurate than other numerical methods and has exponential convergence,

6. this method results in a large-scale sparse Nonlinear Programming (NLP), that can
be solved efficiently.

The GPOPS-II optimal control software package is used to solve multi-phase optimal
control problems with unknown static parameters; this software combines variable-order
adaptive orthogonal collocation methods with sparse NLP, i.e. Interior Point Optimizer
(IPOPT) and Sparse Nonlinear Optimizer (SNOPT) [211]. The main advantage of this
software is the implementation of state-of-the-art nonlinear optimization methods. In this
study, GPOPS-II with the IPOPT solver is used to deal with the multi-phase optimal
control problem.

3.3.3 Simulation and experiment

Before running the experiments, the desired trajectory is simulated in the Cartesian space,
to check if the desired trajectory lies inside the DPI workspace. Fig. 3.14 shows the ι = 1
(low frequency content) desired trajectory input to the PID controller in three spaces, the
transformed, joint and Cartesian spaces. As expected, since η = q2 − q1 has low frequency
content, q1 and q2 are more different at low frequencies compared to high frequencies. This
figure also shows the advantage of the defined transformation. At each time instant, the
bounds for each DOF (e.g., second column in Fig. 3.14 for three spaces) are evaluated by
varying the DOF (e.g., ζ, q1, and X) inside its DPI workspace (first column in Fig. 3.14)
while freezing the latter DOF (e.g., η, q2, and Z) at its corresponding time instant value.
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Figure 3.13: Direct collocation method flowchart.

The desired trajectory inside its bounds in the transformed space (ζ, η) is more distinct
than the joint space and Cartesian space results.

Other than 5 different frequency contents (changes in the experimental input), 3 dif-
ferent conditions for the robot end-effector (changes in experiment setup) are considered:

¬ The end-effector lies on a Medium-Density Fiberboard (MDF) board (N1 = N2 =
N3 = 1).

 To compare different end-effector friction properties, the end-effector lies on an acrylic
sheet (N1 = N2 = N3 = 1).

® To measure friction properties, the second condition is tested while a gray cast cyl-
indrical weight (Diameter: dw = 76.96 mm, Height: hw = 26.30 mm, and Mass:
mw = 951.52 gr) is added to the end-effector (N1 = N2 = 1, but N3 should be
identified). The weight is located at [zw, xw] ≈ [l4, 0] defined in the 4th link local
coordinate. For this setup, to avoid high motor currents, high frequency experiments
(where ι = 4, 5) are not performed.

Overall, 13 (= 5 + 5 + 3) tests are performed on the robot. The highest frequency
experiments (ι = 5 for setups ¬ and ) are kept for validation of the proposed DPI
process, and 11 (= 4 + 4 + 3) tests are used for the rehabilitation robot DPI. Each setup
(¬,,®) has its own parameter vector (p¬,p,p®). p has the same parameter values as
p¬, except for the end-effector normalized frictions and corresponding velocities (i.e., σ̂03,
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Figure 3.14: Robot’s desired trajectory at ι = 1 inside its DPI workspace. First row shows
the results in the transformed space (ζ, η), second row is the joint space (q1, q2) results,
and third row shows the Cartesian space (Z,X) results. In the second and third columns,
the active workspace has lower and upper bounds that are evaluated at each time instance
based on the corresponding variable’s plot.
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σ̂13, µ̂c3, µ̂s3, vd, v0 for A1; and µ̂d3, µ̂s3, and vt for A2). These parameters constitute the
vector denoted by p−¬. Similarly p® has the same parameter values as p, except for
the inertial parameters (p1..4) and end-effector’s weighting factor N3, which constitute the
vector p®−. The extra weight in setup ® changes the inertial parameter equations (3.33)
as follows: 

p®
1 = p¬

1 + (x2
w + z2

w)mw + Jw
p®

2 = p¬
2 +mwl2zw

p®
3 = p¬

3 −mwl2xw
p®

4 = p¬
4 +mwl

2
2

(3.50)

where Jw ≈ mwd
2
w/8 is the moment of inertia of the added weight to the end-effector.

Moreover, this extra weight will increase the end-effector’s normal force; hence, considering
A2, the following equations are obtained:

N®
3 µ̂

®
d3 = N

3 µ̂

d3 + 9.81mwµ


d3

N®
3 µ̂

®
s3 = N

3 µ̂

s3 + 9.81mwµ


s3

(3.51)

where µ
d3 and µ

s3 are the dynamic and static friction coefficients between the Polyacetal
ball and acrylic sheet. Thus, if the unknown parameters of the system are identified by
solving the above equations, the dynamic and static friction coefficients can be estimated.
Knowing these coefficients, and solving the following equations:[

µ̂d3
µd3

]

=
[
µ̂d3
µd3

]¬

[
µ̂s3
µs3

]

=
[
µ̂s3
µs3

]¬
(3.52)

one can estimate the dynamic and static friction coefficients (µ¬
d3 and µ¬

s3) between the
Polyacetal ball and MDF board.

To run the DPI with GPOPS-II, each experiment is considered in a phase. Thus, a
problem with 11 phases (ι = 1..4 experiments in setup ¬: phases (1) to (4), ι = 1..4
experiments in setup : phases (5) to (8), and ι = 1..3 experiments in setup ®: phases
(9) to (11)) and a new parameter vector defined as:

p̄ =


p¬

p−¬

p®−

N®
3

 (3.53)

is considered. For this GPOPS-II problem, the experimental results are provided as the ini-
tial guesses, the number of collocation points is set to 3, applied collocation (a type of Radau

61



Setup ¬ Setup ¬ Setup  Setup ®

0

0.2

0.4

0.6 0
.5

9

0
.6

0
.3

6

0
.5

3

0
.3

1

0
.3

6 0
.4

7

0
.5

1

0
.3

6

0
.3

2

0
.3

1

0
.5

9

0
.2

4

0
.2

6

0
.2

9

0
.2

3 0
.3

1

0
.1

8

J

ι = 1

ι = 2

ι = 3

ι = 4

ι = 5

(1) (2) (3) (4) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)(11)

A1 A2

Figure 3.15: Comparing objective functional values of two friction approaches in the robot
DPI using setup ¬ experiments, and objective functional values of the A2 DPI using the
experiments of setups  and ®. Numbers in parentheses indicate the phase number.

Pseudospectral Method (RPM) which uses integration matrix [95]), ‘hp-LiuRao-Legendre’
is the mesh refinement method [159], a sparse central derivative is used to supply the first-
order derivatives, and the NLP solver is set to IPOPT.

The identified model is used in a sliding-mode control structure to move the robot end-
effector in hypotrochoid paths including Sharp Corner (SC) and Rounded Corner (RC) star
shapes at two different frequencies Ωd = 1, 4 rad/s (see Section A.3 for the details of the
desired trajectory equation). Equations and parameters of the implemented sliding-mode
control, which are derived from [261], are also presented in Section A.4.

3.3.4 Results and discussion

To select a proper friction model for the DPI of 11 phases, two friction approaches are
compared in the DPI of the setup ¬ experiments (phases (1) to (4)). As indicated in
Fig. 3.15, the objective functional values of both approaches are similar. However, the
CPU time of the A1 DPI is about twice the CPU time of the A2 DPI. The DPI using A2
is as accurate as the A1 DPI, but lower in computational cost. Thus, in the preceding DPI
problem, A2 is selected to model the system friction.

Objective functional values of the A2 DPI for 11 phases are shown in Fig. 3.15. The
minimum Signal to Noise Ratio (SNR), evaluated on the system torque input, is 15.30,
and it occurs in the DPI of the phase (2) (i.e., ι = 2). Lower SNR values happen at low
frequencies, where the frictional terms affect the system behavior more than the inertial
terms. The objective functional values of the setup ® are greater than those for the other
setups. SNR values for setup ® are higher than those for the other setups, because:
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1. applied torque magnitudes in setup ® experiments are greater than the other setups’
torques (added weight increases robot’s effort),

2. added weight increases the effect of inertial terms more than frictional terms.

The proposed DPI identifies the system with at most ±12.7% average noise in the input
torques, and by increasing the input frequency or system inertia, this value decreases. See
Tables A.5 and A.6 for the list of identified parameters.

The identified inertial parameters of setup ¬ and ® are p¬
1..4 = [0.1145, 0.0931,−0.0027,

0.1669] and p®
1..4 = [0.2484, 0.2076,−0.0027, 0.2584], respectively. Using the identified p¬

1..4

and properties of the added weight in (3.50), inertial parameters of setup ® can be estim-
ated as

◦
p®

1..4 = [0.2484, 0.2037,−0.0027, 0.2584]. Hence, inertial parameters of setup ® are
successfully identified with the following error p̃®

1..4/
◦
p®

1..4 = [0.0, 1.9, 0.0, 0.0]%.

High frequency experiments (ι = 5) are used to check the system response with the
identified parameters. In other words, the optimal control problem in Fig. 3.13 with
the identified parameters is solved to minimize the objective functional (3.48) subject
to (3.46) or (3.47), and the path constraint (3.49). Objective functional values for these
experiments are close to the other experiments (see Fig. 3.15), thereby validating the
identified parameters.

To check the effect of unmodeled dynamics on the proposed DPI, system torque input
errors (ũ = u(t)− KT Ic(t)

r
) are compared for different phases (experiments) using covariance

matrices, which are displayed in Fig. 3.16. Along the specified kth diagonals, the elements
of the corresponding covariance matrices are greater than the other elements. The 5th

diagonal elements indicate the correlation between ιth input of setups ¬ and , and ιth

input of the setups  and ®. The 9th diagonal elements indicate the correlation between
ιth input of setups ¬ and ®. The correlation between two setups at ιth input, where
the desired trajectory is the same between the experiments of the setups, indicates that
there are some unmodeled dynamics in the system. These trajectory dependent unmodeled
dynamics may be because of the sandwiched backlash and unmodeled variable normal force
in the system friction. Second joint torque inputs for setup ® are more than the setup
 inputs, which are higher than the setup ® values. Higher torque inputs will result in
larger variances (i.e., the 0th diagonal elements has greater values), and this increases the
covariance of the corresponding elements. That is why, the covariance matrix in the second
joint has large elements inside the rectangle extending from cell {(5),(5)} to {(11),(11)};
this rectangle covers experiments of setups  and ®.

The corresponding friction curves are plotted in Fig. 3.17. The identified joint frictions
have greater dynamic friction than static friction. This seems to be physically impossible;
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Figure 3.16: Covariance matrix of the system torque input errors for a) joint 1, and b)
joint 2.

however, joint backlash can cause this phenomenon. When the motor-side gears are inside
the backlash gap, the model captures the static friction. Once the motor-side gear is
moving, and the backlash gap is filled (motor-side and load-side gears are in contact),
because of load-side addition to the system, the model detects large values for the dynamic
friction. The same phenomenon happened in the end-effector friction forces for the same
reason and Polyacetal’s friction properties. Polyacetal in contact with itself and mild steel
shows higher dynamic friction than static friction, and this behavior is consistent in some
of the nylon-based materials [59]. Thus, in the end-effector, the Polyacetal balls’ contact
with the MDF board and the acrylic sheet may cause higher dynamic friction than static
friction. One may argue that these ball rollers can only cause rolling friction. However, the
end-effector weight and miniature structure of these rollers are preventing the Polyacetal
balls from pure rolling.

Solving (3.51) and (3.52) with the identified parameters estimates the dynamic and
static friction coefficients between two different contact surfaces. The estimated values
are reported in Table 3.5. Because of Polyacetal friction properties, estimated dynamic
friction coefficients are more than the static ones. Because of higher friction coefficient
values of acrylic compared to the friction coefficients of wood [59], estimated friction coef-
ficients between the Polyacetal and acrylic sheet should be greater than estimated friction
coefficients between the Polyacetal and MDF board.

Evaluative path tracking experiments (shown in Fig. 3.18) are done using the identified
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Figure 3.17: Identified friction models of the robot. The top plot shows the friction torques
on the robot joints, and the bottom plot shows the end-effector friction forces for setup ¬

(Polyacetal ball contact with the MDF board) and setup  (Polyacetal ball contact with
the acrylic sheet).

Table 3.5: Estimated dynamic and static friction coefficients between two different contact
surfaces (¬: Polyacetal and MDF board, : Polyacetal and acrylic sheet)

Coefficient µ¬
d3 µ¬

s3 µ
d3 µ

s3

Value 0.0918 0.0505 0.1102 0.0753

model in the sliding mode control structure. SNR values for these tests are greater than
10.17, which indicates that the system should be controlled within [84.3, 115.7]% of the
identified model’s torque estimates. The estimate error is 3% greater than the DPI results
since the angular position input is the motor-side angle rather than the load-side angle.
Position and velocity tracking errors are within ±8% and ±11% of the desired joint angle
and velocity inputs, respectively. Comparing the high frequency experiments with the low
frequency experiments, when the tracking speed increases, the unknown dynamics effect
reduces. In the RC experiments, the robot performs better than the RC experiments, since
in RC, the robot tries to change the end-effector’s velocity direction gradually, and this
increases the effect of frictional terms while decreasing the effect of inertial terms, thereby
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increasing the error. It is worth noting that if we remove the identified model from sliding
mode structure the controller will change to a proportional-differential controller. Running
the robot with this controller moves the end-effector in the horizontal plane with ±89%
position tracking error.

3.3.5 Conclusions

In this section, we presented a direct collocation method for the DPI of a noisy IO up-
per extremity rehabilitation robot. The robot has gear belt backlash (with no load-side
state measurement), and its end-effector moves on a surface. The proposed collocation
method was implemented using the GPOPS-II optimal control software package. Different
identification tests were performed and the results of the proposed method were verified.
The robot dynamics was modeled by two different friction models: LuGre and continuous-
velocity models, and their accuracies were compared. Using different tests, we tried to
identify the surface friction and some inertial properties of the system. Finally, the robot
was controlled to follow a desired trajectory using the identified model in a sliding-mode
controller structure. The results showed that the robot could move inside its workspace
with at most ±8% error in position if the estimated model’s torques are adjusted within
±15.7% bound.

3.4 Concluding remarks

In this chapter, based on the discussed mechanical issues of the robot, dynamic models
of the robot using our two proposed DPI methods were presented. First, we proposed a
modified homotopy optimization to identify parameters of the system dynamics with mech-
anical discontinuity (i.e., backlash). After verifying the proposed method using computer
simulations, the method was used to identify the parameters of the 2 DOF highly noisy
and nonlinear rehabilitation robot with actuator backlash, when the robot’s second joint
was locked in different configurations. The proposed method provided better estimates for
the system parameters compared to the no-backlash DPI of the robot. Despite the angle
measurement noise and its propagation to the velocity and acceleration evaluations of the
model, forward dynamics results were quite accurate for all of the configurations with the
discontinuous backlash model.

Although the obtained accuracy in 1-Dimensional (1D) was good, the uncertainty of
the states during robot interaction and the computation cost caused by the discontinuity
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Figure 3.18: Path tracking experiments using the identified model in the sliding mode
controller structure. a) The desired path and tracking performance (gray circle indicates
the start and finish points). b) Input torques to the robot compared with the model’s
estimated torque. 1st row: SC Ωd = 1 rad/s, 2nd row: SC Ωd = 4 rad/s, 3rd row: RC
Ωd = 1 rad/s, and 4th row: RC Ωd = 4 rad/s.
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led us to develop a continuous model for the 2D robot. Thus, next, we presented a direct
collocation method for the DPI of the noisy upper extremity rehabilitation robot. Different
identification tests were performed and the results of the proposed method were verified.
The robot dynamics were modeled by two different friction models: LuGre and continuous-
velocity models, and their accuracies were compared. Using different tests, we tried to
identify the surface friction and some inertial properties of the system. Finally, the robot
was controlled to follow a desired trajectory using the identified model in a sliding-mode
controller structure. The results showed that the robot could move inside its workspace
with a good accuracy.
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Chapter 4

System Models: Human and
Human-Robot Interaction

Since the next subsystem in the human-robot interaction system is human, in this chapter,
first, we develop human (musculoskeletal upper extremity) models. Next, since the evalu-
ation and DPI of a musculoskeletal model requires proper instrumentation (i.e., a robotic
arm to measure forces and displacements), the integration of the human and robot models
are discussed in Section 4.2 (Human-robot interaction models). Finally, using the human
models in the HRI, this chapter concludes with cross-validation (simulation) studies for
the evaluation of human models and DPI (experimental) studies of human models.

4.1 Musculoskeletal upper extremity models

We have used a musculoskeletal model to represent the human body. To build such a
model, one should consider the tradeoff between the model complexity and computation
costs. To be used within the NMPC scheme, the musculoskeletal upper extremity model
should have a simple structure. Our upper extremity rehabilitation robot is an end-effector
based planar robot, which performs reaching movements in the horizontal plane for therapy
of shoulder and elbow. Thus, since the robot performs 2D movements, the musculoskeletal
arm is modeled as a 2D two-link arm operating in the horizontal plane.

In the first stage of model development, we use a planar 2D musculoskeletal arm model
(MA2D-I1) to interact with this planar robot. In other stages, we will try to enrich the
model by developing:
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• MA3D-I: using the Stanford 3D musculoskeletal arm model,

• MA2D-I2: adding shoulder rhythm (see page 16 for the definition) to MA2D-I1 based
on the MA3D-I shoulder joint angles and the regression equation used by [122],

• MA2D-I3: defining a new 2D model based on MA3D-I,

• MA3D-II: modifying the Lisbon 3D musculoskeletal arm model,

• MA2D-II: defining a new 2D model based on MA3D-II.

For these musculoskeletal models of the upper extremity, it is assumed that there
is no tendon compliance in the musculotendon structure. The compliance of tendon is
proportional to its slack length. Thus, a tendon is compliant if its normalized slack length
is large (≥ 10), and it is very stiff when it is equal to 1 [336]. For most muscles in the
upper extremity this value is around 1; hence, the stiff tendon assumption seems to be valid.
For accomplishment of each of these stages, combinations of different software packages
(OpenSim, MATLABr, SolidWorksr, MapleSimTM, Simscape MultibodyTM, and MSCr

ADAMS) are used. These stages will be covered in this section.

4.1.1 MA2D-I1

Because of simplicity, the use of upper extremity 2D musculoskeletal models is common for
studying reaching movements in the horizontal plane [22, 197, 276, 335]. This model has
two hinged links with 6 muscle groups including shoulder mono-articular flexor (Muscle1:
M = 1), shoulder mono-articular extensor (Muscle2: M = 2), elbow mono-articular flexor
(Muscle3: M = 3), elbow mono-articular extensor (Muscle4: M = 4), shoulder-elbow
bi-articular flexor (Muscle5: M = 5), and shoulder-elbow bi-articular extensor (Muscle6:
M = 6). In this stage, we are using a two link arm model (see Fig. 4.1) presented in
[197, 276]. Model specifications are summarized in Table 4.1.

For consistency in optimization results and reducing optimization fluctuations, damping
coefficients are assigned to the shoulder and elbow joints. Following [155], their values are
1.7 Nms/rad for the shoulder joint, and 0.3 Nms/rad for the elbow joint. The cost function
for FSO is:

JFSO = w1

nM∑
M=1

a2
M + w2

[
kXX̃

2 + kZZ̃
2 + kẊ

˙̃
X2 + kŻ

˙̃
Z2
]

(4.1)

where aM is the Mth muscle group activation, nM is the number of muscle groups (for this
model nM = 6), ∼ accent denotes the errors of the positions and velocities in the Cartesian
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Figure 4.1: MA2D-I1 configuration. oM and iM denote the Mth muscle group’s origin
and insertion points, respectively. See Table A.7 for the dynamic parameters. Muscle
attachment points are reported in Table A.8.

Table 4.1: Muscle mechanics parameters for MA2D-I1. For more information regarding
muscle parameters refer to Appendix B.

Parameter Unit Muscle1 Muscle2 Muscle3 Muscle4 Muscle5 Muscle6

F iso N 1000 1000 1000 1000 1000 1000

LM
0 cm 125 5.6 14.2 10.1 37 24.9

LT
s cm 0 0 0 0 0 0

αM
0 deg 0 0 0 0 0 0
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Table 4.2: MA3D-I specifications

# Muscles (Elements) 12 (22)

Muscle mechanics model CE/PE/SE Hill-type

Muscle path model Obstacle-set method −→ Non-geometric path model

Muscle redundancy problem SO/MSO

Musculoskeletal model type 3D/ Dynamic

Shoulder Spherical joint (triple revolute joints)

Shoulder rhythm None

Shoulder stability N/A

Elbow Single revolute joint (flexion/extension)

space, and k•’s are the weighting constants which are tuned manually. All steps includ-
ing multibody dynamics modeling, visualization, and optimization are accomplished with
MapleSimTM, SolidWorksr, and MATLABr/Simulink software packages, respectively.

4.1.2 MA3D-I

In this subsection, the goal is to develop a high-fidelity 3D musculoskeletal arm model to
evaluate simulation results of the 2D model. To validate 2D model simulations, we will use
inverse dynamics on its equivalent 3D model followed by an inverse kinematics analysis.
A brief overview of the model is presented in Table 4.2. Next, skeletal modeling, muscle
model, and implementation for this model will be covered.

Skeletal Model

We utilize the 3D Stanford musculoskeletal arm model, which has 12 DOF up to the wrist.
For simplicity we assume no shoulder rhythm (-5 DOF), no elbow pronation/supination
(-1 DOF), and a rigid wrist joint (-2 DOF). Thus, our 3D arm model has 4 DOF (see
Fig. 4.2.a). It is possible to orient the 3D arm model in the horizontal plane such that the
elbow flexion-extension axis becomes perpendicular to the transverse (horizontal) plane. In
the 3D model, the shoulder joint is modeled by three revolute joints with intersecting axes.
These body-fixed rotation axes are as follows (j is the joint/axis number, see Fig. 4.2.a):

j = 1: Shoulder plane of elevation (in OpenSim: “elv_angle”) axis (Y axis); rotation
about this axis deviates the upper arm from the thorax in the transverse plane.
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Figure 4.2: MA3D-I configuration. a) The skeletal model, and b) The ellipsoidal model.

j = 2: Shoulder elevation angle (in OpenSim: “shoulder_elv”) axis (rotated body-fixed
Z axis); rotation about this axis results in upper arm abduction/adduction.

j = 3: Shoulder rotation (in OpenSim: “shoulder_rot”) axis (rotated body-fixed Y axis);
rotation about this axis causes internal/external rotation of the upper arm. The
shoulder rotation angle is measured with respect to the shoulder plane of elevation;
hence, actual shoulder rotation angle is the total amount of rotation about this axis
minus shoulder plane of elevation angle.

The elbow joint (j = 4) is a simple revolute joint defined by “elbow_flexion” axis in
OpenSim. To generate a 2D-equivalent (MA2D-I1) of the 3D musculoskeletal arm model
(MA3D-I) the following steps are accomplished:

1. Scaling the 3D model based on the ratio of its upper arm length to the 2D model
first link (upper arm) length.

2. Finding proper YZY rotation (shoulder rotation), so that the elbow flexion-extension
axis becomes perpendicular to the transverse plane (i.e., it aligns with the YO axis).

3. Assigning the Center of Mass (COM) and moments of inertia of the segments such
that, by following the mentioned YZY rotation, their values become identical with
the inertial properties of the 2D model. Based on the anthropometric data [76],
ellipsoids (with three unknown radii and two anthropometric constraints related to
their ratios) are fitted to the upper and lower arms so that after prescribed rotations,
they possess the correct moments of inertia in the horizontal plane (see Fig. 4.2.b).
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Muscle model

The Thelen [283] muscle model is used to represent the Hill-type muscle dynamics, which
is a physics-based approach to muscle mechanics. However, it is assumed that only the CE
of the Hill-type muscle is generating muscle force.

FM
m = F am,CE

(
F iso
m , Lm, Vm

)
cos(αM

m) (4.2)

where FM
m , am, Lm and Vm are the mth muscle force, activation, length and velocity,

respectively, and FCE(.) is the CE function. See Appendix B for more details.

The musculoskeletal model, which is available in the OpenSim software, uses the
obstacle-set method for muscle path (see Fig. 4.3.a). We develop a non-geometric path
model by computing musculotendon lengths and moment arms after inverse kinematic
analysis of the model in OpenSim. This model will be used to generate new 2D models;
thus, the inverse dynamics problem should be solved for this model. Consequently, the
muscle force sharing problem can be solved by SO or MSO. The inputs of the SO are
muscle activations, while for the MSO, the inputs are muscle forces. We use SO with the
following cost function:

JSO = w1

nm∑
m=1

a2
m (4.3)

subject to:

Tj =
nm∑
m=1

rj
mF

M
m (4.4)

where m and j denote the muscle and joint numbers, respectively. nm is the number of
muscles1 (for this model nm = 22), T is the evaluated joint torque, and r and F are the
muscle moment arm and force, respectively.

Implementation

Visualization is done in both SolidWorksr and OpenSim. Then for solving inverse kinemat-
ics, OpenSim and MATLABr are utilized. For inverse dynamics analysis, the generated
kinematic results are fed into OpenSim, MapleSimTM, Simscape MultibodyTM, and MSCr

ADAMS. A manual graph-theoretic approach was also used to validate the inverse dynamic
results. Finally, the SO is done in both OpenSim and MATLABr. Results are presented
in Section 4.3 (Cross-validation studies of human models).

1In the text, we will use number of muscles instead of number of elements.
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Model limitations

This model is limited by:

1. ROM for some joints: for example, maximum positive shoulder rotation angle in this
model is 20 degrees [122], while this value in most references has been reported to be
about 90 degrees [229].

2. Imperfect shoulder rhythm definition: in the Stanford model, the shoulder rhythm
is defined by simplified regression-based equations which are only dependent on
the shoulder elevation angle [122]. However, the most accurate shoulder-rhythm
regression-based equations are in terms of three shoulder joint angles [326].

3. Incorrect muscle path generation for some orientations: this is due to the imperfect
muscle path definition based on the via-point method.

4.1.3 MA2D-I2

In the shoulder rhythm definition of the Stanford upper extremity musculoskeletal model,
approximate regression-based formulations are used. These formulations are only depend-
ent on the shoulder elevation angle, and they evaluate rotations of SCJ and ACJ (two
spherical joints) in terms of 6 revolute joint rotations. If we evaluate shoulder elevation
angle corresponding to the shoulder rotation in the horizontal plane, it will be possible to
evaluate these angles and get the new position of the GHJ. This can be accomplished by
mapping from the 2D model (MA2D-I1) to the developed 3D model (MA3D-I) and back-
mapping from MA3D-I to MA2D-I1. Hence, we get two displacements on the horizontal
plane for the shoulder joint. Finally, we apply these displacements to the shoulder joint
by two prismatic joints, which are driven by the shoulder rotation angle in the horizontal
plane. In this model, the shoulder joint has 3 DOF (1 independent and two dependent),
so the new 2D model (MA2D-I2) will have 4 DOF. Adding this extra DOF did not change
the simulation results significantly. Results are presented in Section 4.3 (Cross-validation
studies of human models).

4.1.4 MA2D-I3

In comparing the horizontal plane reaching movements of the MA2D-I with MA3D-I, we
noticed that the activation results of the 3D model simulation are different from the 2D
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Figure 4.3: a) MA3D-I muscle path, and b) MA2D-I3 configuration. See Table A.7 for the
dynamic parameters. Muscle attachment points are reported in Table A.9.

model. Therefore, we modified the 2D model using a weighted average approach to lump
the 22 muscles of MA3D-I into 6 muscle groups in a 2D model (see Fig. 4.3.b). In this
subsection, we have modified the weighted average method used in [197]. The procedure
of this modified model reduction is as follows:

1. Define muscle groups based on their synergistic muscles:

Muscle 1: Anterior (Clavicular) and Middle (Acromial) Deltoid; and Clavicular,
Sternal and Ribs Pectoralis Major.

Muscle 2: Posterior (Scapular) Deltoid; Thoracic, Lumbar and Iliac Latissimus
Dorsi; and Teres Major.

Muscle 3: Brachioradialis; Brachialis; Pronator Teres; and Extensor Carpi Radialis
Longus.

Muscle 4: Triceps Brachii Lateral and Medial; Anconeus; and Extensor Carpi Ra-
dialis Brevis and Ulnaris.

Muscle 5: Biceps Long and Short.

Muscle 6: Triceps Brachii Long.

2. Calculate muscle moment arms about the three revolute shoulder joints and one
revolute elbow joint for a specific type of motion derived from inverse kinematics
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analysis in OpenSim. Evaluate the shoulder moment arm in the horizontal plane
(rSm,M).

rSm,M = RO
j=1

⌋
(2,2)

r
j=1
m,M + RO

j=2

⌋
(2,3)

r
j=2
m,M + RO

j=3

⌋
(2,2)

r
j=3
m,M

=
3∑

j=1

RO
j

⌋
(2,3−|2−j|) r

j
m,M (4.5)

where rj
m,M is the muscle moment arm about the corresponding jth joint. Subscripts

m and M denote muscle number and its corresponding muscle group number, re-
spectively. RO

j

⌋
(i,j)

is the (i, j)th element of the rotation matrix converting the joint

j local frame to the origin frame. It is worth noting that since the shoulder joint
rotation is defined as a YZY rotation (Y: j = 2; Z: j = 3) and the goal is to find mo-
ment arm about the global YO axis (i = 2), in the above equation following properties
are implemented:

• For the first joint (j = 1) which corresponds to Y axis (j = 2), the (i = 2, j =
2)th element of the rotation matrix (RO

j=1) is selected.

• For the second joint (j = 2) which corresponds to Z axis (j = 3), the (i =
2, j = 3)th element of the rotation matrix (RO

j=2) is selected.

• For the third joint (j = 3) which corresponds to Y axis (j = 2), the (i = 2, j =
2)th element of the rotation matrix (RO

j=3) is selected.

3. Evaluate the corresponding maximum shoulder and elbow rotation torques for indi-
vidual muscles in the horizontal plane.{

T Sm,M = rSm,MF
iso
m,M

TEm,M = rEm,MF
iso
m,M

(4.6)

where rEm,M = r
j=4
m,M is the elbow moment arm in the horizontal plane.

4. Calculate the corresponding maximum shoulder and elbow torques for the muscle
groups in the horizontal plane (4.7). Then, evaluate the muscle group moment arms
(4.8). {

T SM =
∑nm

m=1 T
S
m,M

TEM =
∑nm

m=1 T
E
m,M

(4.7) rSM =
∑nm

m=1 r
S
m,MT

S
m,M

TSM

rEM =
∑nm

m=1 r
E
m,MT

E
m,M

TEM

(4.8)
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Table 4.3: Muscle mechanics parameters for MA2D-I3.

Parameter Unit Muscle1 Muscle2 Muscle3 Muscle4 Muscle5 Muscle6

F iso N 2525 1672 1452 1577 972 799

LM
0 cm 12 21 11.7 10.9 12.9 14.3

LT
s cm 2.9 0 1.8 0.7 18.8 11.9

αM
0 deg 21.6 19.5 1.4 7.8 0 12

5. Approximate the muscle group insertion points by running an optimization on the
origin and insertion locations of the 3D model in a way that a straight line path
model generates similar moment arms over a period of inverse kinematics motion
(the kinematic path is defined in Section 4.3 (Cross-validation studies of human
models)).

6. Evaluate the muscle group model parameters (p).

pM =



∫
t

∑nm
m=1 p

S
m,MT

S
m,M∫

t T
S
M

M = 1, 2∫
t

∑nm
m=1 p

E
m,MT

E
m,M∫

t T
E
M

M = 3, 4

1
2

(∫
t

∑nm
m=1 p

S
m,MT

S
m,M∫

t T
S
M

+
∫
t

∑nm
m=1 p

E
m,MT

E
m,M∫

t T
E
M

)
M = 5, 6

(4.9)

where t is the simulation time, and pM denotes the parameters listed in Table 4.3.

7. Since we are not including muscle wrapping, negative values of the tendon slack
lengths of the muscle groups are set to zero so that the value of the muscle group
musculotendon length becomes meaningful.

Finally, muscle attachment points are updated as in Figure 4.3.b and the new muscle model
parameters are summarized in Table 4.3.

4.1.5 MA3D-II

MA3D-I is based on the Stanford model. However, the shortcomings of this model led us to
develop an advanced 3D musculoskeletal arm model. Defining muscle-wrapping geometries
requires a proper database. The Texas upper extremity model has a complete muscle path
definition based on the obstacle-set method. This model is defined in different coordinates
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Table 4.4: MA3D-II specifications

# Muscles (Elements) 26 (42)

Muscle mechanics model CE/PE/SE Hill-type

Muscle path model Obstacle-set method −→ Non-geometric path model

Muscle redundancy problem SO/FSO

Musculoskeletal model type 3D/ Dynamic

Shoulder Spherical joint (triple revolute joints)

Shoulder rhythm Regression

Shoulder stability N/A

Elbow Double revolute joints (flexion/extension and pronation/supination)

than the ISB recommendation, and it does not account for the motion of the shoulder
joint (shoulder rhythm). In this subsection, the goal is to define the Texas model using
the ISB recommended coordinates with the shoulder rhythm determined by the regression-
based approach of Xu et al. [326]. The Lisbon model is the Texas model defined in ISB
recommended coordinates except for the scapula coordinate. This redefinition has some
deficiencies, and we will overcome those imperfections by redefining the ISB recommended
coordinates, proper positioning of the clavicle and scapula, and defining non-geometric
muscle path which is required for real-time simulations. A brief overview of the model is
presented in Table 4.4. Next, skeletal modeling, muscle model and implementation for this
model will be covered.

Skeletal Model

ISB recommendation is based on some specific palpable bony landmarks, but some of these
bony landmarks are not available in the Texas model study (see Table 4.5). We use a spe-
cific morphing technique to find these points based on the MA3D-I skeletal model. Matias
et al. [177] state that, it is possible to find muscle attachment sites with a transformation
defined by three bony landmarks. We will use this method to estimate the other unknown
bony landmarks on each bony segment of the Texas model. Hence, the following transform-
ations are used to determine the unknown palpable bony landmarks along with skeletal
segment visualizations:

1. Thorax: define 3 vectors out of 4 bony landmarks of the thorax for both MA3D-I
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Table 4.5: Anatomical features (which includes bony landmarks) of the ISB recommenda-
tion, MA3D-I, and MA3D-II. 3: it is available, 7: it is not required, ?: it is not available
and should be evaluated.

Segment Anatomical Feature Description ISB MA3D-I MA3D-II

Thorax

C7 Spinous process of the 7th cervical vertebra 3 3 3
T8 Spinal process of the 8th thoracic vertebra 3 3 3
IJ Deepest point of Incisura Jugularis 3 3 3

PX Processus Xiphoideus 3 3 3

Clavicle
SC SCJ 3 3 3
AC ACJ 3 3 3

Scapula

TS Trigonum Spinae Scapulae 3 3 ?
AI Angulus Inferior 3 3 3
AA Angulus Acromialis 3 3 ?
PC Most ventral point of processus coracoideus 3 3 3
SM Superior point on ellipsoid 7 3 3
IM Inferior point on ellipsoid 7 3 3

Humerus

GH GHJ 3 3 3
EL Most caudal point on lateral epicondyle 3 3 ?
EM Most caudal point on medial epicondyle 3 3 ?
aHL Long axis of humerus 7 3 3
HU HUJ 7 3 3
aHU HUJ axis 7 3 3

Forearm

US Most caudalmedial point on the ulnar styloid 3 3 ?
USC Center of ulnar styloid process 7 3 3
RU DRUJ 7 3 3
RS Most caudallateral point on the radial styloid 3 3 ?

RSC Center of radial styloid process 7 3 3
RC RCJ 7 3 3

and MA3D-II, and build the thorax transformation matrix as follows:

Tt =
[

rT8 − rC7 rIJ − rC7 rPX − rC7

]
II

[
rT8 − rC7 rIJ − rC7 rPX − rC7

]−1

I
(4.10)

where r is the position vector defined in each model’s global coordinate system.

2. Clavicle: define the local coordinate of the clavicle for both MA3D-I and MA3D-
II, and get the scaling factor by measuring AC to SC length. Then, the following
transformation matrix is used to generate the skeletal visualization for the clavicle:

Tc =
‖rAC − rSC‖II

‖rAC − rSC‖I

Rc,IIR
−1
c,I (4.11)

where Rc,I and Rc,II are the ISB recommended clavicle rotation matrices of the
MA3D-I and MA3D-II, respectively, and Tc is the clavicle transformation matrix.
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3. Scapula: define 3 vectors out of 3 bony landmarks of the scapula for both MA3D-I
and MA3D-II, and build the scapula transformation matrix as:

Ts =
[

rAC rAI rSM

]
II

[
rAC rAI rSM

]−1

I
(4.12)

Then, the unknown bony landmarks of the scapula can be estimated by the following
equation: {

rII
TS = Tsr

I
TS

rII
AA = Tsr

I
AA

(4.13)

4. Humerus: define 3 independent axes in MA3D-I and MA3D-II, and get the scaling
factor by measuring HU to GH length. Then, the following transformation matrix is
used to generate the skeletal visualization for the humerus:

Th =
‖rHU − rGH‖II

‖rHU − rGH‖I

[
rHU−rGH

‖rHU−rGH‖
aHU aHL

]
II

[
rHU−rGH

‖rHU−rGH‖
aHU aHL

]−1

I
(4.14)

where Th is the humerus transformation matrix. The unknown bony landmarks of
the humerus can be estimated by the following equation:{

rII
EL = rII

GH + Th

(
rI

EL − rI
GH

)
rII

EM = rII
GH + Th

(
rI

EM − rI
GH

) (4.15)

5. Ulna: define 3 independent axes in MA3D-I and MA3D-II, and get the scaling factor
by measuring US2 to HU length. Then, the following transformation matrix is used
to generate the skeletal visualization for the humerus:

Tu =
‖rUS − rHU‖II

‖rUS − rHU‖I

[
rUS−rHU

‖rUS−rHU‖
aHU

rUS−rHU

‖rUS−rHU‖
× aHU

]
II

·
[

rUS−rHU

‖rUS−rHU‖
aHU

rUS−rHU

‖rUS−rHU‖
× aHU

]−1

I
(4.16)

where Tu is the ulna transformation matrix.

6. Radius: define 3 independent axes in MA3D-I and MA3D-II, and get the scaling
factor by measuring RS3 to RU length. Then, the following transformation matrix

2US is estimated based on USC [328].
3RS is assumed to be same as RSC.
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Table 4.6: Workspace of MA3D-II in terms of its joint angles. Note that µ = max+min
2

and
σ = max−min

2
.

j Joint Angle Description min (deg) max (deg) µ (deg) σ (deg)

1 γGH1 GH plane of elevation about Y axis -20 120 50 70

2 βGH GH negative elevation about X axis -90 -30 -60 30

3 γGH2 GH-axial rotation about Y axis -60 30 -15 45

4 αHU HU flexion/extension about Z axis 0 140 70 70

5 γRU RU pronation/supination about Y axis 0 120 60 60

is used to generate the skeletal visualization for the humerus:

Tr =
‖rRS − rRU‖II

‖rRS − rRU‖I

[
rRS−rRU

‖rRS−rRU‖
aRU

rRS−rRU

‖rRS−rRU‖
× aRU

]
II

·
[

rRS−rRU

‖rRS−rRU‖
aRU

rRS−rRU

‖rRS−rRU‖
× aRU

]−1

I
(4.17)

where Tr is the radius transformation matrix.

The ISB recommended coordinates can be defined according to the defined bony land-
marks. Driving joints and the entire workspace of MA3D-II in terms of its driving joint
angle limits are defined in Table 4.6. We utilize regression formulas to implement the
shoulder rhythm. Considering Table 4.7, the equations are in the form of:

θ =(γGH1 − 46.97)c1 + (βGH + 66.46)c2 + (γGH2 + 37.64)c3 + (γGH1 − 46.97)2c4

+ (βGH + 66.46)2c5 + (γGH2 + 37.64)2c6 + (γGH1 − 46.97)(βGH + 66.46)c7

+ (γGH1 − 46.97)(γGH2 + 37.64)c8 + (βGH + 66.46)(γGH2 + 37.64)c9 + c0 (4.18)

where θ indicates the corresponding joint angle. All the angles are measured in degrees.

Muscle model

Muscle dynamics is included using the Hill-type definition presented in [283]. With rigid
tendon assumption, the muscle force is evaluated using the following equation:

FM
m =

[
FCE

(
am, F

iso
m , Lm, Vm

)
+ FPE

(
F iso
m , Lm

)]
cos(αM

m) (4.19)

where FPE(.) is the PE function. See Appendix B for more details.
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Table 4.7: The regression coefficients of the shoulder rhythm.

θ Description c1 c2 c3 c4 c5 c6 c7 c8 c9 c0

γAC
Scapula retraction/
protraction about Y axis

0.163 0 0.039 -0.0016 -0.0018 -0.0003 -0.0023 -0.0009 0.0003 38.35

βAC
Scapula lateral/medial
rotation about X axis

-0.065 0.322 -0.024 0 - 0.0009 0 0 -0.0014 0 -23.20

αAC
Scapula anterior/
posterior tilt about Z axis

0.060 -0.039 -0.011 0 0 0.0002 0 0.0005 0.0008 -7.11

γSC
Clavicle retraction/
protraction about Y axis

0.059 0.207 0.013 -0.0017 -0.0025 -0.0005 -0.0020 -0.0020 0 -17.42

βSC
Clavicle elevation/
depression about X axis

-0.025 0.204 -0.031 0 0 0.0002 -0.0007 -0.0003 0.0007 -21.04

Figure 4.4: MA3D-II skeletal model and muscle wrapping at 3 different postures.
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The Texas musculoskeletal model uses the obstacle-set method for muscle path; these
muscle path models should be redefined in ISB recommended coordinates (see Fig. 4.4).
For real-time simulations, non-geometric muscle path models are required. Thus, for every
muscle that acts on specific joints, the corresponding position inputs are given to the active
joints to get the muscle length4. These inputs are summarized in Table 4.8. Then, the
muscle lengths are fitted with fifth-order polynomials of the active joint angles. Based on
the virtual work principle, the muscle moment arm for a single muscle can be evaluated
using the following equation:

Tj
m = FM

mrj
m

Tj
mδθj = −FM

m δL
m

}
=⇒ rj

m = −δL
m

δθj
= −∂L

m

∂θj
(4.20)

where rj
m is the mth muscle moment arm about joint j that the muscle acts on.

The muscle force sharing problem can be solved by SO and FSO, with cost functions
similar to (4.3) and (4.1).

Implementation

The model is developed in MapleSimTM; then, its optimized C-code and MATLABr/Simulink
block are generated for simulations.

4.1.6 MA2D-II

To generate this model, a procedure similar to MA2D-I3 is performed. However, the
following changes are implemented in the MA2D-II development:

1. MA3D-II interacts with the rehabilitation robot. With a specified hand orientation
(in two directions) on the end-effector, the best position for the MA3D-II placement is
determined when there is intersection between the human and robot workspaces. The
hand of MA3D-II in this configuration follows a persistently exciting input and the
hand force is recorded. In an optimization, the best position of GHJ, upper and lower
arm lengths for the 2D model is determined subject to holding the MA2D-II hand in
the same position as the MA3D-II hand during persistently exciting simulations.

4Note that since we have used regression based shoulder rhythm, including SC and AC muscles is not
required (i.e., 13 muscles of the clavicle and scapula are not included in this model).
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Table 4.8: Inputs for muscle length evaluation. Please refer to Table. 4.6 for the unknown
parameters.

Joints # Muscles Frequency (Ω) Inputs (which are measured in degrees) tf (s)

GH 15 π
200


γGH1 = γGH1µ − γGH1σ cos(Ωt)

βGH = βGHµ − βGHσ cos(10Ωt)

γGH2 = γGH2µ − γGH2σ cos(100Ωt)

200

GH+HU 1 π
2000


γGH1 = γGH1µ − γGH1σ cos(Ωt)

βGH = βGHµ − βGHσ cos(10Ωt)

γGH2 = γGH2µ − γGH2σ cos(100Ωt)

αHU = αHUµ − αHUσ cos(1000Ωt)

2000

GH+HU+RU 2 π
20000



γGH1 = γGH1µ − γGH1σ cos(Ωt)

βGH = βGHµ − βGHσ cos(10Ωt)

γGH2 = γGH2µ − γGH2σ cos(100Ωt)

αHU = αHUµ − αHUσ cos(1000Ωt)

γRU = γRUµ − γRUσ cos(10000Ωt)

20000

HU 3 π
20

αHU = αHUµ − αHUσ cos(Ωt) 20

HU+RU 7 π
20

 αHU = αHUµ − αHUσ cos(Ωt)

γRU = γRUµ − γRUσ cos(10Ωt)
20

RU 1 π
20

γRU = γRUµ − γRUσ cos(Ωt) 20

2. After finding the optimal position of the shoulder joint and lengths of upper and lower
arms, the 2D joint angles (velocities and accelerations) of the shoulder and elbow are
evaluated in an inverse kinematic analysis. Then, by an inverse dynamics analysis,
dynamic parameters (masses, moments of inertia, COMs, joint damping coefficients)
of MA2D-II are determined.

3. Muscle lengths are evaluated in the persistently exciting simulations, and they are
determined with a fifth-order polynomial function in terms of the MA2D-II joint
angles. Then, muscle moment arms are calculated by (4.20).

4. To define muscle groups based on their synergistic muscles, the signs of muscle mo-
ment arms are considered for categorizing the muscles. Consequently, the following
muscle groups are resulted:

Muscle 1: Anterior (Clavicular) Deltoid; Clavicular, Sternal and Ribs Pectoralis
Major; Subscapularis; and Coracobrachialis.
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Table 4.9: Muscle mechanics parameters for MA2D-II.

Parameter Unit Muscle1 Muscle2 Muscle3 Muscle4 Muscle5 Muscle6

F iso N 450 708 595 1000 434 629

LM
0 cm 17.4 15.7 10.2 5.6 13.7 15.2

LT
s cm 4.9 7.2 11.5 18.2 23 19

αM
0 deg 0 0 13.8 15.1 10 15

Muscle 2: Posterior (Scapular) and Middle* (Acromial) Deltoid; Thoracic, Lumbar
and Iliac Latissimus Dorsi; Supraspinatus; Infraspinatus; and Teres Minor and
Major.

Muscle 3: Brachioradialis; Brachialis; Pronator Teres; Flexor Carpi Radialis; and
Extensor Carpi Radialis Brevis* and Longus.

Muscle 4: Triceps Brachii Lateral and Medial; Supinator; Flexor Carpi Ulnaris;
Extensor Carpi Radialis Ulnaris.

Muscle 5: Biceps Long and Short.

Muscle 6: Triceps Brachii Long.

Underlined muscles (10 in total) are supplementary to the MA3D-I muscles, while
the Anconeus muscle is not included in the MA3D-II muscle list. Starred muscles
are defined in different muscle groups compared to the MA3D-I, which indicates that
Nijhof and Kouwenhoven [197] have not categorized these muscles properly.

Finally, the musculoskeletal model of MA2D-II with visual muscle wrapping (which
is developed using muscle length polynomial functions) is developed in MapleSimTM(see
Fig. 4.5). The new muscle model parameters are summarized in Table 4.9.

4.2 Human-robot interaction models

To develop an HRI model, both systems are modeled separately and then integrated into
a single model. To model these systems, the MapleSimTMsoftware package is used for the
following reasons:

1. Multi-domain capabilities: mechanical system support for modeling a parallelogram
linkage, electrical system support to model DC motors, and biological system support
for modeling the muscles and musculoskeletal system,
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Figure 4.5: MA2D-II musculoskeletal model. See Table A.10 for the dynamic parameters.

2. Symbolic processing,

3. Optimized code generation,

4. CAD support.

The robto’s end-effector consists of a passive revolute joint (along the Y axis) and a
force sensor. Thus, a revolute joint (along the Y axis) which is equipped with a force
sensor is added to the original robot’s model; then, the developed models of two systems
are connected to each other by a rigid connection. The integrated model is a closed-chain
linkage with multiple inputs which includes: 2 motor inputs, and nM muscle activations
for the 2D musculoskeletal models or nm muscle activations for the 3D musculoskeletal
models. This closed-chain linkage has 4 outputs including 2 robot joint angles (q1,2) and 2
force sensor outputs (FextZ,X).
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Here for an efficient model-based control implementation, MA2D-II integration with
the robot model is discussed.

4.2.1 Review of the robot kinematics and dynamics

The end-effector kinematics are: 
ρR = ΦR(q)

ρ̇R = ∂ΦR

∂q
q̇ = JRq̇

ρ̈R = J̇Rq̇ + JRq̈

(4.21)

where ρR is the end-effector position in the global coordinates {Z,X}, and q = [q1, q2]T is
the vector of the robot joint angles. JR is the robot geometric Jacobian, and ΦR is the
kinematic function of the robot. The dynamic model of the system is:

TR − JTRFint = MR(q)q̈ + CR(q, q̇)q̇ + KR(q− q0) + fT + JTRfF

= ΓR(q, q̇, q̈) (4.22)

where TR is the vector of robot motor torques, and Fint and fF are robot to human inter-
action force and friction force under the end-effector in the global coordinates, respectively.
MR is the robot inertia (mass) matrix, and CR is the robot Coriolis-centrifugal matrix. fT
is the friction torque vector at the joints. KR is a 2 × 2 symmetric joint stiffness matrix,
and q0 is the equilibrium position of the driving joint angles.

4.2.2 Review of the MA2D-II kinematics and dynamics

As it was mentioned in MA2D-II development, this model is mapped from the high-fidelity
musculoskeletal model (i.e., MA3D-II). MA3D-II is placed in front of the robot at different
heights (sitting positions); then, the mapping is done on a plane that has maximal interfer-
ence between the robot and MA3D-II workspaces (see Fig. 4.6). The MA2D-II kinematics
are: 

ρA = ΦA(θ)⇒ θ = ΨA(rA)

ρ̇A = ∂ΦA

∂θ
θ̇ = JAθ̇

ρ̈A = J̇Aθ̇ + JAθ̈

(4.23)

where ρA is the hand position in the global coordinates, and θ = [θS, θE]T is the vector
of the shoulder and elbow joint angles. JA is the MA2D-II geometric Jacobian, ΦA is
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Robot 
Workspace

Human 
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Figure 4.6: (a) Rehabilitation robot workspace and 3D musculoskeletal model workspace
evaluated at different chair heights and a single hand orientation with respect to the end-
effector. (b) Mapping 3D musculoskeletal model to 2D model while interacting with the
rehabilitation robot.

the kinematic function of MA2D-II, and ΨA, which has a closed-form expression, is the
inverse of vector function ΦA. Finally, the dynamic equation of this 2 DOF arm model is
as follows:

TA + JTAFint = MA(θ)θ̈ + CA(θ, θ̇)θ̇ + BAθ̇

= ΓA(θ, θ̇, θ̈) (4.24)

where TA is the vector of the MA2D-II joint torques, which are functions of muscle lengths
(LM), velocities (VM), moment arms (rS,EM ) and activations (aM). MA and CA are the
2D arm inertia (mass) and Coriolis-centrifugal matrices, respectively. BA is a diagonal
damping matrix.
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4.2.3 2D human-robot dynamics

Integration of MA2D-II with the robot is a 2D closed-chain linkage with 8 inputs (2 robot
motor torques, TR1,2 ∈ [−10, 10] Nm, and 6 muscle group activations, a1..6 ∈ [0, 1]), and
four outputs (2 robot joint angles, q1,2, and 2 force sensor outputs, FextZ,X). For this
2 DOF mechanism, a set of ordinary differential equations can be derived, if the number of
generalized coordinates is reduced to 2 (the number of DOFs). In this subsection, we will
provide a procedure to obtain a minimum number of equations for the system dynamics.
In this closed-chain linkage, translational kinematics of the hand and end-effector should
be the same (i.e., ρR = ρA = ρ), and from (4.21) and (4.23) we get:

θ = ΨA(ΦR(q))

θ̇ = J−1
A JRq̇

θ̈ = J−1
A

(
J̇Rq̇ + JRq̈− J̇Aθ̇

) (4.25)

Thus, the MA2D-I kinematics can be written in terms of the robot kinematics. Combining
(4.22) and (4.24), the 2D human-robot dynamics will be:

TA + JTAJ−TR (TR − ΓR(q, q̇, q̈))− ΓA(θ, θ̇, θ̈) = 0 (4.26)

The left-hand-side of (4.26) is a function (Π) of control inputs (TR1,2 and a1..6), q, q̇ and

q̈, in which θ, θ̇, and θ̈ are substituted from (4.25). The rearranged dynamic equation and
its corresponding state-space equation is:

q̈ =

(
∂Π

∂q̈

)−1(
Π− ∂Π

∂q̈
q̈

)
(4.27)

ẋq(t) =

{
q̇
q̈

}
= F (xq(t),u(t)) (4.28)

where xq = [q1,2, q̇1,2]T ∈ R4 and u = [TR1,2, a1..6]T ∈ R6 are the system state and control
input vectors, respectively. The above equations are evaluated symbolically in MapleTM.

4.3 Cross-validation studies of human models

To run simulations, we should consider a trajectory for manipulation. Since the upper
extremity rehabilitation robot has been designed to perform point to point reaching tasks
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Figure 4.7: Path1 desired hand movement.

in the horizontal plane, these types of movements are studied. There are two hypotheses for
the hand movement in the horizontal plane. The first hypothesis states that the movement
is done visually in the world space without considering human body joint space, so the
movement is a point to point, and it is done approximately in a straight line [1, 87, 189].
The second hypothesis proposes that the movement is done in the joint space considering
musculoskeletal properties and it has a slightly curved path [18, 82, 193, 224, 275, 291, 335].
Both of these hypotheses claim that the hand movement is accomplished with a bell-shaped
tangential speed profile and continuous jerk profile. In this study we will use both of the
hypotheses to generate rehabilitation reaching paths as follows:

Path1: Considering a recent study by Zadravec and Matjačić [335], the trajectory is ap-
proximated by a smooth circular path with a large radius of curvature (see Fig. 4.7).
To apply a bell-shaped tangential speed profile with a continuous jerk, a cubic spline
interpolation approach is used to generate the path.

Path2: The desired trajectory for the simulations is selected based on the coordination of
arm movements, in which the best performance in an unconstrained point-to-point
reaching task is to generate the smoothest motion, and this objective is determined by
minimizing the square of jerk magnitude [87]. This trajectory (ρd = [Zd(t), Xd(t)]

T )
is a straight line with a bell-shaped tangential speed profile inside the human-robot
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Table 4.10: Performances of five different approaches used for solving inverse dynamics
problem.

Approach Linear solver option Simulation time (s)

Graph-theoretic approach Fixed step (1 ms) 11

MSCr ADAMS Fixed step (1 ms) 25

MapleSimTM Fixed step (1 ms) 16

OpenSim Fixed step (1 ms) 21

Simscape MultibodyTM Fixed step (1 ms) 190

workspace and defined as:{
Zd(t) = Z0 + (15τ − 6τ 2 − 10)∆Zτ

3

Xd(t) = X0 + (15τ − 6τ 2 − 10)∆Xτ
3 (4.29)

where ∆Z and ∆X are the path lengths along X and Z axes, respectively, and τ = t/tf .

With this introduction, the dynamic simulations are discussed in the following subsec-
tions.

4.3.1 MA3D-I dynamic simulations

Inverse dynamics of the skeletal model

We mapped the Path1 motion kinematics of MA2D-I1 interacting with the passive robot
into MA3D-I. The inverse dynamic results of four multibody dynamics software packages
along with a graph-theoretic approach, which is hand-coded in MATLABr, are presented
in Fig. 4.8. The performances of these five different approaches are evaluated in Table 4.10.
Considering simulation times and quality of results, MapleSimTMperforms better than other
software platforms because of symbolic solution together with optimized code generation.
That is why we utilize this software throughout this project.

SO of the musculoskeletal model with 10 muscles

Here, the SO problem is solved for the MA3D-I with 10 muscles, and the results are
compared to the OpenSim model results. Considering the limited range of joint motions of
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Figure 4.8: MA3D-I inverse dynamics results. a) Joint torques for j = 1..4, which is
evaluated by a hand-coded graph-theoretic approach, and b) Evaluated torques by differ-
ent software packages (A: MSCr ADAMS, M: MapleSimTM, O: OpenSim, S: Simscape
MultibodyTM) are compared to the graph-theoretic approach using RMSE measure.

the OpenSim 3D musculoskeletal model (i.e., shoulder rotation angle because of imperfect
muscle wrapping is 20 degrees, while this value in most references have been reported to be
about 90 degrees [229]), for the SO, the system is simulated only for about one fifth of the
reaching path (i.e., 2 seconds). The activation patterns of the muscles for these two models
are completely different; thus, for comparison, we introduce a new term called “activation
content” which is the average activation of each muscle during simulation. Then we will
discuss the reason for disparity. Activation contents of the muscles for these two models
are presented in Fig. 4.9.

Patterns of activation contents for the MA3D-I and OpenSim models are similar (con-
sider the patterns of the dashed and solid lines tracing activation contents). MA3D-I is the
complete imitated model of the OpenSim musculoskeletal upper extremity model. Non-
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Figure 4.9: Activation contents of muscles for two 3D musculoskeletal upper extremity
models with 10 active muscles (DELT1: Deltoid Anterior, DELT2: Deltoid Middle,
DELT3: Deltoid Posterior, PECM1: Pectoralis Major Clavicular, PECM2: Pectoralis
Major Sternal, PECM3: Pectoralis Major Ribs, LAT1: Latissimus Dorsi Thoracic, TRIlat:
Triceps Lateral, TRImed: Triceps Medial, BRA: Brachialis).

etheless, its muscle activations patterns are different from the OpenSim model. To discuss
this issue, consider the SO utilized in OpenSim. The OpenSim documentation [114] states
that this software uses an objective function similar to (4.3) with a force-length-velocity
constraint defined in (4.4). If we feed MA3D-I with the activations resulted from the
OpenSim model static optimization, torque constraints will be violated (see Fig. 4.10). As
can be seen, the OpenSim model results in noticeable torque error compared to the actual
torque value. The reason for this error is the use of a different form of objective function
by OpenSim, which can violate low torque constraints, and that is:

OpenSim : JSO = w1

nm∑
m=1

a2
m + w2

nj∑
j=1

(
Tj −

nm∑
m=1

rj
mFm

)2

(4.30)

where nj is the number of active joints of the musculoskeletal model. This formulation of
the objective function is completely dependent on the defined constant weights (wi), and
improper selection of these weights may result in constraint violation. To summarize, the
activation results of the OpenSim model are not correct for the defined inverse dynamics
problem.
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Figure 4.10: Inverse dynamics results along with the torque constraint errors for the MA3D-
I and OpenSim models.

4.3.2 MA2D-I2 dynamic simulations

In this simulation, MA2D-I2 (the 2D upper extremity model with shoulder rhythm) is
used to interact with the passive robot on Path1. The implemented shoulder rhythm is
derived from the OpenSim model, which is only dependent on the “shoulder_elv” joint
(j = 2) motion. The results of this simulation are nearly identical to the results of MA2D-
I1 simulation. The reason for this similarity is the negligible variation of “shoulder_elv”
joint throughout the entire movement; hence, shoulder joint translation in MA2D-I2 does
not exceed 0.5 mm.
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Figure 4.11: Muscle activations of three upper extremity musculoskeletal models interact-
ing with the unactuated robot.

4.3.3 MA2D-I3 dynamic simulations

In this simulation, MA2D-I2 (the 2D upper extremity model with shoulder rhythm) is used
to interact with the passive robot on Path1 for 2 seconds, and the SO problem is solved.
The results are summarized in Fig. 4.11, in which we see that the muscle activations of
MA2D-I3 are a better match to MA3D-I than MA2D-I1. The reasons for the differences
between muscle activations of the MA3D-I and MA2D-I3 models can be summarized as
follows:
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1. An approximate method is used for lumping muscles from MA3D-I into MA2D-I3.

2. A straight-line approach for muscle paths in MA2D-I3 will decrease active muscle
lengths. This has a significant influence on the behavior of the shoulder muscles,
which have complicated wrapping geometries (note the initial activation of Muscle
2).

3. MA3D-I has three shoulder torque constraints, which are (4.4) for j = 1..3, while
MA2D-I3 has only one shoulder torque constraint.

Here, we show that the 2D musculoskeletal arm model can effectively represent the
3D motion of the arm; thus, it can be used to evaluate the rehab robot performance.
Although development of this 2D musculoskeletal arm model requires a 3D model with
muscle wrapping geometries, the lower-fidelity 2D model – in contrast to the higher-fidelity
3D model – can be used in real-time simulations and model-based controllers.

4.4 DPI study of human models

If we recall the sensitivity analysis of the musculoskeletal models (see Subsection 2.2.5),
changing musculoskeletal parameters may result in large muscle force estimation errors,
especially for impaired patients. To reduce these estimation errors, we need to have a
subject-specific musculoskeletal model with parameters identified from experiments.

4.4.1 Method

Since the 2D model (MA2D-II) will be used within our NMPC scheme, DPI with the setup
shown in Fig. 4.12 will be performed on this model. The DPI tests are summarized as:

1. Optotrak Certus markers are installed on the three bony landmarks of the subject
including AC, EL, and 3rd metacarpal bone head. Subject’s wrist joint is fixed. It
is assumed that the subject’s frontal plane is always parallel to the YZ plane (i.e.,
he/she is not leaning). Furthermore, since the subject is not raising his/her hand,
the amount of shoulder rhythm in the horizontal plane movement is negligible. Thus,
it is possible to measure shoulder and elbow joint angles (θSe,Ee, see Fig. 4.13).
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Figure 4.12: DPI setup for the identification of the musculoskeletal model dynamic para-
meters.

2. Delsys Trigno wireless EMG sensors are attached to 6 muscles including Anterior
Deltoid (in Muscle1), Posterior Deltoid (in Muscle2), Brachioradialis (in Muscle3),
Triceps Brachii Lateral (in Muscle4), Biceps (in Muscle5), and Triceps Brachii Long
(in Muscle6). Each of these muscles is selected as the representative of their corres-
ponding muscle group (see Fig.4.13). Before starting tests, the Maximum Voluntary
Contraction (MVC) of each muscle is recorded for the subject.

3. The DPI tests are performed by the subject, while he/she is holding the robot end-
effector and moving it in the horizontal plane with randomly periodic movements
which can be considered as sufficiently rich movements.

4. During the tests, the robot damps the subject’s movement by controlling the end-
effector with a differential controller (“D Block” in Fig. 4.14). The robot also meas-
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Figure 4.13: Muscles and joint angles configuration in the DPI setup (top view).

ures the interaction force by the end-effector force sensor.

5. The outputs of these DPI tests are the robot joint angles (2 joints), the interaction
force (2 forces along X and Z axes), the marker positions (3 positions), and the EMGs
of the 6 muscles.

Assume that the dynamic parameters of an impaired subject with unknown parameters
in activation dynamics (see Appendix B for the model of activation dynamics) is needed.
For the DPI of the MA2D-II model with unknown parameters in activation dynamics, we
use the proposed framework that is summarized in Fig. 4.14. These steps are followed in
this framework:

1. The DPI experiments are performed.

2. The marker positions and robot joint angles are fed to the “Kinematic Optimiza-
tion Block”. This block, first, evaluates the experimental shoulder and elbow joint
angles (θSe,Ee, see Fig.4.13). Then, the block tries to solve the following kinematic
optimization problem:

arg min
χ

∫ tf

0

(
(θSe − θSo)2 + (θEe − θEo)2

)
(4.31)
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Figure 4.14: MA2D-II DPI workflow with unknown parameters in activation dynamics.
Kinematic optimization includes the kinematic constraint (4.32). Muscle Excitations cor-
essponds to e, and Processed and Normalized EMG Signals denotes eEMG.

subject to the HRI kinematics (MA2D-II kinematics (4.23) and robot kinematics
(4.21)):

ρA(χ, θSo, θEo)− ρR = 0 (4.32)

where χ = [ZS, XS, lh, lu]
T is the vector of unknown kinematic parameters: ([ZS, XS]T

is the shoulder joint position in the global coordinates, lh is the upper arm length,
and lu is the forearm length), and subscript o stands for the optimized kinematic
model. ρR is the end-effector position which is evaluated by the robot’s experiment-
ally measured joint angles. (4.32) constraint is for ensuring that the end-effector and
hand are at the same position. Since the shoulder may have unwanted translational
movements, its optimal position is estimated in this optimization problem.

3. Assume that the dynamic parameters of the MA2D-II were known. Then, in a
noise-free system, if we feed the muscle excitations (which are the control input e
to the MA2D-II model followed by the activation dynamics) with the processed and
normalized EMG signals (eEMG, see the dashed box in Fig. 4.14 on the left), the
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MA2D-II kinematics will be close to the optimized kinematics from the previous step
(see the dashed box in Fig. 4.14 on the right). However, noisy input (e = eEMG− d)
impedes the convergence of most algorithms for solving this DPI problem. To address
this issue, assuming a normal distribution for dTd with zero mean and variance ς2, we
propose an alternative optimal control problem (similar to (3.48)) with the following
objective functional:

J =
1

2

∫ tf

0

(e− eEMG)T (e− eEMG) dt (4.33)

subject to (4.24) with the path constraint:

c(t) =
1

2

(
(θS − θSo)2 + (θE − θEo)2

)
≤ ε2 (4.34)

This optimal control problem will find the unknown dynamic parameters of the hu-
man model, while trying to find control inputs such that they minimize (4.33) and
hold the dynamic constraint (4.24) with activation dynamics and (4.34).

For the DPI of a healthy subject, since the parameters of the activation dynamics are
known (see Appendix B for the model of activation dynamics and assigned parameters for
young adults), the DPI of the MA2D-II model with known activation dynamics will have
the framework in Fig. 4.15. Noisy input (a = aEMG − d) impedes the convergence of most
algorithms for solving this DPI problem. Consequently, assuming a normal distribution
for dTd with zero mean and variance ς2, the objective functional for the DPI of a healthy
subject will be updated as:

J =
1

2

∫ tf

0

(a− aEMG)T (a− aEMG) dt (4.35)

where aEMG are the activations from the processed and normalized EMG signals by passing
through the activation dynamics.

4.4.2 Experiments

For the experiments, the above mentioned tests are performed on a healthy female subject
(having weight and height of 55 kg and 164 cm, respectively). The subject was asked to
do 5 different movements in 5 trials. These randomly periodic movements are as follows:

Trial1: Clockwise rotation of the arm in the horizontal plane.
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Figure 4.15: MA2D-II DPI workflow with known parameters in activation dynamics. Kin-
ematic optimization includes the kinematic constraint (4.32). Muscle Activations coress-
ponds to a, and Experimental Activations denotes aEMG.

Trial2: Counter-clockwise rotation of the arm in the horizontal plane.

Trial3: Cyclic lateral reaching in the horizontal plane.

Trial4: Cyclic anterior reaching in the horizontal plane.

Trial5: Random movement in the horizontal plane.

The duration of each trial is 60 s, and the sampling-time frequency is set to 500 Hz.

4.4.3 Results and discussion

Similar to Section 3.3, the GPOPS-II software is used to identify the dynamic parameters.
Each trial is treated as a single phase of a GPOPS-II problem; thus, a 5-phase optimization
is solved. Results for the RMSE of the activations, joint angles and velocities are presented

102



a1 a2 a3 a4 a5 a6
0

2

4
2
.9

8

2
.6

9

0
.4

1

0
.4

5

2
.2

8

3
.1

6

3
.5

4

3
.2

3

0
.3

6

0
.3

8

1
.6

6 2
.2

6

3
.9

2

3
.5

4

0
.5

2

0
.5

3

2
.2

4

3
.3

2

3
.0

1

3
.0

5

0
.5

4

0
.4

7

2
.2

6

2
.5

3

4
.5

1

4
.1

2

0
.6

5

0
.6

5

3
.0

6 3
.6

1

%
R
M
S
E
a

Trial1

Trial2

Trial3

Trial4

Trial5

Figure 4.16: Percentage of the RMSE of the muscle activations.
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Figure 4.17: RMSE of the joint angles and velocities.

in Figures 4.16 and 4.17. Maximum RMSE for the muscle activations is less than 5%.
Considering, gravitational effects and noise in the EMG system, this amount of error is
really promising. Furthermore, RMSE for the joint angles and velocities are less than
0.8 deg and 8 deg/s; this is less than the errors reported using inertial position tracking
sensors that are used in the human movement studies [79, 80]. Hence, the system has been
identified with a good accuracy.

The SNR value for each muscle actiavtion is evaluated and averaged over 5 trials.
The minimum value of this average is 11.4 which corresponds to Muscle 1. This value
indicates that the experimental activations can be estimated by model activations with
±14.8% error. Furthermore, the SNR value for each joint angle and velocity is evaluated
and averaged over 5 trials. The minimum of the average SNR for the joint angles and
velocities are 36.4 and 18.2. Thus, the model with estimated muscle activations (which are
in [85.2, 114.8]% of the experimental values) can generate a motion within [91.8, 108.2]%
and [88.3, 111.7]% of the experimental joint angles and velocities. Identified parameters
are reported in Tables A.11 and A.12.
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4.4.4 Conclusion

Using the identified parameters for the model, it is possible to control the model with
±14.8% error in the experimental muscle activations as the inputs and achieve ±8.3% and
±11.7% error in tracking the experimental joint angles and velocities, respectively. Thus,
our proposed method for the DPI of the musculoskeletal models can estimate the dynamic
parameters of the model with an acceptable accuracy. Nonetheless, muscle redundancy
causes suboptimal results as the number of trials is reduced. Thus, here we used five
different trials to alleviate the muscle redundancy issue.

4.5 Concluding remarks

The 3D musculoskeletal model – the high-fidelity model – is not suitable for real-time
simulations, which are required for the design of model-based controllers. Thus, in this
chapter, we developed different 2D models because they can be used in real-time simula-
tions and controllers. Results of cross-validation studies show that it is possible to use a
2D musculoskeletal arm model for evaluation and control of the planar robot. However, de-
velopment of this 2D musculoskeletal arm model requires a 3D musculoskeletal arm model
with proper muscle wrappings. Furthermore, sensitivity studies of the upper extremity
models show that the estimated muscle forces are highly dependent on subject-specific
parameters. Thus, first, the new 3D model (MA3D-II) was developed, and it was mapped
into the 2D model (MA2D-II). Second, a method for the DPI of the MA2D-II is provided
to include subject-specific parameters in the model. Experiment results showed that it is
possible to estimate the dynamic parameters of the model with ±8.3% and ±11.7% error
in tracking the experimental joint angles and velocities when the model is controlled with
±14.8% error in the experimental muscle activations as the inputs.
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Chapter 5

Rehabilitation Robot Control: Robot
Control

Intense, exhilarating and invigorating rehabilitation therapy has shown promising results in
stimulating the neural plasticity to treat post-stroke movement impairments [235]. Hence,
upper extremity rehabilitation robots are developed to target this kind of therapy [290].

To stimulate neural plasticity, three modes of high-level control scenarios are used in
rehabilitation robots: assistive, corrective, and resistive (see Fig. 5.1) [170, 219]. Con-
sequently, low-level control scenarios are needed to implement those high-level control
modes. Assistive control mode is the most common in these robots (refer to Fig. 5.1).

In robotic rehabilitation, although the patient is physically interacting with a mechan-
ical device, these robots mostly use black-box (robot control) approaches (Fig. 5.1), which
do not consider human-robot interaction. Thus, safety issues may become a concern. For
this reason, gray-box (triggered passive), and HRI controllers have been developed to re-
duce the safety risk (see Fig. 5.1). Though gray-box controllers incorporate feedback from
the human body using biosignals [173], they require intensive preparation and are therefore
not practical for daily usage with multiple post-stroke patients.

Because of easy and simple implementation for real-time tasks, in this chapter, we will
focus on the advancement of the safest black-box controller impedance-based assistance. In
some ways, this controller can also be considered as an HRI control, since it considers HRI
by including the interaction force in the controller structure. Thus, impedance-based assist-
ance is well-suited for robotic rehabilitation [173], since conventional position/force control
scenarios do not consider dynamic interaction of the human-robot system [117]. Further-
more, assist-as-needed therapy, which encourages voluntary participation of the patient,
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Figure 5.1: Rehabilitation robot control strategies. Gray- and black-box control methods
are colored in dark gray and black, respectively. HRI controllers are specified with a black
triangle on the corner.

is implementable through the admittance/impedance control scenarios. In impedance-
based assistance, the amount of assistance/resistance (i.e., compliance) can be adjusted
by controlling the impedance gains. However, in the presence of a variable admittance
environment (i.e., different patients) or different trajectories (i.e., robot configurations),
the interaction force and configuration will exacerbate inefficiency of the controller with
non-optimal gains. For example, a resistive-capacitive impedance control with therapist-
adjustable constant stiffness and damping ratios is implemented in our studied upper ex-
tremity rehabilitation manipulandum, but these gains cannot be adjusted optimally using
trial and error by the therapist [126].

The problem here is that the robot interacts with a variable admittance environment;
thus, not only the configuration but also the interaction force may affect the controller
response with constant gains. The objective of a controller design is to reduce therapist
intervention and improve the quality of therapy regarding safety and rehabilitation. There-
fore, we need to design a type of impedance-based control that can automatically adjust
itself for variable admittance environments or variable robot configurations. Impedance-
based controller can be impedance or admittance type. Impedance control is more stable
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and safer than an admittance control. Thus, in this chapter, two types of impedance-based
controllers are developed. Then, their improvements are discussed.

5.1 Hybrid force-impedance control

Besides other methods of partially assistive control (e.g., attractive force-field control,
model-based assistance, learning-based assistance, counter-balance-based assistance, and
performance-based adaptive control), adaptive and optimal forms of impedance control
have been developed to deal with variable admittance environments. Hussain et al. [127]
used an adaptive impedance control for patient-cooperative therapy of a lower-limb exo-
skeleton, and they verified the controller performance using an experimental setup. In
more recent studies, optimal impedance controls for an exoskeleton gait trainer and elbow
rehabilitation robot were developed [72, 308]. The proposed methods were implemented
in a computer simulation, and the real-time performance of the controllers were not dis-
cussed. In an exoskeleton, the impedance control is defined in the joint space, while in a
manipulandum, the impedance model is in the operational space. Thus, these controllers
which are developed for exoskeletons, are not suitable for a manipulandum. Furthermore,
these controllers are developed for some sort of predefined rhythmic motions and they are
not implementable for random reaching movements. In a recent related study, Maldonado
et al. [171] used a stiffness-based tuning for an adaptive impedance control of an upper ex-
tremity manipulandum; nevertheless, the method was verified using computer simulations
and its real-time capabilities were not mentioned.

To improve impedance control performance, the compliance can be controlled by an
outer-loop force control. In other words, it is desired to implement an Hybrid Force-
Impedance Control (HFIC). In literature, there are different types of hybrid impedance
controllers [11, 83, 160, 192]. These studies used some type of selection matrix to alternate
between the impedance and force controllers. Furthermore, they considered an incomplete
impedance model with the Cartesian space implementation. Here, the selection matrix is
embedded in the gain matrices and the physics of the problem causes alternation between
two controller. For the impedance model, we use a complete type of impedance model (with
position, velocity and acceleration errors) with an operational space implementation.

Before presenting the controller, first, we review the impedance control. Then, our
proposed control scheme is discussed. The controller is tuned by simulating the human-
robot system (MA2DI1).
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5.1.1 Impedance control review

Impedance control is defined in the global or operational coordinates, so for the best
practice, the system dynamic equation should be defined in these coordinates. However,
the dynamic equation of the robot (4.22) is defined in the joint space, and it has nonlinear
terms. To implement impedance control in the operational space, we should follow these
steps:

Step1: Define an inner loop control law (u) using nonlinear feedback linearization (inverse
dynamics approach) to cancel the nonlinear terms:

u = JTRFext + ΓR(q, q̇,y) (5.1)

where y is the outer loop control law.

Step2: Define the outer loop control law such that it changes manipulator behavior to a
linear impedance under interaction force error. In other words, it is desired to have
the linear impedance model in the global coordinates (i.e., the Cartesian space) as:

− F̃ext = Mimp
˜̈ρ+ Bimp

˜̇ρ+ Kimpρ̃ (5.2)

where subscript imp stands for the impedance model. The above impedance model
can be achieved if the outer loop control law is defined as:

y = J−1
R M−1

imp

(
Mimp(ρ̈d − J̇Rq̇) + Bimp

˜̇ρ+ Kimpρ̃+ F̃ext

)
(5.3)

Step3: Since it is desired to have some compliance along the operational space directions
(normal and tangent to the path, end-effector’s n-t coordinates in Fig. 5.3.a), the
impedance model is updated as:

− F̃Σ
ext = Mimp

˜̈ρΣ
+ Bimp

˜̇ρΣ
+ Kimpρ̃

Σ (5.4)

here, superscript Σ denotes that the corresponding vector is defined in the end-
effector’s n-t coordinates (i.e., the operational space). If RΣ is the rotation matrix
transforming the n-t coordinates to the global coordinates, ρ̃Σ can be obtained from
the following equations: 

ρ̃Σ = RT
Σρ̃

RΣ =

[
cos(θΣ) − sin(θΣ)
sin(θΣ) cos(θΣ)

]
(5.5)
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here, θΣ is defined in Fig. 5.3.a. Based on the updated impedance model, the outer
loop control law is redefined as:

y = J−1
R RΣM−1

imp

(
Mimp(ḃ− J̇

Σ

Rq̇) + Bimp
˜̇ρΣ

+ Kimpρ̃
Σ + F̃Σ

ext

)
(5.6)

where: 

ḃ = RT
Σρ̈d − $̇Σρ̃

Σ +$Σ$Σρ̃
Σ +$ΣRT

Σ(JRq̇− 2ρ̇d)

J̇
Σ

R = RT
ΣJ̇R −$ΣRT

ΣJR

ṘΣ = $ΣRΣ

$Σ =

[
0 −θ̇Σ

θ̇Σ 0

] (5.7)

5.1.2 Proposed controller

In (5.6), the term J−1
R RΣM−1

impF̃
Σ
ext makes the manipulator compliant in its interaction with

the environment [258]; thus, it is a compliance term. To have variable impedance control
response, one way is to control the compliance term. In other words, we can rewrite (5.6)
as:

y = J−1
R RΣM−1

imp

(
Mimp(ḃ− J̇

Σ

Rq̇) + Bimp
˜̇ρΣ

+ Kimpρ̃
Σ + FΣ

hyb

)
(5.8)

where subscript hyb stands for the HFIC. FΣ
hyb is determined by another outer loop control

law, which is used to control the compliance in the impedance control. Similar to the work
done by [83, 84], this outer loop control can be defined as a Proportional-Integral (PI)
force control:

FΣ
hyb = �P F̃Σ

ext +�I

∫
F̃Σ
extdt (5.9)

here, �P and �I are the proportional and integral gains. In F̃Σ
ext = FΣ

d − FΣ
ext, desired

interaction force (FΣ
d ) can be obtained from a predefined external input, or an inner or

outer loop planner. For example, Erol and Sarkar [84] used an inner velocity loop to get
FΣ
d [83]. If one combines the inner and outer loops in (5.1), (5.8), and (5.9), the control

scheme in Fig. 5.2 will result, and following impedance model will be obtained:

−�P F̃Σ
ext −�I

∫
F̃Σ
extdt = Mimp

˜̈ρΣ
+ Bimp

˜̇ρΣ
+ Kimpρ̃

Σ (5.10)

Based on the above equation, if the position tracking error is zero (i.e., the right-hand side
of the above equation is zero), then the controller will change to a PI force control. When
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Figure 5.2: Hybrid force-impedance controller scheme.

the force tracking error is zero (i.e., the left-hand side of the above equation is zero), the
controller is an acceleration control. If none of the tracking errors are zero, then the gains
should be selected with these specifications:

• If the position tracking is required in a specific direction (for example, normal to the
desired trajectory), then the corresponding gains (in the right-hand side of (5.10))
of this direction should be dominant than the left-hand side gains of (5.10).

• If the force tracking is required in a specific direction (for example, tangent to the
desired trajectory), then the corresponding gains (in the left-hand side of (5.10)) of
this direction should be dominant than the right-hand side gains of (5.10).

This controller is advantageous, since it accounts for the change in the interaction force
error while regulating the position error with the impedance model. Furthermore, by
implementing this controller, the position and force control can be achieved in orthogonal
directions.

5.1.3 Simulation

In robotic rehabilitation, it is usually desired to follow a predefined path. During a path-
following task, at least three therapy cases can occur [6, 67]:

1. Passive case: the patient cannot accomplish the task, so the robot actively manipu-
lates the patient’s hand.

2. Active-assisted case: the patient is unable to finish the task independently in a
specified time interval. Thus, the robot assists the patient as needed.
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Figure 5.3: Human-robot rehabilitation system: (a) MapleSimTMmodel (circled numbers
show the corresponding muscle number), (b) experimental setup.

3. Active-constrained case: the patient can accomplish the task independently even
faster than the predefined time interval. Hence, the robot tries to resist against
patient’s rapid movements.

Here, to evaluate the performance of the controller during a rehabilitation procedure,
four modes of movement are considered: impaired, healthy, delayed and time-advanced
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Figure 5.4: Desired trajectory for point-to-point reaching movement (Path1).

hand movement along the specified path (Path1, see Fig. 5.3.a and Fig. 5.4). In the
impaired hand movement mode, the upper extremity of the patient is totally dysfunctional
(zero muscle activation), so the passive case will occur. In the healthy mode, the patient
has normal timing and coordination, so one of the active cases can happen depending on
the healthy subject performance. The delayed hand movement mode is used to model a
stroke patient who needs assistance during therapy, and it leads to the active-assisted case.
The time-advanced mode models a patient with rapid hand movements; thus, the active-
constrained case will be enabled. In the next section, the performance of the proposed
hybrid controller is compared to other controllers.

Generated MapleSimTMmodels of the HRI (as in Fig. 5.3.a, which is used for model-
in-loop simulation) and human (MA2DI1, which is used for solving the muscle redund-
ancy problem and controlling the muscle activations in HRI) are exported as optimized
MATLABr S-functions into the Simulink/MATLABr environment. Sampling-time fre-
quency (ν) of the simulations is set to 500 Hz, and a fixed-step Euler solver is selected to
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solve the ODEs. For MA2DI1, the passive elements of the arm muscles were assumed to
have less contribution than the active elements in muscle forces. Hence, the CE of the Hill-
type muscle model is used to model muscle dynamics, and FSO is implemented to solve
the muscle force sharing problem. See Table A.13 for the assigned control parameters.

5.1.4 Results and discussion

Results of these simulations include muscle activations and input motor torques (see
Fig. 5.5), and interaction force and position errors (see Fig. 5.6). Active muscle activations
in three modes of simulation (healthy, delayed, and time-advanced hand movements) are
reported in Fig. 5.5. Since muscle activities less than 0.003 are mostly caused by suboptimal
results and round-off calculation errors, muscles with activations less than this amount are
not reported. Instead, active muscles with activations more than 0.003 are studied. These
muscles are: Muscle 1, mono-articular shoulder flexor; Muscle 4, mono-articular shoulder
extensor; and Muscle 5, bi-articular shoulder-elbow flexor.

In Fig. 5.5, the amount of activations for assistive (i.e., delayed hand movement) mode
in most of the path is less than the other two modes. This result shows the success of
the controller in providing assistance. However, the amount of assistance provided is not
that high because the rehabilitated hand is performing well. The healthy hand is not
moving precisely along the path; thus, the robot is helping to reduce the position error.
Bi-articular muscle activations are more dependent on the interaction force field rather than
the traveled path by the hand [24]. Hence, in all three modes, because of the presence of
the interaction force, bi-articular Muscle 5 is activated.

In the assistive mode, the robot tries to assist by following the hand movement, so
the position error is increased along the path (see Fig. 5.6). For the resistive (i.e., time-
advanced hand movement) mode, since the desired force input is kept constant in all modes,
the robot assists the hand along the path (the robot can resist if the input desired force
is defined in the resisting direction). In the impaired hand movement, since the robot is
interacting with a dysfunctional subject, it tries to generate the desired interaction force
by increasing the error in the tangential direction. In the normal direction it tries to do
position tracking while keeping the normal force bounded. However, since the desired
interaction force is constant and relatively high, the robot causes large errors in tangential
force tracking and normal position tracking.

In three modes of simulation (healthy, delayed, and time-advanced hand movements),
the tangential force has converged to the desired input force (−0.1 N, which is in the
assistance direction) and the tangential position error is bounded; on the other hand,
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Figure 5.5: Activations of the active muscles (on the left) and input motor torques (on the
right) in four modes of simulation while controlling the robot with HFIC. Note that in the
impaired mode, muscle activations are zero.

the normal force is bounded, and the normal position error is small (less than 1mm, see
Fig. 5.6). These are due to the use of the HFIC, which results in the tangential force
tracking with the bounded tangential position error, and the normal position tracking
with the bounded normal force in the operational space.

5.1.5 Conclusion

In a subspace (tangent to the path), the proposed low-level controller (HFIC) is trying
to ensure force tracking with bounded position error. While in an orthogonal subspace
(normal to the path), the position tracking with bounded force error is achieved. The
force tracking needs a proper knowledge of the interacting system (human body) to define
the desired force that the subject can safely tolerate. Thus, although HFIC is successful
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in assisting the healthy and less strong subjects, it is not recommended to be used in
interaction with weak subjects. This disadvantage can be resolved by introducing an
outer-loop controller for HFIC that will be discussed in Section 5.3.

5.2 Optimal impedance control

To deal with variable admittance environments, despite other methods of partially as-
sistive control (i.e., attractive force-field control, model-based assistance, learning-based
assistance, counter-balance-based assistance, and performance-based adaptive control), ad-
aptive and optimal forms of impedance control have been developed. Hussain et al. [127]
used an adaptive impedance control for patient-cooperative therapy of a lower-limb exo-
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skeleton, and they verified the controller performance using an experimental setup. In
more recent studies, optimal impedance controls for an exoskeleton gait trainer and elbow
rehabilitation robot were developed [72, 308]. The proposed methods were implemented
in a computer simulation, and the real-time performance of the controllers was not dis-
cussed. In an exoskeleton, the impedance control is defined in the joint space, while in
a manipulandum, the impedance model is in the operational space. Thus, the control-
lers developed for exoskeletons are not suitable for a manipulandum. Furthermore, these
controllers are developed for some sort of predefined rhythmic motions and they are not
implementable for random reaching movements. In some studies, to improve impedance
control performance, the compliance has been controlled by an outer-loop force control
[83, 100, 258]. However, this method only controls the compliance (i.e. interaction force)
term, and the impedance gains are not optimal. Thus, it results in a superficial variable
impedance model and requires careful selection of the gains. In a recent related study,
Maldonado et al. [171] used a stiffness-based tuning for an adaptive impedance control of
an upper extremity manipulandum; nevertheless, the method was verified using computer
simulations only and its real-time capabilities were not mentioned.

In the previous section, to improve impedance control performance, the compliance is
controlled by an outer loop force control. However, this method only controls the com-
pliance (i.e., interaction force) term, and the impedance gains are not optimal. Thus, it
results in a superficial variable impedance model and requires careful selection of the gains.

A general solution for an optimal impedance problem can be obtained with optimization
techniques (i.e., an optimal control approach). Such techniques can resolve the issue with
variable admittance environments and different robot configurations. However, real-time
control of the system limits the utilizable non-linear optimization methods. Ding et al. [69]
used a musculoskeletal human model (without including muscle dynamics) together with
surface elecromyography (sEMG) signals to implement model-based assistance control on
a rehabilitation exoskeleton, and this controller which is developed for an exoskeleton, is
not suitable for a manipulandum.

Since multi-link manipulanda are controlled in the joint space to achieve the desired
impedance at the end-effector in the operational space, the optimal impedance gains should
be assigned to the different robot configurations. For different configurations, the manip-
ulability ellipsoid in robotics is introduced to determine the easiest manipulation direction
[327]. Thus, a method is required to optimally change the impedance gains based on
the robot’s manipulability ellipsoid. Hogan [118] solved an optimal impedance problem,
the Standard Optimal Impedance Control (SOIC), which minimizes an objective function
with position and force penalty. This problem was solved using covariance propagation
equations. To the knowledge of the author, there is no other optimal impedance control
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approach that has resolved different robot configuration problem independently.

There is a lack of study in the design of real-time and optimal impedance control for
different configurations of rehabilitation manipulanda. Furthermore, previous low-level
controls of rehabilitation manipulanda have not included human-robot interactions for
the adjustment of the robot controller. The objective of this work is to design a general
real-time optimal impedance control for rehabilitation manipulanda. This controller is
designed to reduce therapist intervention (with fewer gain adjustments) and improve the
quality of therapy in terms of safety (less interaction force based on robot manipulability)
and rehabilitation (optimal tracking). In this section, we present an Optimal Imped-
ance Control (OIC) for the upper extremity stroke rehabilitation robot; adjustment and
performance-evaluation of the controller is done by simulating the robot interacting with
a musculoskeletal upper extremity model. Here, a general method that optimally adjusts
impedance gains for variable robot configurations is developed and tuned by simulating the
human-robot system. The proof that justifies the existence of a Linear Time-Variant (LTV)
impedance model is provided. The controller is implemented on the robot. Then, the per-
formance of the controller in terms of interaction force and tracking accuracy is evaluated
and compared to the SOIC [118] through simulations and experiments. In experiments, a
complete dynamic model of the robot including joint and end-effector frictions, and joint
stiffness are considered.

5.2.1 Standard optimal impedance control review

For an impedance control with an inner loop control law in (5.1), if we use (5.8) as the
outer loop control law, a Linear Time-Invariant (LTI) impedance model defined in (5.4)
will result. For this controller, considering a diagonal apparent mass matrix, the standard
optimum stiffness and damping are as follows [118]:

Mimp = Diag (Mimp1,Mimp2)

Bimp = Diag
(
Ftol1
ytol1

, Ftol2
ytol2

)
Kimp = Diag

(√
2Ftol1Mimp1

ytol1
,
√

2Ftol2Mimp2

ytol2

) (5.11)

where ytol,k and Ftol,k are the kth element of the force and position vector tolerances.
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5.2.2 Controller Design

In an optimal control structure, it is desired to carry out a desired task while minimizing
a cost functional. For linear system dynamics, the system can be controlled by a Linear
Quadratic Regulator (LQR), which is suitable for real-time optimal control. If we consider
the dynamic equation of the robot (4.22), the state-space representation for this equation
can be expressed as:

ẋq =


q̇1

q̇2

M−1
R (u− ΓR(q, q̇,0))

 = F(xq,u) (5.12)

where:
u = TR − JTRFext (5.13)

and

xq =

{
q
q̇

}
=


q1

q2

q̇1

q̇2

 (5.14)

The objective is to develop a real-time controller that optimizes impedance gains at
different configurations. Since the state-space representation (5.12) is nonlinear, applica-
tion of nonlinear optimal control approaches will be limited by the computation time. On
the other hand, if (5.12) was linear, a linear optimal controller could solve this problem in
real-time. The robot performs point to point reaching tasks in the horizontal plane [169].
Thus, we can perform Jacobian linearization on the robot dynamics along the preplanned
rehabilitation trajectory to apply a systematic linear control technique (i.e., LQR), which
can allow for real-time control. The LTV state-space equation of the robot’s error dynamics
will be:

ẋqd − ẋq =
∂F

∂xq

⌋
xq=xqd,u=ud

(xqd − xq) +
∂F

∂u

⌋
xq=xqd,u=ud

(ud − u)

= ˙̃xq = �qx̃q +�qũ (5.15)

where � and � are the state and input matrices, respectively. The desired control input
is defined by the following equation:

ud = ΓR(qd, q̇d, q̈d) (5.16)
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At each operational point, which is defined every 1000/ν ms of the rehabilitation tra-
jectory, the model is linearized and the interaction force is applied to the robot. It is
worth noting that, if very few operational points are defined, the system may be biased
into optimizing for static situations. At each operational point, there is an LTV impedance
model which is relating the operational space error to interaction force:

FΣ
ext = Mimp

˜̈ρΣ
+ Bimp

˜̇ρΣ
+ Kimpρ̃

Σ (5.17)

The above equation is similar to the LTI impedance model (5.4) except the desired inter-

action force is zero (i.e., F̃Σ
ext = −FΣ

ext), and the impedance gains (Mimp, Bimp and Kimp)
are time-dependent. The LTV state-space equation (5.15) is in terms of errors, so we can
use the infinite time1 LQR to optimally control the robot along the desired trajectory. For
the LQR approach, the quadratic cost functional is:

Jq =
1

2

∫ ∞
0

(
x̃Tq�qx̃q + ũT�qũ

)
dt (5.18)

The above cost functional is for minimizing the joint space error together with the con-
sumed energy. An impedance control approach controls the robot performance in the
operational space as in (5.17) [11, 117, 258]. Thus, for an optimal impedance control it will
be desired to minimize the operational space error together with the operationally applied
force (effort) error while satisfying (5.17). In other words, the following cost functional is
more appropriate than (5.18):

JΣ =
1

2

∫ ∞
0

(
x̃TΣ�Σx̃Σ + �̃TΣ�Σ�̃Σ

)
dt (5.19)

where �̃Σ is the operational space transformation of the applied force error in the Cartesian
space (�̃): {

� = J−TR u = J−TR TR − Fext

�̃ u J−TRd ũ
(5.20)

To solve the LQR problem with the updated cost functional in (5.19), we use the mapping
from the operational space into the joint space and then solve the LQR problem with the
ordinary cost functional in (5.18).

1This research is focused on “Errand Completion Tasks” as opposed to “Time Management Tasks”
[265], i.e. we assume that the timing in performing the rehabilitation task is not critical.
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Mapping the operational into joint space

We define the joint, Cartesian and operational state errors as follows:

x̃q =

{
qd − q
q̇d − q̇

}
=

{
q̃˜̇q
}

(5.21)

x̃ρ =

{
ρd − ρ
ρ̇d − ρ̇

}
=

{
ρ̃˜̇ρ
}

(5.22)

x̃Σ =

{
ρΣ
d − ρΣ

ρ̇Σ
d − ρ̇Σ

}
=

{
ρ̃Σ˜̇ρΣ

}
(5.23)

Based on the inverse kinematics of the robot (4.21), the geometric Jacobian definition [258]
and first-order Taylor series expansion, the relation between the Cartesian and joint space
errors can be defined as: {

ρ̃ u JRdq̃˜̇ρ u J̇Rdq̃ + JRd˜̇q (5.24)

Thus, the operational state error in terms of the joint state error can be defined by the
following equation:

x̃ρ u
[

JRd 0

J̇Rd JRd

]
x̃q (5.25)

Consider Fig. 5.3.a, the operational coordinate (Σ:n-t) is the rotated and translated
Cartesian coordinate (G:ZX) by angle θΣ and desired position vector ρd, respectively;
thus, the relation between the operational and Cartesian space errors can be defined as:{

ρ̃ = RΣρ̃
Σ˜̇ρ = ṘΣρ̃
Σ + RΣ

˜̇ρΣ (5.26)

By defining $Σ as the skew symmetric matrix of the angular velocity (θ̇Σ), the operational
state error can be defined in terms of the Cartesian state error as:

x̃ρ =

[
RΣ 0

$ΣRΣ RΣ

]
x̃Σ (5.27)

Finally, the operational and joint state errors can be related as:

x̃Σ u
[

RΣ 0
$ΣRΣ RΣ

]−1 [
JRd 0

J̇Rd JRd

]
x̃q =

[
JΣ
Rd 0

J̇
Σ

Rd JΣ
Rd

]
x̃q = TΣ

q x̃q (5.28)
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Building updated LQR matrices

We define �Σ and �Σ in the operational space cost functional (5.19) as positive definite
diagonal matrices. Using the mapping equation (5.28) we can correlate the first terms of
the two quadratic cost functionals (5.18,5.19); thus, �q can be defined as:

�q =
(
TΣ

q

)T
�ΣT

Σ
q (5.29)

Note that �q is positive definite, since �Σ is positive definite. Since:

�̃Σ = RΣ�̃ (5.30)

considering (5.20) we can also rearrange the energy term in the joint space cost functional
(5.18) as:

ũT�qũ =
(
JTRd�̃

)T
�q

(
JTRd�̃

)
=
(
JTRdRΣ�̃Σ

)T
�q

(
JTRdRΣ�̃Σ

)
= �̃TΣRT

ΣJRd�qJTRdRΣ�̃Σ > 0 (5.31)

Now since �Σ is positive definite, if:

�q =
(
RT

ΣJRd
)−1
�Σ

(
JTRdRΣ

)−1
=
(
JΣ
Rd

)−1
�Σ

(
JΣ
Rd

)−T
(5.32)

�q is also positive definite unless the robot is at a singularity point. Based on (5.32),
minimizing the energy term in the joint space cost functional (5.18) will indirectly minimize
the energy term in the operational space cost functional (5.19).

Optimal impedance control

With the updated LQR matrices, the optimal impedance controller scheme takes the struc-
ture shown in Fig. 5.7. Using (5.13), the driving torque will be:

TR = u + JTRFext (5.33)

where the control input u is defined such that it should optimally control the error dynamics
(by −ũ) while applying the nominal control input (

◦
u). Thus, it will have the following

form: 
u

∆
=

◦
u− ũ

◦
u = ud − JTRdFext

ũ = −�x̃q

(5.34)
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Figure 5.7: Optimal impedance controller scheme. ρd and qd are the desired positions
in the operational and joint spaces, respectively. x̃q is the state error vector in the joint
space, ũ is the optimal control input for the error dynamics, and ů is the nominal control
input (desired torque minus the torque caused by the interaction force). �q, �q, and �q

and �q are the time-varying state, input, and LQR gain matrices, respectively.

Note that the nominal control input is equal to the desired system dynamics (desired
control input) minus the torque caused by the interaction force at any desired location.
This subtraction (ud−JTRdFext) at a zero tracking error will lead to a zero desired interaction
force in (5.17). Finally, the equations (5.33) and (5.34) are used to satisfy the impedance
model (5.17) (as shown in the next subsection), in order to overcome the robot dynamics
and interaction force.

Satisfying the impedance model?

By applying the control law (5.33) and (5.34) to the robot dynamics (4.22) and substituting
ud from (5.16), we get:

�x̃q + ΓR(qd, q̇d, q̈d)− JTRdFext = ΓR(q, q̇, q̈) (5.35)

Using Taylor series expansion and (5.21), (5.35) can be rearranged as:

JTRdFext = �x̃q + MRd
˜̈q +

∂ΓR

∂q̇

⌋
q=qd,q̇=q̇d

˜̇q +
∂ΓR

∂q

⌋
q=qd,q̇=q̇d

q̃

= MRd

[
0 �

] ˜̇xq +
[
�P �D

]
x̃q (5.36)
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where � is an identity matrix, and:
� =

[
�1 �2

]
�P = ∂ΓR

∂q

⌋
q=qd,q̇=q̇d

+�1

�D = ∂ΓR
∂q̇

⌋
q=qd,q̇=q̇d

+�2

(5.37)

The following equations can be derived from (5.28):

x̃q u

[
JΣ
Rd 0

J̇
Σ

Rd JΣ
Rd

]−1

x̃Σ =

[ (
JΣ
Rd

)−1
0

−
(
JΣ
Rd

)−1
J̇

Σ

Rd

(
JΣ
Rd

)−1 (
JΣ
Rd

)−1

]
x̃Σ = Tq

Σx̃Σ (5.38)

˜̇xq u Ṫ
q

Σx̃Σ + Tq
Σ
˜̇xΣ (5.39)

thus, (5.36) can be written as:

JTRdFext = MRd

[
0 �

]
Tq

Σ
˜̇xΣ + MRd

[
0 �

]
Ṫ

q

Σx̃Σ +
[
�P �D

]
Tq

Σx̃Σ (5.40)

(5.40) is corresponding to the LTV impedance model (5.17), if:
Mimp = (JΣ

Rd)
−TMRd(J

Σ
Rd)
−1

Bimp = (JΣ
Rd)
−T�D(JΣ

Rd)
−1 − 2MimpJ̇

Σ

Rd(J
Σ
Rd)
−1

Kimp = (JΣ
Rd)
−T�P (JΣ

Rd)
−1 −

(
MimpJ̈

Σ

Rd + BimpJ̇
Σ

Rd

)
(JΣ

Rd)
−1

(5.41)

Choosing LQR gains

Matrices �Σ and �Σ have diagonal weights:{
�Σ = Diag (QΣ1,QΣ2,QΣ3,QΣ4)

�Σ = Diag (RΣ1,RΣ2)
(5.42)

where these weights are chosen such that the objective functional results in the allowable
error associated with the state or effort, in other words:{

QΣ,i = y−2
tol,i (i = 1..4)

RΣ,j = cF−2
tol,j (j = 1..2)

(5.43)

in which ytol,k and Ftol,k are the allowable amount of the kth element of the state (x̃Σ) and
effort (�Σ) vector errors, respectively. These weights should also be adjusted such that the
(5.41) results in positive definite impedance gains. Coefficient c > 0 will be controlled by
the therapist to adjust the effort/state balance.
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5.2.3 Simulation and experiment

To evaluate the performance of the controller during a rehabilitation procedure, the same
simulation procedures as in the HFIC evaluation are repeated. The performance of the
proposed optimal controller OIC is compared to the SOIC, which is also designed for the
robot to perform in four modes of the movement. See Tables A.14 and A.15 for the assigned
control parameters.

To evaluate the performance of the controllers experimentally during a rehabilitation
procedure, a healthy subject performed four modes of movement similar to the simulations
(see Fig. 5.3.b). To this end, the following protocols are considered:

• Impaired-hand movement mode: the subject is asked to relax his/her upper extremity
muscles and avoid any contractions as much as possible.

• Healthy hand movement mode: the subject should do his/her best in following the
desired trajectory.

• Delayed hand movement mode: the subject is asked to follow a path that is delayed
compared to the desired trajectory.

• Time-advanced hand movement mode: the subject should follow a path for which
the desired trajectory is the delayed form.

In the above active protocols (i.e., last three protocols), the path point at each simulation
time step is defined by a circle. The subject should try to keep the end-effector position
inside the circle. To reduce the effect of random/noisy movements, each mode for each
controller was performed in 10 trials. Tests of the two controllers were alternated randomly
to reduce the effect of learning. Sampling-time frequency of the experiments is set to
ν = 500 Hz, and a fixed-step Euler solver is selected to solve the ordinary differential
equations.

In contrast to admittance control, impedance control is used for back-drivable systems.
Thus, for implementing the proposed optimal controller, we assume that the robot friction
is negligible. In simulations, the robot model has no friction and the musculoskeletal
model has only approximate parameters for the muscles and inertial properties; thus, we
do not expect a close quantitative match between simulation and experimental results.
Nevertheless, the model will be effective for the design and tuning of a feedback controller
if a good qualitative match between simulation and experimental results is achieved.
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5.2.4 Results and discussion

In this section, first, we assess the performance of the controllers (i.e., OIC and SOIC)
in simulations based on the activation results from the musculoskeletal model interacting
with the robot. In this section similar to the previous section, muscles with activations
less than 0.003 are not reported, instead active muscles with activations more than 0.003
are studied. These muscles are: Muscle 1, mono-articular shoulder flexor; Muscle 4, mono-
articular shoulder extensor; and Muscle 5, bi-articular shoulder-elbow flexor. As shown
in Fig. 5.8, for the delayed hand movement in both controllers, the robot assistance has
decreased the amount of muscle activations compared to the other modes for most of the
path. This decrease for the OIC is more than the SOIC (see the Root-Mean Square (RMS)
values for the delayed mode in Fig. 5.9), which shows the effectiveness of the OIC in the
active-assisted therapy of the patients. For the time-advanced mode in both controllers,
the amount of maximum muscle activations is higher than the other modes. In the healthy
hand movement mode, both controllers result in the same amount of activation.

Second, the dynamic response of the system is used to evaluate the controllers. To
this end, normalized interaction forces and position errors in the operational space are
compared for four modes (see Fig. 5.10 and Fig. 5.11 for simulation and experimental
results). Interaction force results are normalized to the maximum applied force in the
horizontal plane to show similar trends to the approximate and highly idealized simulation
model. Both in experiments and simulations, tangential interaction force plots show that
the amount of assistance or resistance for the OIC is slightly more than the SOIC. Both
in simulations and experiments, normal interaction force amount in the impaired hand
movement mode for the OIC is not more than the SOIC, while for the other modes,
the OIC results in higher values than the SOIC. This is because the position error in
the normal direction is reduced by the OIC. However, the normal position error for the
impaired hand movement mode in the SOIC is significantly more than the OIC. This shows
that the optimal performance of the SOIC, especially in experiments, has failed to deal
with impaired patients. The tangential position error is similar for both controllers.

In simulations with the SOIC (Fig. 5.10), after 3 seconds of the simulation, normal
position error for the time-advanced hand movement is strictly increasing, and this will
result in instability issues. However, this does not happen in experiments, since robot
instability limited the selection of higher gains for the SOIC. Thus, in experiments, the
robot in the SOIC is set to be more compliant. In simulations for the SOIC, between
the position error and the interaction force, there is a linear relationship which is due
to the LTI impedance model of the controller. However, for the OIC this relationship is
nonlinear, and this is because of the LTV impedance model of the controller. One cannot
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Figure 5.8: Activations of the active muscles and input motor torques in four modes of
simulation while controlling the robot (a) OIC, and (b) SOIC. Note that in the impaired
mode, muscle activations are zero.
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SOIC (crosshatch fill). Circled numbers are corresponding to the active muscle numbers.

see this nonlinear relationship because the robot’s frictional forces have changed the system
behavior and made it linear.

At each operational point, the controllability (C) and observability (O) matrices are
defined as:

C =
[
�q �q�q �

2
q�q �

3
q�q

]
4×8

, O =


�

�q

�2
q

�3
q


16×4

(5.44)

For the OIC, the state-space model is controllable and observable because at each oper-
ational point, C and O are rank 4; furthermore, the dominant pole position of the LQR
controller (which is the closest eigenvalue of [�q −�q�] to the imaginary axis) at each
operational point has a negative real value, which makes the system critically damped. On
the other hand, the optimum values of SOIC are such as to result in an under-damped
system with a damping ratio of

√
2/2.

Here, we also compare the HFIC results with the other two controllers. Comparing
figures 5.5 and 5.6 with 5.8 and 5.10, respectively, one can make following discussion:

• The resistance and assistance of the HFIC are lower than the other controllers, since
the desired tangential force is less than the tangential interaction forces of the other
controllers.

• Because of less resistance and assistance, the amount of motor torques for the HFIC
is less than others.

• Normal position error for the HFIC is close to the OIC results.
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Figure 5.10: Operational space normalized interaction force and position error in four
modes of simulations while controlling the robot with (a) OIC, (b) SOIC. Where subscripts
‖ and ⊥ indicate the tangent and normal directions, respectively.

• The HFIC similar to the SOIC is not successful in dealing with weak subjects (see
the impaired hand movement results).
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Figure 5.11: Operational space normalized interaction force and position error in four
modes of experiments while controlling the robot with (a) OIC, (b) SOIC. The shaded
area denotes twice the standard deviation at each instance of experiment.

5.2.5 Conclusion

In this section, we designed and verified a modified LQR controller for optimal impedance
control, which indirectly considers the operational space and interaction forces. Despite
some similarities to the SOIC, the OIC has proven to be more efficient in passive, active-
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assisted, active-constrained therapy since it updates the impedance gains optimally during
a reaching task (at different robot configurations). Physiologically, this efficient behavior
causes less muscle activations in active-assisted therapy. Dynamically, the controller is
more robust to the disturbances caused by unknown dynamics, and the tracking error and
interaction force are in a safer region. The controller’s computational cost is the same
as that of the SOIC, even if the LQR gains are adjusted online. For experiments, since
the QUARC does not support online LQR gain adjustments, an offline gain selection is
done. Hence, the implemented controller can be considered an optimal passive trajectory
tracking controller. In OIC, therapists will be able to modify the controller with a single
parameter c in (5.43), which represents the effort/state balance weight; the inclusion of a
single calibration parameter contributes to the superiority of the OIC over SOIC.

Here, an integrated human-robot dynamic system is used to fine-tune the controller
gains. This method is advantageous for efficient tuning of the robot controllers in exper-
iments. A good qualitative agreement between experiments and simulations verifies the
effectiveness of this method.

Our proposed controller and tuning method can be used in any rehabilitation manipu-
landum system. Possible improvements for this method are as follows. First, for a linear
robot model, the OIC assumes an apparent mass for the robot equal to its mass matrix,
while the SOIC permits offline changes to the robot’s apparent mass. For considering the
patient interaction dynamics, the robot’s apparent mass should vary online as a function
of the input frequencies of the system. However, neither the OIC nor SOIC offer such up-
dates. Moreover, in regards to experiments, the unknown dynamics of the robot presents a
challenging issue, independent of the controller. In the next section, we present a method
to implement an OIC on the robot which also allows for online changes to the robot’s
apparent mass. Second, in the impedance model (5.17), the desired interaction force is
assumed to be zero, while for implementing any high-level controller that deals with vari-
able admittance environments (different patients or the same patients at different stages
of their therapy) this desired interaction force should be updated by an outer-loop control
law. In the next section, we also develop the outer-loop controller to enhance the proposed
OIC.

5.3 Enhancement of the proposed controllers

In this section, two methods will be introduced for the enhancement of the proposed
controllers. The first method (attractive force field method), which is a type of high-level
controller, is used to obtain a desired reference force that can be used in HFIC, SOIC, and
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Figure 5.12: Manipulability ellipsoid in a single configuration of the human-robot rehabil-
itation system. �1 and �2 are the unit vectors of the major and minor axes of the ellipse.
S1 and S2 are the lengths of the major and minor axes of the ellipse.

OIC. The second method, adaptive LQR control, is used to predict the apparent mass of
the robot in SOIC or OIC.

5.3.1 Attractive force field

For a robotic arm, “manipulability ellipsoid” is used to determine the easiest manipulation
direction [327, 333]. Based on this kinematic measure, the largest manipulating force can
be generated along the minor axis of the manipulability ellipsoid. This ellipsoid is evaluated
by Singular Value Decomposition (SVD) of the geometric Jacobian matrix. For example,
if the geometric Jacobian is J ∈ R2×2, then its SVD is:

J = ���T (5.45)

where � = [�1,�2] ∈ R2×2 is a unitary matrix, and �1 and �2 denote the direction of the
major and minor axes of the manipulability ellipsoid. � = Diag(S1,S2) is a non-negative
diagonal matrix, and S1 and S2 correspond to the lengths of the major and minor axes of
the manipulability ellipsoid. � is the unitary matrix defined in the joint space.

If we represent the human upper extremity as a robotic arm, we can use this kinematic
measure to obtain the attractive force field for the upper extremity. This can be achieved
by following these steps:
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1. Desired force direction: in this chapter, since we are working with black-box con-
trollers, we do not utilize the dynamics of the upper extremity (i.e., musculoskeletal
models) in the controller structure. However, in a black-box controller, if the patient’s
trunk is secured with respect to the robot, it is possible to obtain the kinematics of
the 2D upper extremity based on the robot end-effector position (4.23). Once the
arm kinematics are obtained, the geometric Jacobian JA can be evaluated at each
point on the desired trajectory (i.e., Path1). If we evaluate the SVD of the geometric
Jacobian by using (5.45), �2 will represent the desired force direction (see Fig. 5.12).
Next, we should obtain the magnitude of the desired force.

2. Desired force magnitude (F̂d): before starting the robotic rehabilitation, the patient
is asked to apply maximum static forces to the locked end-effector positioned at
different locations of the workspace. The patient is instructed to apply the force
along the minor axis of the manipulability ellipsoid. Then, a look-up table can be
generated based on the minor axis lengths and the magnitude of patient’s applied
force; thus, along the desired trajectory, if one knows the length of the minor axis
of the manipulability ellipsoid, the magnitude of the desired force can be evaluated
from the look-up table:

F̂d = F(�2) ≥ 0 (5.46)

where F is the look-up table function.

3. Desired force weighting (Nd): in the previous steps, the direction and magnitude of
the desired force are determined. In this step, the need for assistance or resistance
and their corresponding amounts are evaluated using a weighting factor. This factor
is the cosine of the angle between the end-effector velocity error and the direction of
the minor axis of the manipulability ellipse (see Fig. 5.12), that is:

Nd = cos(θv) =
˜̇ρ ·�2

‖˜̇ρ‖ (5.47)

Finally, the desired force will have the following equation:

Fd = NdF̂d�2 + e−
F̂2
d
c Fext (5.48)

where the second term (i.e., Gaussian function) is considered to address the large position
errors in the dysfunctional patient’s rehabilitation (check the relatively large position errors
for the impaired hand experiments in Figures 5.6, 5.10, and 5.11). For weaker patients
(where F̂d is smaller), the first term gets smaller while the second term increases. Thus,
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Figure 5.13: 1D plant: 1D manipulator with an actuating force F1 interacts with a 1D
environment with externally applied force F2. M , B, and K are the mass, damping and
stiffness of the each mass-spring-damper system.

the HFIC or SOIC will change to an acceleration control problem once F̂d = 0 [118, 156].
In (5.48), coefficient c > 0 is adjusted by the therapist based on the performance of the
patient.

If in a robot control structure any kinematic or dynamic information from the interact-
ing subject (human) is used, then the robot is being controlled by an HRI controller. Since
the attractive force field control uses kinematic and dynamic information from the subject,
it can be considered a type of HRI control; this has also been mentioned in Table 5.1.

Since this method is a type of high-level controller, it needs clinical settings for exper-
iments. Evaluative results for this method are part of future work for this project.

5.3.2 Adaptive optimal impedance control

Since an impedance control only permits offline changes to the robot’s apparent mass, the
objective of this subsection is to find a rule for the online change of the robot’s apparent
mass. Without loss of generality, we consider a 1D linear manipulator (i.e., a mass-spring-
damper with an actuating force) that interacts with another mass-spring damper as an
environment (see Fig. 5.13).

If we exclude the environment in the system dynamics by including the interaction
force (Fext), which is measured by a force sensor, the manipulator dynamics will have the
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following form:
M1Ẍ +B1Ẋ +K1X = F1 − Fext (5.49)

Now, assume that it is desired to optimally track the following reference impedance model:

Mimp
˜̈Xr +Bimp

˜̇Xr +KimpX̃r = −F̃int (5.50)

where X̃r = Xd −Xr, in which Xr is the reference model’s position, and Xd is the desired
position. Apparent mass Mimp is unknown, while stiffness (Kimp) and damping (Bimp)

coefficients can be evaluated from (5.11). F̃int = Fd − Fint is an unknown interaction force
that will be discussed later. This optimal control problem can be solved with an augmented
system representation [220], which is used for optimal reference trajectory tracking.

Optimal trajectory tracking

Consider the state-space representation for the manipulator’s error dynamics, which is
similar to (5.15) in one dimension: ˜̇x = Ax̃ + Bũ (5.51)

where x = [X, Ẋ]T and u are the system state vector and control input, respectively. ud
is equal to the mass-spring-damper dynamics at desired trajectory that is ud = M1Ẍd +
B1Ẋd +K1Xd. If we define the control input as:

u = F1 − Fint (5.52)

the objective is to design the optimal tracking control in such a way that the manipulator
tracks the reference impedance model while it estimates Mimp by making Fint as close as
possible to Fext. The state-space representation for the reference impedance model is as
follows:

˜̇xr =

[
0 1

−Kimp
Mimp

− Bimp
Mimp

][
X̃r˜̇Xr

]
+

[
0

− 1
Mimp

]
F̃int

= Aimpx̃r + BimpF̃int (5.53)

If we combine the two state-space equations (5.51) and (5.53), the following augmented
system will result:

˙̄x =

[
A 0
0 Aimp

] [
x̃
x̃r

]
+

[
B 0
0 Bimp

] [
ũ

F̃int

]
= Āx̄ + B̄ū (5.54)
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Then the objective functional for this optimal tracking problem is:

J =
1

2

∫ ∞
0

(
(x̃− x̃r)

T
�(x̃− x̃r) + ūT �̄ū

)
dt =

1

2
x̄TPx̄ (5.55)

The optimal policy for this objective functional is [220]:{
ū = −�̄x̄

�̄ = �−1B̄P
(5.56)

where P satisfies the following Algebraic Riccati Equation (ARE):

ĀTP + PĀ + �̄−PB̄�̄−1B̄TP = 0 (5.57)

here, �̄ is:

�̄ =

[
� −�
−� �

]
(5.58)

Note that in (5.55), energy-term gain �̄ is defined as follows:

�̄ =

[
R R

R (1 + c)R

]
(5.59)

where coefficient c > 0 is adjusted by the therapist. The energy term based on (5.52) will
result in the following equation:

ūT �̄ū =
[
ud − F1 + Fd − F̃int F̃int

] [
R R

R (1 + c)R

][
ud − F1 + Fd − F̃int

F̃int

]
= R(ud − F1 + Fd)

2 + cRF̃ 2
int (5.60)

Thus, this energy-term gain includes the quadratic form of the interaction force error inside
the objective functional equation. Finally, the 1D manipulator should be controlled by the
following input force:

F1 =
[

1 1
]
�̄x̄ + ud + Fd (5.61)
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Figure 5.14: Adaptive optimal impedance controller scheme. Mux and DeMux stand for
multiplexer and demultiplexer, respectively.

Adaptive control law

In (5.61), there are two unknowns including Fd and xr. Here, we try to find these unknowns
using an adaptive control law. If the resulted optimal interaction force error is applied to
an impedance model identical to (5.50), the optimal reference position error (X̃r,opt) can
be evaluated by solving the following ODE:

Mimp
˜̈Xr,opt +Bimp

˜̇Xr,opt +KimpX̃r,opt =
[

0 1
]
�̄x̄ (5.62)

If we use the obtained optimal reference position error, Mimp can be updated by the
following adaptive law: Ṁimp = −γz( ˜̇Xr − ˜̇Xr,opt)

z = ˜̈Xr,opt − β1( ˜̇Xr − ˜̇Xr,opt)− β0(X̃r − X̃r,opt)
(5.63)
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where γ, β1, and β0 are positive coefficients, and X̃r is obtained by solving (5.50) while

providing F̃int ,Mimpz as the input. Then, the desired input force Fd will be:

Fd = Mimpz +

(
1− M1

Mimp

)
F δ
ext (5.64)

where F δ
ext is the δ seconds delayed interaction force which is recorded by the force sensor,

and δ is updated by matching F δ
ext with Fint. Finally, the adaptive optimal impedance

controller scheme has the structure shown in Fig. 5.14

Simulation

To evaluate the proposed controller, a model similar to Fig. 5.13, in which B1 = 0, K1 = 0,
B2 = 0, K2 = 0, and M1 = 1 kg, is developed in MapleSimTM. Three different values are
assigned for the second mass (i.e., M2 = {1, 10, 50} kg), and the externally applied force
F2 is set to have the following function:

F2 = A sin(Ωt)(ustep(t− t0) + 1) + dN(µ,σ) (5.65)

where A = {10, 100} N and Ω = {1, 20} rad/s are input amplitudes and frequencies, and
ustep is the unit step control input. t0 = 200 s, and dN(µ,σ) is the Gaussian random noise
with the mean µ = 0 and variance σ2 = A2/100 N. The goal is to control the position
of the first mass (X) such that it tracks the desired trajectory Xd = t/100 with optimal
force and position error for different values of second mass, amplitude and frequency. The
simulation time and step size are set to 100 minutes and 1 ms, respectively. The ARE is
solved numerically every 0.1 s.

Results and discussion

Results of the simulations are plotted in figures 5.15, 5.16, and 5.17. In each of these
figures, first and second rows correspond to A = 10 N and A = 100 N, respectively.
Furthermore, first and second columns correspond to Ω = 1 rad/s and Ω = 20 rad/s,
respectively. Fig. 5.15 shows that at higher input force frequencies, the controller perform-
ance is independent of the adaption law and the robot’s apparent mass does not change.
However, at lower input force frequencies, adaption law plays an important role, and the
robot’s apparent mass has changed. When the second mass increases, the time-derivative
of the robot’s apparent mass change decreases, since higher second mass values absorbs
most of the applied force’s energy. In other words, once the second mass decreases, the
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Figure 5.15: Robot’s apparent mass during simulation with different input amplitudes,
frequencies, and second masses.

adaptive controller tries to find higher apparent masses for the robot to absorb the applied
force’s energy. Thus, the apparent mass for the lower values of the second mass is higher.
Note that at input force with A = 10 N, since the amplitude and the frequency were low,
the apparent mass for the unit second mass has not converged in 6000 s of the simulation,
but the pattern of the Fig. 5.16 indicates that it will eventually converge.

In Fig.5.16, the upper envelope of the velocity error is plotted to capture the controller
performance regarding the decrease in velocity error. There is a big jump in all plots (see
figures 5.16 and 5.17), which is caused by the unit step function in (5.65). High-frequency
spikes in these figures are resulted because of the Gaussian random noise input in (5.65).
For most of the path, while the apparent mass is converging to a constant value, the upper
envelope of the velocity error has decreased or kept constant in all plots. This shows
the success of the controller in tracking the desired trajectory while the apparent mass is
being updated. Fig.5.16 shows the upper envelope of the interaction force error to check
if the controller has converged to an optimal interaction force. In all of the plots, as the
apparent mass is converging to a constant value, the interaction force has decreased or
kept constant, and this proves that the controller tries to find lower interaction forces for
different conditions of the input force.
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Figure 5.16: Upper envelope of the velocity error during simulation with different input
amplitudes, frequencies, and second masses. Superscript ∩ indicates the upper envelope of
a variable.

Conclusion

Here, we showed that it is possible to implement the impedance control optimally with
an adaptive law which updates the robot’s apparent mass. Results of the simulations
indicate that at higher input force frequencies or higher environmental mass, the adaption
law does not change the apparent mass a lot. The method is designed for a 1D interaction
models; however, it can be extended to 2D interaction model. For example, if the state-
space equation in (5.15) is redefined in the operational space using (5.28), then the same
controller structure as in Fig. 5.14 can be used to implement our proposed method. In
this case, the only problem is the large dimension of the ARE, which can be solved using
policy iteration presented by Vrabie et al. [304] for real-time implementation.

5.4 Concluding remarks

In this chapter, we developed controllers for the rehabilitation robot according to the
impedance-based assistance. The goal was to achieve a “reliable” and real-time imple-
mentable controller. In our definition, a “reliable” controller is capable of handling variable

139



0

10

20

30

0

5

10

15

0 2000 4000 6000
time (s)

0

100

200

300

0 2000 4000 6000
time (s)

0

50

100

150

Figure 5.17: Upper envelope of the interaction force during simulation with different input
amplitudes, frequencies, and second masses.

exercises and admittance interactions. The controller should reduce therapist intervention
and improve the quality of the rehabilitation. Overall, two types of impedance-based con-
trollers were developed, and their advancements were discussed.

In Section 5.1, to improve impedance control performance in variable admittance en-
vironments, the compliance is controlled by an outer loop force control (i.e., HFIC). Thus,
in a subspace (tangent to the trajectory), the proposed low-level controller (HFIC) was
trying to ensure force tracking with bounded position error. In an orthogonal subspace
(normal to the trajectory), the position tracking with bounded force error was achieved.
The force tracking needs a knowledge of the interacting system (human body) to define
the desired force that the subject can safely tolerate. Thus, although HFIC was successful
in assisting the healthy and less strong subjects, it was not recommended to be used in
interaction with weak subjects. This disadvantage might be resolved by introducing an
outer-loop attractive force field controller for HFIC, that was discussed in Section 5.3.1.

HFIC only controls the compliance (i.e., interaction force) term, and the impedance
gains are not optimal. Thus, it results in a superficial variable impedance model and
requires careful selection of the gains. In Section 5.2, a general method (i.e., OIC) that op-
timally adjusts impedance gains for variable robot configurations was developed and tuned
through simulating the human-robot system. Here, an integrated human-robot dynamic
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system was used to fine-tune the controller gains. This method was advantageous for effi-
cient tuning of the robot controllers in experiments. A good qualitative agreement between
experimental and simulation results verified the effectiveness of this method compared to
the conventional SOIC.

For a linear robot model, the OIC assumes an apparent mass for the robot equal to its
mass matrix, while the SOIC permits offline changes to the robot’s apparent mass. For
optimal results, the robot’s apparent mass should vary online as a function of the input fre-
quencies of the system. However, neither the OIC nor SOIC offer such updates. Moreover,
in regards to experiments, the unknown dynamics of the robot presents a challenging is-
sue, independent of the controller. In Section 5.3.2, a rule (adaptive optimal impedance
control) for the online change of the robot’s apparent mass was developed. The method
was verified by simulation on a simple 1D system. Results of the simulations showed that
at higher input force frequencies or higher environmental mass, the adaption law does not
change the apparent mass a lot. The method was designed for a 1D interaction model;
however, it can be extended to 2D interaction model.
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Chapter 6

Rehabilitation Robot Control:
Human-Robot Interaction Control

In the previous chapter, we developed and tuned advanced black-box controllers with
model-in-loop simulations. For safety in robotic rehabilitation, other than the black-box
controllers, we focus on HRI control structures (see Fig. 5.1). Among HRI controllers,
model-based control is more attractive, since:

1. It can provide information regarding the human-robot dynamic interaction.

2. It can be used for dynamic parameter identification of the human body,

3. In contrast to black/gray-box controllers, a physics-based model can leverage the
inherent dynamics of the system and facilitate implementation of special control
techniques [4, 266], that can optimize a specific performance criterion while meeting
stringent system constraints.

Studies on model-based control of rehabilitation robots are limited in the literature.
Ding et al. [69] used a musculoskeletal upper extremity model (without including muscle
dynamics) to implement a model-based assistive controller for an upper extremity rehab-
ilitation exoskeleton. In this chapter, we present model-based controllers for the upper
extremity rehabilitation robot using our developed musculoskeletal models.
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6.1 Nonlinear model predictive control with an ex-

ternal 3D musculoskeletal model

In this section, the robot’s computer model is integrated with the 3D upper extremity
musculoskeletal model (MA3D-II). The goal is to control the robot optimally based on
the estimates from the FSO of the external musculoskeletal model (i.e., human). Here,
we assume that the dynamic parameters of the internal musculoskeletal model in HRI are
identical to the ones that the external musculoskeletal model has.

For the optimal control, since the robot dynamics is nonlinear, an NMPC is utilized
to control the HRI system. The proposed controller regulates the weights of the objective
functional based on the feedback from FSO to assist or resist the patient’s movements.

6.1.1 Controller structure

Consider the robot dynamics in (4.22). The goal is to control the robot by minimizing the
instantaneous cost functional:

J =

∫ t0+tph

t0

(
x̃Tρ�x̃Tρ + uT�u

)
dt (6.1)

where � and � are positive-definite diagonal weighting matrices, and t0 and tph are the
current time step and prediction horizon, respectively. u is the control input, which con-
tains robot motor torque inputs. x̃ρ is the state vector error in the global coordinates
which is defined in (5.22). In (5.25), this error vector is in terms of the state vector error
in the joint space.

In the human body, it is hypothesized that a control structure similar to the NMPC
with receding horizon might be used by the CNS to control the arm motion. FSO is a
special case of NMPC, which optimizes the current time step while considering the future
time step [180, 254]. Thus, in this section, FSO with a cost functional defined in (4.1) is
used to estimate the optimal muscle activations of the subject interacting with the robot,
while tracking the desired path.

The robot should cope with the external musculoskeletal model’s performance. This
is possible if the tracking gain (�) in the robot’s cost functional (6.1) is regulated by
the muscular activities of the subject. In other words, it is desired to redefine the cost
functional as:

J =

∫ t0+tph

t0

(
f(a1..nm

)x̃Tρ�x̃Tρ + uT�u
)
dt (6.2)
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where f is a function of the subject’s muscular activations which are obtained from FSO.
If the subject shows higher muscular activities, the robot should decrease its assistance
(i.e., f should decrease), and vice versa. Thus, we update f using the following equation:

f(a1..nm
) = 1− c1 tanh

(√∑nm

m=1 a
2
m

c2

)
(6.3)

where 0 ≤ c1 ≤ 1 is a coefficient such that (1 − c1) specifies the amount of the robot’s
assistance. 0 < c2 < 1 specifies the less-active activation level.

The NMPC optimizes the cost functional in (6.2) subject to the robot dynamics (4.22)
and following inequality constraint:{

xqmin

umin

}
≤
{

xq(t)
u(t)

}
≤
{

xqmax

umax

}
(6.4)

Finally, the controller schematic in a model-in-loop simulation is provided in Fig. 6.1.
The human-robot rehabilitation system, modeled in MapleSimTM, receives two sets of
inputs; the robot motors are driven by the NMPC output for joint torques (u1,2(t)), and
muscle activations of the musculoskeletal model are produced by the FSO block. The FSO
block uses the external musculoskeletal model to solve the muscle force sharing for tracking
a desired trajectory. In a previous time (t = t0−), the robot’s end-effector force and position
are sent to the FSO block, which evaluates the current (t = t0) muscle activations and feeds
into the human-robot rehabilitation system and the controller (i.e., the NMPC block). In
the current time step, the controller also receives the joint angles and end-effector force. In
the NMPC block, the cost functional is (6.2) which is subject to the robot dynamics (4.22)
and inequality constraint in (6.4). The controller performance is evaluated by comparing
angular position inputs/outputs (dotted lines in Fig. 6.1). The FSO performance is assessed
by comparing the end-effector position inputs/outputs (dashed lines in Fig. 6.1).

6.1.2 Simulations

In this study, the proposed NMPC problem is solved by the GPOPS-II optimal con-
trol package [211]. GPOPS-II uses orthogonal collocation, which is a direct optimization
method. In this method, both state and control input variables are approximated by a
series of polynomials and fed to an NLP problem. The IPOPT is used to solve this NLP
problem.

Two modes of simulations for the assessment of the proposed controller on the developed
human-robot interaction model are performed.
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ρ(t )0‒
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q (t )1d,2d 0

FSO

ρ (t )d 0‒ Desired Input

F (t )ext 0‒

Figure 6.1: Controller structure of the 3D human-robot rehabilitation system for model-
in-loop testing.

Mode-I: Healthy human interaction mode. In this mode, the objective functional of the
FSO has higher tracking gains to simulate the robot interaction with a healthy human
subject. The controller, in this mode, should generate a lower amount of torque for
the accomplishment of the reaching task.

Mode-II: Weak patient interaction mode (i.e., assistive mode). In this mode, the objective
functional of the FSO has lower tracking gains to simulate the robot interaction with
a weak human subject. The controller, in this mode, should produce a higher amount
of torque for the accomplishment of the reaching task.

The desired trajectory for the simulations is selected based on the coordination of arm
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Figure 6.2: Desired trajectory for point-to-point reaching movement (Path2).

movements (Path2). This trajectory (ρd = [Zd(t), Xd(t)]
T , see Fig. 6.2) is a straight line

with a bell-shaped tangential speed profile inside the human-robot workspace and defined
as: {

Zd(t) = Z0

Xd(t) = X0 + (15τ − 6τ 2 − 10)∆Xτ
3 (6.5)

The path length and simulation time are set to ∆X = 20 cm and tf = 5 s, respectively (see
Fig. 6.2). The simulation time step is 10 ms, and the prediction and control horizons for
the NMPC are tph = tch = 100 ms. See Table A.16 for the assigned control parameters.

6.1.3 Results and discussion

Results of simulations are presented in Fig. 6.3. Magnitudes of motor torques for the
healthy subject interaction (i.e., Mode-I) are lower than the weak subject interaction (i.e.,
Mode-II). In Mode-I, the FSO tries to minimize muscular activities while performing the
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Figure 6.3: 3D Human-robot rehabilitation system simulation results using NMPC in two
modes: (a) Mode-I, and (b) Mode-II. Muscles activations are reported in their synergistic
groups as on page 85. Position and velocity errors are in the global coordinates (ZX).

reaching movement with a good accuracy, thereby increasing the muscle activations and
decreasing f. Thus, since the NMPC tries to minimize the motor torques while performing
less accurate tracking, the motor torques decrease compared to Mode-II, in which the
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FSO minimizes muscular activities while performing less accurate reaching movements.
In Mode-II, the less accurate reaching of the weak subject is improved by the robot’s
assistance. Hence, the muscle activations are low, while the motor torques are high.

Since the tracking gain of the NMPC is updated by the muscular activities, the amount
of the interaction force for both modes are in the same range. In Mode-I, the interaction
force along Y-axis (normal to the horizontal plane) varies more than Mode-II, since the
muscular activities of Mode-I are higher than the other mode. Overall, for both modes,
the range of this normal force is about 30 N which is caused by the weight of the upper
extremity.

In Mode-I, the robot allows the subject to finish the task independently with less
assistance; thus, the large position and velocity errors are caused by the subject’s accuracy
in the reaching movement. However, in Mode-II, the robot tries to help the subject as
much as possible; hence, more accurate tracking results.

6.1.4 Conclusion

Here, we tried to implement an NMPC with varying tracking gain on the robot. The
tracking gain is updated based on the information received on the muscular activities of
the interacting subject. If the dynamics of the interacting subject is identified, then the
external FSO of the identified musculoskeletal model can estimate the muscular activities
of the subject. The proposed controller performed well in interacting with healthy and
weak subjects, in a way that it kept the interaction force in the same range while having
less assistance for the healthy subject, and more assistance for the weak one.

The proposed control structure cannot be used in real-time simulations and experi-
ments, since MA3D-II, which is used in the FSO, has 29 muscle activation inputs and
3 DOF that increase the computation cost of the FSO. In the next section, we will try to
use a less complex upper extremity model (i.e., MA2D-II) within an NMPC structure to
explore the possibility of real-time implementation.

6.2 Nonlinear model predictive control with an in-

ternal 2D human robot interaction model

The objective of this section is to predict muscle activities of a post-stroke patient dur-
ing interaction with a rehabilitation robot, and provide quantitative therapy evaluations,
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thereby improving the quality of therapy in terms of safety and motor function improve-
ment. To achieve this goal, we used our developed HRI model (i.e., MA2D-II and robot),
which is presented in 4.2.3. This model can be used with a controller to achieve this goal.
For example, it can be used with gray-box controllers, in which the EMG signals can es-
timate the muscle activation levels of the patient, or be integrated with AI and any other
type of controller that can predict muscle activations.

Recent progress in the development of the NMPC motivates us to use the developed
non-linear human-robot interaction model to control the rehabilitation robot. In our re-
search, the HRI model is confined within an NMPC of the stroke rehabilitation robot.
The proposed controller uses the musculoskeletal model of the upper extremity to predict
the movements and muscle activations [183], thereby providing optimal assistance to the
patient.

6.2.1 Controller structure

In the human body, the arm motion is controlled by the CNS using a combination of feed-
forward and feedback control commands [183]. The feed-forward commands are estimated
using an internal representation of the arm, and the feedback control is a set of corrective
commands resulting from sensory organs in the arm. This control structure is analogous
to the NMPC with receding horizon. The NMPC uses: 1) a forward dynamics (feed-
forward) model of the system to predict optimal movements, and 2) feedback information
for error correction. During a prediction horizon (tph), optimal movements are determined
by minimizing a cost functional (J) subject to the system dynamics (i.e., (4.28)) and some
constraints (e.g., motor torque limits).

In our human-robot rehabilitation system, the goal is to optimally control the robot
while estimating the human body muscular activities. Thus, the system can be controlled
by an NMPC with feed-forward predictions for the optimal movements of the human body
and robot, and feedback commands for prediction improvement. To minimize the robot
energy consumption, the human’s physiological effort, and end-effector tracking error, our
proposed cost functional is the same as (6.1), in which � and � weights are chosen such
that the objective functional results in the allowable error associated with the state or
effort. Thus, the end-effector compliance can be controlled by adjusting the �. u is the
control input, which contains robot motor torque inputs and predicts muscle activations.

Considering the human-robot dynamics (4.28), interaction force is assumed to be an
internal force. Nevertheless, if the human’s muscle activation patterns are different from
the human-robot model activations, the modeled interaction force (Fint) will not be equal
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to the measured values by the force sensor (Fext). Consequently, an internal force constraint
is introduced to the system dynamics:

ψ (xq(t),u(t), t) = Fint − Fext = 0 (6.6)

where considering (4.24), the modeled interaction force can be written as:

Fint = JR
−T (TR − ΓR) (6.7)

Then, the human-robot inequality constraint is:
xqmin

umin
0

 ≤


xq(t)
u(t)

|ψ (xq(t),u(t), t)|

 ≤


xqmax

umax
ε

 (6.8)

Since the dynamic properties of the human body may be different from the 2 DOF model’s
dynamic properties, the internal force constraint (6.6) is relaxed to reduce the effect of
unwanted dynamics due to the mentioned difference. Thus, in (6.8), a relaxation parameter
(ε) is added to the internal force constraint.

The controller schematic is presented in Fig. 6.4. The human-robot rehabilitation
system, modeled in MapleSimTM, receives two sets of inputs: 1) the robot motors are
driven by the NMPC output for joint torques, 2) muscle activations of the musculoskeletal
model are either produced by the FSO, in which a musculoskeletal system behavior is
modeled through static minimization of physiological cost functional, or measured EMG
data in real patient experiments. The NMPC controller optimizes the cost functional (6.1)
subject to the system dynamics (4.28) and constraints (6.8). Current (at time t = t0)
robot joint angles and end-effector force are sent to the controller. The model/controller
performance is evaluated by comparing the muscle activation inputs/outputs (dashed lines
in Fig. 6.4) and position inputs/outputs (dotted lines in Fig. 6.4).

6.2.2 Simulations

In this study, the proposed NMPC problem is solved by the same method defined in the
previous section. Two modes of simulations for the assessment of the proposed controller
on the developed human-robot interaction model are performed.

Mode-I: Healthy human interaction mode. In this mode, the controller weights are adjus-
ted for the system shown in Fig. 6.4 by connecting the controller activation outputs
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Figure 6.4: Controller structure of the 2D human-robot rehabilitation system for model-
in-loop testing.

to the activation inputs of the human-robot rehabilitation system (i.e., dashed lines
are connected to each other). The adjustment is done by trial and error while check-
ing the controller performance inside the desired criteria (less interaction force with
good tracking). This mode simulates the robot interaction with a healthy human
subject.

Mode-II: Impaired patient interaction mode. In this mode, the controller performance is
tested by driving the human-robot rehabilitation system with zero muscular activa-
tions. In this mode, a totally dysfunctional patient is interacting with the robot. If
the activations from the controller are at the same level as the input activations (i.e.,
zero activations), the controller will be successful in estimating the human’s behavior
while interacting with the robot.

The desired trajectory, simulation time step, and control and prediction horizons are
the same to the previous section. See Table A.17 for the assigned control parameters.
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Figure 6.5: 2D Human-robot rehabilitation system simulation results using NMPC in two
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(Mode-I), and (b) Activations of the human-robot system are zero to simulate a dysfunc-
tional patient interaction with the robot (Mode-II). Position and velocity errors are in the
global coordinates (ZX).
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6.2.3 Results and discussion

Results of simulations are presented in Fig. 6.5. Magnitudes of motor torques for healthy
human interaction mode (Mode-I) are lower than the dysfunctional patient interaction
mode (Mode-II). In Mode-I, the healthy subject tries to minimize his/her muscular activ-
ities while performing the task; hence, this reduces robot motor torques compared to
Mode-II. In the meantime, the robot tries to help the person while minimizing the robot
energy consumption, the subject’s muscular activities and the end-effector tracking error.
In an ideal case, where there is no relaxation of the internal force constraint (see equation
(6.6)), the interaction force should be zero. However, relaxing the constraint (see equa-
tion (6.8)) results in a small amount of interaction force along Z and X directions (see
Fig. 6.5.a).

In Mode-II, the dysfunctional patient cannot apply any forces (has zero muscular activ-
ities). The NMPC with the previous objective tries to find the best motor torques, predict
the dysfunctional subject’s muscle activations while tracking the desired trajectory. Since
the robot should overcome the patient’s dynamics while reducing tracking error, the inter-
action force and motor torques increase compared to Mode-I (see Fig. 6.5.b).

In Mode-II, the maximum amount of predicted muscle activations is about 0.003, which
is very small and may be caused by integration errors, round-off calculations, and relaxation
of the internal force constraint. This shows that the NMPC has predicted the dysfunctional
patient’s muscular activities with a reliable accuracy (the RMSE is 9.78e−4). In Fig. 6.5,
the same amount of position and velocity errors for both modes indicates that the tracking
term in the cost functional is dominant; thus, the NMPC tries to keep the subject’s hand
on the trajectory as much as possible. Position and velocity errors in the Z direction is
less than the X direction since in the NMPC cost functional, the robot X direction is more
compliant than the Z direction.

6.2.4 Conclusion

In this section, the HRI model is integrated with an NMPC controller for a human-robot
rehabilitation system. This HRI model has 2 DOF, and its dynamics has a minimal set
of equations (4.28). This model is used in our proposed NMPC structure (see Fig. 6.4)
to evaluate the controller performance in two modes: healthy subject, and dysfunctional
patient interaction with the robot while performing a point-to-point reaching task in a
smooth movement path for the hand. The controller can successfully predict the muscu-
lar activations for the dysfunctional patient while providing the same therapy (tracking
accuracy) to the patient.
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Our proposed NMPC is implemented using GPOPS-II because of its variable-order ad-
aptive collocation method for solving an optimal control problem. Although the controller
performance is excellent in simulations, it is not possible to use it in our real-time exper-
imental setup because: 1) GPOPS-II is not fast enough to run in real-time simulations,
2) the robot’s data acquisition card (Q8) which is operable by Quanser’s real-time control
software driver (QUARC) does not support the GPOPS-II software.

6.3 Real-time implementation

The final goal of this project is to implement a real-time HRI controller for the rehab-
ilitation robot. In previous sections, we discussed two types of NMPC frameworks (i.e.,
HRI with an external 3D musculoskeletal model, and HRI with an internal 2D musculo-
skeletal model). To implement a real-time model-based controller, one should consider the
following modifications:

1. Simplifying the model: this is accomplished throughout Section 6.2. First, the 2D
(low-fidelity) model is used in the HRI structure. Next, a minimal set of equations
are derived for the HRI model.

2. Modifying the NMPC structure: which is done by minimizing the number of con-
straints.

3. Implementing NMPC using a real-time optimal control method

In this section, we implement the last two items, and present the results of the experiments.

6.3.1 Reducing the number of constraints

If we reconsider the constraint equations (6.8), the following modification can be done to
reduce the computation cost:

(xq − xqmin) ◦ (xq − xqmax) ≤ 0

(u− umin) ◦ (u− umax) ≤ 0

ψ (xq(t),u(t), t)T ψ (xq(t),u(t), t) = 0

(6.9)

where ◦ is the Hadamard (element-wise) product. Using the above constraint equations,
the number of constraints (14 inequality constraints) is halved (6 inequality and 1 equality
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constraint). It is worth noting that, for real-time experiments, the internal force con-
straint (6.6) is not relaxed since we have assumed that the effect of unwanted dynamics is
negligible.

6.3.2 Implementing a real-time nonlinear model predictive con-
trol method

For solving a nonlinear optimal control problem, there are two types of numerical ap-
proaches: direct and indirect methods. Direct methods use calculus of variations and solve
a boundary value problem, while the indirect methods use optimization techniques and
solve a finite-dimensional optimization problem [226]. The direct methods can be imple-
mented by either control parameterization or state and control parameterization. Single
and multiple shooting methods are used for control parameterization, and local and global
collocation methods are implemented using NLP for state and control parameterization.
On the other hand, indirect methods use analytical equations of the system to generate the
Hamiltonian functional derivatives to solve the optimal control problem. Depending on the
NMPC structure, one of the mentioned methods can be advantageous over the other one
[226]. In previous sections, our proposed NMPC frameworks are solved using the GPOPS-
II optimal control software package. This software uses direct global collocation method
to solve a multi-phase optimal control problem. However, real-time implementation of the
controller using this software was not successful. Thus, we researched indirect optimal
control methods, and leverage a symbolic processing and optimized code generation for
real-time computation.

Recently, by the use of Newton’s approach for solving a root finding problem in a
Generalized Minimal Residual (GMRES) method, a new direct method (so called New-
ton/GMRES) was introduced to solve optimal control problems efficiently. Studies have
shown decent improvements in computation time [182, 203, 277–279, 307]. Here, we use the
MPsee toolbox developed by Tajeddin [277] to automatically generate a real-time NMPC
for running our experiments. The NMPC is solved by a single shooting method in which
the discretized states and Lagrangian multipliers of the co-states are solved implicitly.

6.3.3 Experiments

To evaluate the performance of the controller experimentally during a rehabilitation pro-
cedure, a healthy subject performed Mode-II similar to the simulations in Subsection 6.1.2.
To this end, the subject is asked to relax his/her upper extremity muscles and avoid any
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contractions as much as possible. To reduce the effect of random/noisy movements, the ex-
periment was performed in 20 trials. The desired trajectory is same as simulations (Path2
in Fig. 6.2). The sampling-time for the experiments is set to 2 ms, and the prediction and
control horizons for the NMPC are tph = tch = 10 ms. See Table A.17 for the assigned
control parameters.

The processor of the computer running the experiments is an Intelr CoreTM i7-7700K
CPU at 4.2 GHz (8 CPUs), and computer’s memory is 32 GB.

6.3.4 Results and discussion

Average interaction forces along Z, X, and Y axes are 0.23 N, 1.13 N, and 4.02 N respectively
(see Fig. 6.6). The amount of interaction force along the X axis shows the robot’s assistance
along the path. The small amount of interaction force along the Z axis indicates that the
patient is not producing noticeable force normal to the path. This is in agreement with
Mode-II (weak patient interaction) and the simulation results (see Fig. 6.7). Nevertheless,
in comparison to the force along the Y axis in simulations (see Fig. 6.5), the lower amount
of the interaction force along the Y axis (which is about 0.4 kg) implies that the patient is
resisting the gravitational force. This might lead to:

1. higher activations of the extensor muscles at the shoulder joint for the first 4 seconds
of the movement (see extensor activation in Fig. 6.6), and

2. activations of the shoulder flexor muscles for the last one second of simulation where
the arm is extended in the forward direction and the extensor muscles are not able
to counterbalance the upper extremity weight (see flexor activation in Fig. 6.6).

Since the patient is told to relax on the horizontal plane, the corresponding flexor muscles
might co-activate to balance the forces on the horizontal plane (see flexor activation in
Fig. 6.6).

Average of the position RMSE along Z and X axes are 0.5 mm and 5.1 mm, respect-
ively (see Fig. 6.6). Average of the velocity RMSE along Z and X axes are 2.4 mm/s and
9.1 mm/s, respectively (see Fig. 6.6). These tracking errors are slightly higher than the
simulation results, since the musculoskeletal model inside the NMPC structure is not a
perfect representative of the subject. Furthermore, the PE is not included in the mus-
culoskeletal model; thus, some of the muscular activatities are mispredicted due to the
exclusion of the PE.
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Figure 6.6: Experimental results of the rehabilitation system controlled by the real-time
HRI control using internal 2D musculoskeletal model. Position and velocity errors are in
the global coordinates (ZX). The shaded area denotes twice the standard deviation at each
instance of experiment.

If one compares the trends of the motor torques, they match the simulation results (see
Fig. 6.7). Finally, negative values of the muscle activations (at time = 4 s) are indicating
constraint violations; this might be due to inaccurate musculoskeletal model parameters.
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6.3.5 Conclusion

In this section, we presented and discussed real-time implementation of the HRI control
with the internal musculoskeletal model. The NMPC problem was solved using New-
ton/GMRES method with an efficient code generation and reduced-number of constraint
equations. In experiments, the robot was able to accomplish the task with small inter-
action force and tracking error. However, the relaxed subject’s muscular activities were
higher than expected. This discrepancy may be due to inaccurate musculoskeletal model
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parameters, exclusion of the PE, and active counterbalancing by the subject.

6.4 Concluding remarks

HRI control structures leverage some kinematic or dynamic information from the human
subject to control the robot. Here, we introduced two types of model-based HRI control
structures, which were implemented using NMPC with the robot model in model-in-loop
simulations. In the first controller (NMPC with an external 3D musculoskeletal model),
the tracking gain of the objective functional was varied by the results of an external FSO,
which (in parallel) was optimizing muscular activations of an external 3D musculoskeletal
model (high-fidelity model) for a specific task. This 3D musculoskeletal model should have
similar dynamic properties as the internal model in the HRI that was used in a model-in-
loop simulation. In other words, successful implementation of this controller depended on
good DPI of the subject. Simulation results showed that the controller successfully meets
the HRI design criteria.

Since the FSO of the high-fidelity model ran externally, it decreased the computation
cost. Nonetheless, this controller was not implementable in real-time studies. In Sec-
tion 6.2, a low-fidelity model was used within the structure of the NMPC to reduce the
computation cost. In other words, instead of the 3D musculoskeletal model, a 2D muscu-
loskeletal model was used to estimate the muscle activations. This model also needed a
reliable DPI of the subject. Then, the FSO and the robot controllers were integrated and
a single NMPC with the 2D HRI model was created to predict muscle activations along
with robot motor torque inputs. The controller could predict the muscular activities. Its
performance was excellent in simulations, but its computation cost was the same as the
previous. Thus, it was not possible to use it in real-time studies.

Finally in Section 6.3, real-time implementation of the NMPC with the internal 2D
musculoskeletal model was provided. In experiments, the robot was able to accomplish
the task with small interaction force and tracking error. However, predicted higher than
expected values for the relaxed subject’s muscular activities. This discrepancy may be
due to the inaccurate musculoskeletal model parameters, exclusion of the PE, and active
counterbalancing by the subject. As a part of future work, more experiments with the use
of EMG sensors will be done for physiological validation of the proposed method.
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Chapter 7

Conclusion

Upper extremity rehabilitation robotic systems can be improved by new hardware and
control scenarios. New mechanical design and control strategies are currently evaluated
after device development and clinical tests. Design and control are iterative approaches,
and thus, for better outcomes with multiple iterations, the possibility of verification without
the construction of these robots becomes important. Since musculoskeletal models have
been used successfully for the study of human movement, they are promising tools to
interact with rehabilitation devices in simulations. In this study, we proposed the use of
musculoskeletal models with modified activation dynamics interacting with rehabilitation
robots to contribute to the controller design and development of a rehabilitation robot. In
the current research, the goal was to utilize musculoskeletal models in real-time simulations
for model-based design and control of rehabilitation robots.

To check the feasibility of this study, we used an upper extremity rehabilitation ma-
nipulandum [169], which was designed and developed by Quanser Consulting Inc. and
the TRI, interacting with a musculoskeletal arm model. Since two systems (robot and
human) are studied, their models were developed in chapters 3 (System Models: Rehabil-
itation Robot) and 4 (System Models: Human and Human-Robot Interaction). In these
chapters, dynamic parameters of the musculoskeletal model for specific subject and ro-
bot model were identified using DPI. Next, in Chapter 5 (Rehabilitation Robot Control:
Robot Control), two types of low-level control algorithms based on impedance-based assist-
ance were developed and evaluated. Finally, in Chapter 6 (Rehabilitation Robot Control:
Human-Robot Interaction Control), HRI models were used in NMPC control structures
for model-based control. In the following, outcomes of each chapter are discussed.

In Chapter 3 (System Models: Rehabilitation Robot), based on the discussed mechan-
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ical issues of the robot, dynamic models of the robot using our two proposed DPI methods
were presented. First, we proposed a modified homotopy optimization to identify paramet-
ers of the system dynamics with mechanical discontinuity (i.e., backlash). After verifying
the proposed method using computer simulations, the method was used to identify the
parameters of the 2 DOF noisy and nonlinear rehabilitation robot with actuator backlash.
The proposed method provided better estimates for the system parameters compared to
the no-backlash DPI of the robot. Although the obtained accuracy for 1D motion was
good, the uncertainty of the states during robot interaction and the computation cost
caused by the discontinuity led us to develop a continuous model for the 2D robot. Thus,
next, we presented a direct collocation method for the DPI. Different identification tests
were performed, and the results of the proposed method were verified. The robot dynamics
were modeled by two different friction models: LuGre and continuous-velocity models, and
their accuracies were compared. They had the same accuracy, but the continuous-velocity
model had less computation cost.

In Chapter 4 (System Models: Human and Human-Robot Interaction), since the high-
fidelity 3D musculoskeletal model was not suitable for real-time simulations, we developed
different 2D models suitable for real-time simulations. In this chapter, results of cross-
validation studies showed that it is possible to use a 2D musculoskeletal arm model for
evaluation and control of the planar robot. However, development of this 2D muscu-
loskeletal arm model required a 3D musculoskeletal arm model (MA3D-II) with muscle
wrappings. Furthermore, sensitivity studies of the upper extremity models showed that
the estimated muscle forces are highly dependent on subject-specific parameters. Thus, a
method for the DPI of the 2D model (MA2D-II) was provided to include subject-specific
parameters in the model.

In Chapter 5 (Rehabilitation Robot Control: Robot Control), we developed impedance-
based assistance controllers for the rehabilitation robot. The goal was to achieve a reliable
and real-time implementable controller. In our definition, a reliable controller is capable
of handling variable exercises and admittance interactions. The controller should reduce
therapist intervention and improve the quality of the rehabilitation. Overall, two types
of impedance-based controllers were developed, and their performances were discussed.
First, to improve impedance control performance in variable admittance environments, the
compliance is controlled by an outer loop force control (i.e., HFIC). Thus, in a tangential
subspace, the proposed low-level controller (HFIC) was trying to ensure force tracking with
bounded position error. In an orthogonal subspace, the position tracking with bounded
force error was achieved. HFIC only controls the compliance (i.e., interaction force) term,
and the impedance gains are not optimal. Thus, it results in a superficial variable imped-
ance model and requires careful selection of the gains. As the second low-level controller,
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a general method (OIC) that optimally adjusts impedance gains for variable robot config-
urations was developed and tuned through simulating the human-robot system. For this
controller, an integrated human-robot dynamic system was used to fine-tune the control-
ler gains. This method was advantageous for efficient tuning of the robot controllers in
experiments. A good qualitative agreement between experimental and simulation results
verified the effectiveness of this method compared to the conventional SOIC.

Although HFIC was successful in assisting healthy and less strong subjects, it was
not recommended to be used in interaction with weak subjects. This disadvantage might
be resolved by introducing an outer-loop attractive force field controller for HFIC, that
was called attractive force field method and is presented in this chapter. Furthermore,
for a linear robot model, the OIC assumes an apparent mass for the robot equal to its
mass matrix, while the SOIC permits offline changes to the robot’s apparent mass. For
optimal results, the robot’s apparent mass should vary online as a function of the input
frequencies of the system. However, neither the OIC nor SOIC offered such updates. In
this chapter, a rule (adaptive optimal impedance control) for the online change of the
robot’s apparent mass was developed. Results of the simulations showed that at higher
input force frequencies or higher environmental mass, the adaption law does not change
the apparent mass. The method was verified by simulation. The method was designed for
a 1D interaction model; however, it can be extended to 2D interaction models.

Chapter 6 (Rehabilitation Robot Control: Human-Robot Interaction Control) presen-
ted HRI control structures that leverage kinematic or dynamic information from the sub-
ject to control the robot. In this chapter, we introduced two types of model-based HRI
control structures, which were implemented using NMPC in model-in-loop simulations.
In the first controller (NMPC with an external 3D musculoskeletal model), the tracking
gain of the objective functional was varied by the results of an external FSO, which (in
parallel) was optimizing muscular activations of an external 3D musculoskeletal model
(high-fidelity model) for a specific task. Simulation results showed the success of this con-
troller. Since the FSO of the high-fidelity model ran externally, it increased computation
cost. Consequently, this controller was not implementable in real-time studies. As the
second approach, a low-fidelity model (i.e., a 2D musculoskeletal model) was used within
the structure of the NMPC to reduce the computation cost. This model also needed a
reliable DPI of the subject. Then, the FSO and the robot controllers were integrated and
a single NMPC with the 2D HRI model was considered to predict muscle activations along
with optimal robot motor torque inputs. The controller performance was excellent in sim-
ulations and was more efficient (two times faster) than the previous one. However, since it
was implemented using GPOPS-II, it was not possible to use it in real-time studies. Finally,
real-time implementation of the NMPC with the internal 2D musculoskeletal model was
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provided. In experiments, the robot was able to accomplish the task with small interaction
force and tracking error. However, it was predicting the relaxed subject’s muscular activ-
ities in higher amounts. This discrepancy may be due to inaccurate musculoskeletal model
parameters, exclusion of the PE, and active counterbalancing by the subject. Despite these
discrepancies, this controller is efficient for the rehabilitation robot since it is possible to
interpret the predicted muscular activities during a rehabilitation therapy. Furthermore,
the motor torques and interaction forces on the horizontal plane have the same trends as in
the simulations, which provides evidence for the effectiveness of the model-based controller
in real-time experiments.

7.1 List of contributions

Contributions of this research include:

1. Dynamic parameter identification (DPI) of a rehabilitation manipulandum with a
nonlinear and discontinuous dynamic model. This work can be extended directly to
any rehabilitation manipulandum.

2. Development of a 3D musculoskeletal upper extremity model with muscle wrapping
according to ISB recommendations.

3. Construction of a low-fidelity (2D) musculoskeletal model based on the 3D musculo-
skeletal model.

4. Dynamic parameter identification of the musculoskeletal upper extremity model.

5. Construction of a human-robot interaction model.

6. Development of a hybrid force-impedance and optimal impedance controller for re-
habilitation.

7. Development of real-time human-robot interaction controllers using a model-based
NMPC framework.

7.2 Future work

For future research, the following steps are recommended:
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1. Evaluate the performance of the DPI for systems with hysteresis and dead-zone
discontinuities.

2. Assess the DPI results for higher-fidelity musculoskeletal models by doing more ex-
periments with motion capture and EMG.

3. Apply the proposed DPI methods on other robots and human subjects.

4. Evaluate the performance of the proposed control strategies for the rehabilitation
robot by performing clinical trials.

5. Analyze the stability of the proposed impedance-based controllers.

6. Study the effect of model uncertainty on the human-robot interaction control per-
formance.

7. Perform experiments with EMG sensors for the biomechanical validation of the real-
time NMPC framework.

8. Compare the performances of the proposed controllers with the same type of exper-
iments and therapy modes.

9. Implement the proposed human-robot interaction control with learning-based al-
gorithms to adapt to different individuals.

10. Integrate the proposed human-robot interaction control with robust control approaches
(e.g. Monte Carlo simulations) to eliminate possible model uncertainty and instabil-
ity issues.
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Appendix A

General Information

A.1 Musculoskeletal upper extremity models

Several musculoskeletal upper extremity models are summarized in Table A.1. The com-
mon feature of these models is the inclusion of the shoulder. However, as in Table A.1,
the shoulder has been modeled with a different number of joints discussed previously [77].
These models use different numbers of muscles considering muscle mechanics and muscle
paths to solve the muscle redundancy problem by one of the mentioned methods. Most of
these models are 3D, but some of them are 2D.

Some elbow models are integrated into the upper extremity models in Table A.1. In
these models, the elbow has been modeled as a single revolute joint (flexion/extension
joint) or two revolute joints (flexion/extension and pronation/supination joints). In the
literature, there are some detailed models of the forearm pronation/supination [142]. How-
ever, for simplicity, in current models, the pronation/supination joint is modeled only by
a radioulnar joint which connects proximal parts of radius and ulna. In other words, there
are no humeroradial and distal radioulnar joints in current musculoskeletal models.

Among musculoskeletal upper extremity models, only the Texas and Stanford models
[96, 122] have a wrist model. In these models, the wrist is modeled as two independent
revolute joints even though the wrist consists of a radiocarpal joint that is best modeled
by an ellipsoid joint. Furthermore, the ROM for two independent revolute joints is more
than the ROM of an ellipsoid joint. Thus, two independent revolute joints may result in
unphysiological configurations for the wrist.
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A.2 Simulation setup dynamic parameter identifica-

tion

The DPI of the simulation setup was also done by other conventional optimization methods:
Bound Optimization by Quadratic Approximation (BOBYQA) and Pattern Search (PS)
in Table A.2, and Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) in
Table A.3. The objective functions for these methods are similar to the SQP method.

Table A.2: Simulation setup DPI values using BOBYQA and PS optimization methods.

Case A Values Case B Values

Bounds Model BOBYQA PS Model BOBYQA PS

p Unit p0 pmin pmax A I II I II B I II I II

cl rad 0.0 0 β 0.0035 2.6e−5 0.0000 0.0030 0.0030 0.0025 1.7e−5 0.0000 0.0000 0.0000

JM kg m2 0.5 ε 1.000 0.0100 0.0197 0.5000 0.0097 0.0093 0.0300 0.3271 0.4998 0.0625 0.0806

JL kg m2 0.5 ε 1.000 0.0200 0.3292 0.4998 0.0198 0.0195 0.0100 0.6430 0.5000 0.1344 0.9108

BM Nm/rad 0.5 ε 1.000 0.1000 0.3036 0.4999 0.1757 0.1757 0.2500 0.3264 0.5000 0.0159 0.1223

BL Nm/rad 0.5 ε 1.000 0.2000 6.2e−5 0.4999 0.1249 0.1249 0.1500 0.1756 0.5000 0.4669 0.4987

Table A.3: Simulation setup DPI values using PSO and GA optimization methods.

Case A Values Case B Values

Bounds Model PSO GA Model PSO GA

p Unit p0 pmin pmax A I II I II B I II I II

cl rad 0.0 0 β 0.0035 0.0036 9.4e−4 9.6e−4 0.0022 0.0025 0.0032 0.0011 0.0017 0.0023

JM kg m2 0.5 ε 1.000 0.0100 0.0097 0.0108 0.0100 0.0106 0.0300 0.0358 0.0417 0.0393 0.0514

JL kg m2 0.5 ε 1.000 0.0200 0.0199 0.0206 0.0209 0.0208 0.0100 0.0126 0.0102 0.0146 0.1450

BM Nm/rad 0.5 ε 1.000 0.1000 0.2169 0.0020 0.1656 0.0051 0.2500 0.1443 0.0019 0.1362 0.0635

BL Nm/rad 0.5 ε 1.000 0.2000 0.0829 0.2996 0.1364 0.2958 0.1500 0.2559 0.3998 0.2635 0.4005
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A.3 Desired hypotrochoid paths

The desired trajectory equation in the Cartesian space is set to:{
Zd = Zd

(
2 cos(fdt) + cd cos(2

3
fdt)

)
+ Z0

Xd = Xd

(
2 sin(fdt)− cd sin(2

3
fdt)

)
+ X0

(A.1)

where amplitudes Zd and Xd, and initial positions Z0 = 0 m and X0 = 0.4 m are defined
such that the desired trajectory lies inside the robot’s DPI workspace. fd = Ωd tanh(5t)
is a hyperbolic frequency function, which provides zero velocity at t = 0, then converges
to Ωd as time passes. For the SC star, [Zd = 0.0442 m,Xd = 0.0421 m, cd = 3], and for the
RC star, [Zd = 0.0368 m,Xd = 0.0350 m, cd = 4].

A.4 Sliding-mode control

For a nonlinear multi-input multi-output system defined in (3.30), the sliding-mode (ro-
bust) control will be:

u =
◦

M(q)q̈r +
◦
C(q)q̇r +

◦
KP∆q +

◦
fT + JT

◦
fF −K sat(φ−1s) (A.2)

where ◦ accent denotes the estimated value, and ∆q is q− q0. q̇r is the reference velocity
which is formed by the following equation:

q̇r = q̇d −Λq̃ (A.3)

in which Λ = diag(Λ1,Λ2) is a positive definite diagonal matrix, and the ∼ accent refers to
the error with respect to the desired trajectory (i.e., q̃ = q−qd). In (A.2), s is the sliding
surface and it is equal to the reference velocity error (i.e., s = q̇−q̇r). K = diag(K1,K2) and
φ = diag(φ1, φ2) are positive-definite diagonal matrices, and the vector function sat(φ−1s)
is defined as: [

sat(φ−1s)
]
i

=

{ si
φi

|si| ≤ φi
sign( si

φi
) |si| > φi

(A.4)

to reduce the chattering effect. If the matrix K has the following property:

Ki ≥
∣∣∣[M̃(q)q̈r + C̃(q)q̇r + K̃P∆q + f̃T + JT f̃F

]
i

∣∣∣+ φi (A.5)

then the sliding condition will be satisfied. The ∼ accent denotes the modeling error of

the corresponding matrices and vectors (e.g., M̃ =
◦

M−M); thus, if the identified model
of the system is accurate, elements of K will be as small as elements of φ. Assigned values
for control parameters (which are determined by trial and error) are reported in Table A.4.
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Table A.4: Sliding-mode control parameters.

Parameter Λ1 Λ2 φ1 φ2 K1 K2

Unit Hz Hz rad/s rad/s Nm Nm

Value 5 5 0.2 0.2 0.5 0.5

A.5 Robot dynamic parameters

Identified robot dynamic parameters (using direct collocation method) are reported in
Table A.5. The rest of the parameters are in Table A.6. Note that in Table A.6, some of
the parameters (li: link lengths) are measured directly; others are estimated using a CAD
toolbox and CAD model of the robot.

Table A.5: Identified robot dynamic parameters using direct collocation method.

p̄ p Detail Unit Value

p̄1 p¬,
1

In
er

ti
al

P
ar

am
et

er
s kg m2 0.1145

p̄2 p¬,
2 kg m2 0.0931

p̄3 p¬,
3 kg m2 −0.0027

p̄4 p¬,
4 kg m2 0.1669

p̄5 p¬,,®
5 µ̂d1 N m 0.4034

p̄6 p¬,,®
6 µ̂s1 N m 0.1340

p̄7 p¬,,®
7 µ̂v1 N m s 0.0155

p̄8 p¬,,®
8 ωt1 rad/s 0.2279

p̄9 p¬,,®
9 µ̂d2 N m 0.3229

p̄10 p¬,,®
10 µ̂s2 N m 0.1766

p̄11 p¬,,®
11 µ̂v2 N m s 0.0565

p̄12 p¬,,®
12 ωt2 rad/s 0.1419

p̄13 p¬
13 µ̂d3 N 1.0395

p̄14 p¬
14 µ̂s3 N 0.5657

p̄15 p¬
15 vt m/s 0.1893

p̄ p Detail Unit Value

p̄16 p¬,,®
16 KRc(1,1) N m 0.1008

p̄17 p¬,,®
17 KRc(1,2) N m 0.0112

p̄18 p¬,,®
18 KRc(2,2) N m 0.0668

p̄19 p¬,,®
19 q0c1 rad 1.2160

p̄20 p¬,,®
20 q0c2 rad 2.7509

p̄21 p,®
13 µ̂d3 N 1.2389

p̄22 p,®
14 µ̂s3 N 0.8799

p̄23 p,®
15 vt m/s 0.0416

p̄24 p®
1

In
er

ti
al

P
ar

am
et

er
s kg m2 0.2484

p̄25 p®
2 kg m2 0.2076

p̄26 p®
3 kg m2 −0.0027

p̄27 p®
4 kg m2 0.2584

p̄28 — N®
3 — 1.8231
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Table A.6: Estimated and measured robot dynamic parameters (see Fig. 3.1 for parameter
definitions). FN is the normal force under the end-effector when there is no externally
applied load.

Parameter Unit Value

x1 m 0
x2 m 0
x3 m 0
x4 m 0.0082

z1 m −0.0051
z2 m 0.0012
z3 m 0.1576
z4 m 0.2744

m1 kg 2.5783
m2 kg 3.3986
m3 kg 0.0620
m4 kg 1.0832

Parameter Unit Value

l1 m 0.1000
l2 m 0.3100
l3 m 0.3100
l4 m 0.3750

I1 kg m2 0.0224
I2 kg m2 0.0606
I3 kg m2 0.0007
I4 kg m2 0.0098

FN N 11.3404

A.6 Musculoskeletal upper extremity model paramet-

ers

Parameters of the developed musculoskeletal models defined in Chapter 4 are presented in
following tables.

Table A.7: Dynamic parameters of MA2D-I1,2,3.

Parameter Length Mass Inertia COM

Unit m kg kg m2 m

Upper Arm 0.31 1.93 0.0141 0.165

Forearm 0.34 1.52 0.0188 0.190
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Table A.8: MA2D-I1,2 muscle origin and insertion points. Values are measured in meters.
Note that O, S, and E are the coordinate systems defined in Fig. 4.1

Origin ( ||

|

) o1 (O) o2 (O) o3 (S) o4 (S) o5 (O) o6 (O)

Z ||

| −0.055 0.055 0.12 0.12 0.04 0.04

Insertion ( ||

|

) i1 (S) i2 (S) i3 (E) i4 (E) i5 (E) i6 (E)

Z ||

| 0.08 0.08 0.03 −0.03 0.045 −0.045

Table A.9: MA2D-I3 muscle origin and insertion points.

Origin ( ||

|

) o1 (O) o2 (O) o3 (S) o4 (S) o5 (O) o6 (O)[
Z
X

]

||

|

[
−0.0718
0.0321

] [
0.0000
−0.0447

] [
0.2098
−0.0012

] [
0.2090
−0.0002

] [
−0.0100
0.0314

] [
0.0000
−0.0315

]
Insertion ( ||

|

) i1 (S) i2 (S) i3 (E) i4 (E) i5 (E) i6 (E)[
Z
X

]

||

|

[
0.0753
0.0275

] [
0.0447
0.0000

] [
0.0497
−0.0018

] [
−0.0194
0.0004

] [
0.0472
−0.0043

] [
−0.0174
−0.0187

]

Table A.10: Dynamic parameters of MA2D-II.

Parameter Length Mass Inertia COM Rotational Damping

Unit m kg kg m2 m Nms/rad

Upper Arm 0.3202 2.16 0.0274 ZS = 0.1453, XS = 0.0094 1.0322

Forearm 0.3297 2.07 0.0308 ZE = 0.1649, XE = −0.0007 0.2493

Table A.11: Dynamic parameters of a subject-specific MA2D-II.

Parameter Length Mass Inertia COM Rotational Damping

Unit m kg kg m2 m Nms/rad

Upper Arm 0.2733 1.62 0.0452 ZS = 0.1344, XS = 0 0

Forearm 0.3259 1.33 0.0465 ZE = 0.2830, XE = −0.0526 0
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Table A.12: Muscle mechanics parameters for a subject-specific MA2D-II.

Parameter Unit Muscle1 Muscle2 Muscle3 Muscle4 Muscle5 Muscle6

F iso N 780 1009 209 210 481 1059

LM
0 cm 11.0 8.8 8.0 8.4 12.1 14.3

LT
s cm 4.9 7.2 11.5 18.2 23 19

αM
0 deg 0 0 13.8 15.1 10 15

A.7 Rehabilitation robot control parameters

Parameters of the designed controllers in chapters 5 and 6 are defined in following tables.
These parameters are determined by trial and error.

Table A.13: HFIC parameters.

Parameter Mimp Bimp Kimp �P �I FΣ
d

Unit kg Ns/m N/m — 1/s N

Value

[
1 0
0 1

] [
63.25 0

0 126.49

] [
1000 0

0 1000

] [
1 0
0 0.05

] [
20 0
0 0.2

] [
0
−0.1

]

Table A.14: OIC parameters.

Parameter ytol1 ytol2 ytol3 ytol4 Ftol1 Ftol2 c

Unit m m m/s m/s N N —

Value 1
90

1
30

1 100
32

10 10
3

1

Table A.15: SOIC parameters.

Parameter Mimp1 Mimp2 ytol1 ytol2 Ftol1 Ftol2

Unit kg kg m m N N

Value 2.2 2.2 1
90

1
30

10 10
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Table A.16: Parameters for the NMPC with an external 3D musculoskeletal model.

Parameter � � c1 c2

Unit diag(1/m2, 1/m2, s2/m2, s2/m2) 1/(Nm)2 — —

Value diag(2e5, 2e4, 400, 400) diag(1, 1) 0.95 0.002

Table A.17: Parameters for the NMPC with an internal 2D musculoskeletal model.

Parameter � �

Unit diag(1/m2, 1/m2, s2/m2, s2/m2) diag(1/(Nm)2,1/(Nm)2, —, —, —, —, —, —)

Value diag(1.67e4, 1.67e3, 33.3, 33.3) diag(1e− 4, 1e− 4, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5)
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Appendix B

Muscle Mechanics

A musculotendon can be modeled as a combination of equal and parallel long fibers which
have angle αM(pennation angle) with respect to the tendon direction (see Fig. B.1 which
is adopted from [336]).

By assuming that the muscles have constant volumes, the distance between two aponeur-
oses of two ends (in Fig. B.1:wM) is constant [336]. In other words:

wM = LM cos(αM) = LM
0 cos(αM

0 ) = constant (B.1)

The Hill-type muscle model with three elements consists of (see Fig. B.2):

1. CE: is representative of the active part of the muscle, and is basically a force gener-
ator.

2. PE: models the tissue parallel to the muscle fibers and is parallel to the CE element.

nigirO noitresnIMα

M
L

M
w

AponeurosisTendonTendon Muscle

F
ib
e
rs

MTF

MT
F

Figure B.1: Simplified musculotendon structure. FMT = FM is the musculotendon force.

214



PE

CE

SE

M
L

S
L

T
L

MTL

Mα

M
w

MTF

MTF

Figure B.2: Three-element Hill-type muscle model.

3. SE: acts as tendon.

Each of these elements has a contribution in generating the total muscle force. To
present a general model for all muscles, each of these forces and element lengths are nor-
malized with respect to the maximum isometric muscle force (F iso) and the muscle optimal
length (LM

0 ), at which muscle exerts maximum isometric force, respectively. In upcoming
subsections, force contributions of these elements, considering the Thelen muscle model
and its updates, will be discussed.

B.1 Thelen muscle model

Most of the material in this section is adopted from [283].

B.1.1 Series-elastic element force contribution

The SE’s normalized force in terms of tendon strain has the following equation:

fT =


fTtoe(exp(ktoeε̂T)−1)

exp(ktoe)−1
ε̂T ≤ 1

klinε
T
toe

(
ε̂T − 1

)
+ fT

toe ε̂T > 1
(B.2)

where:
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• ε̂T = εT

εTtoe
,

• fT = FT

F iso
is the tendon force normalized to the maximum isometric muscle force,

• εT = LT−LT
s

LT
s

=
lTLM

0

LT
s
− 1 is the tendon strain (change in tendon length to its slack

length ratio),

• εT
0 is the tendon strain due to maximum isometric force, which is 0.04 in old adults

(this value is also used for young adult people),

• ktoe = 3 is an exponential shape factor,

• klin =
fTtoe exp(ktoe)(ktoe−1)+exp(ktoe)+fTtoe−1

εTtoe(exp(ktoe)−1)
∼= 1.712

εT0
is a linear scale factor,

• fT
toe = 0.33 is the normalized tendon force after which tendon exhibits its linear

behavior, and

• εT
toe =

fTtoektoe exp(ktoe)

klin(exp(ktoe)−1)
∼= 0.609εT

0 is the tendon strain above which the tendon behaves
as a linear spring.

B.1.2 Passive element force contribution

The PE’s normalized force in terms of normalized muscle length has the following form:

fPE =
exp

(
kPE(lM−1)

εM0

)
− 1

exp(kPE)− 1
(B.3)

here:

• fPE = FPE

F iso
is the normalized passive muscle force,

• kPE = 5 is an exponential shape factor,

• lM = LM

LM
0

is the normalized muscle length, and

• εM
0 = lM0 − 1 is the passive muscle strain due to the maximum isometric force. Its

value for old adults is 0.5 (for young adults, it is 0.6).
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B.1.3 Contractile element force contribution

Force of this element is a function of activation, muscle length and contraction velocity.
The equation for the normalized force of this element is as follows:

fCE =
FCE

F iso
= a fCE

l fCE
v (B.4)

where a is the activation of the muscle, fCE
l is the active force-length scale factor, and fCE

v

is the active muscle force due to the contraction velocity. Below, these last two terms are
defined.

Active force-length scale factor

This scale factor is expressed by the following equation:

fCE
l = exp

(
−
(
lM − 1

)2

γCE

)
(B.5)

in which γCE = 0.45 is the shape factor.

Active muscle force due to the contraction velocity

There is a nonlinear relationship between active muscle force and the contraction velocity,
which is given by the following equation:

fCE
v =


Af(vM+(0.25+0.75a)vMMax)

Af(vM+(0.25+0.75a)vMMax)−vM
vM ≤ 0

vMfMlen

(
2+ 2

Af

)
+(0.25+0.75a)(fMlen−1)vMMax

vM
(

2+ 2
Af

)
+(0.25+0.75a)(fMlen−1)vMMax

vM > 0

(B.6)

here:

• fM
len is the maximum normalized muscle force achievable when the fiber is lengthening.

Its value for old adults is 1.8 (this value for young adults is 1.4).

• Af = 0.25 is the force velocity shape factor,
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• vM is the contraction velocity of the muscle, which has the unit
[LM

0 ]
s

, and

• vM
Max is the maximum contraction velocity, which is 8

[LM
0 ]
s

for old adults (for young

adults, it is 10
[LM

0 ]
s

).

B.2 Modified Thelen muscle model

Modification of the Thelen muscle has been done to overcome numerical issues in solving
the muscle redundancy problem. Each of the muscle element equations have been updated
in the following subsections.

B.2.1 Series-elastic element force contribution

The SE’s normalized force in terms of tendon strain has the following updated equation
[134]:

fT = 0.001(1 + εT) +


0 ε̂T ≤ 0

fTtoe(exp(ktoeε̂T)−1)
exp(ktoe)−1

0 < ε̂T ≤ 1

klinε
T
toe

(
ε̂T − 1

)
+ fT

toe ε̂T > 1

(B.7)

B.2.2 Passive element force contribution

The PE’s normalized force in terms of normalized muscle length has the following updated
form [134]:

fPE =


1 + kPE

εM0

(
lM − (1 + εM

0 )
)

lM > 1 + εM
0

exp

(
kPE(lM−1)

εM0

)
−1

exp(kPE)−1
lM ≤ 1 + εM

0

(B.8)

218



B.2.3 Contractile element force contribution

For the modified Thelen muscle model, the contractile element velocity in terms of con-
tractile element force has the following equation [130, 134]:

vM

vM
Max

=



bCE
1

(
1 + 1

Af

)
fCEfl + cCE

1 FCE < −FaAf

FCE(0.25+0.75a)
εCE

(
εCE−Fa

Fa+ εCE

Af
+ξCE

+ Fa
Fa+ξCE

)
− Fa(0.25+0.75a)

Fa+ξCE −FaAf ≤ FCE < 0

(FCE−Fa)(0.25+0.75a)

Fa+FCE

Af
+ξCE

0 ≤ FCE < Fa

(FCE−Fa)(0.25+0.75a)(
2+ 2

Af

)
(FafMlen−FCE)
fM
len

−1
+ξCE

Fa ≤ FCE < 0.95Faf
M
len

[
bCE

2 +
(FCE−0.95FafMlen)(cCE

2 −bCE
2 )

εCEFafMlen

]
(0.25 + 0.75a) 0.95Faf

M
len ≤ FCE

(B.9)
where:

• Fa = aF isofl is the active force in the muscle fiber,

• bCE
1 = −100

• cCE
1 = 25,

• εCE = 10−6,

• ξCE = 0.05,

• bCE
2 =

0.95FafMlen−Fa
0.05

(
2+ 2

Af

)
Faf

M
len

fM
len

−1
+ξCE

, and

• cCE
2 =

(0.95−εCE)FafMlen−Fa
(0.05−εCE)

(
2+ 2

Af

)
Faf

M
len

fM
len

−1
+ξCE

.

Equation (B.9) is the inverse of the force-velocity function, where the input is the CE’s
force and the output is the muscle velocity. However, in most musculoskeletal simulations
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the force-velocity relationship is needed to evaluate the CE’s force with known muscle
velocity. Thus, the following equation can be used:

fCE
v =



vM+1
1+ 1

Af

vM < −1

vM+1

1− vM
Af

−1 ≤ vM < 0

(
2+ 2

Af

)
vMfMlen+fMlen−1(

2+ 2
Af

)
vM+fMlen−1

0 ≤ vM <
10(fMlen−1)(0.95fMlen−1)(

1+ 1
Af

)
fMlen

fMlen
20(fMlen−1)

((
1+ 1

Af

)
vMfMlen

10(fMlen−1)
+ 18.05fM

len − 18

)
10(fMlen−1)(0.95fMlen−1)(

1+ 1
Af

)
fMlen

< vM

(B.10)

B.3 High level equations of a musculotendon

B.3.1 Muscle length and velocity

With known musculotendon length, muscle length can be evaluated using equations below:{
LS = LMT − LT

LM =
√

(LS)2 + (wM)2
(B.11)

where all variables are defined in Fig. B.2, and wM is given in (B.1). Musculotendon length
(which is shown by L in the main text) is evaluated from musculoskeletal model kinematics.
Muscle velocity is the time derivative of muscle length: V M = dLM

dt

vM = VM

LM
0

(B.12)

B.3.2 Musculotendon force

The force equilibrium equation for the 3-element muscle is given by:

F S =
(
FCE + FPE

)
cos(αM) = FT (B.13)
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where:

cos(αM) =
LS

LM
(B.14)

Note that by using (B.1):

αM =


0 LM = 0 or wM

LM ≤ 0

arcsin
(

wM

LM

)
0 < wM

LM < 1

π/2 1 ≤ wM

LM

(B.15)

Musculotendon force can be evaluated by:

FMT = FM = F S =
(
FCE + FPE

)
cos(αM) (B.16)

and if there is no PE, then:

FMT = FM = F S = FCE cos(αM) (B.17)

B.4 Activation dynamics

The time-derivative of the muscle activation is related to the muscle excitation by the
following equation:

ȧ =


(e−a)

tact(0.5+1.5a)
e > a

(e−a)(0.5+1.5a)
tdeact

e ≤ a
(B.18)

where tact = 15 ms, and tdeact is 50 or 60 ms for young or old adults, respectively. e is the
muscle excitation.
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